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Abstract  High numbers of road accidents at Jordan’s 
major highways pose a substantial threat to public safety, 
necessitating strategic road safety interventions. This 
study presents hotspot spatial analysis based on sever-
ity indices for three prominent highways in Jordan via 
geographic information system (GIS) software. A com-
prehensive road accident network was constructed based 
on Jordanian road accident data (locations: Highways 
30, 35, and 10) from year 2016 to 2019. Each incident’s 
severity index was taken into consideration. Hotspot pat-
terns were identified using GIS tools namely (a) Getis-
Ord Gi* statistic and (b) Global Moran I index for spa-
tial autocorrelation analysis, as they provide detailed 
information about the spatial distribution as well as sta-
tistical significance measures for road accident hotspots. 
The results revealed critical insights into the distribution 

of accident hotspots along the selected highways. In 
ascending order, the statistically significant hotspots 
observed were 14, 17, and 78 hotspots from Highways 
10, 30, and 35. Hotspot patterns can be classified as 
random (Highway 30), dense (Highway 10), and dense 
clusters (Highway 35). Highway 35 demands targeted 
interventions to mitigate accidents along this route. This 
research takes away the hotspots along the highways that 
can be a good reference for stakeholders (e.g., transpor-
tation planners, policymakers, and relevant authorities) 
to implement best practices and road safety measures on 
Jordan’s major highways.
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Introduction

Roadway accidents remain a pressing concern world-
wide, posing substantial threats to public safety, eco-
nomic stability, and societal well-being (Heydari 
et  al., 2019). In Jordan, as with many other coun-
tries, the occurrence of roadway accidents necessi-
tates effective strategies to mitigate their impact and 
enhance road safety (Aldala’in et  al., 2023). In Jor-
dan, road accidents stand as the second primary cause 
of fatalities, underscoring their significant impact on 
public safety (Alomari, 2019). In the year 2022, there 
were 169,409 documented road accidents, leading 
to 562 fatalities and 17,097 injuries (Jordan Traffic 
Department, 2022).

Road accident hotspots refer to specific geographic 
locations or segments within a road network that 
exhibit a concentrated and consistently high occur-
rence of traffic accidents (Afolayan et al., 2022; Kha-
tun et al., 2024; Sajed et al., 2019). These hotspots are 
characterized by a clustering of accidents, indicating 
the presence of contributing factors that elevate the risk 
of collisions. Recognizing and analyzing these hotspots 
is critical for developing effective road safety strate-
gies and interventions targeted at reducing accidents in 
these problematic areas (Alam & Tabassum, 2023).

Road accident hotspots are an important aspect of 
any targeted intervention or strategies to minimize 
the number and severity of accidents (Alkaabi, 2023). 
These hotspots act as a center for several contributing 
factors which together can increase the risk of collision 
and associated injuries or deaths (Tamakloe, 2023).

Identifying the road accident hotspots in these 
locations enables transport authorities and safety 
agencies to maximize their efforts and make a larger 
impact with road safety programs (Rahman et  al., 
2020). Additionally, identification and mitigation of 
accident hotspots also serve global goals like sustain-
able urban development or transportation planning. 
By creating safer environments for their roads, cities, 
and communities can promote active transportation 
modes like walking or cycling, lower emissions from 
vehicular traffic, as well as enhance citizens’ overall 
well-being (Wilches-Mogollon et al., 2024).

Jordan’s highways have consistently witnessed a 
significant number of accidents, signifying a persistent 
road safety concern that requires immediate attention. 
Despite ongoing efforts to enhance safety measures 
and regulations, the necessity to pinpoint road accident 

hotspots remains of utmost importance. These hotspots 
correspond to specific locations along the highways 
where accidents happen more frequently and tend to be 
more severe. Through a systematic analysis aimed at 
identifying these hotspots, we can gain deeper insights 
into the underlying factors and patterns contributing to 
these accidents (Al-Rousan et al., 2021).

Geographic Information Systems (GIS) have 
emerged as powerful tools for spatial analysis, enabling 
the identification and understanding of accident pat-
terns and hotspots (Atumo et al., 2022; Bisht & Tiwari, 
2023; dos Santos et  al., 2022; Jima & Sipos, 2023; 
Masron et al., 2019; Pusuluri et al., 2023a). GIS enables 
the integration of road-related, demographic, and geo-
graphical data, thereby facilitating the investigation of 
spatial relationships and the detection of accident-prone 
areas(Azari et al., 2023; Sae-ngow & Kulpanich, 2023).

Despite the increasing utilization of GIS for 
identifying road accident hotspots for identifying 
road accident hotspots (Munasinghe, 2023), there 
remains a notable gap in the research literature per-
taining to the specific context of Jordan (Hazaymeh 
et  al., 2022). While studies from various regions 
have demonstrated the efficacy of GIS in pinpointing 
accident-prone areas, the unique geographic, demo-
graphic, and infrastructural characteristics of Jordan 
necessitate a tailored approach (Maaiah et al., 2021). 
Existing research predominantly focuses on devel-
oped countries and metropolitan areas, often leaving 
regions like Jordan underrepresented in the analysis 
of road safety patterns. Furthermore, many studies 
primarily concentrate on accident frequency without 
delving into the severity of accidents (Aldala’in et al., 
2023), hindering the formulation of precise and effec-
tive mitigation strategies.

In this study, we conducted a comprehensive spatial 
analysis of road accidents along three major highways 
in Jordan (Highways 10, 30, and 35), utilizing two key 
spatial statistical measures: the Global Moran I index 
and the Getis-Ord Gi statistic. Our analysis focused 
on evaluating the spatial distribution and arrangement 
of these accidents, taking into account their severity 
index. To ensure robust results, our dataset encom-
passed all reported traffic accidents that transpired 
during the period spanning from 2016 to 2019. This 
approach allowed us to gain deeper insights into the 
spatial patterns of road accidents on these critical 
roadways, aiding in the identification of accident hot-
spots and the assessment of their significance.
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Literature review

Hotspot analysis is a spatial analysis and mapping tech-
nique focused on identifying spatial clusters (Al-Aamri 
et  al., 2021; Zahran et  al., 2019). These clusters refer 
to the specific locations of events or objects, repre-
sented as points on a map (Mohammed, 2023). Nota-
bly, widely used techniques in this field include Moran 
I (Babaei & Kunt, 2023; Pusuluri et al., 2023b), Kernel 
Density Estimation (KDE) (Bayiga Zziwa et al., 2023; 
Khan et al., 2023), and Getis–Ord Gi* (Bindajam et al., 
2023; Samani & Amador-Jimenez, 2023; Zhang & 
Wang, 2023), chosen for their ability to unveil the sta-
tistical significance of road accident hotspots. Among 
them, the Getis-Ord Gi* and Moran I methods are 
prominent global statistics frequently utilized to convert 
non-spatial correlation into a spatial context, enabling 
spatial autocorrelation analysis (Erdogan et al., 2015).

Getis –Ord GI* is a method for locating hotspots 
in a dataset for each characteristic (Colak et  al., 
2018; Tang et  al., 2019). The generated p-values 
and z-scores reveal the spatial distribution of char-
acteristics with low or high values. This instrument 
analyses each feature in relation to its neighbour(s). 
While a feature with a high value might be intrigu-
ing, it attains statistical significance when surrounded 
by neighboring features with similarly high values 
(Baldík et al., 2020).

Moran’s I and Getis-Ord outperform kernel den-
sity estimation in identifying road accident hotspots 
(Hovenden & Liu, 2020). Moran’s I detects clustering 
patterns based on the similarity of values in nearby 
areas. This aids in identifying areas where accidents 
are not randomly distributed but rather clustered, 
indicating potential hotspots. Kernel density estima-
tion, on the other hand, focuses solely on event con-
centration without regard for spatial relationships or 
clustering patterns (Abdulhafedh & Abdulhafedh, 
2017). Furthermore, Getis-Ord Gi* calculates sta-
tistical significance for identifying hotspots of road 
accidents. It distinguishes between random fluctua-
tions and true spatial patterns, allowing authorities 
to prioritize interventions in areas of high clustering 
(Alkaabi, 2023). Kernel density estimation does not 
automatically provide statistical significance meas-
ures for hotspot detection (Srikanth & Srikanth, 
2020). Also, Moran’s I and Getis-Ord statistics pro-
vide flexibility in analyzing various types of spatial 
data and are relatively simple to understand. They 

provide detailed information about the spatial distri-
bution of road accidents as well as the significance 
of identified hotspots (Behanova et al., 2022). Kernel 
density estimation is useful for visualizing density 
gradients, but it may not provide as clear or action-
able insights into event clustering (Sarker, 2021).

Wee et al., (2021) conducted a study with the aim 
of identifying areas in Singapore with notably higher 
occurrences of road accidents resulting in severe inju-
ries, defined by an Injury Severity Score exceeding 15, 
and to develop a spatiotemporal model. The study uti-
lized data from the National Trauma Registry, and the 
geographical locations of road accidents were mapped 
onto a Singapore map. Spatial statistical techniques, 
particularly the Getis-Ord Gi* algorithm, were applied 
for analysis, revealing the presence of nine significant 
hotspots (p < 0.01). The study’s conclusion highlights 
the importance of information gained from studying 
these hotspots, especially for road accident causing 
severe injuries, as it can be a valuable resource for var-
ious agencies to optimize resource allocation.

Alam and Tabassum (2023) conducted a study 
focusing on accident hotspot locations and crash sever-
ity in Ohio. In the field of safety research, advanced 
GIS-based hotspot analysis has been utilized to ana-
lyze road accident data over time. This study utilized 
four years of Ohio crash data (2017–2020) and spatial 
autocorrelation analysis via GIS to identify high-risk 
accident areas. The approach assessed crash sever-
ity levels and revealed both high and low crash sever-
ity cluster zones. The study utilized tools like, crash 
severity index, Getis Ord Gi*, and Moran’s I spatial 
autocorrelation. Notably, identified hotspot locations 
in significant Ohio cities, including Cincinnati, Cleve-
land, Columbus and Toledo, underscore the need for 
proactive traffic management efforts to mitigate the 
socio-economic impact of road accidents and necessi-
tate thorough investigations.

Mesquitela et  al., (2022) introduced a method 
for pinpointing accident-prone areas based on geo-
graphic references. Employing ArcGIS Pro, they 
utilized Kernel Density and Getis-Ord Gi* tools to 
detect potential high-risk zones by considering both 
their geographical location and surrounding condi-
tions. Additionally, they assessed various factors, 
including environmental factors, human behavior and 
situational circumstances, which could contribute 
to the severity of accidents. The findings underwent 
validation through evaluation by an expert panel.
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Qalb et al., (2023) created a partially automated sys-
tem for examining and forecasting road accident trends 
in Kasur, an intermediate city in Pakistan, using five 
years of accident data (from year 2014 to 2018). They 
employed Python-based software tools and the Jupyter 
Notebook platform to implement various methodolo-
gies such as the Getis-Ord Gi* statistic, radar charts, 
analysis time series indices, and Moran’s I spatial auto-
correlation. The findings revealed that October had the 
highest number of accidents, while April had the few-
est. Accidents peaked at 7 am, and weekends had nota-
bly more accidents compared to weekdays. The central 
city area was identified as a major hotspot with a sig-
nificant cluster of accidents. The team also created a 
real-time, zoomable spatiotemporal visualization inter-
face using GitHub and Tableau.

Hisam et al., (2022) investigated how road geometry 
relates to road accidents in Kajang, Selangor. They har-
nessed GIS for its statistical analysis capabilities and its 
role in identifying accident-prone areas on maps. The 
study employed Moran’s I technique to gauge spatial 
autocorrelation and Getis Ord Gi* tools from GIS to 
uncover the connection between road layouts and acci-
dents. Pinpointing hotspot locations through spatial anal-
ysis offers a valuable approach to enhance safety at acci-
dent-prone sites. The study effectively analyzed the map 
of accident hotspots and the link between road geome-
tries, revealing that T-intersections experienced the most 
accidents, making them the riskiest intersection type.

Mhetre and Thube, (2023) directed their research 
towards road safety, specifically the identification 
of areas prone to high and low accident rates along a 
rural National Highway in Maharashtra, India. They 
based their analysis on accident data collected from 
2016 to 2020, considering three distinct time frames: 
2016–2018, 2017–2019, and 2018–2020. The objective 
was to compare these time frames in order to discern 
the primary hotspots and coldspots for road accidents. 
Interestingly, throughout all scenarios, the highway sec-
tions between chainage 592.24 km–611.5 km and 712 
km–725 km consistently exhibited low accident rates, 
classified as coldspots, with no hotspots in between. 
Conversely, the sections spanning from 611.5 km–629 
km and 679.5 km–707 km showed no coldspots in sce-
nario 2 and scenario 3. Notably, there was a 49.68% 
reduction in the number of accident hotspots in scenario 
2 and a 20.25% reduction in scenario 3, while the num-
ber of accident coldspots increased by 46.42% in sce-
nario 2 and 48.78% in scenario 3 each year.

Mekonnen et  al., (2023) adopted the criteria out-
lined in the Hungarian road planning guideline to 
enhance road safety by reducing the frequency of 
accidents over a three years period. This approach 
aimed to improve the accuracy and simplicity of 
their analysis. They conducted a comparison between 
the K-means and hierarchical clustering algorithms 
for data segmentation, with K-means demonstrat-
ing superior performance based on metrics like the, 
Davies–Bouldin, Calinski–Harabasz indexes and 
Silhouette. For the final hotspot identification, they 
employed the Empirical Bayes (EB) method. Utiliz-
ing a dataset spanning three years (2016–2018), the 
study identified three distinct hotspots in Budapest. 
To assess these hotspots further, an optimized hotspot 
analysis was conducted using GIS techniques, specifi-
cally the Getis-Ord Gi* spatial autocorrelation anal-
ysis. This analysis categorized areas into hotspots, 
coldspots, or areas with no significant patterns, con-
sidering both 95% and 90% confidence levels.

Prasad et  al., (2023) conducted an analysis to 
enhance the safety of accident-prone areas. The data 
used for this analysis was gathered from police station 
records spanning from 2013 to 2019. They employed 
the Weighted Severity Index (WSI) method, which 
involves assigning scores based on the number and 
severity of accidents occurring in specific locations 
over the past few years. The primary objective of the 
project was to identify significant hotspots within 
the Narasaraopet mandal and propose measures for 
reducing road accidents and enhancing overall road 
safety. To achieve this, they selected six out of the 
44 identified hotspots for in-depth study and recom-
mended improvements based on detailed road assess-
ments and observations of road features.

Methodology

Locations

This study examined three prominent Jordanian 
highways. The first one, known as Highway 30 
or the Al Azraq—Zarqa highway, holds strategic 
importance within the country. This road establishes 
a crucial connection between Al Azraq, situated in 
the eastern region, and Zarqa, positioned northwest 
of the capital, Amman. The length of the stretch is 
72 km. Serving as a pivotal transport conduit, the 
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highway plays a fundamental role in linking local 
commuters and long-distance travelers in the area.

The second highway, Highway 35 ( Amman-Irbid 
highway), acts as a vital link between the capital city 
of Amman and Irbid in the northern part of Jordan. 
The length of the stretch is 118 km. This roadway 
serves as a pivotal route, facilitating the seamless 
movement of people, goods, and services between 
these two significant urban centers.

The third highway, namely Highway 10 (Almafraq-
Irbid highway), forms a vital connection between the 
cities of Almafraq and Irbid in the northern sector of 
Jordan. The length of the stretch is 26km. This route 
plays a substantial role in enhancing transportation by 
linking these two cities, enabling the efficient move-
ment of people, goods, and services within the north-
ern region of the country. Figure 1 shows the 10,30,35 
Highways map.

Data preprocessing

Figure 2 illustrates the procedural steps followed in 
this study. The data regarding road accidents was 
obtained from the Jordan Traffic Department, cov-
ering the three-year period from 2016 to 2019. This 
dataset includes accident attributes and the corre-
sponding coordinates of the locations, encompassing 
both latitude and longitude information.

In Fig. 3a, the data displays the frequency of acci-
dents along with the corresponding fatality rates (cal-
culated as the number of fatal accidents divided by 
the total number of accidents). Among the highways, 
highway 30 had the most fatal accidents, totaling 42, 
followed by highway 35 with 30 fatal accidents, and 
highway 10 with 9 fatal accidents. In terms of fatality 
rates, highway 30 exhibited the highest rate at 2.55%, 
followed by highway 10 at 1.54%, and highway 35 at 
0.58%. Figure  3b reveals that highway 30 accounted 
for the highest number of major injuries (126), trailed 
by highway 10 with 73 major injuries, and highway 35 
with 7 major injuries. Notably, highway 10 exhibited 
the greatest rate of major injuries (12.46%), followed 
by highway 30 at 7.66%, and highway 35 at 1.38%. 
In Fig. 3c, it is evident that highway 35 recorded the 
highest number of minor injuries, totaling 714 cases, 
followed by highway 30 with 445 minor injuries, and 
highway 10 with 240 minor injuries. When considering 
rates of minor injuries, highway 10 exhibited the high-
est proportion at 40.96%, followed by highway 30 at 

27.07%, and highway 35 at 13.86%. In Fig. 3d, the data 
indicates that highway 35 experienced the most signifi-
cant amount of property damage, totaling 4685 cases. 
This was followed by highway 30 with 1350 cases and 
highway 10 with 439 cases. Highway 35 also had the 
highest proportion of property damage at 90.95%, with 
highway 30 at 82.12% and highway 10 at 74.91%.

The spatial analysis process began with the inte-
gration of road accident data into ArcGIS. Within 
ArcGIS 10.7, the base map tool was employed to 
visually represent this dataset. To ensure consist-
ency and precision, the entire dataset was trans-
formed into 30 UTM-ED50 coordinate units. 
Through the utilization of latitude and longitude 
coordinates, the specific geographic locations of 
road accidents were accurately marked.

To facilitate spatial analysis, the data underwent a 
conversion process, transforming it into a spatial rep-
resentation. This conversion was achieved utilizing 
ArcCatalog’s Data Management tools. Subsequently, 
the shapefiles that include the accident data were 
structured and modified to seamlessly integrate with 
various ArcGIS applications. These shapefiles under-
went necessary adjustments to meet the specified 
requirements for spatial analysis and visualization.

Severity index

The severity index (SI) is a value with no dimen-
sions, indicating the danger of a spot on the road 
(Cao et  al., 2020). The severity index method is 
used to locate the hotspots. Using this method, a 
severity value can be assigned to each accident’s 
location based on the number of fatalities, injuries, 
and property damage (Mohammed Fayaz et  al., 
2018). SI aids in evaluating the repercussions of 
road accidents by quantifying their seriousness. It 
offers a consistent metric that enables comparisons 
among various accidents, locations, or timeframes. 
This evaluation holds significant importance in 
comprehending the human casualties, property loss, 
and broader implications resulting from road acci-
dents (Ahmed et al., 2023).

The SI was computed based on the sever-
ity weights at accident sites along Highways 35, 
30, and 10 between 2016 and 2019. The criteria 
employed in this research to identify high-risk loca-
tions align with the findings of studies conducted 
by the Jordan Traffic Institute (2009–2011). These 
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studies explored various techniques that could be 
utilized, and the selection criteria in this current 
study encompass the severity index as outlined in 
Eq. 1(Abuaddous et al., 2022):

(1)
SI = (Number of Fatalities × 3) + (Number of Injuries × 1)

+ (Number of Property Damage × 0.33)

Global moran’s I

The Spatial Autocorrelation tool, also known as Global 
Moran’s I, was used to assess spatial autocorrelation by 
considering both the geographical positions of features 
and their attribute values concurrently (Le et al., 2020). 
When applied to a set of features and their associated 

Fig. 1   Study area
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attributes, it determines whether the observed pattern 
is clustered, dispersed, or random. This tool computes 
the Moran’s I Index value and provides both a z-score 
and p-value to gauge the statistical significance of this 
Index. The p-values are numeric approximations of the 
area under a known distribution curve, bounded by the 
test statistic. The Moran’s I, along with its associated 
p-value and z-score, were calculated using the Spatial 
Autocorrelation tool as defined by Eq. (2) (Wang et al., 
2023). This process involved selecting the fix distance 
band method to establish a cutoff distance, serving as 
the approach for conceptualization of spatial relation-
ships. This choice allowed for the analysis of each 
feature (road accidents) within the context of neigh-
boring features. Specifically, neighboring features fall-
ing within this specified distance were given a weight 
of one and factored into the calculations for the target 

feature. Conversely, other features outside this speci-
fied distance were assigned a weight of zero and did not 
impact the computations for the target feature.

In this equation, where N represents the number of 
cases, Xi denotes the variable value at a specific loca-
tion, Xj represents the variable value at another loca-
tion, X stands for the mean of the variable, and W 
signifies a weight applied to the comparison between 
location i and location j. Wij represents a weight matrix 
based on distance, specifically, it’s the inverse of the 
distance between locations i and j, denoted as 1/dij.

To calculate distances from each feature to its 
neighboring features, the Euclidean Distance method, 

(2)I =
N
∑

I

∑

JWI.J(XI − X)(XJ − X)

(
∑

I

∑

JWI.J)
∑

I (XI − X)(XJ − X)
2

Fig. 2   Flowchart of the 
study

Figure 2. Flowchart of the study
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Mapping the road accident hotspots

The severity index of the hotspot locations 
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represented by Eq.  (3), was employed. Furthermore, 
the Distance Band or Threshold Distance, which 
defines the scale of analysis, was determined using 
the Incremental Spatial Autocorrelation function in 
ArcGIS Pro. This function computed the "Distance 
Band from Neighbor Count," assisting in pinpointing 
the initial distance at which to commence the spatial 
autocorrelation analysis and the interval at which to 
increase this distance.

Here, (X2, Y2) represents the coordinates for point 
a, (X1, Y1) signifies the coordinates for point b, and 
’d’ corresponds to the direct, straight-line distance 
between points a and b.

The getis‑ord gi*

The Getis-Ord Gi* method was employed to statisti-
cally examine the spatial distribution pattern of traf-
fic accidents at the zonal level. This approach is uti-
lized to pinpoint both hotspots (areas with clustered 

(3)d =

√

(X2−X1)
2
+ (Y2−Y1)

2

high values) and coldspots (areas with clustered low 
attribute values) of these accidents. This helps deter-
mine whether the crashes exhibit spatial clustering 
(dependency) or occur randomly. The Getis-Ord Gi* 
technique operates on the premise that if a particular 
geographical area is identified as a hotspot for traf-
fic crashes, then neighboring areas should also dis-
play elevated traffic accident occurrences. Hence, this 
method serves as a measure for local spatial autocor-
relation analysis. Each geographical zone is associated 
with a z-score and a p-value via Getis-Ord Gi*. Larger 
Z-score values indicate a more concentrated clustering 
of traffic accident values in that zone (hotspot). These 
values provide insights into whether zones with either 
low or high accident rates tend to cluster together in 
space. Mathematically, the calculation of the Getis-
Ord Gi* is conducted using the formula provided 
below (Alkhatni et al., 2023).

(4)
G∗

i
=

∑n

j=1
wijxj−X

∑n

j=1
wi,j

S

�

n
∑n

j=1
w2
i,j
(
∑n

j=1
wi,j)

n−1

(a) (b)

(c) (d)

Fig. 3   Road accidents of highways 30, 35, and 10 between 2016 and 2019 in four categories: (a) Fatal accidents, (b) Major injuries, 
(c) Minor injuries, and (d) Property damage
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In this context,wi,j represents the weight associ-
ated with accident features i (the first location) and 
j (the second location), ′

xj
′  denotes the attribute 

value of feature j (specifically, the accident severity 
index), �

Gi∗
�  stands for a z-score statistical meas-

ure,  ′X′  represents the mean value, ′S′ signifies the 
standard deviation, and ′n′ corresponds to the total 
number of features.

Results

Global moran’s I

Figure 4 provides a comprehensive visual representation 
of autocorrelation analysis, which focuses on distance 
metrics, particularly highlighting key findings for three 
prominent highways in Jordan. This analysis is crucial 
for understanding the spatial patterns and correlations 
related to accident occurrences along these highways. 
For Highway 35 (Fig. 4(a)), we initially employed the 
Distance Band from Neighbor Count Method, reveal-
ing an average distance of 210 m between accident loca-
tions. This initial distance served as our reference point 
for investigating spatial autocorrelation and was used as 
the increment distance. When this distance was applied 
in the incremental spatial autocorrelation function cal-
culation, we identified a significant peak at 250 m. This 
specific distance was associated with the highest z-score 
value in the analysis. The z-score is a statistical measure 
that helps us determine the significance of spatial clus-
tering. In this case, the elevated z-score at 250 m sug-
gests a noteworthy spatial correlation in accident occur-
rences along Highway 35 within that range.

Moving on to Fig. 4(b) and Highway 10, our analy-
sis started with an initial distance of 488 m for exam-
ining spatial autocorrelation, also serving as the incre-
ment distance. Notably, we observed a maximum peak 
distance at 496.98 m, accompanied by a corresponding 
z-score of 7.07. This indicates a strong spatial auto-
correlation pattern in accident locations along High-
way 10, specifically within that nearly 497-m distance 

(5)X =

∑n

j=1
xj

n

(6)S =

�

∑n

j=1
x2
j

n
− X

2

range. In Fig. 4(c), focusing on Highway 30, we began 
our spatial autocorrelation examination with an initial 
distance of 1492 m, which was also the increment dis-
tance. The results revealed a maximum peak distance 
at 1712.47 m, along with a corresponding z-score of 
5.51. This finding suggests that accident occurrences 
along Highway 30 exhibit a significant spatial autocor-
relation pattern within that distance range.

These spatial autocorrelation analyses are crucial 
for identifying areas of concern and understanding 
how accident incidents cluster along these highways. 
The z-scores provide statistical evidence of these pat-
terns, helping us pinpoint specific locations where 
further investigation and intervention may be neces-
sary to improve road safety. Table  1 shows a com-
prehensive and insightful exploration of the global 
Moran’s I values. These values were computed at 
different distances using the incremental spatial auto-
correlation function, and they serve as a fundamental 
tool for gaining a deeper understanding of the spatial 
distribution patterns of road accidents that transpired 
between 2016 and 2019 along three significant high-
ways: Highway 35, Highway 30, and Highway 10.

Figure  5 complements these Moran’s I values by 
presenting a spatial autocorrelation graph that visu-
ally represents the associated z-scores and p-values, 
shedding further light on the significance and charac-
teristics of the spatial clustering patterns. In Fig. 5(a), 
the analysis for Highway 35 reveals a Moran’s I value 
of 0.050, a z-score of 13.994, and a corresponding 
p-value of 0.000. These results collectively convey 
a highly significant spatial clustering pattern. The 
positive Moran’s I value signifies a positive spatial 
autocorrelation, indicating that road accidents along 
Highway 35 are not randomly distributed but tend 
to cluster together. The substantially high z-score 
emphasizes the intensity of this clustering, while the 
minuscule p-value is crucial as it indicates that the 
observed clustering pattern is highly improbable to 
occur by random chance, with a probability of less 
than 1%. This implies that the spatial distribution of 
traffic accidents on Highway 35 is not random but 
exhibits a significant and concentrated clustering pat-
tern. Figure 5(b) presents a similar scenario for High-
way 10, with a Moran’s I value of 0.127, a z-score 
of 7.864, and a p-value of 0.000. These results also 
suggest a statistically significant status characterized 
by dense clustering. Similar to Highway 35, the posi-
tive Moran’s I value, high z-score, and small p-value 



	 GeoJournal (2024) 89:105

1 3

105  Page 10 of 19

Vol:. (1234567890)

collectively underscore the presence of pronounced 
spatial clustering among traffic accidents along High-
way 10. This indicates that road accidents on High-
way 10 also exhibit a significant spatial clustering 
pattern, albeit with somewhat different intensity com-
pared to Highway 35.

Figure  5(c) offers a contrasting perspective 
for Highway 30, where Moran’s I is calculated 
as 0.002, accompanied by z-score of 0.284 and a 
p-value of 0.776. These findings suggest a lack of 
statistical significance in terms of spatial cluster-
ing. It appears to be distributed in a relatively ran-
dom manner.

Hotspot analysis

The analysis of road accident hotspots, conducted 
using the Getis Ord Gi* method, was based on the 
severity index associated with each accident location. 

This approach aimed to identify statistically signifi-
cant spatial clusters characterized by high severities, 
which are referred to as "hotspots" in this context. 
The outcomes of the hotspot analysis were subse-
quently utilized to create maps depicting the locations 
of these road accident hotspots. The Getis-Ord Gi* 
method generated new output feature classes for each 
accident severity index. These feature classes include 
essential attributes such as a z-score, a p-value, and a 
field indicating the confidence level, denoted as "Gi 
Bin," specific to the respective highways.

The comprehensive analysis unveiled a noteworthy 
distribution of hotspots for road accidents along the 
three highways studied. Along Highway 35, a substan-
tial total of 78 hotspots were identified, characterized 
by severity indices that ranged from 4 to 24. This sug-
gests that these locations experienced a wide spectrum 
of accident severity levels, with some incidents being 
relatively less severe (severity index of 4) while others 

(a) (b)

(c)

Fig. 4   Incremental Spatial Autocorrelation Analysis Based on Distance and Peak Values (a) For Highway 35, (b) for Highway 10, 
and (c) for Highway 30
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were considerably more severe (severity index of 24). 
In contrast, Highway 10 exhibited a lower count of hot-
spots, totaling 14. The severity indices associated with 
these hotspots ranged from 2 to 16. This indicates that 
while Highway 10 had fewer hotspots, the accidents 
within these areas also displayed varying degrees of 
severity, with the lowest being a severity index of 2 
and the highest reaching 16. Furthermore, the analysis 
identified 17 hotspots along Highway 30, with sever-
ity indices spanning from 13 to 1. This implies that the 
accident hotspots on Highway 30 encompassed a range 
of severity levels, from relatively high (severity index 
of 13) to less severe (severity index of 1).

Table  2 provides details on the Getis-Ord Gi* 
results, locations, and severity indices for the most 

severe road accident hotspots on the highways. The 
results underscored the significant impact of these 
accident hotspots on accident occurrences, as evi-
denced by p-values of less than 0.001, p-values 
greater than 0.05, and p-values equal to 0.10 for each 
hotspot. Furthermore, the z-values were less than 
2.58, less than 1.96, and less than 1.65, correspond-
ing to confidence levels of 90%, 95%, and 99% (des-
ignated as G-bin values 1, 2, and 3, respectively). 
This implies that all points within these ranges were 
statistically significant in contributing to road acci-
dents, with confidence levels ranging from 90 to 99%.

Figure  6 shows a spatial map that effectively 
illustrates road accident hotspots as identified using 
the Getis Ord Gi method. This analysis has yielded 

Table 1   Summarizing 
the global Moran’s I value 
over varying distances, 
as computed through 
the incremental spatial 
autocorrelation

Highway Moran’s Index Distance Expected Index p_value Variance z_score

Highway 35 0.046 211.00 -0.00024 0.000 0.00001 12.113
0.047 219.60 -0.00024 0.000 0.00001 12.484
0.046 228.20 -0.00024 0.000 0.00001 12.591
0.045 236.79 -0.00024 0.000 0.00001 12.524
0.045 245.39 -0.00024 0.000 0.00001 12.703
0.046 253.99 -0.00024 0.000 0.00001 13.254
0.045 262.59 -0.00024 0.000 0.00001 13.160
0.045 271.19 -0.00024 0.000 0.00001 13.445
0.046 279.79 -0.00024 0.000 0.00001 13.908
0.045 288.38 -0.00024 0.000 0.00001 14.016

Highway 10 0.089 488.00 -0.00162 0.000 0.00017 7.019
0.089 496.98 -0.00162 0.000 0.00016 7.075
0.085 505.96 -0.00162 0.000 0.00016 6.826
0.083 514.95 -0.00162 0.000 0.00016 6.664
0.078 523.93 -0.00162 0.000 0.00016 6.350
0.074 532.91 -0.00162 0.000 0.00015 6.108
0.077 541.89 -0.00162 0.000 0.00015 6.343
0.077 550.88 -0.00162 0.000 0.00015 6.386
0.074 559.86 -0.00162 0.000 0.00015 6.240
0.064 568.84 -0.00162 0.000 0.00014 5.627

Highway 30 0.023 1492.00 -0.00082 0.000 0.00003 4.145
0.023 1523.50 -0.00082 0.000 0.00003 4.242
0.025 1554.99 -0.00082 0.000 0.00003 4.733
0.027 1586.49 -0.00082 0.000 0.00003 4.958
0.027 1617.98 -0.00082 0.000 0.00003 5.055
0.026 1649.48 -0.00082 0.000 0.00003 5.072
0.029 1680.98 -0.00082 0.000 0.00003 5.508
0.028 1712.47 -0.00082 0.000 0.00003 5.509
0.027 1743.97 -0.00082 0.000 0.00003 5.367
0.027 1775.47 -0.00082 0.000 0.00003 5.356
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a notable discrepancy in hotspot counts among the 
three highways under examination. Along Highway 
35, a substantial total of 78 hotspots for road acci-
dents have been identified. In contrast, Highway 10 
displays a considerably lower count with 14 recorded 
hotspots, and Highway 30 falls in between with 17 
hotspots. This variance in hotspot distribution among 
the highways underscores the importance of pinpoint-
ing areas with higher accident occurrences. It sug-
gests that Highway 35, with its significantly higher 
hotspot count, may require more focused road safety 
measures and interventions compared to the other 
two highways. These hotspots, essentially areas of 
concentrated accident incidents, serve as critical 
indicators for allocating resources and implementing 

targeted strategies to enhance road safety in specific 
regions.

On the map, these specific points are distinctly 
marked and considered statistically significant in 
terms of their association with accident occurrences. 
These significant points, referred to as hotspots, 
are categorized into confidence levels of 99% (Gi-
bin = 3), 95% (Gi-bin = 2), and 90% (Gi-bin = 1). This 
categorization aids in understanding the robustness 
of these hotspots. For instance, those classified under 
the 99% confidence level (Gi-bin = 3) are particularly 
noteworthy, as they represent areas where the cluster-
ing of accidents is highly unlikely to occur by random 
chance. On the other hand, the 90% confidence level 
(Gi-bin = 1) includes areas with a somewhat lower 

Fig. 5   Spatial autocorrelation report for road accidents in Highway 35, Highway 30, and Highway 10 using the data from 2016–
2019. (a) Highway 35, (b) Highway 10, (c) Highway 30
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Table 2   The output from the Getis-Ord Gi* analysis, along with severity indices and the precise locations of the most critical road 
accident hotspots on the highways

Highway P-value Gi-Bin Z-score Location SI

Highway 35 0.0024 3 3.04 35°53′4.905"E 32°12′59.036"N 24
0.0000 3 7.227 35°56′56.745"E 32°24′0.345"N 14
0.0001 3 4.043 35°52′57.919"E 32°6′50.972"N 11
0.0091 3 3.133 35°51′15.416"E 32°8′10.19"N 10
0.0017 3 5.981 35°57′5.367"E 32°23′37.292"N 9
0.0000 3 6.721 35°55′48.702"E 32°22′23.876"N 7
0.0560 3 6.726 35°55′47.26"E 32°22′24.235"N 7
0.0000 3 5.53 35°57′6.456"E 32°23′40.188"N 7
0.0000 3 4.043 35°52′56.538"E 32°6′50.711"N 7
0.0000 3 6.851 35°55′47.275"E 32°22′23.52"N 6
0.0001 3 7.227 35°56′49.492"E 32°23′57.168"N 6
0.0192 3 5.947 35°57′4.288"E 32°23′35.857"N 5
0.0000 3 3.971 35°55′6.584"E 32°21′34.9"N 5
0.0000 3 6.851 35°55′47.619"E 32°22′23.512"N 5
0.0134 3 3.825 35°50′53.86"E 32°10′20.975"N 5
0.0000 3 6.726 35°55′47.249"E 32°22′23.878"N 5
0.0001 3 4.085 35°53′47.379"E 32°13′44.026"N 4
0.0000 3 6.726 35°55′47.627"E 32°22′24.94"N 4
0.0001 3 3.685 35°56′59.265"E 32°25′35.387"N 4
0.0000 3 3.971 35°55′6.22"E 32°21′33.091"N 4

Highway 10 0.0000 3 4.421 35°53′4.905"E 32°12′59.036"N 9
0.0000 3 4.694 36°2′43.439"E 32°20′12.457"N 16
0.0000 3 4.445 36°1′18.038"E 32°21′55.102"N 6
0.0001 3 4.042 36°6′37.764"E 32°20′11.733"N 12
0.0011 3 3.258 36°0′33.067"E 32°23′5.772"N 4
0.0000 3 4.267 36°0′32.388"E 32°23′28.661"N 4
0.0000 3 4.267 36°0′27.438"E 32°23′33.972"N 4
0.0201 1 2.324 36°8′2.398"E 32°19′49.416"N 8
0.0000 3 4.267 36°0′33.022"E 32°23′27.023"N 3
0.0080 2 2.652 36°5′57.642"E 32°20′11.163"N 6
0.0080 2 2.652 36°1′20.997"E 32°21′32.371"N 3
0.0080 2 2.652 36°8′42.701"E 32°19′50.879"N 9
0.0000 3 4.385 36°0′33.164"E 32°23′25.559"N 2
0.0004 3 3.535 36°2′48.336"E 32°20′9.157"N 4

Highway 30 0.0011 1 3.264 36°20′50.494"E 32°3′33.884"N 13

0.0001 2 3.911 36°32′57.803"E 31°55′58.418"N 8

0.0002 2 3.758 36°21′55.077"E 32°3′26.265"N 6

0.0004 2 3.555 36°21′50.368"E 32°3′28.792"N 6

0.0004 2 3.555 36°21′49.103"E 32°3′29.637"N 6

0.0005 2 3.456 36°21′49.098"E 32°3′29.507"N 4

0.0005 2 3.456 36°21′43.332"E 32°3′33.36"N 4

0.0001 2 3.911 36°32′55.291"E 31°55′58.423"N 3
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level of statistical significance but still indicative of 
accident clustering trends.

Figure  7 provides illustrative examples of road 
accident hotspots occurring along highways with a 
high severity index. These hotspots are prominently 
concentrated at key locations, such as intersec-
tions and interchanges. The visual representation 
in Fig.  7 offers a vivid depiction of these critical 
points along the highways where accidents with 
significant severity levels tend to cluster. This clus-
tering is a matter of concern, as it suggests areas of 
heightened risk for road users and underscores the 
need for targeted safety measures and interventions 
at these specific junctions and transition points.

Discussion

This study delved into the spatial distribution of road 
accidents along three major highways in Jordan; High-
way 35, Highway 10, and Highway 30. The analysis 
employed spatial autocorrelation techniques to iden-
tify accident hotspots and clustering patterns, offering 
valuable insights for road safety planning and resource 
allocation.

The incremental spatial autocorrelation analy-
sis, as depicted in Fig.  4, illuminated distinct pat-
terns for each highway. Highway 35 exhibited a 
peak distance of 250 m, signifying significant clus-
tering of accidents within this range. This finding 
aligns with Moran’s I value of 0.050, a high z-score 
of 13.994, and a p-value of 0.000 (Fig.  5a). These 
results indicate statistically significant dense clus-
tering. A noteworthy parallel can be drawn to the 
study conducted by (Wee et al., 2021) in Singapore, 

where they identified areas with notably higher 
occurrences of severe road accidents. Although 
their methods and locations differed, both studies 
recognized the importance of spatial analysis in 
pinpointing accident hotspots. Similarly, Highway 
10 displayed a peak distance of 496.98 m, with a 
Moran’s I value of 0.127, a z-score of 7.864, and a 
p-value of 0.000 (Fig.  4b). These values also sug-
gest statistically significant dense clustering. This 
outcome reinforces the significance of addressing 
specific accident-prone areas, aligning with the 
findings of (Mhetre & Thube, 2023) in Maharashtra, 
India, where they focused on road safety and identi-
fied accident hotspots on a national highway. Con-
versely, Highway 30 presented a unique scenario 
with a peak distance of 1712.47 m (Fig.  4c). The 
Moran’s I value of 0.002, a z-score of 284, and a 
p-value of 0.776 (Fig. 5c) indicate a lack of statisti-
cal significance in terms of spatial clustering. This 
suggests that accidents along Highway 30 appear to 
occur in a relatively random fashion, distinguishing 
it from the clustering patterns observed on the other 
two highways.

Comparing severity index results with other rele-
vant studies provides valuable context. Similar studies 
conducted in various regions have shown variations in 
accident severity patterns, influenced by factors such 
as road design, traffic flow, vehicle types, and driver 
behavior. For instance, (Alam & Tabassum, 2023) 
conducted a study in Ohio, focusing on accident hot-
spot locations and accident severity. Their findings, 
similar to ours, highlighted the presence of both high 
and low accident severity clusters. This suggests that 
the coexistence of different severity levels in acci-
dent-prone areas is a common phenomenon.

Table 2   (continued)

0.0004 2 3.555 36°21′49.098"E 32°3′29.507"N 3

0.0002 2 3.703 36°21′47.907"E 32°3′31.324"N 3

0.0004 2 3.555 36°21′53.292"E 32°3′26.442"N 2

0.0001 2 3.911 36°32′57.834"E 31°55′56.275"N 1

0.0002 2 3.703 36°21′49.317"E 32°3′31.319"N 1

0.0002 2 3.69 36°25′48.704"E 32°0′59.021"N 1

0.0004 2 3.555 36°21′50.909"E 32°3′26.928"N 1

0.0004 2 3.555 36°21′52.882"E 32°3′25.642"N 1
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Comparing Getis-Ord Gi findings with other stud-
ies underscores the importance of tailored road safety 
measures. Highway 35’s dense clustering pattern 
necessitates focused interventions within the identi-
fied hotspots, which resonate with the recommenda-
tions made by (Mekonnen et  al., 2023) in Budapest, 
Hungary, where they applied clustering algorithms for 
road safety improvements. Highway 10, although dis-
playing fewer hotspots compared to Highway 35, still 

requires targeted safety measures within the identified 
clusters. The findings aligned with the approach taken 
by (Wee et al., 2021) in Singapore, where they utilized 
various statistical techniques to pinpoint severe acci-
dent locations. Highway 30’s relatively random acci-
dent distribution implies a broader approach to road 
safety improvement may be necessary. Similar find-
ings were observed by (Mhetre & Thube, 2023)on a 
rural national highway in Maharashtra, India, where 

Fig. 6   The spatial map of road accident hotspots: (a) For Highway 35, (b) for Highway 10, (c) for Highway 30



	 GeoJournal (2024) 89:105

1 3

105  Page 16 of 19

Vol:. (1234567890)

they noted a transition from hotspots to cold-spots over 
time. Understanding the dynamics of such transitions 
can inform proactive safety measures.

Limitations of the study

This study had some limitations. Road accident data 
before 2016 and after 2019 were excluded from the 
study because the Jordanian traffic department began 
using GPS to pinpoint the locations of accidents in 
2016. Furthermore, this study excluded the effect of 

COVID-19 on traffic volume after 2019 because vehi-
cle movement was restricted during the pandemic.

Conclusion

Road accidents continue to present significant chal-
lenges worldwide, and Jordan is no exception, with 
a substantial number of accidents recorded annually. 
The objective of this research was to identify and 
analyze road accident hotspots and severity patterns 
along Highways 35, 10, and 30 using GIS techniques.

(a)
(b)
)

(c)

Fig. 7   Examples of the road accident hotspots that have the highest severity index: (a) Highway 30, (b) Highway 35, Highway 10
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The findings have several key implications for road 
safety in Jordan.

•	 Firstly, the identification of road accident hot-
spots along these highways is a crucial step in 
developing targeted interventions to reduce acci-
dents and enhance safety. The variation in hot-
spot counts among the highways underscores 
the need for tailored strategies, as each highway 
exhibits unique accident clustering patterns.

•	 Highway 35, with its significantly higher hotspot 
count and dense clustering, requires focused atten-
tion and strategic interventions to mitigate accident 
risks. Highway 10, although exhibiting fewer hot-
spots, also displays significant clustering. There-
fore, measures to enhance road safety should be 
implemented in these specific areas. In contrast, 
Highway 30, with its random distribution of acci-
dents, may benefit from broader safety initiatives 
rather than hotspot-specific interventions.

•	 The incremental spatial autocorrelation analysis 
based on distance provided valuable information 
about the peak clustering distances. For Highway 
35, the peak clustering distance was 250 m, indicat-
ing that accidents tend to cluster within this range. 
Highway 10 exhibited a peak distance of 496.98 m, 
while Highway 30 had a peak distance of 1712.47 
m. These distances are crucial for understanding 
the spatial extent of accident clustering.

•	 The severity index played a significant role in iden-
tifying the hotspots. For Highway 35 and Highway 
10, the presence of statistically significant hotspots 
indicated dense clustering, emphasizing the severity 
of accidents within these areas. However, Highway 
30 showed a lack of statistical significance, suggest-
ing a more random distribution of accident severity.

•	 The hotspot analysis using the Getis Ord Gi* method 
further reinforced the clustering patterns observed 
in the spatial autocorrelation analysis. Highway 35 
exhibited the highest number of hotspots (78), fol-
lowed by Highway 10 (14) and Highway 30 (17). 
These hotspots represent areas where accidents occur 
more frequently and are statistically significant in 
terms of their contribution to accidents.

•	 This study establishes a foundation for future research 
and ongoing monitoring of road safety in Jordan. 
Long-term monitoring of these hotspots and the effec-
tiveness of implemented safety measures is essential 
to assess progress and make necessary adjustments.
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