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Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 
52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper 
was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investiga-
tion of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 
2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI−. FISH with 
a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe 
visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 
histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe 
identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleo-
tide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions 
of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S 
rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon 
(SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated 
to the dispersion of the 5S rDNA sequences on almost all chromosomes.
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Introduction

Hyphessobrycon represents one of the largest genus in the 
family Characidae and it comprises 143 recognized species 
(Froese and Pauly 2019). Native to the Neotropical region, 
the species of the genus Hyphessobrycon are widely distrib-
uted from southern Mexico to Argentina (Rio de la Plata) 
(Lima et al. 2003). Data based on morphological and molec-
ular characteristics of Characidae indicate that Hyphesso-
brycon does not form a monophyletic group (Mirande 2010; 
Javonillo et al. 2010; Oliveira et al. 2011) and presently, it 
is placed in the subfamily Stethaprioninae (Eschmeyer and 
Fong 2019). Approximately 30% of the Hyphessobrycon 
species are of commercial interest because they exhibit an 
attractive coloration pattern (Castro-Paz et al. 2014).

The genus Hyphessobrycon includes a large num-
ber of recognized species, but few of them have been 

 *	 Diovani Piscor 
	 plusmoi_pis@yahoo.com.br

1	 Centro de Ciências Biológicas e da Saúde, Laboratório de 
Citogenética, Universidade Estadual do Oeste do Paraná 
(UNIOESTE), Rua Universitária, 2069, Cascavel, 
PR ZIP: 85819‑110, Brazil

2	 Universidade Estadual de Mato Grosso do Sul (UEMS), 
Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, 
MS ZIP: 79980‑000, Brazil

3	 Instituto de Biociências, Departamento de Biologia, 
Laboratório de Citogenética, Universidade Estadual Paulista 
“Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, 
Rio Claro, SP ZIP: 13506‑900, Brazil

http://orcid.org/0000-0002-2375-5997
http://orcid.org/0000-0002-4761-8321
http://orcid.org/0000-0002-9905-1507
http://orcid.org/0000-0003-4310-4865
http://orcid.org/0000-0002-0823-6646
http://crossmark.crossref.org/dialog/?doi=10.1007/s10709-020-00086-3&domain=pdf


26	 Genetica (2020) 148:25–32

1 3

cytogenetically studied. In spite of this fact, they have 
shown highly diverse karyotypes in terms of differ-
ent both diploid number (2n) and karyotype structures. 
Among the studied representatives of this genus, the dip-
loid number ranges from 2n = 46 in H. tropis (Sheel 1973) 
to 2n = 52 in H. eques (Martinez et al. 2012; Piscor and 
Parise-Maltempi 2015). Moreover, B chromosomes of 
the size of microchromosomes were revealed in genomes 
of H. eques individuals collected from the Paraná River 
basin (Piscor and Parise-Maltempi 2015).

The studies involving repetitive DNA sequences in 
the genus Hyphessobrycon are scarce, with data avail-
able only for 18S rDNA in H. anisitsi (Centofante et al. 
2003; Mendes et  al. 2011) and H. luetkenii (Mendes 
et al. 2011); and for 5S rDNA only in a single species, H. 
anisitsi (Centofante et al. 2003). Other repetitive DNA 
sequences such as histone genes, genes coding for small 
nuclear RNAs (U snDNA) and microsatellites have not 
been investigated in genomes of the species of this genus.

Considering that the patterns of repetitive DNA distri-
bution are important for the study of chromosomal evo-
lution, in fishes, this information has contributed sub-
stantially to the understanding of trends and dynamics of 
chromosomal evolution (Mestriner et al. 2000; Cioffi and 
Bertollo 2010; Symonová et al. 2013; Poltronieri et al. 
2014; Sember et al. 2015; Yano et al. 2016; Fernandes 
et al. 2017; Glugoski et al. 2018; Soto et al. 2018). The 
purpose of this paper was the analyses of chromosomal 
locations of repetitive sequences (rDNA, histone genes, 
U snDNA and microsatellites) and investigation of the 
amplification of 5S rDNA clusters in the genome of H. 
eques.

Materials and methods

Samples and statement of ethics

Individuals from two populations of H. eques were col-
lected for cytogenetic and molecular analyses: six males 
and four females from the Piracicaba River (Santa Maria 
da Serra—SP); seven males and four females from the 
Ribeirão Claro River (Rio Claro—SP).

All the institutional guidelines for the care and use of 
laboratory animals were followed. The animals were cap-
tured with permission from the Instituto Chico Mendes 
de Conservação da Biodiversidade—ICMBio (process 
number—43497-1) and used for laboratory experiments 
approved by the Animal Experimental Ethics Committee 
from the Universidade Estadual Paulista ‘Júlio de Mes-
quita Filho’—UNESP (protocol number—2335).

Conventional chromosome analyses

The chromosomes were prepared according to Foresti et al. 
(1981). The morphology of the chromosomes was deter-
mined according to the arm’s ratio (Levan et al. 1964). 
The fundamental number (FN) was calculated according 
to the chromosomal arm numbers (the m, sm and st chro-
mosomes were considered biarmed—p and q arms—and 
a chromosomes were considered uniarmed—only q arm. 
Note that a correspond to acrocentric). The nucleolar 
organizer regions (NORs) were detected using the silver 
nitrate impregnation technique described by Howell and 
Black (1980). Heterochromatin was observed using the 
C-banding technique of Sumner (1972). CG- and AT-rich 
regions were identified by double-color Chromomycin 
A3/4’,6-diamidino-2-phenylindole (CMA3/DAPI) staining 
with denatured chromosomes, according to a technique com-
monly used in the Cytogenetic Laboratory of the Universi-
dade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP) 
in Rio Claro/SP (for more detail see, Piscor et al. 2015).

DNA extraction and production of probes

The genomic DNAs (gDNA) were extracted from fin 
samples of Astyanax and Hyphessobrycon individuals, 
as described by Sambrook and Russell (2001). The 18S 
rDNA, 5S rDNA, H3 histone and U2 snDNA probes were 
obtained by PCR using primers, described by White et al. 
(1990), Pendás et al. (1994), Cabral-de-Mello et al. (2010) 
and Bueno et al. (2013), respectively. Moreover, consider-
ing the high coincidence of many repetitive sequences, we 
have tested also FISH with 5S rDNA from other fish species 
(e.g. Astyanax altiparanae, A. fasciatus, Piabina argentea 
and Megaleporinus elongatus) in order to discard the pos-
sibility that our probe prepared from gDNA of H. eques was 
insufficient for the experiment due to diverse repetitive DNA 
content. The probes were labeled by PCR with digoxigenin-
11-dUTP (Roche Applied Science, Penzberg, Germany) or 
biotin-16-dUTP (Roche Applied Science).

The (A)30, (CA)15, (CAG)10 and (GATA)8 microsatellites 
were amplified and labelled with biotin during synthesis as 
described by Milani and Cabral-de-Mello (2014). Microsat-
ellites were donated by Prof. Dr. Diogo C. Cabral-de-Mello .

Technique of fluorescent in situ hybridization (FISH)

The FISH technique followed Pinkel et al. (1986), with 
modifications described by Margarido and Moreira-Filho 
(2008). Signals were detected using anti-digoxigenin–Rho-
damine (Roche Applied Science) for digoxigenin-11-dUTP 
and avidin–FITC (Sigma Aldrich, St Louis, MO, USA) for 
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biotin-16-dUTP (Roche Applied Science). The chromo-
somes were counterstained with DAPI. Metaphases were 
photographed using a BX 61 epifluorescence microscope, 
coupled with an Olympus DP 71 digital camera (Olym-
pus America, Inc.) with Olympus DP Controller software 
3.2.1.276.

Cloning, sequencing and analysis of 5S rDNA‑NTS 
sequences

The PCR products of 5S rDNA amplification were cloned 
using competent bacteria according to chemical transfor-
mation with CaCl2. The DNA fragments were inserted into 
the plasmid vector with pGEM®-T kit (Promega, Madison, 
WI, USA) following the manufacturer’s specifications. The 
clones were purified by treatment with ExoSAP-IT® (USB) 
and sent to sequencing service using the same primers of the 
PCR reaction as the international platform for sequencing, 
Macrogen Company (South Korea).

The sequences were edited and analyzed using the 
BioEdit (Hall 1999) program and the Clustal W algorithm 
(Thompson et al. 1994) for performing alignment of the 
sequences. For the identification of the sequences, the CEN-
SOR tool (https​://www.girin​st.org) (Kohany et al. 2006) and 
nucleotide BLAST tool (NCBI - National Centre for Bio-
technology Information) were used. Finally, the sequences 
were deposited in GenBank (access numbers: MN396769 
to MN396772).

Results

The individuals of H. eques from the Piracicaba River 
2n = 52 and karyotype composed of 10 m + 20sm + 8st + 14a 
chromosomes, with NF = 90 (Fig. 1a). Ag-NORs and CMA3 
positive sites were located on the p arm of pair No. 24 
(Fig. 1a, in box). The 18S rDNA clusters were located on 
the p arms of pairs Nos. 22 and 24 (Fig. 1b, in box). The 
heterochromatin regions were observed in the centromeric 
positions of almost all chromosomes (Fig. 1b).

The 5S rDNA clusters were observed on almost all chro-
mosomes (20 pairs) in pericentromeric positions in the 
individuals from both populations (Fig. 2). Four sites of H3 
histone were observed on the pericentromeric regions in two 
pairs, where in one pair the histone H3 cluster was in a posi-
tion adjacent to 5S rDNA (Fig. 3a). The U2 snDNA clusters 
were identified on the interstitial positions of the q arm of 
one chromosome pair, also adjacent to 5S rDNA (Fig. 3b). 
Microsatellites (A)30 and (GATA)8 were detected mainly in 
the centromeric regions of the chromosomes (Fig. 3c, f). The 
microsatellite (CAG)10 showed some signals on the short/
long arms of chromosomes but no scatter pattern (Fig. 3d), 

with (CA)15 mainly on the terminal regions of chromosomes 
(Fig. 3e).

The sequence clones of NTS regions (D1, D2, D3 and 
D4) showed around 300 bp (Fig. 4). Inside the sequences 
we identified fragments with 97 bp and approximately 97% 
similarity for the retrotransposon SINE3/5S-Sauria, SINE 
(Short Interspersed Nuclear Element), Non-LTR (Non-Long 
Terminal Repeat) and microsatellite repeats, e.g. GATA and 
A repeats (Fig. 4).

Fig. 1   Karyotypes of the Hyphessobrycon eques from the Piracicaba 
River arranged from: a Giemsa stained; b C-banded chromosomes. 
Note that DAPI-negative, CMA3-positive, Ag-NOR chromosomes 
and 18S rDNA sites are indicated in the boxes. Bar = 10 µm

Fig. 2   a Karyotype of Hyphessobrycon eques from the Ribeirão 
Claro River (Rio Claro—SP); b Karyotype of Hyphessobrycon eques 
from the Piracicaba River (Santa Maria da Serra—SP) arranged from 
chromosomes with fluorescent signals of the 5S rDNA probe. Bar 
= 10 µm

https://www.girinst.org
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Discussion

Our results showed that individuals from populations of 
H. eques from the two analyzed locations had the same 
2n = 52 and FN = 90. Although having the same 2n = 52, 
the individuals of H. eques from the Capivara River 
reported previously (Martinez et  al. 2012) differed in 
their FN values. For example, the number of a chromo-
somes—14 elements (FN = 90) in the populations under 
study and 18 elements (FN = 86) from the Capivara River 
(Martinez et al. 2012). This may perhaps be due to differ-
ent classification of the chromosome categories

Heterochromatin has been observed mainly on the cen-
tromeric/pericentromeric regions of almost all chromo-
somes of H. eques from the Ribeirão Claro River (Piscor 
and Parise-Maltempi 2015). In this paper, similar pat-
terns of constitutive heterochromatin were identified on 
the chromosomes of H. eques from the Piracicaba River. 
Another species of the genus, Hyphessobrycon reticu-
latus (Carvalho et al. 2002), H. anisitsi and H. luetkenii 
(Mendes et al. 2011), also possessed karyotypes with con-
stitutive heterochromatin in the pericentromeric regions of 
all or almost all chromosomes, indicating that this pattern 
may be a characteristic feature of their genomes.

Fig. 3   Repetitive DNA 
sequences in genome of 
Hyphessobrycon eques from the 
Piracicaba River (Santa Maria 
da Serra—SP). a Metaphase 
with 5S rDNA clusters in green 
and histone H3 in red. b Meta-
phase with 5S rDNA clusters in 
green and U2 snDNA in red. c 
Microsatellite (A)30 in green. d 
Microsatellite (CAG)10 in green. 
e Microsatellite (CA)15 in green. 
f Microsatellite (GATA)8 in 
green. Bar = 10 µm

Fig. 4   Clones of the 5S rDNA-
NTS sequences of two Hyphe-
ssobrycon eques populations. 
D1 and D2 from the Ribeirão 
Claro River (Rio Claro—SP) 
and D3 and D4 from the 
Piracicaba River (Santa Maria 
da Serra—SP). Note that the A 
repeats are located inside the 
D3 sequence only.
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Ag-NOR sites corresponded to CMA3
+ signals on the p 

arms in the terminal position of the a chromosome pair No. 
24 in individuals under this study. Similarly, the individuals 
from population from the Capivara River (Martinez et al. 
2012) also had karyotypes one Ag-NOR site corresponding 
to CMA3

+ in terminal position on the p arm of the pair No. 
17, demonstrating that the NOR regions in H. eques were 
interspersed with GC-rich sequences, as well as in genomes 
of other fish species (Mayr et al. 1985; Amemiya and Gold 
1986; Galetti et al. 1995; Fernandes and Martins-Santos 
2004; Fernandes et al. 2015).

Our FISH results, represented the first physical mapping 
of repetitive sequences (rDNA, histone genes, U snDNA and 
microsatellites) in genome of H. eques. H3 histone clusters 
were observed on two chromosome pairs, one pair holds 
syntenic sequences of H3 histone and 5S rDNA. Synteny 
of H3 histone and 5S rDNA clusters was also described in 
genome of Astyanax (Piscor and Parise-Maltempi 2016). 
The H. eques also had a syntenic location of U2 snDNA and 
5S rDNA in one pair of chromosomes. On the other hand, 
the chromosomal locations of the 5S rDNA and U2 snDNA 
clusters in genome of Astyanax were not consistently linked 
(Piscor et al. 2016). This spatial separation of 5S rDNA and 
U2 snDNA clusters appears to be the most frequent pattern 
in fish chromosomes (Merlo et al. 2012; Yano et al. 2017; 
Sember et al. 2018; Piscor et al. 2018). However, a synteny 
of these repetitive sequences in genome of H. eques could be 
related to the high number of 5S rDNA clusters .

The 18S rDNA clusters were observed in four chromo-
somes of karyotype of H. eques from the Piracicaba River, 
while in that of H. anisitsi, 18S rDNA signals were observed 
in ten chromosomes (Centofante et al. 2003). The transpos-
able elements can move via transposition and/or ectopic 
recombination taking of rDNA sequences to other sites 
(Raskina et al. 2004, 2008). Similarly, we demonstrated an 
extensive dispersion of 5S rDNA sequences in individuals 
from two H. eques populations, which might also be influ-
enced by the activity of transposable elements.

Physical mapping of 5S rDNA in the genome of H. eques 
showed these clusters distributed on 40 chromosomes in 
individuals from both analyzed populations, while in for-
merly investigated H. anisitsi, 5S rDNA were observed in 
four chromosomes (Centofante et al. 2003). Other studies 
showed the 5S rDNA clusters on several chromosome pairs 
of another fish species (see, for example, Cioffi et al. 2010; 
Nakajima et al. 2012; Sember et al. 2015; Silva et al. 2016). 
In Gymnotus mamiraua (Gymnotiformes, Gymnotidae) with 
2n = 54, more than half of them had syntenic localisation 
with Tc1/Mariner transposon and 5S rDNA signals, pos-
sibly indicating a pseudogene (Silva et al. 2016). In other 
examples, the spreading of 5S rDNA clusters have led sub-
sequently to development of specific centromeric satellite 
DNA in genome of Hoplias malabaricus (Erythrinidae) 

(Martins et al. 2006), while highly amplified 5S rDNA loci 
in two sister species of Esox (Esociformes, Esocidae) seem 
to retained functionality, as their sequence is not degenerated 
into pseudogenes; and the expression of additional copies 
seems to be regulated by DNA methylation (Symonová et al. 
2017).

The NTS regions are subject to intense modification 
and rapid evolution, resulting in deletions, insertions and 
substitutions, as well as the inclusion of pseudogenes and 
microsatellites (Eickbush and Eickbush 2007; Pinhal et al. 
2011; Rebordinos et al. 2013; Silva et al. 2016). In this 
paper, microsatellite repeats were also shown in NTS regions 
in two populations de H. eques (Ribeirão Claro River and 
Piracicaba River), as well as fragments of transposable ele-
ment (Non-LTR, SINE3/5S-Sauria), probably responsible 
for spreading 5S rDNA sequences on almost all chromo-
somes. Merlo et al. (2013) showed that different NTS types 
may contain pseudogenes, LTR-Gypsy, non-LTR (LINE—
Long Interspersed Nuclear Element) and microsatellites in 
Diplodus sargus (Sparidae ). Thus, the latter authors suggest 
that the concerted evolution model does not explain the 5S 
rDNA variability of D. sargus; however, the birth-and-death 
evolution model could explain it.

Mechanisms such as concerted and birth-and-death mod-
els have been proposed for explaining the evolution of multi-
gene families (Nei and Rooney 2005). Similarly, Pinhal et al. 
(2011) pointed out that 5S rDNA molecular evolution in fish 
genomes is driven by a mixed mechanism that integrates 
birth-and-death and concerted evolution models. Both these 
mechanisms could explain the evolution of 5S rRNA genes 
in genome of H. eques.

Our data of the physical mapping of repetitive sequences 
in the genome of H. eques genome showed one pair that 
holds syntenic sequences of H3 histone and 5S rDNA and 
the other pair holds syntenic sequences of U2 snDNA and 
5S rDNA. The 18S rDNA clusters were observed on four 
chromosomes, while we demonstrated an extensive disper-
sion of 5S rDNA sequences, with microsatellite sequences 
and transposable elements identified in the NTS regions. 
Thus, the dispersion of 5S rDNA clusters on almost all chro-
mosomes was an indication that this form of organization 
may be favorable for the ongoing elevated genome dynamic 
in H. eques .
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