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Abstract
The recently developed phylogenomic approach provides a unique way to identify disease risk or protective allele in any 
organism. While risk alleles evolve mostly under purifying selection, protective alleles are evolving either under balancing 
or positive selection. Owing to insufficient information, authors employed the phylogenomic approach to detect the nature 
of selection acting on type 2 diabetes (T2D) genes in Drosophila genus using various models of CODEML utility of PAML. 
The obtained result revealed that T2D gene sequences are evolving under purifying selection. However, only a few sites in 
membrane proteins encoded via CG8051, ZnT35C, and kar, are significantly evolving under positive selection under specific 
scenarios, which might be because of positive or adaptive evolution in response to changing niche, diet or other factors. In 
the near future, this information will be highly useful in the field of evolutionary medicine and the drug discovery process.
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Introduction

Diabetes mellitus (DM) is a polygenic disease. Clinically it 
is characterized by hyperglycemia, polyuria (frequent urina-
tion), polyphagia (hunger), polydipsia (thirst), and loss of 
weight. DM is mainly of two types, namely, type 1 diabetes 
(T1D) & type 2 diabetes (T2D). T1D is clinically character-
ized via autoimmune destruction of insulin-producing pan-
creatic β cells; if not treated early results in absolute insu-
lin deficiency. T2D is characterized via resistance towards 
the action of insulin as well as an incapability to produce 
adequate levels of insulin for overcoming ’insulin resist-
ance’ (Walker and Colledge 2013). While T1D is an auto-
immune disease, obesity is a major risk factor for causing 
T2D along with various other genetics as well as environ-
mental factors (Thirlaway and Davies 2001; Baynest 2015; 
Skyler et al. 2017). As T2D is a complex disorder, there are 

still numerous debates on the actual cause, mechanism, and 
treatment associated with T2D. Thus, interest to understand 
the mechanism as well as to find a possible therapeutic for 
T2D with minimum side effects has revolutionized the field 
of diabetic research. Researchers are implementing several 
new technologies, like nanotechnology, statins, and gene 
therapy, for the treatment of T2D. Nevertheless, these new 
technologies, along with the traditional medicinal approach, 
are also reported to have certain side effects. For instance, 
the consumption of nanoparticles may be toxic or harmful 
(Tiwari 2015). Thus, there is always an urge to detect key 
gene(s) and its site(s) that play a significant role in the devel-
opment of T2D, which in turn may function as a plausible 
therapeutic target towards the treatment of T2D.

The recently developed phylogenomic approach provides 
a unique way to understand how natural selection has shaped 
the genetic diversity of any organism. The phylogenomic 
approach also provides us a unique way to identify disease 
risk or protective allele in any organism. While risk alleles 
evolve mostly under purifying selection, protective alleles 
are evolving either under balancing or positive selection 
(Gupta and Vadde 2019a). However, when an individual 
with protective alleles migrate to the contrasting environ-
ment, the protective alleles may turn into risk factor and 
causes diseases (Gupta and Vadde 2019a). Hence, there is an 
urgent requirement to identify disease-specific protective or 
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risk alleles (Gupta and Vadde 2019a). This can be achieved 
by employing various principles of evolution (Grunspan 
et al. 2017). Through natural selection, it’s easy to under-
stand the processes associated with the adaptation of an 
organism to its environment through selectively reproducing 
changes in its genotype or genetic constitution (König 2001; 
Gupta and Vadde 2019a). By performing a comparative 
study of gene(s) sequences of closely related species, we can 
quickly determine the evolutionary relationship for a par-
ticular phenotype (e.g., T2D) (Fischman et al. 2011). Since 
the protein-coding region of any gene is highly conserved 
throughout evolution, estimation of evolutionary pressure on 
the protein-coding region provides more significant results 
in comparison to the non-coding region (Yang 2006). Evo-
lutionary constraints on proteins across divergent lineages 
are generally estimated via the ratio of substitution rates 
at nonsynonymous (dN) and synonymous sites (dS) in the 
protein-coding regions (ω = dN/dS) (Yang 2006). Using the 
synonymous polymorphisms as a proxy of neutral diversity, 
one can easily predict whether nonsynonymous polymor-
phisms have been favored or hindered by natural selection 
(Yang 2006). In the case of neutral evolving genes, the rate 
of fixation of synonymous and nonsynonymous mutations 
will be the same (ω = 1) (Yang 2006). In the case of negative 
(purifying) selection, the nonsynonymous mutation is not 
favored via natural selection. It thus is eliminated, causing 
the rate of fixation of synonymous mutation to be higher 
than the nonsynonymous rate (ω < 1) (Yang 2006). In the 
case of positive (adaptive) selection, the nonsynonymous 
mutation is favored by positive selection, causing the rate of 
fixation of nonsynonymous mutation to be higher than the 
synonymous rate (ω > 1) (Yang 2006). Thus, ω value can be 
employed extensively to understand evolutionary rates of 
genes, identify least or most conserved genes and also detect 
genes that may have undergone periods of adaptive (or posi-
tive) evolution (Kosiol et al. 2008). For instance, in parasite 
genomes, ω value enables us to detect rapidly evolving genes 
in the “evolutionary arms race” against the host’s immune 
system (Yang et al. 2003; Lefébure and Stanhope 2009).

Earlier phylogenomics approaches were utilized to under-
stand antibiotic resistance and pathogen evolution as well 
as detecting the origins of emerging diseases, for instance, 
the origin of HIV1 in chimpanzees in Central Africa (Nesse 
and Stearns 2008). Phylogenomics approaches have also 
been employed in cancer treatment and research. Cell lines 
segregate under the influence of mutations, and the genetic 
differences make it possible to trace the original wild type 
sequence. Two tumors with identical histological features 
may have, unlike proteomic signatures, that, in turn, will 
help us to understand the degree of cellular differentiation. 
Whether the tumor has developed from the same line of cell 
or have different origin can also be detected via phylog-
enomics approaches (Nesse and Stearns 2008). Recently, 

Al-Daghri and the team have reported that G6PC2 genes 
are evolving under positive selection in mammal and play 
a significant role in causing T2D (Al-Daghri et al. 2017). 
G6PC2 encodes a glucose-6-phosphatase catalytic subunit 
isoform that catalyzes the hydrolysis of glucose-6-phosphate 
for producing glucose as well as inorganic phosphate in the 
endoplasmic reticulum lumen (Pound et al. 2013). In another 
study, Klimentidis and the team identified three genes, 
namely, IGF2BP2, WFS1, and SLC30A8, that are under 
positive selection and also responsible for increasing the risk 
of T2D in East Asians and Sub-Saharan Africans human 
population (Klimentidis et al. 2011). In contrast, few stud-
ies reported that high milk consumption in Europe caused a 
positive selection of protective variants in milk-consuming 
populations, which might explain the low prevalence of T2D 
in Europeans (Ségurel et al. 2013). Thus, there is always a 
quest to understand how the evolutionary process has shaped 
the genetic makeup of the T2D gene in different organisms/
populations and detect and characterize positively selected 
genes and their sites that may be responsible for either caus-
ing T2D or providing protection against T2D.

Because of high conservation between humans and flies 
at both physiological and molecular levels, Drosophila has 
served as the best useful model organism for studying a vari-
ety of human traits and diseases, including T2D (Musselman 
et al. 2011; Alfa and Kim 2016; Graham and Pick 2017). Till 
date numerous studies have been performed for understand-
ing the influence of natural selection on the genetic diversity 
of numerous gene families, for example, male reproductive 
genes (Ahmed-Braimah et al. 2017), olfactory and gusta-
tory receptors (Gardiner Anastasia et al. 2009) and immune 
genes (Hill et al. 2019) in Drosophila. However, no phy-
logenetic studies have been undertaken on the T2D gene 
of Drosophila. Thus, there is always a debate about how 
evolution has shaped the genetic diversity in the T2D genes 
of the Drosophila genus. Hence, for the first time, authors 
have utilized aligned protein-coding sequence files of T2D 
genes of 12 species of Drosophila available in the FlyBase 
R6.14 database (https ://flyba se.org/) for detecting nature of 
selection acting on T2D gene in Drosophila. In the near 
future, information obtained from the present study will help 
us in understanding the mechanism associated with T2D in 
humans, which in turn may be useful in the field of evolu-
tionary medicine, as well as in the drug discovery process.

Materials and methods

Data retrieval and preprocessing

Aligned coding sequence (CDS) file of the longest isoform 
of every D. melanogaster’s genes that are present in all 12 
species of Drosophila (D. melanogaster, D. sechellia, D. 

https://flybase.org/
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erecta, D. simulans, D. yakuba, D. ananassae, D. persimilis, 
D. pseudoobscura, D. willistoni, D. virilis, D. grimshawi 
and D. mojavensis) were downloaded from FlyBase R6.14 
databases (ftp://ftp.flyba se.net/genom es/12_speci es_analy 
sis/clark _eisen /align ments /). For maintaining consistency, 
CDS file lacking genes sequence of any of the 12 species 
were discarded. Further, a stop codon from each aligned 
sequenced file was discarded via bppsuite (https ://githu 
b.com/BioPP /bppsu ite).

Orthologs search

FlyBase’ gene IDs present in all 12 species of Drosophila 
were subjected to the DIOPT (“Drosophila RNAi Screen-
ing Center Integrative Ortholog Prediction Tool”) Diseases 
and Traits (https ://www.flyrn ai.org/diopt -dist). Tool for 
identifying high-confidence orthologs of human T2D genes 
in Drosophila melanogaster (Hu et al. 2011). DIOPT-DIST 
is comprised of zebrafish, human, fly, yeast, mouse, and 
worm ortholog predictions made by several existing tools, 
like, HomoloGene, Inparanoid, Ensembl Compara, Isobase, 
OMA, Phylome, RoundUp, TreeFam, and orthoMCL. Based 
on this information, DIOPT-DIST estimates simple scores 
that represent the number of tools that support a given 
orthologous gene-pair relationship, as well as a weighted 
score based on functional assessment using high quality GO 
molecular function annotation of all fly-human orthologous 
pairs predicted by each tool. These scores are represented as 
low, moderate, and high, where low denotes “least signifi-
cant orthologous gene-pair relationship” and high denotes 
“highly significant orthologous gene-pair relationship” (Hu 
et al. 2011).

Identification of selection pressure acting on T2D 
genes in the Drosophila genus

Initially, ω value of every gene was calculated individually 
by using M0 (one ratio or neutral) model implemented in 
Phylogenetics Analysis by Maximum Likelihood (PAML) 
package v4.9 (Yang 2007). M0 is the simplest model of 
PAML and presume identical ω value for all branches in a 
phylogenetic tree and across all sites (Swanson et al. 2003; 
Lynn et al. 2005). For estimating ω value, the M0 model 
utilized the F3xF4 model and gene tree of 12 species gen-
erated by the Drosophila Genome Consortium (Fig. 1A) 
(Drosophila 12 Genomes Consortium 2007). Later, quantile 
regression analysis was carried out between ω value of T2D 
and non-T2D genes using the QUANTREG package of R 
(Koenker et al. 2018; Team 2014) to detect the strength of 
selective pressure that is responsible for shaping the func-
tion of T2D across entire Drosophila genus. Results having 
a p-value < 0.05 was considered significant.

Though significant, the result obtained from the M0 
model reveals only the global scenario across any genus. 
However, earlier several studies have also suggested that 
the evolution shapes each branch of the phylogeny dis-
tinctly because the number of rates of nonsynonymous 
and synonymous substitutions varies across a sequence 
(Wong et al. 2008). Thus, in the present study, "Branch-
site models" were also employed for detecting selection 
pressure that acts distinctly on T2D genes of each species 
of Drosophila (Farfán et al. 2009). "Branch-site models" 
allow ω value to vary both amongst sites as well as line-
ages. Subsequently, quantile regression analysis between 
the ω value of T2D and non-T2D genes of each species 
was performed separately to detect the strength of selec-
tive pressure. Results having p-value < 0.05 is considered 
significant.

Detecting positively selected sites in T2D genes of 
Drosophila genus

Since genes and their sites that are evolving under positive 
selection are beneficial, there is always a quest to detect 
them (Wagner 2007). Earlier studies have also reported 
that few sites in genes that are evolving under purify-
ing selection may also occasionally experience adaptive 
change (Yang and Bielawski 2000). Such sites point to 
functionally important gene’s regions. Hence, they are of 
potential interest to protein engineers who alter proteins 
to produce new functions. By considering the above infor-
mation, in the present study, T2D genes and their sites 
that are evolving under positive selection were detected 
using “fixed-sites models”, namely M7 and M8 (Yang and 
Swanson 2002). M7 allows 10 sites class following a beta-
distribution of sites with ω value ranging between 0 and 
1. M8 model is similar to M7 models, except there is an 
additional 11th site class with ω > 1 (positive selection 
allowed). For estimating significance in terms of a p-value, 
a likelihood-ratio test (LRT) was employed. LRT (2Δℓ) 
is computed as 2(ℓ1 – ℓ0), where ℓ1 is the log-likelihood 
(LL) of the model representing the alternative hypothesis 
(M8) and ℓ0 is the LL of the model representing the null 
hypothesis (M7). LRT statistic approximately follows 
a chi-square distribution. p-value obtained was further 
adjusted via "FDR" (false discovery rate) function in the 
R package. T2D gene and its sites with FDR value < 0.05 
were considered to be significantly under positive selec-
tion. Later, Bayes empirical Bayes (BEB) methods avail-
able in PAML4.9 were employed to detect if any positive 
selection episodes had affected any specific amino acid 
sites in the protein encoded via genes (Liu et al. 2013; 
Teng et  al. 2017). These T2D genes having positively 
selected sites are henceforth known as key genes.

ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/
ftp://ftp.flybase.net/genomes/12_species_analysis/clark_eisen/alignments/
https://github.com/BioPP/bppsuite
https://github.com/BioPP/bppsuite
https://www.flyrnai.org/diopt-dist
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Gene ontology and pathway enrichment analysis

STRING database (Szklarczyk et al. 2017) was utilized for 
detecting gene ontology (cellular component, biological pro-
cess, molecular function) and pathway enrichment analysis 
associated with key genes. Result having gene count > 2 and 
FDR < 0.05 were considered significant.

Generation of the three‑dimensional structure 
of proteins

The coding sequence of each key genes was submitted to 
the EMBOSS Transeq tool (https ://www.ebi.ac.uk/Tools /st/
embos s_trans eq/) for translating nucleic acid sequences to 
their corresponding peptide sequences. The protein sequence 
of each key candidate genes was subject to NCBI’s protein 
BLAST (Altschul et al. 1990), separately, for detecting their 
nearby homologous structure against Protein Data Bank 
(PDB). Depending on maximum sequence identity, query 
coverage, or lower e-value, if their homologous structure 

were available in Protein Data Bank, they were retrieved 
manually. If homologous structures are absent in Protein 
Data Bank, each protein sequence was submitted separately 
to the GalaxyWEB server (https ://galax y.seokl ab.org/) for 
building their three-dimensional model. Ramachandran plot 
produced via PROCHECK (Laskowski et al. 1993) and Z 
scores computed through the ProSA-web tool (Wiederstein 
and Sippl 2007) were employed to validate the geometry of 
modeled protein structure.

Molecular dynamics (MD) simulations of proteins

For understanding structural characteristics of the protein 
encoded via each key genes distinctly, molecular dynam-
ics simulations of each protein for 200 ns were done via 
Gromos96-43a1 force field of “GROningen MAchine for 
Chemical Simulations” (GROMACS 5.1) (Abraham et al. 
2015), individually. If proteins encoded through key can-
didate genes are situated in the cytoplasm, cubic boxes 
bearing SPC216 water molecules employed for solvating 

Fig. 1  A Gene tree of 12 Drosophila species generated by Drosophila 
Genome Consortium. B Global distribution of ω in entire Drosophila 
genome. C  Violin plot representation of distribution of ω value for 
non-T2D (red) and T2D (cyan) genes. Black dot in the center of the 

red and cyan violin plot represents the mean ω value.  D Pairwise 
assessments of dS and dN substitution rates in T2D genes. E Satura-
tion plot in T2D genes. F ω value of T2D genes were plotted against 
sequence divergence (t)

https://www.ebi.ac.uk/Tools/st/emboss_transeq/
https://www.ebi.ac.uk/Tools/st/emboss_transeq/
https://galaxy.seoklab.org/
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protein (Gupta and Vadde 2018; Gouda et al. 2019). If pro-
teins produced via key candidate genes are situated in the 
cell membrane, three-dimension structure of each protein 
was implanted into equilibrated bilayer of “dipalmitoyl 
phosphatidylcholine” employing “g_membed” tool (Wolf 
et al. 2010) of GROMACS utilizing parameters for “Berger 
lipids” generated from Berger, Edholm, and Jahnig (Berger 
et al. 1997). Further, the solvation of the membrane sys-
tems was carried out by creating a local copy of vdwradii.
dat and modifying C value to 0.375 from 0.15 (Gupta and 
Vadde 2019b; Gupta et al. 2019). By making these changes, 
solvate assign carbon atoms sufficiently large van der Waals 
radius, which in turn makes water augmentation within the 
lipids less likely (Lemkul 2015). Further, neutralization of 
the entire system was performed through adding suitable 
ions employing genion application of GROMACS.

To discard faulty steric conflicts and van der Waals con-
tacts protein, energy-minimization performed at an initial 
stage through steepest descent of 3,000 steps with 0.01 nm 
energy step size. The energy minimisation step was designed 
to halt when the maximum force reaches less than 1000 kJ/
mol/nm. To equilibrize the complete system, solute was 
subjected to constant “number of particles, volume and 
temperature” (NVT) conditions for 100 ps at 300 K, subse-
quently followed through 100 ps under constant “number of 
particles, pressure, and temperature” (NPT) conditions up 
to 200 ns. All covalent bonds were moderated through the 
“Linear Constraint Solver” (LINCS) algorithm. Last step 
of molecular dynamics of the electrostatic interactions was 
computed through “Particle Mesh Ewald” (PME) method. 
For each and every step, dynamics simulation was allot-
ted 100,000,000 steps with an energy step size of 0.02 fs 
(200 ns). The protein atoms were harmonically constrained 
during solvent equilibration (Donde et al. 2019). Final MD 
trajectories, along with the quality of simulations, were 
estimated through GROMACS5.1. Xmgrace (Turner 2005) 
program was employed for generating two-dimensional plots 
and trajectory analysis.

Result

File preprocessing and orthologs search

Initial inspection of each aligned CDS file reveals that there 
are more than ~ 7304 genes across the phylogeny, but 7304 
orthologs are present across all groups in the Drosophila 
genus. However, out of 7304, only 5679 genes are present 
in all 12 species of Drosophila. Further, investigation via 
the DIOPT-DIST tool suggested that, out of 5679, only 202 
orthologs of human protein-coding T2D genes are present 
in Drosophila (Supplementary File 1). Thus, aligned coding 

sequence files of only 5679 (202 T2D and 5476 non-T2D) 
genes were considered for downstream analysis.

Identification of selection pressure acting on T2D 
genes and it’s sites in the Drosophila genus

The result obtained from the M0 model suggests that the 
ω value of all genes is less than 1 (Table 1 and Fig. 1B), 
which in turn supports that almost the almost entire genome 
of the Drosophila genus is evolving under purifying selec-
tion. However, the mean ω of T2D genes (0.063) is slightly 
less than non-T2D genes (0.064) (Fig. 1C). In T2D genes, 
dS (range 0.032–25.827) is greater than dN values (range 
0.000–1.431) (Fig. 1D). Saturation plot of T2D genes reveals 
strong saturation of both transitional as well as transversional 
substitutions till 0.05 (< = 1) (Fig. 1E); thereby suggesting 
the presence of multiple substitutions as well as plausible 
homoplasy (Farfán et al. 2009). Figure 1F depicts a nega-
tive relationship between ω & sequence divergence. Further 
quantile regression analysis between ω values of T2D and 
non-T2D genes suggests that T2D is evolving under strong 
purifying selection in Drosophila genus (p-value = 0.044) 
(Table 1).

It is pertinent to note that dS across 12 species of is higher 
than 1 in almost all genes. Hence, to avoid misestimation of 
ω in each species of Drosophila, at first, we split our data-
sets into four group, namely Group A (D. melanogaster, D. 
sechellia and D. simulans), Group B (D. erecta, D. yakuba), 
Group C (D. persimilis and D. pseudoobscura) and Group 
D (D. virilis, D. grimshawi and D. mojavensis). Subse-
quently, dS and dN value of each genes of every group was 
estimated using the M0 model. Result obtained from “M0 

Table 1  Result obtained from quantile regression analysis between ω 
values of T2D and non-T2D genes in different species of Drosophila 

Organism Value Std. error t value Pr( >|t|)

Drosophila genus − 0.005 0.003 − 2.015 0.044
Group A
 D. melanogaster − 0.008 0.002 − 3.137 0.002
 D. simulans − 0.017 0.008 − 2.251 0.024
 D. sechellia − 0.021 0.007 − 2.911 0.004

Group B
D. yakuba − 0.005 0.004 − 1.276 0.202
D. erecta − 0.009 0.010 − 0.850 0.396
Group C
D. pseudoobscura − 0.005 0.005 − 1.130 0.258
D. persimilis − 0.030 0.036 − 0.839 0.402
Group D
D. virilis − 0.005 0.003 − 1.593 0.111
D. mojavensis − 0.007 0.005 − 1.303 0.193
D. grimshawi − 0.007 0.005 − 1.248 0.212
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models” reveals that dS value in each range between 0 and 
1.5 (Fig. 2). Later, genes with 0.05 < dS < 1 was only con-
sidered for "Branch-site models" analysis to get a better esti-
mation of ω in each group distinctly. It is pertinent to note 
that dS value of all 202 T2D genes in all four group range 
between 0.05 and 1.

The result obtained from "Branch-site models" reveals 
that mean ω of T2D genes is less than non-T2D genes in 
all species of each four group (Supplementary File II and 
Table 1). However, quantile regression analysis between 
ω of T2D and non-T2D genes in each species separately 
suggests that T2D is evolving significantly under strong 

purifying selection only in GroupA (p-value < 0.05) 
(Table 1). Hence, D. melanogaster, D. sechellia, and D. 
simulans serve as a better model to study T2D in com-
parison to others. Later, LRT between Model 8 and 7 in 
all four groups suggests that few sites only in three T2D 
genes, namely, CG8051 (ASN7, ALA71, THR323 & 
HIS330), ZnT35C (VAL22, SER174, ALA177, THR227) 
and kar (ASN496 & ALA499), of GroupA experience 
positive selection (Supplementary file III). No significant 
result found in GroupB, GroupC and GroupD. Thus, these 
three genes are key genes and may play an important role 
in maintaining normal insulin level in the body.

Fig. 2  Pairwise assessments of dS and dN substitution rates in T2D genes of A Group A (D. melanogaster, D. sechellia and D. simulans), B 
Group B (D. erecta, D. yakuba), C Group C (D. persimilis and D. pseudoobscura) and D Group D (D. virilis, D. grimshawi and D. mojavensis)
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Gene ontology and pathway enrichment analysis

Analysis of three key genes via the STRING database reveals 
that the main molecular function associated with them are 
monocarboxylic acid transmembrane transporter activity, ion 
transmembrane transporter activity and inorganic molecu-
lar entity transmembrane transporter activity (Fig. 3A). All 
three key genes mainly reside in the integral component of 
the membrane. The main biological process associated with 
them is monocarboxylic acid transport, ion transmembrane 
transport, and carboxylic acid transmembrane transport. 
The main pathway associated with these key genes is SLC-
mediated transmembrane transport.

Generation of the three‑dimensional structure 
of proteins

As no homologous structure of proteins encoded via these 
three key genes was identified in Protein Data Bank, the 
protein sequence of each key gene was submitted to the 
GalaxyWEB server separately. Generated structures of 
CG805, ZnT35C, and kar are made up of only 24, 19, and 
36 α-helices and loops, respectively (Fig. 3B, I–III). Further, 
validation of the three-dimensional structure of each pro-
tein via PROCHEK suggests that overall, 99.762%, 98.000% 
and 99.000%, of CG8051, ZnT35C, and kar residues, 

respectively, are present in allowed regions (Fig. 4). Z scores 
of CG8051 (1.800), ZnT35C (0.560) and kar (1.540) also 
range between -10 and 10, thereby proposing that stereo-
chemical geometry of the generated models is sensibly good.

MD simulations of proteins

To understand structural characteristics, MD trajectories of 
three-dimensional structure of all three proteins for 200 ns 
were performed separately. During energy minimization, 
the final potential energy of CG8051, ZnT35C, and kar, 
was − 2,311,545.250 kJ/mol, − 4,860,415.506 kJ/mol, and 
− 3,469,797.000 kJ/mol, respectively. The temperature 
of all three proteins varies between 298 and 301 K with 
mean 299.999 K. Mean pressure of CG8051, ZnT35C, and 
kar, is − 0.175 bar, 1.380 bar, and 0.962 bar, respectively. 
Mean density of CG8051, ZnT35C, and kar is 978.826, 
1014.623, and 998.654, respectively. In CG8051, Rg varies 
between 10.042 Å and 10.132 Å with a mean Rg of 10.09 Å. 
In ZnT35C, Rg varies between 5.657 Å and 5.674 Å with 
mean Rg of 5.665 Å. In kar, Rg varies between 7.362 Å 
and 7.497 Å with a mean Rg of 7.429 Å. Mean RMSD 
and RMSF of CG8051 < kar < ZnT35. However, RMSF of 
amino acids towards the N-terminal is constrained. Amino 
acid experiencing the highest fluctuation during simula-
tion in CG8051 are PRO257, ARG273, THR323, HIS330, 

Fig. 3  A Ontology and B three-dimensional structure of proteins encoded by each of the three key genes
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GLU337, and THR372. Amino acid experiencing the high-
est fluctuation during simulation in ZnT35 are VAL266, 
THR277, CY269, and LEU364. Amino acid experiencing 

the highest fluctuation during simulation in kar are ALA236, 
AGR330, THR359, and ALA499 (Fig. 5). ’Cross-correlation 
matrix’ of the C-α displacement (Fig. 6) and the ’free energy 

Fig. 4  Ramachandran plot of modeled proteins encoded via A CG8051, B ZnT35C, and C kar generated via PROCHECK

Fig. 5  The stability parameters for key T2D protein during 200 ns: A 
RMSD of C-α B RMSF of C-α and C Radius of gyration of C-α. The 
trajectory projected to the two-dimensional space. Black, light green, 

and blue, lines represent proteins encoded via CG8051, ZnT35C,and 
kar during 200 ns, respectively

Fig. 6  Comparative study of cross-correlation matrices of C-α atoms 
of modeled proteins encoded via A CG8051, B ZnT35C, and C kar 
during 200 ns simulation. The range of motion indicated by various 

colors in the panel. Red indicates a positive correlation, whereas blue 
indicates anti-correlation
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landscape’ analysis (Fig. 7) revealed that all residues present 
within CG8051 experience random movement while ZnT35 
experiences constrain movements under wild condition.

Discussion

As both incident of T2D, as well as mortal rate due to T2D, 
is increasing dramatically every year and imposing huge 
financial burden on almost every country, there is always an 
urge to look for new approaches or technology which may 
enable us to detect key genes and pathway that play key role 
in the T2D development. For instance, Hu and team (2009) 
performed GWAS analysis and detected SNPs in PPARG  
(rs1801282), KCNJ11 (rs5219), CDKAL1 (rs10946398, 
rs7754840, rs9460546, rs7756992 & rs9465871), 
CDKN2A–CDKN2B (rs564398 & rs10811161), IDE-
KIF11-HHEX (rs10509645, rs1111875 and rs10748582), 
IGF2BP2 (rs7651090) and SLC30A8 (rs13266634) that are 
responsible for causing T2D (Hu et al. 2009). Additionally, 
several authors are also employing evolutionary approaches 
for unmasking the pathophysiology and molecular mecha-
nism associated with T2D in a more comprehensive way. For 
instance, in 2017, Little and team tested the hypothesis that 
“natural selection is associated with type 2 diabetes (T2D)‐
associated mortality and fertility in a rural, isolated Zapotec 
community in the Valley of Oaxaca, southern Mexico” and 
reported that frequency of T2D-mortality increases with 
decrease in natural selection as well as favoured offspring 
survival of non-T2D descendants (Little et al. 2017). Hence, 
evolutionary comparative sequence analysis is a powerful 
way of unraveling the mechanisms that shaped contemporary 
genetic diversity.

Biochemical pathways involved in growth and metabo-
lism are ancient and well conserved across the animal 
kingdom. Due to conservation between humans & other 
organisms at both molecular as well as physiological levels, 
these organisms may be utilized for understanding the real 
mechanism associated with T2D development in humans. 
Numerous T2D associated studies have also been performed 
in various model organisms, like KK mice and Drosophila 
melanogaster (King 2012; Murillo-Maldonado and Riesgo-
Escovar 2017). Most of the animal models of T2D are obese, 
mimicking human conditions where obesity is the main 
cause for developing T2D (King 2012; Murillo-Maldonado 
and Riesgo-Escovar 2017). The fa/fa rats and ob/ob mice are 
one of the best examples for the same. Other model organ-
isms, for instance, Psammomys obesus (the Israeli sand rat) 
and db/db mouse, develop hyperglycemia rapidly because 
their β-cells are incapable of maintaining a high concentra-
tion of insulin secretion required throughout life. The study 
of these animal models may provide significant insight why 
few humans with severe obesity never develop T2D, while 
others are more risk at developing hyperglycemic despite 
modest insulin resistance and obesity (Rees and Alcolado 
2005). The zebrafish model also showed a better response 
to the anti-diabetic drug, namely metformin, and gliben-
clamide, proposing that zebrafish can also be utilized as a 
model organism towards understanding the mechanism of 
T2D in human. However, the organisms, especially mouse, 
rat, and dog, have strict ethical guidelines for carrying out 
research (Rees and Alcolado 2005). Additionally, life span 
of these organisms are also large, and hence, special care is 
also required for maintaining these organisms.

Owing to smaller genome size and short life span, 
Drosophila melanogaster serves as one of the best models 

Fig. 7  Projections of the free energy landscape of protein encoded 
via A CG8051, B ZnT35C, and C kar during 200 ns simulation. Vari-
ous colors in the panel indicate the range of motion, where dark black 

indicates the lowest energy configuration, and white shows the high-
est energy configuration
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for studying any human diseases. The main advantage of 
employing Drosophila melanogaster is that, unlike other 
organisms (e.g., mouse and dog), there are either no or few 
ethical issues surrounding their use (Jennings 2011). Insulin 
producing cells (IPCs) of Drosophila is equivalent to mam-
malian Langerhans’ islets ß pancreatic cells (Alfa and Kim 
2016; Graham and Pick 2017). However, unlike vertebrates, 
which have one insulin gene, Drosophila genome encodes 
seven different insulin-like peptides (ILPs) (Álvarez-Rendón 
et al. 2018). The ILP2 peptide has the highest homology 
with insulin gene of the vertebrate and is produced along 
with ILP1, ILP3 & ILP5 in the IPCs located in the brain 
(Álvarez-Rendón et al. 2018). ILP2 is also expressed in the 
imaginal discs and the salivary glands. ILP4, ILP5, and ILP6 
are expressed in the midgut, and ILP7 is expressed in the 
ventral nerve chord. These seven ILPs function together with 
Drosophila’s insulin-like receptor (InR) trigger a cascade of 
intracellular events facilitated via conserved apparatuses of 
the insulin/IGF pathway comprising of the insulin recep-
tor substrate (IRS) Chico, the insulin signaling antagonist 
PTEN, PKB/Akt kinase, PI3K, and dFOXO (the single 
FOXO orthologs) (Baker and Thummel 2007).

In a normal feeding environment, three ILP genes, 
namely, ILP2, ILP3 and ILP5, are expressed within median 
neurosecretory cells of the brain and regulate sugar level 
in circulating blood. In response to reduced dietary car-
bohydrate concentration, the expression of ILP3 and ILP5 
decreases in IPCs, suggesting that ILP concentration can 
respond to particular nutritional indications like insulin in 
humans (Baker and Thummel 2007). Additionally, some 
studies reported that removal of the insulin-producing cells 
causes hyperglycemia (Grönke et al. 2010). Like glucagon 
secretion from pancreatic α-cells in mammals, insect adi-
pokinetic hormone (AKH) counterbalances the actions of 
insulin via triggering glycogen phosphorylase, enhancing 
circulating sugars and decreasing fat body glycogen. Akh is 
expressed in the main endocrine organ of the insects, namely 
the corpora cardiaca region of the ring gland, which is in 
direct contacts with the hearts and IPCs. Removal of corpora 
cardiaca specific cell removes Akh function, which in turn 
reduces the concentration of circulating trehalose but has no 
significant effect on the stored concentration of lipid or glu-
cose (Lee and Park 2004; Baker and Thummel 2007). How-
ever, ectopic expression of Akh in the fat body, the primary 
target tissue of Akh, causes hypertrehalosemia and lipolysis, 
which in turn reduces the amount of stored lipid (Lee and 
Park 2004). All these earlier studies reported that the central 
regulatory functions of insulin and glucagon are conserved 
throughout evolution and supported that Drosophila can be 
utilized as a valid model organisms for functional studies 
of glucose homeostasis as well as the underlying mecha-
nisms modulating the onset of diabetes. Thus, in present 
study, authors made an attempt to re-analyzed the publicly 

available T2D gene sequences of Drosophila for studying 
evolutionary processes responsible for shaping genetic 
make-up of T2D genes in genus Drosophila.

Result obtained reveals that there are only 202 orthologs 
of human protein-coding T2D genes in Drosophila genus. 
Few human T2D genes like ARF5, LIPC, CPA6, CCNQ, 
KCNJ11, and GALNT14 have more than one orthologs in 
Drosophila (Supplementary File I). This might be because 
Drosophila may have underwent an additional round of 
whole-genome duplication during evolution (Maurer et al. 
2015). Further analysis via M0 model of CODEML reveals 
that all T2D genes present in the Drosophila genus are evolv-
ing significantly under purifying selection (p-value < 0.05). 
Earlier studies have also reported that in comparison to 
younger proteins, ancient proteins exhibit stronger purifying 
selection; thereby indicating T2D genes is ancient (Dom-
azet-Loso and Tautz 2003, 2008). The functions of ancient 
genes, like T2D genes, are highly optimized as well as con-
served, and they are likely to have already exhausted all ben-
eficial mutations in recent times. Thus they are expected to 
evolve under purifying selection and fix only neutral and/or 
nearly neutral mutations (Vishnoi et al. 2010). Our results 
is also in accordance with Blekhman and the team, who 
also demonstrated that genes associated with Mendelian and 
complex diseases are under purifying selection (Blekhman 
et al. 2008).

Further, since dS across 12 species of is higher than 1 
in almost all genes, dataset was divided into four groups 
and ω of each species in each group was estimated sepa-
rately using "Branch-site models". Result obtained revealed 
that T2D is evolving significantly under strong purifying 
selection only in GroupA (p-value < 0.05). Hence, D. mel-
anogaster, D. sechellia and D. simulans serve as a better 
model to study T2D in comparison to other (Table 1). This 
result is in accordance with earlier studies where authors 
have reported that evolution shape each branch of the phy-
logeny distinctly because the number of rates of nonsynony-
mous and synonymous substitutions varies across a sequence 
and species (Wong et al. 2008). LRT between Model 8 and 
7 in all the four group, separately, suggests that few sites 
only in three key T2D genes, namely, CG8051, ZnT35C, 
and kar, of GroupA experience positive selection (Supple-
mentary file II). This is in accordance with earlier studies 
where authors have reported that few sites in genes that are 
evolving under purifying selection may also experience 
adaptive change occasionally (Yang and Bielawski 2000). 
Earlier studies have also reported that positive selection is 
the preservation and spread of beneficial mutations through-
out the population. Identifying positively selected protein or 
its site in any branch of a phylogeny suggests that there is a 
selective advantage of positively selected protein or its site 
over another branch of a phylogeny. This selective advantage 
may be in response to change in the various external and 
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internal phenomena, for instance, diet, disease, and adapta-
tion to several ecological niches (Morgan et al. 2012). For 
instance, the genetic adaptations to the low-salt environment 
in ancestral populations is a threat to hypertension in present 
populations residing in a high-salt environment (Balaresque 
et al. 2007). This salt retention adaptive trait enables ancient 
humans, consuming low levels of dietary salt to survive in 
hot and humid areas (Balaresque et al. 2007). Earlier stud-
ies have reported that numerous olfactory system genes are 
positively selected in organisms if odor and pheromone per-
ception is crucial for its reproduction as well as survival 
(Ngai et al. 1993; Willett 2000; Emes et al. 2004; Krieger 
and Ross 2002). Such sites point to functionally important 
gene’s regions and, hence, are of potential interest to pro-
tein engineers who alter proteins to produce new functions. 
Information about positively selected protein and their sites 
are highly required for our understanding of functionally 
significant amino acids in any protein sequence and their 
role in protein functional shift (Yang and Bielawski 2000).

Gene ontology and pathway enrichment analysis reveals 
that these three key genes encode membranes proteins and 
are mainly involved in the ion transport (Fig. 3A). Earlier 
studies have also reported that ion channels as well as trans-
porters proteins play key roles in both excitable cells, e.g., 
skeletal, cardiac, neurons, as well as endocrine cells, and 
non-excitable cells, e.g., liver (Spires et al. 2019). In human 
pancreatic β-cells,  KATP channels modulate the membrane 
potential of the β-cell membrane, which in turn regulates 
insulin secretion (Spires et  al. 2019; Gupta and Vadde 
2020a). For instance, several other studies have reported 
that in humans, ZnT8 transporter protein resides on dense-
core vesicles in pancreatic β cells and loads  Zn2+ into these 
secretory compartments, where it binds with and stabilizes 
a hexameric form of insulin (O’Halloran et al. 2013). These 
ZnT8 transporters are mainly responsible for the efflux 
of zinc from the cytosol to intracellular vesicles, unlike 
the functions of zinc importers (ZiPs; SLC39), which are 
responsible for zinc influx into the cytosol as well as zinc-
binding proteins, like metallothionein. This co-ordination 
between the function of zinc transporter and importers main-
tain zinc level in cytosol (Rutter and Chimienti 2015; Gupta 
and Vadde 2020b). However, mutations in this two protein, 
namely  KATP channels and ZnT8 transporter, is reported to 
disrupt their normal functions, which in turn cause T2D 
(Gupta and Vadde , 2020a; b).

Further, molecular dynamics studies suggest that all these 
three key genes are mainly comprised of α-helices and loops 
(Fig. 3B). Out of three, CG8051 experiences more random 
movement while ZnT35C experience constrains movement 
under normal conditions. This might be due to less potential 
energy and higher pressure in ZnT35C. Movement of N-ter-
minal residues of all three key genes is more constrained, 
thereby supporting that the N-terminal region of all these 

three proteins is insignificant during protein–ligand inter-
action. This finding is in accordance with our earlier stud-
ies in the human ortholog of ZnT35C, i.e. zinc transporter 
ZnT8. Movement of ZnT8 protein was also found to be con-
strained under normal conditions (Gupta and Vadde 2020b). 
N-terminal region of ZnT8 was also found to be insignificant 
during protein–ligand interaction (Gupta and Vadde 2020b). 
RSMF analysis reveals that, out of all positively selected 
sites, only ARG273 and THR323 in CG805, THR277 in 
ZnT35C, ALA499 in kar experiences highest fluctuations; 
thereby supporting their importance during protein–ligand 
interaction. This, in turn, helps to modulate the normal meta-
bolic function of the body. Thus, in summary, as T2D dis-
ease is ancient, they are evolving under purifying selection 
in the Drosophila genus. Hence, the function of T2D genes 
is highly conserved throughout evolution. However, few sites 
in membrane proteins encoded T2D genes, like CG8051, 
ZnT35C, and kar, are still evolving under positive selec-
tion in few species of Drosophila, like, D. melanogaster, 
D. sechellia and D. simulans; this might be due to adaptive 
(positive) evolution in response to changes in various exter-
nal mechanisms, for instance, response to disease & adapta-
tion to several ecological niches, and internal mechanisms 
(compensatory mutations and co-evolution).

Conclusions

In conclusion, as T2D genes are ancient, they are evolv-
ing under purifying selection. Hence, there is almost no 
or very little scope for new nonsynonymous mutations in 
T2D genes, and the functions of T2D genes are highly con-
served throughout evolution. However, few sites in mem-
brane proteins encoded via few T2D genes, like CG8051, 
ZnT35C, and kar, are still evolving under positive selection 
in certain scenarios, which might be due to adaptive (posi-
tive) evolution in response to changes in various external 
mechanisms, for instance, response to disease and adapta-
tion to several ecological niches, and internal mechanisms 
(compensatory mutations and co-evolution). This study 
provides a new perspective on an understanding of the 
evolution of the T2D gene. In the near future, information 
obtained from the present study will be highly useful in 
the field of evolutionary medicine, as well as in the drug 
discovery process.
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