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Abstract In this study we analysed mitochondrial DNA

variation in Penaeus kerathurus prawns collected from

seven locations along a transect across the Siculo–Tunisian

region in order to verify if any population structuring exists

over a limited geographical scale and to delineate the

putative transition zone with sufficient accuracy. Partial

DNA sequences of COI and 16S genes were analysed. In

contrast to the highly conservative 16S gene, the COI

sequences exhibited sufficient diversity for population

analysis. The COI gene revealed low levels of haplotype

and nucleotide diversities. The size of the annual landings

of this commercial species suggests large population sizes.

Hence, the low genetic diversity detected in this study

could indicate a possible reduction in effective population

sizes in the past. We detected significant genetic differen-

tiation between eastern and western populations likely due

to restricted gene flow across the Siculo–Tunisian bound-

ary. We discuss the different evolutionary forces that may

have shaped the genetic variation and suggest that the

genetic divide is probably maintained by present-day dis-

persal limitation.
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Introduction

In marine environments, where effective physical barriers

are difficult to occur, most species spend part of their life

cycle in open waters as free-moving gametes, larvae or

adults. The expected pattern is that species with high dis-

persal capabilities (i.e. planktotrophic larvae and continuous

environment) have little genetic structure and high gene flow

(Lacson 1992; Ovenden et al. 1992; Russo et al. 1994;

Uthicke and Benzie 2003). Nevertheless, broad-scale sur-

veys of genetic variation within some marine species have

shown that many are genetically more structured than

expected (Avise 2000; Hellberg 1996; Lemaire et al. 2005),

because a variety of factors including biological, ecological,

physiological, physical and geological factors might con-

tribute to the shaping of the population structure of marine

species through space and time. In this regard, population

genetics and phylogeographic studies are necessary in order

to examine the spatial and temporal scales at which popu-

lations are genetically structured and can help us understand

how speciation takes place in the open sea.

Between 5.96 and 5.33 Myr ago, isolation of the Medi-

terranean Sea from the Atlantic Ocean led to the Messinian

salinity crisis during which sea-levels dropped considerably,

reducing the Mediterranean Sea into hypersaline lakes

(Krijgsman et al. 1999). Most of the species comprising the

present-day fauna have colonized the Mediterranean due to
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the opening of Gibraltar strait at the end of Miocene. During

the Pleistocene-era, glacial episodes involved cyclical

environmental variations with associated marine regressions

and transgressions directly affecting population distribu-

tions and demographics (Hewitt 1996; Avise 2000). The

large climatic fluctuations during the Quaternary have led to

the assumption that vicariance is the most likely model of

speciation promoting genetic discontinuities across geo-

graphical ranges (McMillan and Palumbi 1995;

Cunningham and Collins 1998; Benzie 2000). However,

other contemporary factors that limit effective genetic dis-

persal, including oceanographic currents, isolation-by-

distance, habitat discontinuities, larval behaviour and local

adaptation (Johnson and Black 1995; Benzi and Williams

1997; Palumbi et al. 1997; Schmidt and Rand 1999; Riginos

and Nachman 2001), may also play a pivotal role. These

factors may be important singly or in combination, and their

relative contributions are hard to disentangle. The predom-

inant mechanisms leading to population differentiation are

however, not always clear (Palumbi 1994).

Places where genetic transitions occur on a limited

geographical scale may provide opportunities to study these

mechanisms because one expects to find the various forces

that may reduce gene flow. A number of studies have

hypothesized the existence of a genetic transition in the

Mediterranean around the Siculo–Tunisian (S–T) strait for

several species (e.g. bivalves, Quesada et al. 1995; Nikula

and Vainola 2003; several fish species, Borsa et al. 1997; sea

bass, Bahri-Sfar et al. 2000 and seagrass, Arnaud-Haond

et al. 2007). Almost all these authors surveyed populations

from very distant localities and did not specifically

concentrate their sampling efforts on the regions surround-

ing the S–T strait. This raises the following question: do the

differentiation they depicted between eastern and western

Mediterranean populations actually due to the S–T barrier

itself? The Mediterranean has sometimes been referred to as

a ‘sea of seas’ because of its division into different subba-

sins, each with its own distinct characteristics, including

partially enclosed gyral current systems and likely different

ecological conditions. Thus distinct hydrographic and

ecological conditions may be sufficient to reduce gene flow

even on a relatively small geographic scale within seemingly

continuous populations (see for example Waples 1987;

Planes et al. 1995; Magoulas et al. 2006). Furthermore,

precision in delineating transition zones depends on sam-

pling schemes. For instance, the genetic boundary between

northeastern Atlantic and the western Mediterranean popu-

lations of the mussel Mytilus galloprovincialis has been

suspected to coincide with the Gibraltar strait (Borsa et al.

1997). However, appropriate sampling in the same species

showed that the genetic discontinuity actually corresponds

in position with the Almeria–Oran oceanographic front

some 400 km eastward the strait (Quesada et al. 1995).

The caramote prawn Penaeus (Melicertus) kerathurus

(Forskäl 1775) is an ecologically and economically impor-

tant penaeid species. It is widespread in the Mediterranean

and ranges from the south coast of England to Angola in the

Eastern Atlantic. The benthic adults inhabit nearshore and

offshore waters to a depth of about 80 m and prefer muddy

or sandy-mud flats. In summer, adults migrate to reproduce

in coastal areas and spawn in offshore waters. After a

planktonic larval stage (about 4 weeks) post-larvae move

into shallow waters, where they enter the juvenile stage until

they reach 5–8 cm in length and then join the adult

population (Garcia and Le Reste 1981). This species is

extensively fished; the annual global capture production is

around 6 million kg (FAO 2006). Despite its economic and

ecological importance, little is known on the different

aspects of P. kerathurus biology or genetics and almost no

data are available on the stock structure (see Benzie 2000 for

review). A recent study based on allozymes showed low

genetic diversity and suggested population structuring over

a relatively short geographical scale (Zitari-Chatti et al.

2008).

The present study sampled P. kerathurus from seven

localities along a transect (from Naples, Italy to Djerba,

Tunisia) of about 1,500 km of the species range in order to

obtain a fine-scale spatial coverage of the S–T region. We

analysed sequence variation of two mtDNA genes in order

to verify if any population structuring exists over a limited

geographical scale and to localize the putative transition

zone with sufficient accuracy.

Materials and methods

Sampling

Eighty-four individuals were collected from inshore sites at

seven locations ranging from North to South Tunisia and

one location in Italy (Naples) (Fig. 1). These samples

belong to two regions: the western region represented by

Naples, Tabarka and Kalatlandalos locations and the east-

ern region represented by the four remaining sample

locations. All samples were obtained from commercial

fleet. Ten or more individuals were analysed per site

(Table 1). Muscle tissue was extracted from fresh shrimp

and immediately frozen at -80�C until processed. All

individuals, except the Naples specimens, were surveyed in

a previous allozyme study (Zitari-Chatti et al. 2008).

DNA extraction, amplification and sequencing

Total genomic DNA was extracted using the Nucleospin kit

following the instructions of the supplier (Clontech, Mao-

untain view, USA). The concentration of extracted DNA
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was spectrophotometrically estimated. The lowest DNA

concentration was estimated to be about 30 ng ll-1. PCR

amplification of a *562 bp fragment of the 16S rRNA gene

(16S) and of a *374 bp fragment of the mitochondrial

cytochrome oxidase c subunit I gene (COI) were carried out

using respectively, the primers reported in Simon et al.

(1994), 16Sar (50-CGCCTGTTTATCAAAAACAT-30) and

16Sbr (50-CCGGTCTGAACTCAGATCACGT-30), and our

primers derived from P. kerathurus partial COI gene

sequence (Lavery et al. 2004) COI1 (50-GGGTTCG

TAGTCTGAGCACACC-30) and COI2 (50-TTAGGGTT

AAGGGTTAAGCCGG-30). The reaction volume (50 ll)

for 16S contained 3 ll of undiluted DNA extract, 2.5 mM

MgCl2, 0.12 lM from each primer, 400 lM of dNTPs, 1 U

of Taq polymerase and ddH2O. The PCR mix and volume

for COI were similar except that 4 mM of MgCl2, 0.16 lM

from each primer, 480 lM of dNTPs were used. The cycling

profile for the two genes was one step at 95�C for 3 min

followed by 35 cycles at 94�C for 30 s, 50�C for 30 s, and

72�C for 30 s, and a final 5 min extension step at 72�C. The

size and the quality of PCR products were visualised on 1%

agarose gels. PCR products were cleaned with the GeneE-

luteTM PCR DNA purification kit (Sigma, St Louis, USA)

and directly sequenced using the BigDyeTM terminator cycle

sequencing chemistry, following the manufacturer’s proto-

col (Applied Biosystems, Foster City, USA). The sequences

were recorded with an ABI 97 3100 automated sequencer

(Perkin-Elmer, Waltham, USA).

Data analysis

All sequences were aligned using the multiple-alignment

programme CLUSTAL W (Thompson et al. 1994) with adjust-

ments made by eye. The data sets for both COI and 16S genes

were analysed independently. The alignment of COI

sequences was confirmed by translating the aligned DNA

sequences into amino acid. Identification of the COI and 16S

fragments was confirmed by comparing our sequences with

those for P. kerathurus published by Lavery et al. (2004).

Data analyses were performed using ARLEQUIN 3.0 (Excoffier

et al. 2005) except where noted. The nucleotide composition,

number of transitions/transversions, number of haplotypes

and haplotype diversity (h) and nucleotide diversity (p)

values (Nei 1987) were calculated. The total number of

nucleotide differences and percent sequence divergence

values were calculated between each pair of haplotypes.

Fig. 1 Geographic location of the seven samples of Penaeus
kerathurus. For the full names of locations see Table 1

Table 1 Genetic diversity of COI and 16S sequences for P. kerathurus populations

Population COI 16S

N nh(id) np h(SD) p(SD) nh(id) np h(SD) p(SD)

Naples (NAP) 9 2(1,7) 1 0.389 (0.164) 0.0013 (0.0015) 1(1) 0 0 0

Tabarka (TAB) 10 2(1,6) 1 0.200 (0.154) 0.0007 (0.0010) 2(1,2) 1 0.355 (0.159) 0.0007 (0.0009)

Kalatlandalos (KAL) 14 2(1,6) 1 0.143 (0.119) 0.0005 (0.0008) 2(1,3) 1 0.143 (0.119) 0.0003 (0.0005)

Hammamet (HAM) 8 2(1,2) 1 0.571 (0.094) 0.0019 (0.0019) 1(1) 0 0 0

Monastir (MON) 17 2(1,2) 1 0.515 (0.059) 0.0017 (0.0017) 1(1) 0 0 0

Gabes (GAB) 13 4(1,2,3,5) 3 0.718 (0.089) 0.0033 (0.0027) 1(1) 0 0 0

Djerba (DJE) 13 4(1,2,3,4) 3 0.603 (0.130) 0.0030 (0.0025) 1(1) 0 0 0

Total 84 7 6 0.546 (0.047) 0.0022 (0.0019) 3 2 0.0703 (0.0383) 0.00015 (0.00035)

Sample size (N), haplotype number (nh) and identity (id), number of polymorphic sites (np), haplotype diversity (h), nucleotide diversity (p) and

standard deviation (SD)
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To assess the geographic structuring of collections, we

calculated the pairwise genetic distances (FST) and their

significance by performing 10,100 permutations among the

individuals between populations. We also performed a

hierarchical analysis of molecular variance (AMOVA;

Excoffier et al. 1992) pooling the populations in western

and eastern Mediterranean groups. The statistical signifi-

cances of the FST values were tested by executing 16,002

permutations. The sequential Bonferroni test (Rice 1989)

was used to correct for multiple tests.

To determine whether there was a relationship between

genetic distance and geographical distance, we used the

Mantel test (in GENETIX version 4.03; Belkhir et al. 2001) on

matrices of standardized pairwise FST values [FST/(1 -

FST)] and pairwise geographical distances. The geograph-

ical distance between each pair of populations was

estimated by measuring the linear map distance.

Relationships among haplotypes were analysed in a

minimum-spanning network estimated with MINSPNET pro-

gramme implemented in ARLEQUIN, using the total number

of nucleotide differences. This method provides a 95%

plausible set for all sequences type linkages within an

unrooted tree.

Results

Gene and haplotype diversities

Nucleotide sequences of the COI and 16S fragments were

determined for 84 P. kerathurus individuals (Table 1). Final

truncated sequences analysed were 296 and 454 bp for COI

and 16S, respectively. The nucleotide composition of the

COI sequences averaged 23% C, 33% T, 27% A and 17%

G. There were five transitions and one transversion and no

indels. A total of seven different haplotypes was found

(GenBank Accession numbers EU430763-EU430769), their

respective frequencies in each population are described in

Fig. 2. The seven haplotypes differed from one another by

1–4 mutations (mean = 2.19, SD = 0.90), and had pairwise

sequence divergence values ranging from 0.34 to 1.37%. All

the mutations resulted in synonymous substitutions. The

overall p–value was 0.0022 (SD = 0.0019) and the within

population p–values ranged from 0.0005 to 0.0033

(Table 1). All populations showed low values of haplotype

diversity (mean 0.546 ± 0.047) and low values of nucleo-

tide diversity (mean 0.0022 ± 0.0019) (Table 1).

For 16S sequences, base composition averaged 12% C,

34% T, 34% A and 20% G. There were only three haplo-

types differing by 1–2 mutations (GenBank Accession

numbers EU430760-EU430762), one haplotype (haplotype

no. 1 present in 96% of the individuals analysed) being

shared by all seven populations while the other two

haplotypes occurred only in Tabarka (h2: two individuals)

and Kalatlandalos (h3: one individual) from the western

Mediterranean basin. All populations showed very low

values of haplotype and nucleotide diversities (Table 1).

Because of the very low variation in 16S sequences,

population genetics analyses were performed on COI

sequences only.

Population structure

All pairwise FST values within each Mediterranean region

were very low (Table 2). However, all inter-regions pair-

wise comparisons yielded high values, with four of the

12 comparisons remaining significant after Bonferroni’s

correction. The hierarchical AMOVA analysis revealed

that 29% (P = 0.02) of the genetic variance was found

among groups and 70.5% (P \ 0.001) within populations

(Table 3). However, the variance component explained by

comparisons among populations within groups (0.5%) was

low and not significant (P = 0.35).

Fig. 2 Mitochondrial COI haplotype frequencies in the seven

samples of P. kerathurus. Less frequent haplotypes present in eastern

(h3, h4 and h5) and western (h6 and h7) samples were combined,

respectively under the ‘eastern pool’ and ‘western pool’

Table 2 Pairwise FST values between populations of P. kerathurus
based on cytochrome c oxidase subunit I (COI) sequences

NAP TAB KAL HAM MON GAB

NAP

TAB 0.0226

KAL 0.0671 -0.0879

HAM 0.2182 0.3182 0.3943

MON 0.3211 0.3979* 0.4515* -0.0837

GAB 0.2556 0.3420* 0.4053* -0.0523 -0.0214

DJE 0.0405 0.0851 0.1359 -0.0187 0.0876 0.0463

Samples from the western Mediterranean region are indicated in

italics

The eastern Mediterranean region is represented by populations on

the eastern side of the Siculo–Tunisian strait and the western region is

represented by populations on the western side

* Significant value after the Bonferroni’s procedure
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There was no evidence of isolation by distance between

the populations studied. The Mantel test detected no rela-

tionship between genetic and geographical distances

(r = 0.019, P = 0.4). The statistical parsimony procedure

yielded one network with unambiguous connections

(Fig. 3). All COI haplotypes were closely connected and

clustered according to their main area of occurrence. The

high frequency and wide geographical distribution of

haplotype 1 indicate that it is likely the ancestral haplotype.

Discussion

Partial sequence for the 16S rRNA mitochondrial gene

revealed very low variation between all P. kerathurus

individuals analysed with a sequence divergence nearly

equal to zero. This is consistent with previous observations

on other penaeid species (Quan et al. 2001, 2004; Chu et al.

2003; De Francisco and Galetti 2005; Kumar et al. 2007) and

contrasts with the relatively high diversity of this gene

observed in many invertebrate marine species (Shearer et al.

2002 and references therein). 16S rRNA gene is known to

occur in the conserved portion of the mtDNA (Meyer 1994)

and has a low rate of evolution which makes it inaccurate for

studying population differentiation but useful, as it has been

shown in several cases, in characterizing cryptic decapod

species (the spiny lobster Panulirus argus, Sarver et al.

1998; the pink shrimp Farfantepenaeus subtilis, Maggioni

et al. 2001; the giant freshwater prawn Macrobrachium

rosenbergii; De Bruyn et al. 2004 and the kuruma shrimp

Penaeus japonicus, Tsoi et al. 2005). The homogeneity of

the P. kerathurus populations seen in our study is probably

related to the conserved nature of this gene in penaeids. In

contrast to the situation with the 16S rRNA gene, the COI

region sequences exhibited sufficient nucleotide diversity

for population analysis. The sequence divergence values

ranging from 0 to 1.37% were similar to those reported in

various studies on other penaeid species investigated using

COI gene sequencing (Baldwin et al. 1998; McMillen-

Jackson and Bert 2003; Quan et al. 2001, 2004; De Francisco

and Galetti 2005; Gusmão et al. 2006).

The main finding of this study was the population

structuring across the distribution area studied. Two groups

were identified on either side of the Siculo–Tunisian (S–T)

strait, an eastern group and a western group. Populations

within each group appeared to be panmictic and there was

no evidence for an isolation-by-distance scheme of differ-

entiation at the scale studied. Both groups showed group-

specific haplotypes and restricted gene exchange (Fig. 2).

For instance, the haplotype 2 was found in all eastern

populations with moderate to high frequencies and absent

in western populations. Furthermore, in the highly con-

servative 16S rRNA gene, we found two haplotypes,

although with low frequencies, only in western popula-

tions. These genetic characteristics strongly affected the

population pairwise FST values and the AMOVA analyses.

Thus, the FST values between populations belonging to

different groups were very high and significant for four

comparisons. All intra-region comparisons were not sig-

nificantly different from zero.

This genetic differentiation between eastern and western

groups could be explained by hydrographic regimes in the

region. In benthic species with long pelagic larval stages

like P. kerathurus, water currents are assumed to play an

important role in shaping the structure of genetic poly-

morphism. The water circulation along the North African

coasts, characterized by a unidirectional east–south–east

Table 3 Hierarchical analysis of molecular variance (AMOVA) for the COI sequences of P. kerathurus

Source of variation df Sum of squares Variance components Percentage of variation Fixation indices P-value

Among groups 1 3.987 0.0933 Va 29.05 FCT: 0.2905 0.02

Among populations within groups 5 1.231 0.0016 Vb 0.53 FSC: 0.0074 0.35

Within populations 77 17.425 0.2263 Vc 70.43 FST: 0.2957 \0.001

Total 83 22.643 0.3213

Analyses are presented pooling populations in western and eastern Mediterranean groups

The eastern group corresponds to populations on the eastern side of the Siculo–Tunisian strait and the western group corresponds to populations

on the western side

Va, Vb and Vc are the associate covariance components. FCT, FSC and FST are the F-statistics

Fig. 3 Minimum-spanning network of the seven P. kerathurus COI

haplotypes (1–7). The sizes of circles are proportional to Haplotype

frequency. Perpendicular tick marks on the lines joining haplotypes

represent the number of nucleotide substitutions
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flow of currents (coming from the Atlantic) which leave the

Tunisian coasts at the entry of the S–T strait, might

therefore, constitute a physical barrier to larval dispersal.

This may be plausible in our case, as gene flow could only

be promoted by larvae drifting with currents, and also in

the case of other species with similar life cycles in this

region and in other regions where marine physical barriers

were also suspected. For instance, genetic discontinuities

have been noticed for bivalves (Quesada et al. 1995;

Nikula and Vainola 2003) and seagrass (Arnaud-Haond

et al. 2007) around the S–T strait; for sponge (Duran et al.

2004a, b), urchin (Duran et al. 2004c) and lobster (Trian-

tafyllidis et al. 2005) around the strait of Gibraltar and for

crab (Lavery et al. 1996) and prawn (Duda and Palumbi

1999) in the Indo-west Pacific. However, the same geo-

graphical regions do not necessarily restrict gene flow of

other species with similar dispersal capabilities (Arculeo

et al. 2003; Bargelloni et al. 2003, 2005; Zardoya et al.

2004; Patarnello et al. 2007 and references therein). We

unfortunately cannot obtain a realistic estimate of gene

flow by the use of indirect measure extrapolated from

haplotype frequencies because our populations may not be

at migration-drift equilibrium (Whitlock and McCauley

1999), as assumed by the model upon which the Wright’s

(1931) equation [FST & 1/(2Nm ? 1)] is based to estimate

the absolute number of effective female migrants per

generation (Nm). Even if we apply the Wright’s equation,

the Nm-value between eastern and western groups (about

2) indicated that larval transportation on either side of the

S–T strait may not be negligible. A common rule of thumb

holds that Nm-values above 1 are sufficient to prevent the

accumulation of fixed haplotype differences (Slatkin and

Barton 1989). Moreover, substantial migration has been

suggested for example in the European hake and the sea

bass across the Almeria–Oran front (Naciri et al. 1999;

Cimmaruta et al. 2005), which is a much more important

oceanographic discontinuity than the S–T strait (Tintore

et al. 1988; Pinardi and Masetti 2000). Therefore, water

currents seem to be insufficient by themselves to explain

the differentiation observed for certain species as genetic

homogeneity is found in the same areas for other species

with similar dispersal abilities. Overall, while present-day

currents appear to be a good primary template for the

establishment of genetic structure as the present data

support, forces other than purely passive hydrological

mechanisms may be also implied, such as homing behav-

iour and larval retention (Jones et al. 1999, 2005; Swearer

et al. 1999) or selection against immigrants (Allegrucci

et al. 1994, 1997; Lemaire et al. 2000). No data on larval

retention are available for our species and little is known

about its ecology. It is likely that further ecological and

behavioural studies will provide further clues as to the

reasons for the observed pattern of genetic structure.

The mtDNA variation in P. Kerathurus is consistent to

some extent with an ancient split between eastern and

western Mediterranean populations as suggested by the

phylogenetic relationships between haplotypes. The mini-

mum-spanning network demonstrated that the haplotypes,

despite being closely connected and separated by few

numbers of mutational steps, clustered to their main area of

occurrence (Fig. 3). This suggests that populations on both

sides of the S–T strait might be derived from one recent

maternal ancestor. The overall mean nucleotide divergence

between the two basins is 0.0025 ± 0.0017. Assuming a

divergence rate for the COI gene of approximately 3% per

million years (calibrated by the rise of the isthmus of

Panama, Baldwin et al. 1998), the approximate divergence

time is estimated to be about 82,000 years (±55,000),

which suggests that the current populations of P. kerathu-

rus might have diverged from a common lineage about

82,000 years ago. This timescale, which coincides with the

later Pleistocene global glacial period, should be inter-

preted with caution since molecular clocks are known to be

imprecise and sequence divergence rates may vary even

within the same species (Zhang and Ryder 1995). During

this period, climate fluctuations produced episodes of

habitat fragmentation and reduced connectivity between

eastern and western Mediterranean. The sea level recur-

rently dropped below the present-day level, reducing the

width and depth of the S–T passage (Thiede 1978). Some

genetic studies on other species showed that the S–T strait

is an important genetic boundary between the eastern and

western Mediterranean basins (Bahri-Sfar et al. 2000;

Nikula and Vainola 2003; Arnaud-haond et al. 2007) and

have highlighted the importance of such environmental

fluctuations as an evolutionary force shaping population

structure in this region. Concordance in the geographical

positions of significant gene-tree partitions across multiple

co-distributed species indicates that the same historical

biogeographical factors likely influenced intraspecific pat-

terns of genetic differentiation in these species.

We observed low mean values of haplotype and nucle-

otide diversities that are much lower than those reported

for crustaceans (h [ 0.8 and p[ 0.01; see for examples

Lavery et al. 1996; Stamatis et al. 2004; Inoue et al. 2007).

Moreover, the haplotype relationship network is charac-

terized by a nearly star genealogy centered on one

geographically widespread haplotype. This phylogenetic

pattern is commonly interpreted as a signature of a recent

population expansion following a population bottleneck

(Slatkin and Hudson 1991). Our results suggest that

P. kerathurus populations may have undergone an histor-

ical bottleneck. A possible decline of population sizes can

also explain the low genetic diversity but it is an unlikely

cause because the population sizes are supposed to be large

as it can be inferred from the catch sizes (the P. kerathurus
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landings in the studied area averaged 2,000 tons per year;

Ben Abdallah et al. 2003). It is noteworthy that genetic

diversity in populations from the western region was

approximately 50% of that found in the eastern ones.

Ultimately, our study shows genetic differentiation

between the eastern and western Mediterranean popula-

tions and suggests that divergent entities may meet in a

contact zone between the gulf of Tunis and the gulf of

Hammamet. The question is: how could such genetic dis-

junction be maintained? Is the presumed physical barrier

(i.e. S–T strait) sufficient to limit gene flow? Is there any

genetically determined barrier, resulting from population

vicariance? Or do both barriers contribute in conjunction?

If our estimate is realistic, the elapsed time since the

divergence between eastern and western groups (around

82,000 years) seems insufficient for the establishment of

reproductive isolating mechanisms. However, recent evi-

dence from molecular genetics suggests diversification and

speciation of some Indo-west Pacific marine taxa occurred

as late as the Pleistocene (McMillan and Palumbi 1995;

Palumbi 1996). We cannot conclude if this timescale is an

underestimate or simply reflects very recent disjunction;

the use of more rapidly evolving molecular markers such as

microsatellites and/or mtDNA control region could help

resolve this issue.
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