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Abstract Next generation sequencing technology affords

new opportunities in ecological genetics. This paper

addresses how an ecological genetics research program

focused on a phenotype of interest can quickly move from

no genetic resources to having various functional genomic

tools. 454 sequencing and its error rates are discussed,

followed by a review of de novo transcriptome assemblies

focused on the first successful de novo assembly which

happens to be in an ecological model system (the Glanville

fritillary butterfly). The potential future developments in

454 sequencing are also covered. Particular attention is

paid to the difficulties ecological geneticists are likely to

encounter through reviewing relevant studies in both model

and non-model systems. Various post-sequencing issues

and applications of 454 generated data are presented (e.g.

database management, microarray construction, molecular

marker and candidate gene development). How to use

species with genomic resources to inform study of those

without is also discussed. In closing, some of the draw-

backs of 454 sequencing are presented along with future

prospects of this technology.
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Introduction

Ecological genetics has long sought to identify and

mechanistically understand the role of specific genes in

ecology and evolution (Ellegren and Sheldon 2008; Endler

1986; Gillespie 1991; Lewontin 1974). Although the

genomics revolution has greatly facilitated this process,

especially in genomic model systems and their close rela-

tives (Feder and Mitchell-Olds 2003; Mitchell-Olds et al.

2007), the number of model ecological systems which have

been able to gain such insights has been limited (e.g. Ab-

zhanov et al. 2006; Nachman et al. 2003), due to a

combination of high costs, small research communities,

and a need for truly integrated scientific research programs.

Recent technological advances in high throughput

sequencing have greatly lowered the hurdles for genomic

tool development which facilitate functional genomic

insights (Ellegren 2008; Margulies et al. 2005).

Here the performance and implications of next genera-

tion sequencing advances are discussed. Emphasis is

placed on the 454 sequencing technology, covering recent

advances in model genomic systems and representative

model ecological systems with previously limited genomic

resources. This paper addresses how an ecological research

program focused on a phenotype of interest can quickly

move from no genetic resources to developing mechanistic

understanding, using the Glanville fritillary butterfly as a

proof of concept example (Ellegren 2008; Vera et al.

2007). This paper is written for the ecologist who knows

what a microsatellite or AFLP is, but not cDNA or a contig,

and is a good companion paper to the recent review on

traditional EST libraries and their uses (Bouck and Vision

2007). Concepts and findings are fully discussed using the

relevant terminology with their common abbreviations,

which I have tried to define at a general level.
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This paper is organized into 11 sections, followed by a

conclusion. Beginning with a focus on the importance of

research questions and how these determine the tools that

need to be developed (Research questions and tools), 454

sequencing of the transcriptome (Transcriptome sequenc-

ing) is then discussed followed by a detailed discussion of its

error rates compared to Sanger sequencing (454 sequencing

error rates). A review of previous attempts at de novo

transcriptome assembly are presented, focusing on a suc-

cessful assembly in an ecological model system

(Transcriptome assembly). Particular attention is paid to the

difficulties the ecological geneticist is likely to face, through

both a detailed review of relevant studies in model and non-

model systems when considering how to assess the tran-

scriptome coverage of a given 454 sequencing run. Various

post-sequencing applications of data are then presented, such

as annotation and assessing how much of the transcriptome

was sequenced (Annotation & assessing transcriptome

coverage), microarray construction (Microarrays), molec-

ular markers (Molecular markers: SNPs, microsatellites,

and EPICs), candidate gene development (Candidate

genes), and genomic scans (Genomic scans), all with a focus

on an ecological model system. A discussion of the impor-

tance of understanding the molecular resources available for

closely related species then highlights how these can be used

for the focal species without such resources (Genomic ref-

erencing summary). In closing, some of the drawbacks of

454 sequencing (Drawbacks of 454 sequencing) are pre-

sented followed by a conclusion.

Research questions and tools

Ecological genetics research asks what are the genes, the

performances of the resulting molecular and organismal

phenotypes, and the selective regimes that result in dif-

ferential reproductive success in the wild (Feder and

Mitchell-Olds 2003; Feder and Watt 1992). Organismal

phenotypes may be morphological, behavioral, physiolog-

ical, or combinations of these. For example, trying to

understand the genetic basis of variation in dispersal

among individual butterflies of a given species could

encompass variation in wing size, a decision to disperse,

and the energy to sustain flight. Trying to predict the

genetic architecture underlying a complex phenotype such

as differential dispersal ability is thus difficult even with

functional genomic study in a relevant model system (e.g.

Drosophila). While regulatory variation may have a larger

role in some aspects of phenotypic evolution compared to

coding (Carroll 2005; Wray 2007), the current limited

understanding of adaptive trait architecture warrants

incorporating the paucity of information on this topic into

research project design (Ellegren and Sheldon 2008). Thus,

a more focused research question may ask what are the

genes whose expression affects the phenotype of interest,

or which genes harbor coding variation with relevant

phenotypic consequences. To address these questions in

ecological model systems, molecular tools usually need to

be developed where none previously existed.

In a dream with unlimited time and funds, a researcher

might be tempted to obtain the whole genome sequence

(WGS) of their study organism. Upon waking, having such

data poses its own problems in terms of assembly, annota-

tion, and navigation through the vast amount of accumulated

data. One needs a focused research community that is going

to invest into such a genomic project and given the scattered

nature of ecological model systems, few research commu-

nities are large enough for such a task (Bouck and Vision

2007). More importantly, what could one even get from a

sequenced genome? Since genome sequencing ideally uses

DNA from a single individual or inbred strain, little to no

genetic variation information is recovered. As a result, one is

able to assess genomic architecture (e.g. copy number of

genes, their relative locations, intron size variation, codon

bias, simple repeat regions, etc.), but not variation among

individuals. Gene sequences could be predicted from WGS

data, allowing the design of microarrays and primers for

genomic scans of genetic variation via re-sequencing. But,

given the low percentage of coding genes in most genomes

(e.g.\2% in humans), this is a poor return on time and money

investment.

What are the molecular tools then that will aide ecological

research groups? Most ecological genetics labs began using

microsatellites to understand population structure, which has

now giving way to single nucleotide polymorphism (SNP)

variation as a marker of choice (due to better understood

mutation models, genomic distribution, and availability;

(Morin et al. 2004)). Both of these markers can also be used

for detecting loci under selection via genomic scans, QTL,

and association studies (Luikart et al. 2003; Morin et al.

2004; Storz 2005; Vos et al. 1995). Such studies are not

biased by assuming a priori a specific architecture underlying

a given pheonotype (e.g. such as assuming a larger role of

expression or coding variation), because they blindly query

the genome to find chromosomal regions associated with the

studied phenotype (Slate 2005). However, quickly attaining

large numbers of microsatellites or SNP loci can be difficult

and expensive, especially in certain taxa (e.g. microsatellite

difficulties in Lepidoptera (Van’t Hof et al. 2007; Zhang

2004)).

Amplified fragment length polymorphisms (AFLPs) are

a potential solution to these issues, quickly providing

numerous polymorphic markers scattered across the gen-

ome (Vos et al. 1995). However, AFLP markers are

essentially species or even population specific, as they

can’t be integrated with findings from other taxa in terms of
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polymorphism, chromosomal location, etc, and as domi-

nant biallelic markers contain less information than co-

dominant bialleleic such as SNPs (Morin et al. 2004). In

sum, developing molecular markers which can use the

WGS information from a genomic reference species (GRS)

is important (i.e. a better investment).

A GRS is the evolutionarily closest or most relevant

species to the focal species for which there exist genomic

resources, such as many sequenced genes or WGS. Having a

good GRS allows microsatellites or SNPs developed in the

focal species to be potentially more useful than AFLPs

(Bouck and Vision 2007). For example, knowing you have

SNPs within specific genes, which have orthologs in the

GRS, can allow genomic insights to be quickly integrated

across taxa due to shared gene order, or synteny. Such a

technique was used to develop markers for mapping in model

systems such as mammals and flowering plants (Bouck and

Vision 2007; Fulton et al. 2002; Lyons et al. 1997).

Recently, this technique was used to exploit growing insight

into the genetics of wing pattern variation in the Müllerian

mimicry model system of Heliconius butterflies, finding that

a similar chromosomal region has large and different effects

on wing patterns across species (Joron et al. 2006).

Returning back to genomic tool development, quickly

gaining access to the *3% of an organism’s genome that

actually codes for genes provides the necessary data for

developing the tools discussed above, and much more

(Bouck and Vision 2007). This can be accomplished by

transcriptome sequencing, which provides direct access to

the mRNA sequence containing coding gene sequence as

well as both the 50 and 30 flanking untranslated regions (UTR)

(the 30 end of the UTR is a long stretch of A’s called the poly

A tail). Sequence from mRNA can be used for quantifying

global gene expression (via designed microarrays) or gen-

ome wide coding variation (via sequencing 100’s of genes

(Bouck and Vision 2007; Schmid et al. 2005a). When the

mRNA material is a pool of outbred individuals, transcrip-

tome sequencing can also provide data for finding 100’s of

microsatellites and 1000’s of SNPs, which can be located in

either coding or the more variable UTR regions (e.g. Beldade

et al. 2007; Bouck and Vision 2007; Kantety et al. 2002;

Picoult-Newberg et al. 1999). Recent technological advan-

ces have brought transcriptome sequencing, which was

traditionally labor intensive and costly, to within reach of any

research group during a normal grant period (3 years) and

funding range (e.g. Vera et al. 2007).

Transcriptome sequencing

Traditionally, the mRNA transcript pool (all the expressed

genes isolated from a given tissue) has been sequenced by

constructing a cDNA library (Bouck and Vision 2007).

Genes are transcribed (expressed), which makes mRNA,

and the mRNA is isolated from high quality tissue. The

DNA complement of the mRNA strand, called cDNA, is

made using reverse transcriptase which reads the mRNA

30–50. After removal of the mRNA, this single stranded

cDNA pool is made double stranded and then cloned into

plasmids, which are transformed into bacteria. A dilution

of this bacteria can then be plated such that individual

bacterial cells (with one plasmid each) form unique colo-

nies. Each individual bacterial colony thus contains a

uniquely cloned mRNA strand (a cDNA clone). Individual

cDNA clones are selected, grown and plasmids isolated or

directly PCR’d using primers on the plasmid. These are

then sequenced, generally from the 50 end as this avoids the

poly A tail at the 30 end, providing DNA sequence of the 50

UTR and coding region of a gene, as well as the 30 UTR if

the mRNA is short enough. This collection of bacteria,

plasmids, or DNA data can be called an expressed

sequence tag (EST) library, but in this paper EST refers to

a given sequenced cDNA, rather than the physical library

itself.

If the goal is maximal transcriptome coverage instead of

transcripts specific to a given tissue type, then the mRNA

from many different tissue types across sexes and devel-

opmental stages need to be isolated and pooled.

Additionally, many genes are only induced upon environ-

mental stimuli which, if relevant, would need to be

incorporated into tissue harvesting protocols. Also note that

the reverse transcription reaction used to make the cDNA

does not always proceed to the end of the mRNA strand,

due to the formation of secondary structures by the RNA

which can block the progress of the reverse transcriptase.

Thus many cDNA clones will be only partial mRNA

fragments (but there are ways around this problem such as

using higher temperatures for the reverse transcription

reaction and SMART cDNA synthesis; (Zhu et al. 2001)).

Coupled with the read lengths of Sanger sequencing

(*700 bp), the net result is that many EST sequences,

again primarily from the 50 end of the cDNA, will likely

only capture some portion of the coding gene as many

genes are much longer than average Sanger sequencing

length.

Cloning of the mRNA pool results in three potential

biases in cDNA libraries. First, not all genes are expressed

at equal levels, with, for example, housekeeping genes such

as ribosomal proteins being highly expressed compared to

the vast majority of other genes (e.g. the mRNA of 20

housekeeping genes alone can constitute up to 50% of the

mRNA isolated from a given tissue). Ongoing technolog-

ical development offers several different techniques for the

‘‘normalization’’ of such mRNA pools and requires

molecular biology experience. Normalization is however

commercially available (e.g. Google search ‘‘cDNA library
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normalization’’). Normalization involves taking a mRNA

pool having few genes of many transcripts, and many genes

of few transcripts, and modifying it such that all genes have

a roughly similar number of transcripts (e.g. reducing a

10,0009 difference in mRNA across genes to a *109

difference; Bonaldo et al. 1996; Zhulidov et al. 2004).

When sequencing from a normalized transcript pool, each

successive randomly sequenced cDNA has a greater

probability of being a new gene, rather than a previously

sequenced transcript. Thus, sequencing a normalized

cDNA library is a better return on investment when the

goal is transcriptome coverage. But keep in mind that

normalization does not result in all genes having an equal

probability of being sequenced. Rather, normalization

creates a new bias in transcript recovery probabilities such

that they are more evenly distributed across genes.

The second bias of cDNA libraries is the potential of the

mRNA transcript in plasmids to be partially expressed in

their bacterial cells with lethal effects. These cells would

then not proliferate and these transcripts would be lost to

future sequencing (e.g. Weber et al. 2007). This problem

has largely been overcome through use of vectors that

don’t express their inserts, although the bias still exists in

old cDNA library databases. Finally, smaller cDNA frag-

ments are over represented compared to larger ones, due to

both the difficulty of obtaining full length cDNA from

reverse transcription of long genes and the higher trans-

formation efficiency of smaller plasmids. Size selection of

cDNA is generally performed in an attempt to gain access

to longer, full length transcripts, with some researchers

cloning different size groups independently (e.g. Lévesque

et al. 2003).

Making and sequencing cDNA libraries can be expen-

sive. cDNA libraries are almost always Sanger sequenced

using purified plasmids from the 50 end (which avoids the

poly A tail at the 30 end, but for an example of 30

sequencing see Beldade et al. 2007), with most labs

keeping the sequenced plasmid, or bacterial line, as frozen

stock for later eventual full length or reverse sequencing.

Costs can thus include plasmid purification, sequencing,

and storage of plasmids and/or bacterial stocks, all of

which include substantial handling as sequencing reads

accumulate. cDNA libraries are usually sequenced with

1000’s of reads, ranging from 5000 to [100,000 reads.

Given the quality of normalization and tissue used, 10,000

such reads may find as few as 1000 and potentially[5000

unique genes. Thus, with sequencing costs about $4 per run

and an optimal cDNA library, getting at least partial cov-

erage of 5000 unique genes would costs $40,000, plus

potential additional costs mentioned above.

In 2005 next generation sequencing became a reality,

with massively parallel pyrosequencing. This new tech-

nique was able to take a non-cloned pool of DNA and

within 4 h sequence *300,000 reads of *110 bp in length

each, producing a total of *33 9 106 bp or 33 Mb

(Margulies et al. 2005). Using non-cloned DNA is an

important advancement, in addition to the increase

throughput and speed, since this avoids the potential tox-

icity of inserts and fragment size biases of traditional

cDNA libraries discussed previously. The techniques

involved in 454 sequencing have been nicely presented

elsewhere. They involve a fundamental shift away from

electrophoretic separation of dye terminated DNA frag-

ments to a method of massively parallel record keeping of

iterative nucleotide extension called flow cell sequencing

(Holt and Jones 2008; Hudson 2008; Mardis 2008; Mar-

gulies et al. 2005). Quite simply, the process begins with a

DNA pool that is randomly sheared followed by massively

parallel sequencing of the resulting individual DNA frag-

ments, utilizing advances in microscale DNA amplification

and detection of differential nucleotide incorporation

(Margulies et al. 2005).

In order to appreciate these advances, consider an ide-

alized, normalized, average transcriptome of 20,000 genes

with an average gene length of 1500 bp or 1.5 kb. This

contains about 30 Mb of unique DNA. For illustration

purposes, a back of the envelope calculation predicts a

single 454 run could provide *19 transcriptome coverage

of this pool (i.e. 33/30 = 1.1). A single run using this

technology currently costs *$10,000, providing a sharp

contrast to the traditional EST sequencing outlined above.

This cost estimate was based on using a university core

facility and costs going directly through 454/Roche are

currently *$20,000, which is still a significant reduction in

cost compared to Sanger sequencing. Perhaps a more

impressive show of this technology was the recent

sequencing of James Watson’s entire genome, which took

only 2 months to sequence the 6 gigabases of his DNA to

7.49 coverage, all at 1/100 the costs and a fraction of the

time of traditional capillary sequencing (Wheeler et al.

2008).

Other high throughput next generation sequencing

technologies are available, such as SOLiD (Applied Bio-

systems Inc.) and Solexa (Illumina Solexa Inc.), which can

generate a little over 2 million *30 bp fragments per run,

which is roughly a third of the human genome (for com-

parisons across these and other methods see these reviews

(Holt and Jones 2008; Hudson 2008; Mardis 2008)). While

providing massively more data, the performance for de novo

transcriptome assembly using such short read lengths

has not yet been assessed. However, these and other next

generation sequencing technologies are increasing their

throughput, read length, lowering costs, and improving

performance. For example, by mid 2008, 454 sequencing

technology (now called GS FLX) currently has an average

run time of 8 hours, generating *400,000 reads, each
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*240–250 bp long, totalling[100 Mbp of data. By 2009,

they appear likely attain from a 12 h run an average length

of 450 bp for potentially near a million reads. Again, using

a back of the envelope calculations, this final advance

would provide *159 coverage of the idealized transcrip-

tome presented above from a single GS FLX run.

A final point to add is that several methods (e.g. Solexa

and 454) now offer paired end sequencing (Holt and Jones

2008). This technique keeps track of the sequencing results

from opposite ends of individual DNA strands and this

helps in reconstructing the sequenced template (e.g. Korbel

et al. 2007). 454 Life Science currently offers 100 bp reads

from either end of a fragment up to 3,000 bp long, but this

is likely to upgrade to about 175 bp reads on fragments up

to 16 kb. Again, predicting which of the next generation

sequencing techniques will perform best for a given

sequencing project even a year from now is impossible as

these and other technologies, and assembly methods, are

rapidly advancing (Holt and Jones 2008).

454 sequencing error rates

But how does the error rate of this next generation

sequencing technology compare to traditional Sanger EST

sequencing? The next generation sequencing chemistry and

base calling methods are profoundly different from tradi-

tional Sanger sequencing (Holt and Jones 2008; Margulies

et al. 2005). Sanger sequencing reads individual bases

directly, while the 454 sequencing method does not.

Rather, the 454 method detects the incorporation of

nucleotides in real time via pyrophosphate release during

polymerase extension, which makes a flash of light. It does

this for each of nearly 1.5 9 106 wells on a plate, each of

which has a clonal pool of PCR amplified DNA.

The 454 method alternates the available nucleotides for

incorporation across all wells and records an A from a

pyrophosphate flash when A’s are available, and then the

process continues cycling through the different nucleotides

and recording in which order they are incorporated (for

each well). While incredibly fast and able to be miniatur-

ized, the drawback of this method is that regions of DNA

having several of the same nucleotides together, or a

homopolymer run (e.g. AAA or AAAAA), result in

essentially one nearly simultaneous pyrophosphate flash

(the incorporation is very fast; (Hudson 2008)). Although

the intensity of this flash does correlate with the number of

nucleotides incorporated, this is where the typical errors for

454 occur with an over or under estimation of these run

lengths or errors in regions next to them (Moore et al.

2006; Wicker et al. 2006). Thus, most publications on 454

sequencing report the majority of their errors associated

with homopolymer runs of 5 or more (Margulies et al.

2005), with some reporting an additional AT bias of such

runs (Moore et al. 2006; Wicker et al. 2006). Other sources

of error come from mixed DNA pools in wells, misincor-

poration of nucleotides, etc. (see Holt and Jones 2008;

Huse et al. 2007). In sum, the significant savings of time

and money that 454 genome sequencing provides comes at

a cost of a modest increase in error rate compared to tra-

ditional Sanger genome sequencing (*0.04% in 454

sequencing vs. 0.01% in Sanger sequencing; (Ewing and

Green 1998; Margulies et al. 2005; Moore et al. 2006)).

From these numbers alone, it appears that concerns about

error rate differences are overblown, for what is the dif-

ference between 99.96% and 99.99% accuracy?

To discuss this, we need to consider the depth of cov-

erage in these various studies and the statistics reported.

Coverage refers to the number of sequences that cover a

given region of sequence. From the perspective of a single

bp within a stretch of DNA, this bp may have only one or

two sequence reads (shallow or low coverage) or upwards

of 5 or more (deep or high coverage) (Fig. 1). With cov-

erage in mind, let us return to studies that have found very

low error rates. Margulies et al. (2005) report a very low

error rate, 0.04%, for their 454 sequencing and de novo

assembly of 96% of a bacterial genome (580 kb). A similar

low error rate, 0.043%, was reported from sequencing and

de novo assembly of two plant plastid genomes (162 kb

and 157 kb; Moore et al. 2006). Both studies were able to

estimate their error rates by comparison back to Sanger

sequence data, for some (Moore et al. 2006) or all of their

sequenced genome (Margulies et al. 2005).

Average coverage for these genome projects was

extremely high, *409 in the bacterial genome and *209

in the plastid example (i.e. each bp of the assembled gen-

omes had at least 40 or 20 independent sequence reads per

bp, respectively). Each of these independent sequence

reads can be aligned with similar sequence to form a group

of overlapping sequence, the consensus of which is called a

contig. Having high coverage per bp allows for sequencing

errors to be swamped by correct sequence during contig

assembly, and thus, when contigs are used in the de novo

genome assembly, error rates drop significantly and these

are what are reported in the paragraph above.

In order to assess individual 454 sequence reads

Margulies et al. (2005) compared their 454 sequence data

at both the individual sequence and contig level with the

known genome sequence of their bacteria. Individual

sequence reads had an error rate of 3.3% for insertion and

deletions and 0.5% for incorrect bp substitutions, with a

summed error rate of *400 bp in 10 kb. These errors

increased dramatically at longer sequence lengths (i.e.

[80 bp). This error rates drops significantly when the

consensus sequences from contig assemblies are used

instead, to 3 bp errors in 10 kb, with a noticeable decrease
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in homopolymer run errors. Incorporating quality scores of

the 454 base calls into this contig assembly decreases the

error rate even farther to 0.4 bp errors in 10 kb (Margulies

et al. 2005). While Marguiles et al. (2005) were able to

achieve this significant decrease in error with their *409

coverage, it is important to note that similar low error

levels have been achieved with roughly half this level of

coverage (Moore et al. 2006). For comparison, Sanger

genomic sequencing reads need an average coverage depth

of three or more to achieve consensus accuracy of 99.99%,

or 1 error in 10 kb (Margulies et al. 2005).

With improvements in chemistry and bioinformatics,

error rates of 454 technology will further decrease.

Although newer chemistry will result in longer, more

accurate reads, this data still needs to be interpreted cor-

rectly. Huse et al. (2007) thoroughly assessed the error

rates and associated problems in 454 sequencing. They

found that a small percentage of the sequence reads

accounted for most of the error. Importantly, they were

able to identify these sequences and remove them, resulting

in a much higher quality dataset. Filtering out sequences

with at lease one ambiguous call as well as those outside

than the normal read length distribution, a total \10% of

final reads, increased the final dataset accuracy substan-

tially. They highlight the main differences between the 454

GS 20 software and traditional Sanger sequencing PHRED

calling. The former quantifies the probability of homo-

polymer extension while the latter quantifies the

probability of any type of base call error (Huse et al. 2007).

Thankfully, new methods are emerging for per base pair

accuracy calls on 454 flow data, similar to PHRED scores,

which greatly aid in SNP identification when sequence

coverage is thin (Quinlan et al. 2008). Such methods will

improve additional downstream applications, such as con-

tig assembly, and are being incorporated into the standard

software of the newer 454 systems (454 Life Sciences,

Roche Applied Science Inc.).

What does this mean for the ecological geneticist? Depth

of coverage is a very important issue and needs to be

understood in several different contexts. Although signifi-

cant advancements have and will be made in chemistry and

bioinformatics analysis of next generation sequencing (e.g.

Brockman et al. 2008; Quinlan et al. 2008), having deep

coverage for the sequenced material is likely to remain very

important for accurate sequence information (Goldberg

et al. 2006; Moore et al. 2006; Wicker et al. 2006). What

Fig. 1 Schematic of two 454

assembled contigs for a given

cDNA. A full length cDNA is

shown at top with small lines

below, each representing an

individual 454 EST read. These

reads are aligned with the

cDNA at top, showing three

independent clusters. Only the

first two clusters have an EST

read that connect them,

although the read depth at this

point is very low. Enlargement

at bottom shows actual

sequence and a SNP site in red.

This example would likely

return two separate contigs

(Cluster 1 ? 2 and Cluster 3).

Supplemental Figure from Vera

et al. (2007)
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type of coverage a given study requires depends upon the

desired results and the diversity of the DNA within the

sample. Comparison across several studies suggest that

broad, accurate coverage of DNA material by current 454

sequencing performance can be achieved by *159 cov-

erage (Margulies et al. 2005; Vera et al. 2007; Wicker et al.

2006). As stated earlier, such a 159 coverage of our ide-

alized transcriptome may be achieved by a single 454 run

sometime in 2009. On one hand, increased read lengths and

accuracy may significantly decrease this required depth of

coverage. However, a desire for SNPs will require sub-

stantial coverage. Considering transcriptome sequencing of

a normalized and diverse cDNA pool, the issue of unequal

transcript abundance remains and will likely require at least

159 coverage or potentially more to obtain a broad, full

length assembly of a transcriptome pool.

Transcriptome assembly

454 sequence data has been used extensively for de novo

assembly of bacterial genomes, where it performs very well

although repeat regions larger than the sequence read

lengths are problematic (Holt and Jones 2008; Pop and

Salzberg 2008). Here we assess the ability to assemble a

transcriptome from 454 EST sequences de novo (i.e.

without the aid of Sanger EST sequences or WGS). This is

important as ecological systems generally do not have the

molecular resources available for aiding contig assembly.

Determining which EST sequences, of the hundreds of

thousands of short sequence reads, belong together and

should be assembled as a contig representing the cDNA

they were shotgun sequenced from is computationally

demanding but relatively easy with a reference genome.

For example, 454 sequencing was used to sequence random

portions of the Neanderthal genome, which was then

readily aligned and compared with the human WGS

(Noonan et al. 2006).

Contig assembly programs designed for the quality

scores and longer sequence reads of Sanger sequence data

perform poorly with the shorter 454 ESTs (Chaisson et al.

2004; Pop and Salzberg 2008). However, even the specially

designed, commercial software supplied with 454 se-

quencers (Newbler assembler), which uses the ‘‘flowgram

signal space’’ information unique to 454 sequencing (454

Life Sciences, Inc), also seems to perform poorly with

de novo transcriptome assembly although perhaps better

than other programs (Weber et al. 2007).

De novo transcriptome assembly from a single run of

normalized mRNA pooled from 4 tissues of the Barrel

clover plant (Medicago truncatula) was poor (e.g. only two

contig assemblies over 400 bp in length; Cheung et al.

2006). Estimated transcriptome coverage of the 454

sequencing run in the M. truncatula study was very low

(0.289). Thus the probability of having multiple overlap-

ping sequences was low and likely detrimentally affected

assembly. A separate assembly was attempted on mRNA

from another plant, Arabidopsis thaliana. In this study,

unnormalized cDNA was sequenced using two 454 runs on

only a single tissue type (8 day old seedlings; Weber et al.

2007). Although average coverage is difficult to estimate

given that unnormalized mRNA was sequenced, compared

to the previous study transcript diversity has been reduced

while coverage has increased. This resulted in at least

10,000 of the 17,449 genes found being covered by at least

3 ESTs. The performance of three different contig assem-

bly methods (Newbler, CAP3, and stackPACK EST

analysis pipeline) were compared, with very few full length

cDNA contigs assembled even when there was sufficient

EST coverage across the cDNA in question (Weber et al.

2007). Thus, even when transcriptome coverage is good, de

novo transcriptome assembly appeared to be a difficult goal

to attain due to the poor performance of Sanger assembly

algorithms. However, Vera et al. (2007) have recently had

good success with de novo transcriptome assembly of 454

data and their findings discussed below shed light on pre-

vious difficulties.

In order to develop genomic tools in the Glanville

fritillary butterfly, a model ecological system with essentially

no genomic sequence, 454 sequencing was used to rapidly

characterize its transcriptome (Vera et al. 2007). Using a

normalized cDNA pool, derived from diverse mRNA

pools, two 454 runs were performed. After filtering out low

quality sequence and amplification primers, assembly was

performed using the commercial software program Seq-

manPro v.7.1, of the Lasergene software package, which

can be specially parameterized for 454 sequence and

incorporate quality scores of the ‘‘flowgram signal space’’

during short read assembly (Lasergene Inc.). After filtering,

a total of 608,053 ESTs (mean length = 110 bp) remained

which assembled into 48,354 contigs and 59,943 remaining

singletons. Singletons are individual ESTs that were not

able to be grouped into a contig, but were still high quality

sequence reads. The longest 4800 contigs ranged in length

between 348 to 2849 bp and had an average coverage level

of 6.5 EST reads.

Assembled contigs were compared with 3,888 Sanger

sequenced ESTs to assess 454 error rates in this dataset.

749 Sanger contigs and singletons found matches with the

454 contigs and were 97% identical, with a 454 gap rate of

*3 per 1000 bp (Vera et al. 2007). This is likely an

overestimate of the sequencing error rate due to polymor-

phism in both datasets and analysis of regions having low

sequence coverage. Average transcriptome coverage depth

was estimated at 2.39, based on assuming a similar num-

ber of genes as the GRS Bombyx mori (18,000) and an
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average gene length of 1500 bp (Vera et al. 2007). Thus,

increased EST sequence coverage and a new assembly

method resulted in a significantly improved de novo

assembly compared to the two previous attempts in plants

presented above. Note however that this level of coverage

is much less than the 159 coverage recommended in ear-

lier sections, and a lot less than the bacterial genome

assembly work which had *409 coverage (Margulies

et al. 2005). Due to this low coverage, the full transriptome

was not assembled, which may be a difficult goal to obtain

given transcriptome complexity (e.g. alternative splicing

discussed two paragraphs below).

How does one assess the quality of a de novo tran-

scriptome assembly of a species without genomic

resources? Again, we turn to the butterfly 454 contig

assembly as an exemplar, where performance was assessed

in several ways. First, estimation of the 454 error rate

discussed in the previous section began with comparing

long, Sanger generated cDNA sequence with the assembled

454 contigs, revealing accurate and long 454 contigs (Vera

et al. 2007). Performance of the assembly was further

assessed by comparing the relationship between 454 EST

sequence coverage depth and length. As the number of EST

sequences for a given cDNA increases, contig assembly

length should also increase. Solely comparing this data

with itself says nothing about the accuracy of the assembly,

as assembled contigs could be junk (e.g. repetitive DNA).

However, by comparing the depth and length of contig

coverage with reference to orthologous genes in a GRS,

one is able to visualize whether increased sequence depth

results in increase length coverage of cDNA. Such a rela-

tionship is clearly visible when this comparison was

performed by Vera et al (2007), showing that short cDNA

genes are fully covered and longer cDNAs have a linear

relationship between coverage depth and length (Fig. 2).

Assembly of a large number of sequence reads from a

limited and normalized mRNA pool results in deep

sequence coverage with several important outcomes. The

first consequence of deep EST coverage emerges from a

comparison of the coverage between traditional Sanger

sequencing and 454 sequencing of the same normalized

cDNA material. Sanger sequencing coverage is ideally

very thin (i.e. \2 reads per unigene; a unigene is a unique

gene) to maximize gene discovery while 454 contigs

assembled from sequencing such cDNA pools have many

regions of overlap. As mentioned above, this greater

overlap can provide a greater level of accuracy (Goldberg

et al. 2006; Margulies et al. 2005; Moore et al. 2006;

Wicker et al. 2006). Second, deep coverage also finds

many alternative splicing variants of many different tran-

scripts. While a gene of 10 exons would normally have

mRNA consisting of exons 1–10 connected together,

alternative splicing can result in permutations of exclusion,

producing different mRNA transcripts (e.g. mRNA with

exons 3–5 excluded, producing only exons 1–2, 6–10

connected together). The importance of alternative slicing

variation to the study of ecological genetics is only recently

beginning to be appreciated (Marden 2006). While inter-

esting, variable alternative splicing products can cause

severe assembly problems and thus need to be identified

and treated separately during assembly (Vera et al. 2007).

Again, alternative splicing may be a significant impedi-

ment to full de novo transcriptome assembly and warrants

further study.

Deep coverage also provides SNP data. The two plant

example reviewed earlier that attempted de novo tran-

scriptome assembly used mRNA from a very

homogeneous genome (e.g. Weber et al. isolated their

mRNA from a single accession line of the selfing plant A.

thaliana; Weber et al. 2007). In contrast, Vera et al.

(2007) used various tissue and developmental stages from

*80 individuals from eight families of an outcrossing

diploid butterfly. Thus, Vera et al. (2007) necessarily had

a more complex mRNA pool due to diverse transcripts

and genetic polymorphism. However, this diverse pool

was collected on purpose since contig assembly brings

together sequence reads of the same genetic region from

many different individuals. Initial concerns regarding the

effect of natural genetic variation on assembly appear to

be unwarranted, at least with the level of population

diversity sampled (Vera et al. 2007). With aligned

sequences of the same region, observed SNPs can be

verified as not being sequencing errors by identifying

multiple independent reads of the alternative bps com-

prising a given SNP. We will return to the various uses of

mRNA pooling from individuals for finding polymor-

phism in the SNP section.

Assembly results such as those obtained by Vera et al.

(2007) should be attainable with any organism’s tran-

scriptome given proper depth of coverage and assembly

method. Moreover, given the increasing read lengths of the

new GS FLX runs, advances in chemistry and error calling,

assembly using such data should be of a generally higher

quality in terms of longer contig assembly length, lower

error rate, and generally a greater transcriptome coverage.

Here it should be noted that little if any of the bioinfor-

matics community’s attention is focused on developing

software dedicated specifically to the problem of de novo

transcriptome assembly from short read sequence. Indeed

recent reviews on the bioinformatics challenges presented

by short read sequence, and the resulting software devel-

opments, do not even consider de novo transcriptome

assembly challenges (Holt and Jones 2008; Pop and Salz-

berg 2008).
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Annotation & assessing transcriptome coverage

What can ecologists hope to do with all this data? This

depends on the types of questions that are being asked.

Keep in mind that one 454 run will likely generate

*300,000 sequence reads which may assemble into

*50,000 contigs with equal or more singletons. Such

datasets can be downloaded from the recently launched short

read archive of trace data for next generation sequencing

projects (http://www.ncbi.nlm.nih.gov/Traces/sra), At one

extreme, when the goal is to design a microarray to assess

global expression in relation to a given phenotype poly-

morphism, then knowing how many genes were found and

what they are is vital. Knowing you have only covered 20%

vs. 70% of your transcriptome is also important, since you

might want to invest more money in better coverage to

increase the chances of finding important genes in planned

microarray studies. Researchers solely using 454

sequencing to generate molecular markers will find the

section dedicated to those more informative. Here the

issues involved in annotation and transcriptome coverage

assessment are discussed.

The first step is to determine what type of data one has

through comparisons with annotated sequence databases.

Through such comparisons, one can begin to attach names

to genes and infer function. This annotation of the

assembled transcriptome can be difficult, not conceptually

but rather computationally, given the extremely large da-

tafiles and searching requirements, results storage, and later

retrieval of results in a easy, quick, meaningful fashion. In

sum, a non-model ecology lab will need to develop

database management skills (e.g. Papanicolaou et al. 2008;

Paschall et al. 2004).

Open source database programs are available, such as

MySQL, which are able to manage the large number of

reference spreadsheets, storing information from various

database searches, etc. Mining of this database can be

accomplished using simple search commands. Sequence

annotation to data mining pipelines are in a period of flux,

with many different labs reinventing the wheel for their

particular research programs. A pipeline refers to a series

of programs that take an input set of data, hand it off from

one program to another, and then output a finished product.

As such, pipeline in this context would take raw 454

flowgram data, identify high quality sequence and trim

away poor quality data, assemble this into contigs, annotate

these contigs through comparison with sequence databases,

identify SNPs, etc., and output this in a simple format for

someone to use.

While some pipelines, or packages, are starting to

emerge as viable options for use in this context (e.g. Open

Sputnik Beldade et al. 2006; Funnybase Paschall et al.

2004), this field is awash in many labs building separate

pipelines for their own needs. For genomic data, the

Generic Model Organism Database (GMOD) project

appears to be a future leader due to National Institutes of

Health and most recently, National Evolutionary Synthesis

Center (NESCent) support (e.g. the first GMOD summer

school was held in summer 2008). GMOD is a collection of

interoperable open source software components for man-

aging genomic data (Stein et al. 2002). Such a project

needs to emerge for handling the EST data generated from

Fig. 2 Relationship between

Glanville fritillary 454 EST

sequence coverage depth and

length, with reference to cDNA

of the genomic reference

species B. mori. X axis shows

increasing number of Glanville

fritillary 454 ESTs per contig,

while Y axis shows percent

coverage by Glanville fritillary

contigs of full length B. mori
orthologous genes. Figure from

Vera et al. (2007)
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the current and growing number of labs for both Sanger

and next generation sequencing, providing a centralized

grouping of open source software that could be continually

improved over time. Importantly, this would create tools

that are readily accessible for old and new labs alike, which

would lower the barriers to getting funding when working

with next generation sequence data. Being able to integrate

this data with GMOD components should be a longterm

goal, using the GRS concept as a bridge for generating

candidate linkage assignments which could be annotated

by various labs across different taxa. The amount of

investment needed in this aspect of data management

should not be underestimated. Simply put, these will be the

tools that allow you to actually use the data you generate.

Thankfully, intensive courses and conferences are emerg-

ing to directly deal with these issues and collaboration with

bioinformatics specialists is the norm.

We will start assessing the transcriptome coverage of

454 sequencing by further reviewing the excellent A. tha-

liana paper discussed earlier. Weber et al. (2007) explicitly

used two 454 sequencing runs to characterize unnormal-

ized mRNA from 8 days old seedlings, as transcripts

expressed in these tissues had been previously well char-

acterized using microarrays and the 454 data could be

directly compared with this as well as WGS data (Schmid

et al. 2005b). The unnormalized mRNA pool thus con-

tained a high variance in mRNA copy number among

genes, with nearly 3000 genes having only one 454 EST

each and a handful of others having over four orders of

magnitude more 454 ESTs. This small number of highly

expressed genes represent 26% of all the 454 ESTs

matching the A. thaliana transcriptome (n = *541,000).

For example, 5 genes for Rubisco had more than 85,000

ESTs, while those for the 20 genes encoding chlorophyll a/

b-binding proteins had approx. 60,000 ESTs (Weber et al.

2007).

Weber et al.’s (2007) first 454 sequencing run found 59%

of predicted A. thaliana gene models (transcribed genes and

alternatively spliced variants), a level expected as only 55–

67% of A. thaliana genes are expressed in a single organ

(Schmid et al. 2005b). Consistent with finding nearly all of

the unique transcripts in the mRNA pool, a second 454 run

only produced 10% more genes, while increasing cDNA

sequence coverage by 50% (from 7 to 10.3 Mb; (Weber et al.

2007). The authors concluded that their two runs detected ‘‘at

least 90% of all genes expressed in this sample’’, including

those with low expression levels (Weber et al. 2007).

Weber et al (2007) next assessed whether there was any

bias in the shearing of the cDNA during sample preparation

which could have resulted in uneven 454 EST coverage of

cDNAs, by looking to see where the 454 EST actually were

relative to the known cDNA. This was relatively easy given

the extensive genomic resources for A. thaliana, which has

*700,000 Sanger ESTs and well annotated WGS. They

found that all regions of the cDNAs were covered by the

454 ESTs with low to moderate 50, middle, or 30 coverage

biases for different cDNA size and expression classes,

concluding that EST coverage was sufficient for contig

assembly (Weber et al. 2007).

Interestingly, 454 sequencing identified sequences that

matched genome sequence but were not found in the large

Sanger EST collection, with an additional 648 gene loci

identified and 5302 known gene loci provided with addi-

tional length coverage. The authors state, ‘‘it is likely that

some of the 648 loci detected by pyrosequencing, but not in

(the *700,000 Sanger ESTs), represent difficult to clone

sequence or DNA molecules that are toxic or otherwise

unstable in E. coli’’ (Weber et al. 2007). In sum, of the

23,367 genes in A. thaliana (many of which have several

gene models), 74% were at least partially covered by two

runs of 454 sequencing of an unnormalized library from

one tissue type.

These authors also wanted to determine the relative

performance of 454 vs. Sanger sequencing in finding novel

genes. Since Sanger sequencing 10,000 ESTs costs roughly

the equivalent of two 454 sequencing runs, the authors

went on to generate 5 random sets of 10,000 ESTs from the

A. thaliana EST databse (containing *700 k Sanger

sequences) and found that these random sets on average

only find a third (n = * 5500) of the genes recovered by

the 454 sequencing effort (n = 17,449).

Let us now consider how to assess transcriptome cov-

erage for a species which has little to no genomic

resources. We must turn to blast searches against sequence

databases. Luckily, many genes are shared across divergent

taxa and will be readily identified as such in blast databases

searches (e.g. housekeeping genes evolving under strong

functional constraint such as central metabolic enzymes).

Many genes are also likely to find an uninformative

homologous blast hit in reference databases (e.g. gene

descriptions of ‘‘hypothetical protein’’ are common), but at

least one knows that such a contig is a likely coding gene.

Only 30–40% of unigenes from relatively large cDNA

libraries usually annotate as such, with the majority having

no significant hit above a given quality threshold (i.e. low

quality hit scores could happen by chance; e.g. Beldade

et al. 2006; Paschall et al. 2004).

Vera et al. (2007) used this approach to estimate their

transcriptome coverage, blasting their butterfly 454 contigs

against several relevant databases and then summing all the

different unigenes that could be identified. This allowed for

multiple contigs to hit a given unigene (Paschall et al.

2004), as the fragmented nature of 454 sequencing pro-

duced many non-overlapping contigs for the same full

length sequence (Fig. 1). Evidence for 9311 unigenes were

found, representing *50% of the genes estimated to be in
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the closest GRS, the silk moth, B. mori (total WGS pre-

dicted genes = 18,510; Xia et al. 2004). Certainly this

approach misses genes that have become highly diverged

and diversified since butterflies and moths last shared an

ancestor, but it does provide a robust lower bound on

coverage.

Here I present a way to estimate a potential upper bound

of transcriptome coverage via comparative coverage

inference (H. Vogel personal communication). House-

keeping genes have three properties ideal for this task.

First, they evolve under strong purifying selection are thus

easily annotated across divergent taxa. Second, specific

subsets of them are highly expressed in nearly all tissues,

such as proteins in the ribosome and oxidative phosphor-

ylation. Third, bioinformatics tools have evolved to a

current state of being easy to use and highly informative,

with the KAAS web interface being particularly good

(Moriya et al. 2007). Comparative coverage inference rests

on the assumptions of random sequencing from a normal-

ized cDNA pool and a relatively similar numbers of genes

between the two species being compared. With these

assumptions satisfied, or mostly satisfied, one can compare

the numbers of genes hit within genetic pathways between

a GRS and a focal species. GRS provide a full, or nearly

full, set of genes predicted from WGS and therefore a more

complete set of genes compared to gene sets derived from

sequenced cDNA pools such as Sanger ESTs.

Using the butterfly 454 data of Vera et al. (2007), nor-

malization of the cDNA pool was assessed by comparing

the average number of ESTs per ribosomal protein contig

to the average number of ESTs per contig for the dataset as

a whole (for contigs with blast hit bit scores C45). Ribo-

somal proteins have an average of 37 ESTs per contig.

Importantly, the 90th quantile of ribosomal protein ESTs

per contig (n = 111) is nearly 5 times that of the average

number of ESTs per contig for the rest of the data

(n = 22). Normalization is expected to reduce the high

variance among genes in mRNA copy number, exemplified

in the A. thaliana study above, to within a 109 difference

among genes (Bonaldo et al. 1996). A successful normal-

ization would therefore result in the majority of mRNAs

(e.g. 90th quantile) from a highly expressed gene set being

within 59 of the mean for the rest of the sample. Thus, the

normalization was successful.

We can now ask what are the relative numbers of genes

hit in different, less expressed pathways for the assembled

butterfly transcriptome compared to WGS predicted genes

in the GRS (B. mori). Across five different central meta-

bolic pathways, the assembled butterfly 454 contigs hit, on

average, 70% of GRS genes (Fig. 3). This provides an

upper estimate of transcriptome coverage that is a 20%

increase over the lower estimate (i.e. a potential upper limit

of 13,142 genes based on GRS inference).

As a final note, this assessment of transcriptome cov-

erage assumes that all unique transcripts were in the

original mRNA pool that was sequenced, which is certainly

not the case. Many developmental, immune, or environ-

mentally induced genes require specific conditions for

expression and thus may be absent from such mRNA pools,

even when many developmental stages and tissues are

purposefully included. However, such genes are not likely

to be a substantial fraction of the transcriptome. Yet, with

this issue in mind the importance of the research questions

to ultimately be addressed cannot be overstated, as ques-

tions should guide the type of tissues used and treatments

applied to the live organism from which the mRNA will be

isolated. For example, research programs interested in

ecological immunity should certainly infect some of the

individuals used to make the mRNA pools for 454

sequencing. Should a research program wish to gain access

to the as much of the transcriptome as possible to provide

as a community resource, collecting mRNA from varying

tissues and developmental stages from individuals which

underwent a series of inductions and treatments would be

ideal.

Microarrays

Microarrays are generally used to determine the relative

gene expression between two or more groups on individ-

uals for as many genes as can fit on a microscope slide. For

the molecular ecologist, this tool allows one to query the

transcriptome for genes that might be differentially

expressed between two or more groups in an effort to

identify candidate genes for further study (e.g. Abzhanov

Fig. 3 Number of genes (Y axis) per metabolic pathway (X axis)

identified from the assembled M. cinxia transcritpome compared with

the WGS predicted genes of B. mori. Analysis used the web interface

KAAS (Moriya et al. 2007)
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et al. 2006). Currently there are many different technolo-

gies for microarray construction and they warrant careful

consideration when planning such work. Here I will focus

on what might be referred to as classical microarrays,

which are simply glass slides with very small dots of DNA

attached to them, to which other DNA or RNA can

hybridize in a dot specific manner. Hybridizing material is

labeled with fluorescent dyes and hybridized to the DNA

dots on the slide, which after washing can be read with a

very precise laser scanner at several different wavelengths,

allowing the relative intensities of each dye by dot to be

measured. This allows for a rapid, gene (dot) specific

quantification of relative amounts of hybridizing material,

which is generally some form of RNA or cDNA. There are

many different ways of constructing, using, and analyzing

microarrays, with final design generally being an informed

compromise between biological question, analysis power,

and costs (e.g. Shiu and Borevitz 2008).

As an exemplar route to designing a microarray from

454 transcriptome data, the work of Vera et al. (2007) is

further reviewed. An open question was whether the short

contigs generated by 454 sequencing could provide enough

sequence to design microarray probes that performed well.

To assess this, assembled 454 contigs and singletons were

selected and six probes designed for each using Agilent’

eArray web tool (http://earray.chem.agilent.com/earray/).

Each probe (60 bp in length), corresponding to a stretch

of DNA which was selected by calculated hybridization

properties of this stretch of DNA, was printed on a glass

slide containing 244,000 features (dots of probes) and

hybridized with dye labeled RNA from the pool used for

the 454 sequencing. Of the six probes per contig, one was

selected based on optimal performance and greatest 30

proximity in the contig (contig orientation was determined

from blast inferred open reading frame against a GRS,

when possible). Probe performance could be an assessment

of relative intensity compared with negative controls and/

or lowest variance across repeated hybridizations (Vera

et al. 2007 used only the former). Probe proximity to the 30

end of the transcript was used as an additional criteria as

mRNA degradation proceeds from the 50 to 30 end (Lee

et al. 2005). This validation of probe performance is an

important step, ensuring that the final selected probe for

each contig performs well, at least with the test sample

material.

At this point it is worth reiterating that the process

described above (i.e. constructing a custom, richly featured

microarray) did not involve any handling of library clones

or benchwork of any kind. Rather, it was all done from a

computer using assembled and annotated 454 sequence

data, ported to a free web-based tool for oligonucleotide

probe design, random array layout, and printing. This is

substantially faster, cheaper, and less error-prone than

previous methods of constructing cDNA arrays by spotting

PCR products from library clones. Of course, the sequence

data generated from any source can be used to make such

microarrays. For example, if you wanted to make a

microarray today of your favorite set of genes for your

GRS, or any species with DNA data such as a cDNA

library database, you could simply use this data on the

eArray web tool. In fact, using data from most cDNA

databases would even tell you the orientation of the cDNA

(since cDNA libraries are directionally cloned and

sequenced). All one needs at this stage is the DNA data.

The cost of purchasing such commercially printed arrays is

much higher, which somewhat negates the funds saved

during construction, but the savings in time and error

reduction remain and should not be underestimated.

Final array design used 13,780 validated probes across

roughly 9–13,000 different genes (lower and upper unigene

estimates). Each probe was printed in at least triplicate

(genes of interest were printed 5 times) randomly across

the array in a 44,000 feature array format, with four arrays

per slide. Replicate hybridization across arrays revealed

excellent repeatability indicating low technical error,

which is likely due to using validated probes and high

quality arrays (Vera et al. 2007). Of course, Agilent is not

the only company providing high quality microarrays, but

simply the one used by Vera et al. (2007), because of the

ease of custom array design and high quality of final

printed slides. Optimal experimental design and protocol

will depend on particular hypotheses and access to local

experience in using microarrays. Slide performance and

costs are changing rapidly, with commercial custom

designed slides becoming much cheaper with increased

performance. The technological landscape is changing

faster today than at any time in the past, and becoming well

versed in the latest techniques and companies offering

them is an important step in genomic tool development and

proper cost benefit analysis of funded objectives. These

examples here should be considered as providing a proof of

concept rather than an exact roadmap.

A final consideration is that since 454 sequencing runs

directly sequence individual mRNAs within a sample, it

can provide a measure of the absolute number of different

transcripts. This quantification of mRNA level across genes

is similar to analyses which measure relative hybridization

intensity among genes via microarrays. Comparisons

between the number of 454 ESTs per locus with microarray

results for A. thaliana showed a correlation coefficient of

0.45 (Weber et al. 2007), while comparisons across 454

runs in Drosophila melanogaster were much higher, with

correlation coefficients of 0.83–0.91, which is similar to

replicate microarray experiments (Torres et al. 2008).

Interestingly, in the Weber et al. (2007) study of

A. thaliana, their 454 data also showed expression levels
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for a number of genes which were not on the commercially

designed microarrays (n = 1410). Both methods have their

specific biases, with microarrays having biases due to dyes,

hybridization performance, etc., while biases in 454

sequencing, other than the errors discussed earlier, arise

due to unequal coverage of variable length cDNA, such

that very short or very long cDNAs are under represented,

which can result in a significant bias regarding expression

level determinations (Torres et al. 2008). Shearing of

cDNA such that all genes have similar sizes is likely to

alleviate this bias and result in similar expression insights

between 454 and different microarray platforms (Torres

et al. 2008). Finally, unlike traditional microarrays, using

454 for expression profiling can be done on any species and

mapped to genomic regions for species having WGS, or a

suitable GRS, highlighting the power and promise of

massively parallel direct sequencing to extend biological

insight beyond traditional methods.

Molecular markers: SNPs, microsatellites, and EPICs

Polymorphic markers within and among individuals have

long been used in molecular ecology for assessing relat-

edness, demographic structure and history, and

identification of candidate loci underlying phenotypes of

interest (Luikart et al. 2003). This latter issue is further

discussed in the following section on Genomic scans. The

relative performance of SNPs versus microsatellites in

these contexts has been well reviewed elsewhere (Morin

et al. 2004; Zhang and Hewitt 2003), concluding that in

general 2–6 times as many SNPs are needed compared to

polymorphic microsatellite loci. This is due to the general

limit of two alternative states for SNPs compared to the

much greater number of states at a given microsatellite

locus.

The specifics of which marker to use and their relative

performance depends greatly upon the questions being

addressed and the system being studied. However, SNPs in

general provide higher genotyping efficiency, data quality,

genomic coverage, and low probability of homoplasy

(Morin et al. 2004). However, one serious concern with the

use of SNPs is ascertainment bias (Clark et al. 2005).

Ascertainment bias arises due to selecting SNPs from a

non-representative, usually small sample, where high fre-

quency SNP alleles are found more readily than rare ones.

Subsequently taking these SNP loci and measuring their

frequencies in larger field samples results in only studying

common alleles and thus population genetic measures

depending on frequency information are biased, such as

estimates of nucleotide diversity, Tajima’D, Fst, and link-

age disequilibrium (Clark et al. 2005). Appropriate

research design and incorporation of correction methods

are thus necessary (Rosenblum and Novembre 2007).

Planned sampling of individuals for 454 sequencing

provides an excellent opportunity to generate large num-

bers of both SNP and microsatellite markers. While

previous studies have used 454 sequencing for finding large

numbers of SNPs, this was performed using WGS as a

reference for SNP determination (Barbazuk et al. 2007).

However, developing such markers is common in systems

without genomic resources (Morin et al. 2004). For

example, Beldade et al. (2006) used over 20 outbred but-

terfly (Bicyclus anynana) individuals in their wing tissue

cDNA library and were able to identify 320 candidate

microsatellite loci and over 14,000 candidate SNPs, with at

least 316 genes identified as having at least one high

confidence SNPs among their 9,900 Sanger EST

sequences.

With a greater depth and breadth of coverage, 454

sequencing outperforms traditional methods in molecular

maker identification. Using the 454 sequence data from the

Vera et al. (2007) butterfly study, which was derived from

*80 individuals from eight families, a quick scan of the

assembled contigs finds a total of 1063 candidate micro-

satellite loci across di-, tri-, tetra-, and pentanucleotide

repeats (Table 1). These candidate marker loci are likely to

be fundamentally different to previous microsatellites

generated for Lepidoptera, as they are associated directly

with coding genes instead of, like many Lepidopteran

microsatellies, being located in repetitive DNA regions

(Van’t Hof et al. 2007). Recent efforts in the same butterfly

species (Melitaea cinxia) to find new microsatellites via

screening 4 DNA libraries only yielded 37 candidate loci of

which 5 showed polymorphism (Sarhan 2006). Scanning of

the 454 data for SNPs identifies more than 2000 contigs

having at least one high quality SNP (C. Vera unpublished

data), with an average SNP density of 6.7 SNPs per

1000 bp of coding DNA, which is similar to other species

(Morin et al. 2004; Wondji et al. 2007). When these SNPs

are located in contigs that have annotation data, the SNP

data can be further dissected to obtain information

regarding location (1st/2nd/3rd position of a codon or UTR

region) (Fig. 4).

Table 1 Candidate microsatel-

lite from repeat scan of 454

contigs using Sputnik repeat

finder (http://cbi.labri.u-borde

aux.fr/outils/Pise/sputnik.html)

Microsatellite

repeat

Loci

2 139

3 376

4 276

5 272

Total 1063
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Additionally, one can use the deep coverage per contig to

capture specific aspects of SNPs, such as their relative fre-

quency within a deeply covered region (Fig. 4). However,

keep in mind that such insights require adequate EST cov-

erage which likely entails a simple mRNA source or at least 2

if nor more 454 sequencing runs for a more complex source

(at least with the pre-GS FLX technology). One can then

query a database for SNPs that are found, for example, at

least two times at a given nucleotide position, when the depth

of coverage is equal to or greater than 10 ESTs. This provides

for a means of ensuring SNPs are accurate and if the fre-

quency is recorded, an initial estimate of SNP frequency

within the pooled mRNA sample. Ultimately, one could

query for high frequency SNPs likely to be most informative

in paternity assignment studies (Morin et al. 2004), such as

those in silent sites which have at least a 40% frequency with

an EST depth of 10 or greater. Others have used such SNP

frequency information to estimate the mutation rates of

Sanger sequencing and cDNA library construction, as well as

population levels of heterozygosity (Long et al. 2007).

SNP and microsatellite marker classes can also be

integrated together in the form of what is called SNP-STRs,

having a SNP within several hundred bp of a microsatelite.

In humans, SNPs have an average mutation rate of

*2.5 9 10-8, which is much slower than microsatellites

(10-2–10-5) (Tishkoff and Verrelli 2003), and thus toge-

ther they provide a dual level of temporal inference

excellent for inferring recent evolutionary events (Agrafioti

and Stumpf 2007; Mountain et al. 2002). For example,

SNP-STRs have been developed and used to study the

timing of African cichlid fish radiations (Won et al. 2005).

However, in D. melanogaster these two mutational classes

have similar rates and therefore provide similar temporal

insights (Storz 2005).

How does research proceed when the gene or genes of

interest have no SNP or microsatellite variation? Such a

situation might face a lab that only performed a partial or

single 454 sequencing run on their material, had a bottle-

necked population, incorrectly calculated their projected

sequencing coverage, or were just unlucky. Under these

situations 454 sequencing is not likely to find an abundance

of SNPs and perhaps not that many microsatellites. How-

ever, this is hope, EPIC hope. Exon priming intron crossing

(EPIC) markers are PCR-based markers that have primers

located in exons, but have amplicons that include introns

when genomic DNA is used as template. By using a GRS,

one can quickly take cDNA contigs and predict intron

locations for making EPIC markers (Bouck and Vision

2007). Introns have much higher rates of diversification

compared to coding genes, containing many SNPs and

indels, and are thus make a suitable marker for many of the

aforementioned studies (Bouck and Vision 2007; Zhang

and Hewitt 2003).

Candidate genes

Many ecologists wishing to develop a functional genomics

approach in their non-model system have delved into the

literature enough to determine that in other, perhaps

genomic model species, the genes or genetic pathways

affecting their phenotype of interest are well understood. In

such cases, assuming a similar genetic architecture can be a

great starting point for study (e.g. Hanski and Saccheri

2006; Nachman et al. 2003). Thus, many researchers have

candidate genes for which they wish to quantify coding and

expression variation (Ellegren and Sheldon 2008). While

the previous section on microarrays addressed the devel-

opment of a tool for large scale (i.e. many gene) expression

measurements, here we consider the development of

genetic sequence for a targeted expression and coding

sequence study. Again, the butterfly system presented
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Fig. 4 Representative SNPs for Glanville fritillary contigs with hits

to the genes (a) Spodomicin (best blast bitscore = 120) and (b)

ribosomal protein L40 (best blast bitscore = 303). Histograms show

total EST depth of coverage at each SNP, and relative frequency of

the two alternative nucleotides at each position are indicated by

shading. X axis shows SNP nucleotides and codon position. For

example, SNP TC-1 is the 1st position of a codon in ribosomal protein

L40 which codes for a leucine, which has a degenerate first position
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above provides a good example of a candidate gene

approach in the 454 context.

Previous work in the Glanville fritillary suggested that

dispersal within its metapopulationn in Finland has a

genetic basis (Hanski et al. 2004; Saastamoinen 2007).

Exposure to evolutionary genetic study in Colias butter-

flies, a long running research system which has build a

strong case for single gene performance and fitness con-

sequences, provided a candidate gene for study called

phosphoglucose isomerase (Pgi) (Watt 2003; Wheat et al.

2006). Pgi catalyzes the second step of glycolysis and is

highly polymorphic in the Glanville fritillary (Haag et al.

2005). Initial study of Pgi variation in the Glanville fritil-

lary found significant allelic association with flight

performance and fecundity fitness measures (Haag et al.

2005; Saastamoinen and Hanski 2008), consistent with the

previous work in the nearly 80 million year distant Colias

butterflies (Braby and Trueman 2006; Wheat et al. 2007).

Thus, the enzymes of glycolysis in general, and Pgi in

particular, were of special interest when examining 454

sequencing results.

Partial sequence of 9 of the 10 genes of glycolysis are

found in the assembled 454 contigs (hexokinase was the

exception; it was absent in the 454 data, has little or no

representation in other butterfly cDNA collections and thus

appears to be a very low expression gene in Lepidoptera).

There are several independent, non-overlapping contigs for

many of these genes. For traditional cloned cDNA librar-

ies, the individual clone can be taken out of the freezer and

the entire cDNA easily sequenced. When working with 454

data, there is no clone to return to, which highlights one of

the most fundamental differences between these two

methods.

For each of these 9 genes full length sequence is desired.

There are standard methods for getting full length cDNA

sequence starting from an initial fragment of the cDNA,

such as using rapid amplification of cDNA ends (RACE)

techniques (Zhang and Austin 1997). However, these do

not always work and cloning your favorite gene or set of

genes can run into difficulties which might require more

than a trivial investment of time (e.g. SMARTTM RACE

cDNA Amplification Kit, Clonteh, Inc.). Once full length

sequence is obtained, primers can be designed in the 50 and

30 flanking regions for whole gene sequencing from pop-

ulation samples to determine the extent and distribution of

nucleotide variation in either cDNA or entire genomic

regions including introns (e.g. Wheat et al. 2006).

Partial sequences can also be used for mRNA quan-

tification. Recall that many of the probes put onto the

microarray of Vera et al. were singletons, consisting of

\200 bps, which nevertheless hybridized well (Vera

et al. 2007). Such fragments can also be used for

designing real time PCR studies for independent

quantification of gene specific mRNA levels, as the

optimal PCR amplicon lengths for real time PCR are

*50–150 bp. Using a GRS to infer gene exon/intron

boundaries, primers for real time PCR can be designed

that span an exon/intron boundary which is an ideal way

to minimize potential genomic DNA contamination dur-

ing amplification. Importantly, the 454 contigs also

provide a vast resource for selecting control genes to use

in such expression studies.

Genomic scans

With 100’s to 1000’s of molecular markers spread out

across the genome, it is possible to start using them for

genomic scans for selection (for more detailed information

see the excellent reviews by Luikart et al. 2003; Storz

2005). These are powerful methods that can well comple-

ment ecological genetic study and 454 sequencing has the

power to put more of these markers, more quickly into the

hands of research teams who have the field systems to

exploit their power, as compared to traditional Sanger

sequencing of cDNA libraries (Bouck and Vision 2007).

These genomic scan methods, simply put, compare

between or among populations for large sets of markers

and are expected to find similar levels of diversity within

and between populations across all markers, while markers

in or near genetic regions affected by selection should be

outliers having too much or little divergence or diversity

(Storz 2005). Knowing the relative placement of markers

along chromosomes can help in such analysis, as flaking

markers are likely to show similar patterns and thus rein-

force trends (e.g. Nair et al. 2003). Model-based and

model-free tests can be used, with the former dependent

upon null distributions given simulated datasets of differ-

ing demography and the latter using empirically derived

expectations, both of which have their strengths and

weaknesses (Storz 2005).

Genome wide estimates of diversity are starting to

emerge from Sanger transcriptome sequencing based on

SNP variation (Long et al. 2007). However, the deep

coverage afforded by 454 sequencing allows for greater

SNP estimates for a greater number of loci than afforded by

previous Sanger estimates. With adequate sampling within

a population, this deep coverage per locus should provide

relatively robust genome diversity estimates, although this

depends upon the underlying population sampling. When

coupled with the ability to include multiple individuals and

populations into a single 454 run (Meyer et al. 2008), one

could generate sufficient data for both Fst-based and

diversity-ratio tests across loci, which differ in their

demographic robustness and ability to identify candidate

loci (Storz 2005).
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What is the ‘‘proper’’ sampling per population? Again,

research questions lead the way forward. Populations might

represent two different pools of individuals of a given

morphology type, or four different pools with two being an

independent replicate of a given morphotype. Different

species could even be used, allowing for a suite of addi-

tional molecular tests of identifying candidate genes under

selection since the species last shared a common ancestor

(e.g. MK and multilocus HKA tests; Nielsen 2001).

Genomic referencing summary

Throughout the various sections above the use of a GRS has

been interwoven. Here I wish to revisit these various points to

highlight their importance, for as more species have their

genome sequenced, this concept will become increasingly

relevant to future functional genomic studies on ecological

model species. Although the day when WGS might be an

option for many species is perhaps not too far off, having a

group of people that are able to quickly bring together this

data in any meaningful fashion will continue to be a limiting

factor. Until this last barrier is removed, the ability to take

sequence from any one species and infer meaningful geno-

mic insights from another will be important.

Using Lepidoptera as a case example for this concept,

there exists only one genomic reference species (B. mori),

from which butterflies are approximately 100 million years

divergent. Beyond providing an unbiased set of predicted

genes, as genes predicted from WGS are independent of

induced expression (unlike finding genes via transcriptome

sequencing), GRS can potentially provide gene structure

and order insights, although this needs to be tested in a

given research system. Recently this concept was utilized

to identify long exons ([500 bp) in B. mori WGS which

could then be searched for in various butterfly cDNA

libraries (Wahlberg and Wheat 2008). Having many such

independent long exons is a long sought after resource for

the development of phylogenomics. Comparisons of 10

genes across over 40 butterfly species, as well as other

moths (i.e. Ditrysia), with the GRS B. mori indicates

completely shared exon/intron boundaries across this evo-

lutionary distance (*100 million years).

This important insight provides a means to rapidly, and

on a genomic scale, design primers for SNPs identified in

cDNA but which will work on genomic DNA samples (i.e.

primers can be designed to PCR within exons, or across

short introns, and not be located on exon/intron boundaries).

Workflow for such an endeavor entails finding orthologous

genes between the focal and GRS species, determining the

exon/intron boundaries for the GRS species, and then using

these coordinates to infer exon/intron boundaries in the

focal species (Wahlberg and Wheat 2008).

Comparisons of genomic maps between butterflies and B.

mori also indicate a relatively high level of shared gene order

(synteny) (Yasukochi et al. 2006). This insight provides

justification for having a candidate gene order derived from

the GRS. When deciding which of 1000’s of SNPs to focus

upon, a candidate gene order or candidate genome distri-

bution provides an opportunity to develop SNPs that have a

potentially wide genomic distribution, concentration on a

specific chromosome, or even within a chromosomal region.

Synteny hypotheses can then be tested when research results

suggests that such findings are of interest (i.e. investing the

extra resources when necessary, rather than before). How

would one use this? For example, with some level of synteny

verified, SNPs can be selected for different levels of QTL

study, from genome wide to local chromosomal regions. A

word of caution is also needed here, for the rate of chro-

mosomal rearrangements appear to vary dramatically across

taxa and thus verification of synteny hypotheses are needed

on a case by case basis (e.g. Bourque et al. 2005).

A further potential use of a GRS could be in contig

assembly. Many of the contigs generated from both cDNA

and 454 cDNA sequencing efforts contain only partial

sequence of many different mRNA transcripts. As a result,

several independent non-overlapping contigs can be formed

for the same mRNA. One way of bringing these together is

through comparison to a common set of reference genes.

Using reference genes from a GRS makes the most sense for

trying to group contigs for the same gene. In sum, a small

investment in understanding the extent of shared genomic

properties between a focal species and a GRS can have huge

returns on future functional genomic study.

Drawbacks of 454 sequencing

There are several drawbacks of 454 sequencing that should

be highlighted, lest they get lost in the details above. First,

in the earlier section on error rates and elsewhere, the

importance of generating the appropriate average coverage

depths was emphasized. But again, the depth of coverage

one needs to attain depends upon what one desires and can

afford. Thin coverage over many genes will likely produce

many false positive polymorphic sites, and as such, verifi-

cation of these as SNPs would be a poor investment of time

and money. However, bioinformatics advances have had a

recent success using shallow coverage of genomic

sequences, identifying and validing SNP with reference to

WGS (Quinlan et al. 2008). While Vera et al. (2007) were

able to assemble part of their transcriptome with deeper

coverage, many genes nevertheless had limited and thin

coverage. Again, while sufficient for microarray construc-

tion and generation of several 1000 high quality SNPs, not

all genes of interest had high quality sequence and SNPs.
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A second consideration is that the shotgun sequence data

generated from highly fragmented cDNA is not always

evenly distributed across cDNAs. Although Weber et al.

(2007) reported a 50 bias in sequence coverage, they con-

cluded that this was not very significant because on average

there was even coverage across cDNA in their dataset as a

whole. Vera et al. (2007) also found a similar, but not dra-

matic 50 bias, while Torres et al. (2008) report a substantial

bias in which fragments were sequenced. Thus, terminal end

and potentially fragment length biases appear to be common

to 454 sequencing of transcriptomes, but the effect of these

bias varies across studies depending on material and end use.

With lower average sequence depth, this type of bias could

potentially become more prominent, resulting in many genes

potentially having only a limited amount of 50 coding

sequence or fragment size information. Given the next

generation of 454 sequencing, with improvements in

sequence reads, length, and bioinformatics, this might not be

a significant problem in the future. For example, paired end

454 sequencing provides a means of gaining data from the

two opposing ends of each cDNA (Korbel et al. 2007), which

simply circumvents any terminal end sequencing bias.

A third consideration is that once partial sequence from

a gene of interest has been identified, getting the full length

sequence can be difficult. Using traditional Sanger

sequencing of a cDNA library would allow one to go back

to a given cDNA clone and then fully sequence this clone.

However, as noted earlier, such clones may not be full

length unless special steps were taken during the con-

struction of the cDNA library. Finding a gene fragment of

interest in a 454 database would provide data suitable for

using RACE techniques to obtain full length sequence.

RACE would also have to be used in the event that a cDNA

clone is not full length. Thus, obtaining full length

sequence of a given gene via 454 sequencing compared to

Sanger sequencing is a complicated issue which will vary

on a gene by gene basis, depending upon sequencing

coverage and quality of material used in both methods.

Conclusions

The speed and accuracy of next generation sequencing will

continue to increase, driven primarily by biomedical and

molecular biology interests which are already reaping huge

rewards (Mardis 2008). This in turn will offer increased

opportunities to develop functional genomic tools in many

ecological model systems. The ability to use these next

generation sequencing technologies for large scale

sequencing of pooled individuals, and recover the infor-

mation on an individual basis, is now available (Holt and

Jones 2008; Meyer et al. 2008). This will be but one of the

manifold impacts of 454 sequencing just now beginning to

be realized. However, the path to getting the right data in a

timely fashion requires careful thinking and serious plan-

ning. Being able to both get the data and put it to work can

be difficult, and thus collaboration across labs to build

useful analysis pipelines are needed.

Thankfully, technological advances are making this

process easier, which will allow scientists to focus on what

they do best, posing interesting questions to push the

boundaries of their fields forward towards more important

and fundamental insights. However, the ability to pose

questions that maximize the available technology will

require both ongoing familiarity with technological

advancements and a dash of cavalier creativity. Ecologists

can not always be on top of such things and thus taking a

molecular biologist friend out to lunch is an excellent idea,

as you might have more in common than you can imagine.
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Lévesque V, Fayad T, Ndiaye K, Nahé Diouf M, Lussier JG (2003)
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