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Abstract Our objective was to study the impact 
of vaccinations on COVID-19 pandemic indicators 
across different regions of Malaysia. We collected 
population-level pandemic data from government 
open sources from 1 January 2021 until 30 June 2022. 
The aggregated data was then analysed by rates for 
vaccinations, infections, hospital admissions, inten-
sive care unit (ICU) admissions, and case fatalities 
according to five regions in Malaysia. From the cumu-
lative data, a total of 4,456,066 COVID-19 cases that 
contributed to 489,210 hospital admissions, 292,897 
ICU admissions, and 35,378 deaths were operation-
alized to regional-levels, coherently stratified by 
pandemic-control measures. Vaccination rates were 
computed based on the proportion of people within 

each region who completed their primary doses 
(27,275,616 people) and booster shots (16,230,989 
people). Geographic visualizations, ecological cor-
relations, and ordinary least squares (OLS) regres-
sions for statistically significant effect quantification 
were synthesized. Region-specific geo-visualization 
using choropleth maps confirmed that the indicators 
of the pandemic were effectively controlled with vac-
cinations. It was observed that a percent increase in 
vaccination rates resulted in a significant decrease 
in the rates of infections, hospital admissions, ICU 
admissions, and case fatalities. This reduction in 
pandemic indicators was greater in populations with 
higher booster vaccination rates across the country. 
However, the magnitude effect of those suppression 
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coefficients as explained by the populations’ vacci-
nation showed different gradients and varying con-
sistencies, indicating the influence of geographical 
variations and pandemic control measures in different 
regions. Vaccinations were largely effective in reduc-
ing pandemic indicators but were not powered to halt 
or zero them. Trend reductions varied by regions and 
by pandemic control measures in place, suggesting 
that interventions for pandemic control are highly 
influenced by geographical contexts, coexistent with 
a certain degree of sustained mitigation strategies.

Keywords Critical indicators · Pandemic · 
Vaccination · Geography · Population · COVID-19

Introduction

The COVID-19 pandemic had a profound impact 
on health systems, the governance, and economies 
of countries worldwide at an unexpected rate. In 
response, global public health systems had to config-
ure immediate suppression measures to contain the 
transmission of the SARS-CoV-2 virus. With public 
health containment measures rapidly implemented 
across different settings, biomedical scientists, major 
pharmaceuticals, and regulatory agencies expedited 
the development and emergency use authorisation of 
COVID-19 vaccines for active immunization of eli-
gible populations to prevent the coronavirus disease. 
These COVID-19 vaccines utilised a range of plat-
forms, including traditional (inactivated, live-atten-
uated, recombinant vaccines) as well as innovative 
technologies (mRNA, DNA, adenoviral vector vac-
cines) (Sikora & Rzymski, 2022).

In the real-world, COVID-19 vaccines adminis-
tered to populations showed different levels of effec-
tiveness, suggesting that epidemiological targets of 
the pandemic may vary across specific settings and 
geographical locations (Ganasegeran et  al., 2021a). 
Although assessments of individual-level data dem-
onstrated the ability of vaccines to decrease severe 
complications and clinical endpoints (Polack et  al., 
2020), these evaluations were not powered to offer 
epidemiological insights. Therefore, the aggregation 
of regression-based prediction trends from a popula-
tion-level to local public health systems is essential 
for the development of effective pandemic suppres-
sion strategies and the attainment of herd immunity 

in response to outbreaks. Clinical-evidence at the 
individual-level on infection suppression, transmissi-
bility, and associated comorbidities or complications 
are mainly influenced by biological factors. On the 
other hand, the control of an outbreak and indicators 
at an area-level are influenced by the environmen-
tal or external exposomes, mediated by population’s 
demography, compactness of cities, network con-
tacts, mobility, health literacy, and people’s behav-
iour (Ganasegeran et al., 2021a, 2022; Mollalo et al., 
2021). Complementing individual-level evidence and 
sparse spatial-vaccination uptake evidence from pre-
vious works (Chen et  al., 2023; Ganasegeran et  al., 
2021a, 2022; Mollalo et al., 2021), here, we describe 
the potential strategies for controlling the pandemic at 
the area-level (regions) in Malaysia within the conju-
gate effect of vaccinations, mitigation or containment 
measures, and the COVID-19 pandemic indicators 
over time.

Territorial interventions during outbreaks play a 
critical role in the governance of health systems. It 
involves exercising of political, economic, and execu-
tive authority and obligations over public affairs and 
safety through strategic management, direction-set-
ting, and rule-making of healthcare decisions. These 
interventions are vital in achieving national targets 
for pandemic containment while sustaining a func-
tional healthcare system. The COVID-19 geometric 
spread was highly heterogeneous causing unfore-
seen challenges to crisis management and policy 
responses. The territorial impacts of the pandemic 
were observed through four critical dimensions, 
namely health, economic, social, and fiscal systems. 
In order to effectively sustain these dimensions, it is 
essential for national (i.e., federal) and subnational 
(i.e., state, local) governments to promptly imple-
ment response measures to control the spread and 
swiftly conduct vaccination campaigns across all lev-
els of the population to mitigate the territorial effects 
of the crisis (OECD, 2021). The external capacity is 
where subnational governments secure vaccines from 
the federal crisis response centre during periods of 
high vaccine demand, whereas the internal capacity 
refers to the speed at which these subnational gov-
ernments can vaccinate the local population to meet 
targets aimed at reducing critical pandemic indicators 
such as cases, hospitalisations, ICU admissions, and 
deaths (Tevdovski et al., 2022). Our current research 
is based on this workflow, examining the evolution 
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of pandemic indicators over time with vaccinations 
at different containment phases of the country’s pan-
demic response strategy. The purpose of this study 
is to understand how vaccination efforts can be opti-
mized at a regional level to effectively control the 
transmission of COVID-19 and reduce the burden on 
healthcare systems.

Pandemic control phases

All pandemic indicators were aggregated from state 
level to the regional levels and stratified by differ-
ent epidemiological phases of the country’s outbreak 
response. From January 2021 to June 2022, the coun-
try transitioned into six core phases of the pandemic 
control. These phases included the implementation 
of the Movement Control Order (MCO) between 
January 2021 and May 2021. During the MCO phase, 
each state had to achieve targeted indicators before 
being relaxed from strict containment measures. 
Depending on the severity of the situation, the states 
switched between MCO, Conditional Movement 
Control Order (CMCO), Recovery Movement Con-
trol Order (RMCO), and Enhanced Movement Con-
trol Order (EMCO).

In June 2021, the country once again transitioned 
to a nationwide total lockdown (Phase 1 of the con-
tainment measure). Subsequently, in July 2021, 
the country introduced the National Recovery Plan 
(NRP) over a period of 9 months, allowing the tran-
sition to an endemic phase. The status of contain-
ment measures varied across different states, with 
Phases 2, 3, and 4 allowing for different degrees of 
relaxation subjected to the state’s targeted pandemic 
indicators being achieved. To ease statistical inter-
pretation, the nine months of NRP phases 2, 3, and 
4 were classified as the three-monthly duration of 
NRP 1, NRP 2, and NRP 3 respectively. Between 
April 2022 and June 2022, the country began tran-
sitioning to an endemic phase, with plans to reopen 
social, economic, and international borders (Fig.  1) 
(National Security Council, 2022). Our rationale for 
analysing the linkage on the effectiveness of vac-
cine coverage at different pandemic control phases 
lies within the community structured compartmental 
model synthesis proposed by Aruffo and colleagues 
(2022). While extensive vaccine coverage could sig-
nificantly decrease the number of cases and fatali-
ties, it was observed that relaxation of mitigation and 
containment strategies in specific regions during cer-
tain phases could lead to a resurgence of infections, 
even when vaccine coverage was high. Conversely, 

Fig. 1  Different phases of the pandemic control measures according to states in Malaysia [Note: Phase-wise chart developed by the 
authors based on summary information from the National Security Council, 2022] 
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tighter mitigation and containment measures were 
found to reduce local transmissions. Under these cir-
cumstances, it was recommended that a minimum of 
60% vaccine coverage in areas or phases with tighter 
containment measures would be sufficient to prevent 
new infections (Aruffo et  al., 2022). Our interest in 
understanding the distribution patterns of infectious-
ness serves as a catalyst to public health advocates 
to strategize optimal vaccine distribution, with a 
focus on prioritizing vulnerable populations in local 
areas, considering the time-lag for governments to 
acquire vaccine doses for mass vaccination. Further-
more, with this phase-wise geographical distribution 
for optimal vaccine coverage, it would be essential 
to identify the threshold for the next epidemiologi-
cal transition – determining when it is safe to relax 
or completely lift mitigation and containment meas-
ures. Following these justifications and needs-gaps, 
our current work proposes the following approach: 
(1) recognising regional differences in vaccine cover-
age and uptake rates among populations; (2) acknowl-
edging that the saturation of vaccine coverage and its 
impact on critical pandemic indicators may exhibit 
geographical variations; (3) understanding that these 
variations are influenced by the different phases of 
mitigation and containment measures in Malaysia; 
and (4) highlighting that the findings of this study can 
help guide national and subnational governments in 
planning vaccine distribution in areas of high vulner-
ability, as well as to identify factors of “risk–benefit 
assessments” and “risk–benefit considerations,” and 
evaluate the subsequent actions required for pan-
demic control measures, such as easing or tightening 

mitigation and containment measures, while under-
standing local geographies and communities response 
patterns towards vaccine uptake. The overall statistics 
data used to yield the parameter of pandemic indi-
ces are summarized in Table  1 (Ministry of Health 
Malaysia, 2022a, 2022b).

Current situational analysis

During the period spanning from July 2022 to Feb-
ruary 2024, we have observed intermittent surges in 
the number of COVID-19 cases from the end of the 
vaccination campaigns (Appendix 1 see Fig. 9). How-
ever, the critical pandemic indicators have displayed 
a relatively low and plateaued trending over time 
since the post-vaccination period (Appendix  1 see 
Fig.  9). These trends suggest that while the popula-
tion remains susceptible to contracting COVID-19, 
the severity of the infections has decreased from a 
population perspective as a result of the vaccination 
campaigns. However, with diverse population attrib-
utes and different geographical circumstances and 
demographic shifts, densification, and urbanizations, 
we believe that this study would contribute additional 
insights to existing literature. In addition to under-
standing the population risk-reduction of COVID-19 
and their complications with vaccinations at the indi-
vidual level, the study aims to investigate whether 
the impact of vaccinations differ within communities 
based on their geographic locations. This aspect is 
relatively sparse in the current vaccine epidemiology 
literature.

Table 1  Summary statistics of retrieved data during COVID-19 pandemic control

Indicators MCO (Jan 
21-May 21)

Lockdown (Jun 21) NRP 1 (July 
21-Sep 21)

NRP 2 (Oct 
21-Dec 21)

NRP 3 (Jan 
22-Mac 22)

Endemic (Apr 
22-Jun 22)

Total

Number of cases 459,347 179,922 1,493,716 512,391 1,443,833 366,857 4,456,066
Hospital admission 108,538 39,470 170,901 61,534 90,719 18,048 489,210
ICU admissions 57,375 34,156 121,783 49,951 22,728 6,904 292,897
Deaths 2,719 2,502 21,103 4,738 3,534 782 35,378
Number of people 

vaccinated (com-
pleted primary 
dose)

1,094,414 1,247,885 18,549,355 4,743,873 173,349 1,466,740 27,275,616

Number of people 
vaccinated with 
booster dose

0 0 251 6,325,408 9,494,554 410,776 16,230,989
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Methods and materials

Study design and setting

This countrywide geo-ecological study was con-
ducted using real-time nationally representative pan-
demic data captured between 1st January 2021 until 
30th June 2022 across thirteen states and three federal 
territories, nested in five major regions of Malaysia. 
The epidemiological analysis was conducted using 
regional aggregated data from state-level counts as 
depicted in the baseline map (Fig. 2).

Data sources

Data on daily COVID-19 cases, hospital admissions, 
intensive care unit (ICU) admissions, fatalities, pri-
mary vaccinations, and booster vaccinations were 
analysed between 1 January 2021 until 30 June 2022 
(data retrieved from a single time point on 7 July 
2022) sourced from the COVID-19 Malaysia GitHub 
Open Data portal (Ministry of Health Malaysia, 
2022b). The data can be accessed freely on GitHub 
via Jupyter Notebook programming from the follow-
ing link: https:// github. com/ MoH- Malay sia/ covid 
19- public. The Malaysian government has granted a 
free use license for this data (Appendix B of the Cir-
cular on Implementation of Open Data Bil.1/2015). 
Administrative shapefiles were obtained from the 

2019 Malaysia-Subnational Administrative Districts 
and States Data (United Nations Office for Coordina-
tion of Humanitarian Affairs, 2023).

Computations of the COVID-19 pandemic indicators

COVID-19 crude rates were computed as the total 
number of cases per 100,000 population for each 
region in Malaysia. Hospital admission rates were 
computed as the proportion of the total admissions 
amongst cases for each region. ICU admission rates 
were computed as the proportion of total ICU admis-
sions amongst cases for each region. Case fatal-
ity rates were computed as the proportion of total 
deaths amongst cases for each region. Vaccination 
rates were calculated as the proportion of cumula-
tive vaccinations amongst the total population in each 
region. Booster vaccination rates were calculated as 
the proportion of cumulative booster administrations 
amongst the total population in each region.

Cartography development

To visualize how vaccinations changed with popu-
lation’s pandemic indicators by geography, we first 
determined a classification scheme that was deemed 
suitable to yield a sufficient proportion of the popu-
lation to be vaccinated, countrywide, stratified by 
regions in Malaysia. Assuming a vaccine efficacy of 

Fig. 2  State-wise administrative boundaries nested within regions of Malaysia. [Note: Colour shaded areas represent regions] 

https://github.com/MoH-Malaysia/covid19-public
https://github.com/MoH-Malaysia/covid19-public
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95% within a series of lag time during Malaysia’s 
pandemic times while interventions were still in 
place, we determined our critical vaccination thresh-
old as 78%, based on our previous work, through a 
mathematical epidemiological synthesis developed 
for Malaysia, as published here (Ganasegeran et  al., 
2021a). Given that the threshold of herd immunity 
is influenced by the proportional vaccine efficacy 
value (ε), and we postulate that a desirable efficacy 
for vaccines administered to the Malaysian popula-
tion as 95%; hence in our previous work an extended 
formula to calculate the threshold of herd immunity 
or impacts to reversal for pandemic indicators uti-
lised the formula  Pcrit = 1 − (1/Rt)/ε, where  Pcrit (criti-
cal level) is defined as the minimum number of the 
population that needs to be vaccinated, based on 
time-varying reproduction number  (Rt) estimator. The 
parameter synthesized was based on assumptions that 
the whole population was susceptible to COVID-19 
at the time of calculation and that the  Rt was a valid 
parameter yielded prior to any interventions being 
in place or at the beginning of the outbreak (Ander-
son and May, 1992; Kwok et al., 2020; Ganasegeran 
et al., 2021a).

Next, we developed a second classification scheme 
to disaggregate the effect of vaccinations on popula-
tion’s COVID-19 infections, hospital admissions, 
ICU admissions, and case-fatality rates, based on 
three categorical percentile classifications: 0 to less 
than 33%, 33% to less than 66%, and 66% to 100%, 
representing low, moderate, or high level of pandemic 
indicators, respectively. We then developed a series of 
pre- and post-critical thresholds of choropleth maps 
to visualize the effect of vaccinations on the geo-
graphical differences of the population’s pandemic 
indicators by regions in Malaysia. ESRI’s administra-
tive data shapefiles were layered by different admin-
istrative borders (states and regions) and were sub-
sequently joined to attribute data. Choropleths were 
synthesized through “Symbology” using Quantum 
GIS (QGIS), version 3.22 Bialowieza software.

Statistical analyses

Correlation analysis was conducted between vacci-
nation and booster vaccination rates with pandemic 
indicators across the five regions in Malaysia. Pear-
son correlation coefficient (r) values that ranged 
between − 1 and + 1 were synthesized (Gogtay & 

Thatte, 2017; Schober et al., 2018). Coefficient values 
nearing − 1 were interpreted as two attributes being 
more negative-linearly correlated (i.e., as vaccina-
tion rate increases, the impact burden of the pandemic 
indicator reduces), while coefficient values approxi-
mating 0 indicate that the two attributes have no lin-
ear correlations, and coefficient values nearing + 1 
indicate that the two attributes are more positive-line-
arly correlated (i.e., as vaccination rate increases, the 
impact burden of the pandemic indicator increases). 
The size of the effect (r) could be interpreted as fol-
lows: (1) 0.10 to 0.29 (or − 0.10 to − 0.29) as a small 
positive (or negative) correlation; (2) 0.30 to 0.49 
(or − 0.30 to − 0.49) as moderate positive (or nega-
tive) correlation; (3) 0.50 to 1.00 (or − 0.50 to − 1.00) 
as large positive (or negative) correlation (Cohen, 
1988).

We computed region-based ordinary least squares 
(OLS) regression models to predict the association 
of a percentage increase in populations’ vaccination 
rates on pandemic indicators. Multicollinearity was 
assessed between covariates. Statistical significance 
was set at p < 0.05. Our justification of choosing an 
OLS regression method lies within the requirement to 
choose a statistical method that is methodological cor-
rect to yield place-based summary magnitudes inter-
linked within our aims and objectives of public health 
importance. Since pandemic control measures and 
public health policies are not made at an individual 
level, but instead at an aggregate level, our statistical 
approach was primarily ecological-regression based, 
but assured to be of minimal bias, confounding, 
and overfitting. As we were dealing with rates at an 
aggregate areal-level (i.e., regions) with the outcome 
variable being continuous in nature, our modelling 
lies within the base execution of a linear regression. 
With different variants of linear regressions available, 
we chose the algorithm of an Ordinary Least Square 
(OLS) estimator that is regarded as the Best Linear 
Unbiased Estimator (BUSE), capable to work pre-
cisely to predict covariates influencing the outcome 
variable (i.e., vaccination rates) within locations, and 
when linkage to spatial weights are executed, the OLS 
model is capable to direct us if the outcome variable 
is subjected to the influence of neighbouring loca-
tions via diagnostic features of spatial dependence. 
These capabilities are executed within OLS regres-
sion under Gaussian-Markov assumption, and works 
considerably well in predicting covariates influencing 
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the spread of disease geographically during epidem-
ics (Milton et al., 2019). The mathematical equation 
of the OLS regression is expressed as follows:

whereby y is a vector of the outcome variable (vac-
cination rates), X is a matrix of observations of the 
covariates, � is a vector coefficient for the covariates, 
and � is the vector of independent and identically 
distributed random error terms (Chi & Zhu, 2020; 
Gebreab, 2018).

Subsequently, the univariate and multivariate OLS 
models are capable of yielding collinearity statistics, 
a parameter value subjected to detect the extremes of 
confounding – the Variation Inflation Factor (VIF). 
We executed a univariate OLS model prior to vari-
able selection into the multivariate OLS regression, 
indicating that minimal VIF values (less than 5) were 
not subjected to the presence of confounders. To 
strengthen our statistical justification, we planned to 
apply “Queen’s Contiguity” weights within the OLS 
model, however, by default, the training algorithm 
would be rejected in view of the number of covari-
ates exceeded the number of observations (i.e., the 
spatial units of five regions in Malaysia) by one vari-
able. But statistical interpretations need to be sup-
ported with public health significance; while overfit-
ting of spatial based regression models were avoided 
due to the above circumstances, our main outcome 
of vaccination rates had direct causal interpretations 
with key pandemic indicators (i.e., COVID-19 cases, 
hospital admissions, ICU admissions, mortalities), a 
finding which would be substantially important for 
“risk–benefit assessment” during emergency pan-
demic times.

Results

Trends of pandemic indicators by regions in Malaysia

Table (2) shows region-based trends of pandemic 
indicators stratified by phases of pandemic control 
measures. The overall incidence of COVID-19 cases 
reported per day ranged between 17.25 cases per 
100,000 population (95% confidence interval [CI] 
17.24 – 17.27) in the East Malaysia region to 36.97 
cases per 100,000 population (95% CI 36.95 – 37.00) 

y = X� + �

in the Central region. Hospital admissions per day 
ranged from 9.17% (95% CI 9.17 – 9.18) in the Cen-
tral region to 28.72% (95% CI 28.70 – 28.74) in the 
East Malaysia region. ICU admission rates per day 
ranged from 7.36% (95% CI 7.35 – 7.36) in the Cen-
tral region to 14.51% (95% CI 14.48 – 14.53) in the 
East Malaysia region. Case-fatality rates ranged from 
0.53% (95% CI 0.53 – 0.53) in the Northern region 
to 0.72% (95% CI 0.72 – 0.72) in the East Malaysia 
region (note: in view of small parameter values, see 
Table 2 for complete reporting up to four decimals).

Regional-based geo-visualization of vaccination rates

Vaccination rates (both primary and booster doses) 
were moderate-to-highly prevalent across the urban-
ized and densely populated areas within the Central, 
Southern, and Northern regions of Malaysia. Vaccine 
uptakes were relatively low within the rural areas of 
the East Coast and East Malaysia regions (Figs. 3 & 4).

Regional-based geo-visualization of COVID-19 
pandemic indicators with vaccination

We found that COVID-19 incidence cases per 
100,000 population were significantly reduced across 
all regions in Malaysia when population’s vaccination 
rates reached the critical threshold for vaccine effec-
tiveness (Figs. 5A & 5B). Except for the Northern and 
East Coast regions of Malaysia, hospital admission 
rates were reduced when the population’s vaccination 
rates reached the critical threshold for vaccine effec-
tiveness (Figs.  6A & 6B). Similarly, except for the 
East Coast region, ICU admission rates were reduced 
when the population’s vaccination rates reached the 
critical threshold for vaccine effectiveness (Figs. 7A 
& 7B). Case-fatality rates showed similar geographic 
trends with incidence cases, with low-to-moderate 
fatalities observed across all regions when the criti-
cal threshold for vaccine effectiveness were achieved 
(Figs. 8A and 8B).

Correlation between vaccination rates and pandemic 
indicators

For those who received complete primary dose vac-
cination, we found an overall statistically signifi-
cant negative correlation with hospital admission in 
the Northern (r = -0.55, p < 0.01), Central (r = -0.72, 
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p < 0.01), Southern (r = -0.73, p < 0.01), East Coast 
(r = -0.59, p < 0.01), and East Malaysia (r = -0.83, 
p < 0.01) regions. For critical pandemic indica-
tors, we found statistically significant large negative 
correlations between primary dose of vaccination 
and ICU admissions across all regions in Malay-
sia (r values ranged from -0.75 for Southern region 
to -0.59 for East Malaysia; p < 0.01). Except for the 
Northern region, statistically significant negative 
correlations between vaccinations and case fatalities 
were observed for the Central (r = -0.40, p < 0.01), 
Southern (r = -0.22, p < 0.01), East Coast (r = -0.12, 
p < 0.01) and East Malaysia (r = -0.04, p < 0.01) 
regions. We found that vaccinations and incidence 
of COVID-19 cases showed statistically significant 
positive correlations across all regions (p < 0.01). 
However, when stratified by phases of pandemic 
control, we observed that vaccination rates and pan-
demic indicators showed fluctuant correlation effects, 
depending on the level of control measures executed 
in each phase across the regions (Table 3). Strict con-
trol phases showed negative correlations and phases 
with relaxed measures showed positive correlations. 
Similar trends were observed for correlations between 
booster vaccinations and pandemic indicators, but 
here, most indicators across regions showed greater 
suppression effects as evidenced by stronger correla-
tion coefficients (Table 4).

Associations between vaccinations and pandemic 
indicators by Ordinary Least Squares (OLS) 
regression

We first fitted a univariate Ordinary Least Squares 
(OLS) regression model (see Appendix  2 Table  6) 
and observed that the VIF values were relatively small 
(less than 5). We subsequently fitted all covariates into 
the multivariate OLS model. Table 5 exhibits results 
of the multivariate Ordinary Least Squares (OLS) 
regression on the impact of pandemic indicators from 
vaccinations across the five regions of Malaysia. The 
OLS model predicted that for every one percentage 
increase in primary vaccination rates, the associated 
daily incidence of COVID-19 cases reduced by 0.18 
cases per 100,000 population in the Northern region 
(p < 0.05), 0.12 cases per 100,000 population in the 
Central and East Coast regions (p < 0.01, p < 0.05 
respectively), 0.26 cases per 100,000 population in the 

Southern region (p < 0.01), and 0.25 cases per 100,000 
population in the East Malaysia region (p < 0.01). 
Similar trends were observed for booster vaccination 
rates across all regions, except for the Central region 
that was not statistically significant. A percentage 
increase in primary vaccination rates was associated 
with a decrease in daily hospital admissions by 0.63% 
(p < 0.05), 5.03% (p < 0.01), 1.41% (p < 0.01), 0.55% 
(p < 0.01), and 0.93% (p < 0.01) in the Northern, Cen-
tral, Southern, East Coast, and East Malaysia regions 
respectively. Except for the Northern region, further 
reductions of hospital admissions were observed for 
the rest of the regions with a percentage increase in 
booster vaccinations, and these associations were sta-
tistically significant.

For critical pandemic indicators, a percentage 
increase in primary vaccinations was associated 
with reduction in daily ICU admissions by 3.03% 
(p < 0.05), 1.40% (p < 0.05), 2.84% (p < 0.01), 2.50%, 
(p < 0.01) and 0.51% (p < 0.01) in the Northern, Cen-
tral, Southern, East Coast, and East Malaysia regions 
respectively. Similar associations were observed for 
all regions with a percentage increase in booster vac-
cinations (p < 0.01). Except for the Northern and East 
Malaysia regions, a percentage increase in primary 
vaccinations resulted in a decrease of case fatal-
ity rates by 3.34%, 13.73%, and 3.07% in the Cen-
tral, Southern, and East Coast regions of Malaysia, 
and these associations were statistically significant 
(p < 0.05). All regions showed a statistically signifi-
cant reduction of case fatality rates with a percent 
rise of booster vaccinations (Table 5). The regression 
models explained that percent of variation in primary 
vaccination rates and booster vaccinations as eluci-
dated by the pandemic indicators varied by regions 
in Malaysia. The indicators were lowest for the East 
Coast and the highest for East Malaysia (Table  5). 
There was no multicollinearity between covariates as 
VIF values were less than 5.

Discussion

Core summary findings

This ecological analysis examined the associations 
between COVID-19 vaccinations and pandemic 
indicators in Malaysia. Geo-visually, we observed 
a reduction in daily rates of infections, hospital 
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admissions, ICU admissions, and case fatalities with 
vaccinations by regions in Malaysia. Correlation 
wise, these indicators showed similar trends, and 
further suppressions were observed in boosted indi-
viduals across all regions in Malaysia. The region-
based models explained that the effect of vaccinations 
(adjusted R-squared values) on pandemic indica-
tors was the lowest for the East Coast region and the 
highest for the East Malaysia region. We found that 

vaccinations inversed all pandemic indicators, how-
ever, the magnitude effect (betas) varied between 
regions and likely influenced by the level of pandemic 
control measures.

Comparisons with existing literature

The impact reduction of the pandemic indicators 
found in this study was consistent with previous 

Fig. 3  Primary vaccination rates by regions in Malaysia

Fig. 4  Booster vaccination rates by regions in Malaysia
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findings (Rahman et  al., 2022; Valeanu et  al., 2023; 
van Diepen et al., 2023; Whittaker et al., 2022). How-
ever, the connection between vaccination and sup-
pression of the pandemic indicators in these studies 
were only illustrated at the individual-level which are 
plausibly linked to biological and physiological pro-
cesses in humans. Although these arguments are use-
ful clinically to identify therapeutic targets, they are 
not powered to sustain epidemiological plausibility 
for population-level pandemic control interventions 
that are highly interconnected within the attributes 
of socio-spatial-ecological framework (e.g., popu-
lation’s demography, compactness of living condi-
tions or population density, poverty, rural–urban 
gaps, circumstances of human living settlements, 
and proximity to health services or built-environment 
landscapes).

The mobility of people in highly densely popu-
lated regions could facilitate the introduction, spread, 
or persistence of infections. Densification could be 
a proxy attribute for high contact rate because of 
mobility rather than individual’s physical proximity 
(Ganasegeran et  al., 2021b). The Northern, Central, 
and Southern regions of Malaysia may illustrate this 
scenario as the states nested within these regions 
comprise of urban metropolitans, industrial, and eco-
nomic areas that cultivate high gross domestic prod-
uct (GDP) growth and employment opportunities, 
catalysing internal migrations alongside with high 
human mobility, which are likely to observe greater 
risk of infections and fatalities. Similar argument 
was made in a previous study (Fonseca-Rodriguez 
et al., 2021). This interpretation is supported in our 
results, as the trends of cases and fatalities, although 

Fig. 5  COVID-19 incidence cases per 100,000 population by 
regions in Malaysia based on (A) proportion of population vac-
cinated below critical threshold for anticipated vaccine effec-

tiveness; (B) proportion of population vaccinated at critical 
threshold for anticipated vaccine effectiveness
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reduced, remained fluctuant across regions, medi-
ated by area-level public health containment phases 
between regions. Next, these inconsistencies could 
also be attributable to indoor ventilation during pan-
demic measures. Regions with higher population 
densities or urban areas tend to have greater number 
of household family members or inhabitants, coupled 
with the built-engineering of homes, and crowded 
spaces tend to increase the risk of transmissions 
and respiratory complications in vulnerable groups 
(Baker et al., 2023; Li et al., 2021; Ng et al., 2022; 
Shen et al., 2021).

We could not deny the possibilities that the impact 
of vaccinations on key pandemic indicators explored 
in our analyses at the population-level could be influ-
enced by spatial demography and social-vulnerabil-
ities of the population’s living circumstances. The 

three densely populated regions as discussed above 
could have displaced persons based on economic ine-
qualities, ethnic minorities, employment opportuni-
ties, poverty,  aging population, neighbourhood social 
environments, or gentrification, all of which require 
targeted interventions to address high health needs for 
outbreak control.

We note from our regional-regression analysis 
that the models explained  the variance of effect on 
vaccinations for pandemic indicators was the low-
est for the East Coast region and the highest for 
the East Malaysia region, both populated by rural 
areas. The wide differences could plausibly be 
influenced by rural–urban gaps, vaccine acceptance, 
socio-cultural acceptance or beliefs in vaccines 
and health literacy amongst the population in these 
areas. The relatively lower magnitude coefficients 

Fig. 6  COVID-19 hospital admission rates (%) by regions in 
Malaysia based on (A) proportion of population vaccinated 
below critical threshold for anticipated vaccine effectiveness; 

(B) proportion of population vaccinated at critical threshold for 
anticipated vaccine effectiveness
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of the pandemic indicators could be influenced by 
the geography of the regions, in which human set-
tlements are more dispersed to the outskirts with 
lesser populated inhabitants, and infrastructure 
barriers to sustain interconnection between com-
munities, which has high tendency to limit infec-
tion transmissions and complications caused by 
COVID-19. We could not deny the possibility that 
the regional distribution of different vaccines with 
different levels of effectiveness would influence the 
fluctuant trends of key pandemic indicators (Suah 
et al., 2021). However, we note that the distribution 
of vaccines should consider the highly vulnerable 
groups and the identification of areal-level struc-
tural and contextual barriers for easy administration 
and acceptability to communities within the public 
health contingency plan.

Methodological implications

We note that the functional nature of any spatial data 
is intrinsically geographic, being capable to refer-
ence point-level locations via coordinates (latitude or 
longitude) or area-level projections via shapefiles to 
intuitively display patterns, distributions, or trends of 
data within geographical boundaries that are comple-
mented with descriptive place-based summary geo-
statistics (Adrian et  al., 2020). Such capabilities are 
projected through maps which visualize real-life sto-
ries of a studied problem. Under these circumstances, 
our study offered a clear visualization through maps, 
stratified by regions on the effects of vaccinations on 
pandemic indicators, in which conventional report-
ing through tabular data is not powered to do so. We 
acknowledge that although tabular data is powered 

Fig. 7  COVID-19 ICU admission rates (%) by regions in 
Malaysia based on (A) Proportion of population vaccinated 
below critical threshold for anticipated vaccine effectiveness; 

(B) proportion of population vaccinated at critical threshold for 
anticipated vaccine effectiveness
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to describe the magnitude of values of one group to 
another, it is incapable to describe patterns or trends 
in datasets in which place-based spatial data could 
do via map visualizations, which is consistent with a 
previous argument that geo-visualization techniques 
offer better comprehension of risk magnitudes dur-
ing pandemic times or infectious disease outbreaks 
(Zhang et  al., 2022). We applied this dictum to our 
study. As the triad of epidemiological investigations 
include “place” in addition to “time” and “person,” 
geo-visualization techniques through the building of 
basic choropleth maps provide clear descriptions on 
the variations of pandemic indicators that are met 
prior to and after critical thresholds of vaccinations 
for pandemic suppression. These maps are yielded 
through colour gradients through area-estimates 
(Shaito et al., 2022), hence provide clear descriptions 

on the variations of COVID-19 disease rates and 
other outcome indicators on the effectiveness of vac-
cinations through the visualization of geographical 
patterns and trends.

Implications for pandemic control and policy

Our results suggest that critical pandemic indicators 
such as ICU admissions and case fatalities could be 
significantly reduced with vaccinations, however, the 
spread of the disease could not be completely sup-
pressed with immunisation alone; in other words, 
it would be difficult to achieve herd immunity for 
COVID-19. The primary goal for pandemic control 
through population vaccination targets could lever-
age a high extent to minimizing deaths and serious 
complications (Liu et  al., 2021). Nonetheless, the 

Fig. 8  Case fatality rates by regions in Malaysia. COVID-19 
case fatality rates (%) by regions in Malaysia based on (A) pro-
portion of population vaccinated below critical threshold for 

anticipated vaccine effectiveness; (B) proportion of population 
vaccinated at critical threshold for anticipated vaccine effec-
tiveness
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geometric spread and transmissibility within commu-
nities that are highly possible to recur or being per-
sistent could be mediated by the compactness of cit-
ies, people’s acceptability to periodical immunisation, 
social and cultural acceptance, vaccine effectiveness, 
and emergence of new variants, hence, configuration 
of an acceptable level of continued public health miti-
gation and containment measures should be in place.

Despite the Malaysian government’s effort to pro-
vide equitable access to a diverse range of vaccines 
(Suah et al., 2021), the rural areas of the East Coast 
and East Malaysia regions have experienced low vac-
cine uptake. Despite the decrease in hospital admis-
sions and ICU admissions at post critical thresholds 
of population vaccinations, these regions somewhat 
showed moderate incidences of hospital and ICU 

Table 3  Correlation between primary vaccination and pandemic indicators

* indicates p < 0.05; ** indicates p < 0.01

Indicators Northern Central Southern East Coast East Malaysia

MCO
  COVID-19 cases (per 100,000 population) 0.618** 0.444** 0.242** 0.863** 0.693**
  Hospital admission rates (%) -0.234** 0.107 0.130 -0.564** 0.192*
  ICU admission rates (%) 0.081 0.422** 0.583** -0.349** -0.251**
  Case fatality rates (%) 0.585** 0.609** 0.693** 0.106 0.088

Lockdown
  COVID-19 cases (per 100,000 population) -0.436* 0.047 -0.152 -0.670** -0.745**
  Hospital admission rates (%) -0.030 0.232 -0.004 0.477** 0.182
  ICU admission rates (%) -0.237 0.190 0.158 0.542** 0.375*
  Case fatality rates (%) -0.214 0.439* -0.044 -0.214 0.120

NRP 1
  COVID-19 cases (per 100,000 population) 0.633** -0.510** 0.264* 0.836** 0.872**
  Hospital admission rates (%) -0.531** -0.592** -0.748** -0.697** -0.858**
  ICU admission rates (%) -0.675** 0.430 -0.744** -0.674** -0.851*
  Case fatality rates (%) 0.205* -0.830** -0.239* -0.400** 0.507**

NRP 2
  COVID-19 cases (per 100,000 population) -0.915** -0.002 -0.804** -0.880** -0.905**
  Hospital admission rates (%) -0.131 -0.397** 0.452** 0.553** -0.259*
  ICU admission rates (%) -0.091 -0.550** 0.256* 0.649** 0.710**
  Case fatality rates (%) -0.198 -0.349** -0.504** 0.388** -0.156

NRP 3
  COVID-19 cases (per 100,000 population) 0.698** 0.889** 0.657** 0.652** 0.429**
  Hospital admission rates (%) -0.248* -0.762** -0.607 -0.316** -0.455**
  ICU admission rates (%) -0.787** -0.843** -0.673** -0.798** -0.659**
  Case fatality rates (%) -0.109 -0.611** -0.116 -0.569** -0.327**

Endemic
  COVID-19 cases (per 100,000 population) -0.917** -0.882** -0.933** -0.880** -0.753**
  Hospital admission rates (%) 0.011 0.683** 0.419** 0.287** -0.094
  ICU admission rates (%) -0.262* -0.017 0.063 -0.130 -0.319**
  Case fatality rates (%) -0.247* -0.057 0.010 -0.061 -0.251*

Overall
  COVID-19 cases (per 100,000 population) 0.247** 0.171** 0.173** 0.292** 0.166**
  Hospital admission rates (%) -0.546** -0.716** -0.726** -0.591** -0.832**
  ICU admission rates (%) -0.634** -0.629** -0.751** -0.630** -0.585**
  Case fatality rates (%) 0.121** -0.404** -0.222** -0.120** -0.043*
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admission rates. It could be argued that these regions 
could have regional characteristics that could pose 
challenges for population’s access to vaccine centres 
due to geographic barriers to health facilities, as well 

as factors such as people’s perception towards vac-
cinations, cultural sensitivities, and health literacy 
on the importance of vaccine uptake. Populations 
within these regions should be more cautious on the 

Table 4  Correlation between booster vaccination and pandemic indicators

* indicates p < 0.05; ** indicates p < 0.01

Indicators Northern Central Southern East Coast East Malaysia

NRP 2
  COVID-19 cases (per 100,000 population) -0.620** 0.305** -0.604** -0.641** -0.863**
  Hospital admission rates (%) -0.096 -0.326** 0.427** 0.050 -0.212*
  ICU admission rates (%) -0.052 -0.283** 0.106 0.519** 0.732**
  Case fatality rates (%) -0.030 -0.118 -0.402** 0.151 -0.401**

NRP 3
  COVID-19 cases (per 100,000 population) 0.787** 0.847** 0.784** 0.638** 0.485**
  Hospital admission rates (%) -0.292** -0.746** -0.676** -0.370** -0.520**
  ICU admission rates (%) -0.838** -0.931** -0.755** -0.840** -0.732**
  Case fatality rates (%) -0.163 -0.472** 0.038 -0.602 -0.349**

Endemic
  COVID-19 cases (per 100,000 population) -0.894** -0.884** -0.920** -0.869** -0.765**
  Hospital admission rates (%) -0.040 0.649** 0.393** 0.269** -0.104
  ICU admission rates (%) -0.291** -0.826** 0.009 -0.191 -0.316**
  Case fatality rates (%) -0.270** -0.060* 0.001 -0.048 -0.230*

Overall
  COVID-19 cases (per 100,000 population) 0.170** 0.268** 0.146** 0.050 -0.124**
  Hospital admission rates (%) -0.391** -0.712** -0.573** -0.354** -0.572**
  ICU admission rates (%) -0.705** -0.783** -0.660** -0.533** -0.523**
  Case fatality rates (%) -0.276** -0.547** -0.385** -0.261** -0.375**

Table 5  Results of Ordinary Least Squares (OLS) regression on the associations between vaccination rate and pandemic indicators

* indicates p < 0.05; ** indicates p < 0.01

Region Vaccination type Cases/100,000 
population
β (SE)

Admissions rate
β (SE)

ICU rate
β (SE)

Fatality rate
β (SE)

Adj. R-square

Northern Primary -0.18*(0.05) -0.63*(0.19) -3.03*(0.21) 5.16(1.92) 0.49
Booster -0.08*(0.03) -0.06(0.09) -1.89**(0.11) -2.53*(1.02) 0.51

Central Primary -0.12**(0.04) -5.03**(0.38) -1.40*(0.44) -3.34*(2.73) 0.54
Booster 0.05(0.03) -1.62**(0.22) -2.30**(0.26) -9.08**(1.60) 0.66

Southern Primary -0.26**(0.05) -1.41**(0.12) -2.84**(0.21) -13.73*(1.99) 0.67
Booster -0.02(0.04) -0.69**(0.09) -1.21**(0.17) -6.36**(1.17) 0.49

East Coast Primary -0.12*(0.05) -0.55**(0.07) -2.50**(0.22) -3.07*(2.11) 0.46
Booster -0.14**(0.02) -0.06*(0.03) -1.18**(0.09) -2.26*(0.81) 0.46

East Malaysia Primary -0.25**(0.04) -0.93**(0.04) -0.51**(0.13) -2.12(2.09) 0.71
Booster -0.33**(0.02) -0.25**(0.02) -0.65**(0.08) -4.64**(0.80) 0.57

Malaysia Primary -0.21**(0.36) -3.13**(0.18) -0.76*(0.36) -5.79*(2.30) 0.74
Booster -0.06*(0.02) -0.90**(0.11) -1.21**(0.21) -13.33**(1.37) 0.73
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complications of COVID-19, their mitigation proto-
cols, and the significance of vaccine uptake during 
pandemic exigencies. Efforts to intensify awareness, 
health literacy, and assurance within culturally sen-
sitive populations needs to be executed to inculcate 
the importance of vaccinations programs in reduc-
ing critical health complications. These could be 
done through programs via community engagements 
or media campaigns as suggested in a recent study 
(Odunsi et al., 2023).

Future direction

We recommend future works to incorporate spa-
tio-temporal analysis of place-based determinants, 
either at a finer scale for more accurate local com-
parisons of predictors or at a regional scale to 
pool higher level comparisons within or between 
countries to set global public health priorities in 
pandemic control. We note that there is a need to 
differentiate the goals for geographical-based stud-
ies within anticipated public health targets during 
pandemic times. In emergency response situation, 
the goal of territorial or geographical visualiza-
tions on the impact of key pandemic interventions 
are specifically intended to be a “risk–benefit 
assessment” requirement within public health gov-
ernance; that is how would the critical pandemic 
indicators change overtime or be controlled with 
vaccinations across regions or territories that offer 
sustainability and survivability to overwhelmed 
healthcare systems. To successfully visualize the 
trends and patterns of these targets, it would be best 
to assess the risk–benefit interventions by public 
health advocates at higher area-level boundaries or 
spatial units for optimization of decision-making 
at the national level. But to achieve the intended 
targets of the national “risk–benefit assessment,” 
it is indeed required to understand the patterns of 
“risk–benefit considerations” of vaccine uptake 

by the populations, collectively executed by sub-
national government agencies to local communi-
ties within smaller areal-level or spatial units (e.g., 
districts or subdistricts), as vaccine uptake by local 
communities could be hindered by multiple factors 
such as misinformation, cultural, health literacy, or 
socio-economic factors (Klee et  al., 2023). While 
our work contributed to the former, we recommend 
future work to understand the latter, that is to visu-
alize the patterns of “risk–benefit considerations” 
of vaccine uptake by local communities within 
small area estimations, as these would direct subna-
tional governments to identify barriers to vaccina-
tions via more granular insights within finer-scales 
of geographical units to execute appropriate local 
campaigns or boosts confidence on the benefits of 
vaccinations. Addressing these local level factors 
would be a catalyst to ensure the success of national 
level pandemic control in the country. Our call for 
these approaches is in line with the latest expert 
consensus on setting research priorities for global 
pandemic preparedness (Song et al., 2024).

Study strengths and limitations

This study had certain strengths and limitations. 
The ecological study design could be subjected to 
ecological fallacy. Although possible correlations 
between vaccination rates and pandemic indicators 
could be appreciated at the population aggregated 
level, caution should be placed on the interpretation 
of the findings as the results cannot be interpolated 
to an individual level, or neither causal links could 
be established. However, our findings were yielded 
based on the parameters of the whole (true) popula-
tion and not a sampled population, complemented 
with inferential statistics with ecological region-
based regression, strengthening that the interpreta-
tion would be generalisable to a countrywide level. 
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In terms of data dependability, our analysis relied 
on official government data that was made publicly 
available with transparency. The accuracy of the data 
was established as it was reported based on official 
diagnosis by health workers and clinical notifications 
from all health facilities across Malaysia during the 
pandemic period. While the current study was unable 
to progress further to spatial simultaneous autore-
gressive (SAR) models in view of covariates exceed-
ing the number of observations (i.e., five regions of 
spatial units), our recommendations to explore more 
covariates or potential confounding factors within 
smaller areas of estimation through spatial–temporal 
analysis in future work as recommended above would 
provide greater exploration and granular insights 
into “risk–benefit considerations” by the local com-
munities of vaccine uptake speed and success rates. 
The lack of data availability and varying accessibil-
ity across different spatial scales (e.g., districts, or 
sub-districts) has limited the ability to conduct thor-
ough analysis to understand the patterns of vaccina-
tions and their critical pandemic indicators at a more 
local level. This limitation has resulted in the absence 
of certain attribute data (e.g., demographics, health, 
and census profiles) that could be utilized to explore 
potential mediators or interactions within our analyti-
cal strategies.

Conclusion

Critical population-level pandemic indicators 
showed substantial reductions in ICU admissions 
and case fatalities with increased vaccinations over 
time. However, infectiousness remained fluctuant 
with different correlation patterns, possibly influ-
enced by the emergence of new variants, as well 
as factors such as the type of vaccines and their 
effectiveness, and the different levels of protective 

measures implemented across phases and environ-
ments. Our research illustrates that vaccinations 
have helped to suppress critical pandemic indica-
tors. The extent to which these indicators were 
reduced varied depending on the specific phase of 
pandemic control. Therefore, it is crucial to bal-
ance vaccinations with ongoing mitigation strate-
gies (e.g., masking, maintaining personal and envi-
ronmental hygiene practices like hand washing) in 
areas of greater susceptibility among local commu-
nities, in a harmonized manner.
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Fig. 9  Trends of cases, hospital admissions, ICU admissions, and deaths from July 2022 until February 2024

Table 6  Results of univariate ordinary least squares regression (OLS) on the associations between vaccination rate and pandemic 
indicators with variation inflation factor (VIF) values

* indicates p < 0.05; ** indicates p < 0.01

Region Vaccination type Cases/100,000 
population
β (SE)

VIF Admissions rate
β (SE)

VIF ICU rate
β (SE)

VIF Fatality rate
β (SE)

VIF

Northern Primary 0.247** 1.000 -0.546** 1.000 -0.634** 1.000 0.262** 1.000
Booster 0.170** 1.000 -0.391** 1.000 -0.705** 1.000 -0.162** 1.000

Central Primary 0.171** 1.000 -0.716** 1.000 -0.629** 1.000 -0.198** 1.000
Booster 0.268** 1.000 -0.712** 1.000 -0.783** 1.000 -0.413** 1.000

Southern Primary 0.173** 1.000 -0.726** 1.000 -0.751** 1.000 0.127** 1.000
Booster 0.146** 1.000 -0.573** 1.000 -0.660** 1.000 -0.094** 1.000

East Coast Primary 0.114** 1.000 -0.591** 1.000 -0.630** 1.000 0.184** 1.000
Booster 0.050** 1.000 -0.354** 1.000 -0.533** 1.000 -0.097** 1.000

East Malaysia Primary 0.166** 1.000 -0.832** 1.000 -0.585** 1.000 0.433** 1.000
Booster -0.124** 1.000 -0.572** 1.000 -0.532** 1.000 -0.024** 1.000

Malaysia Primary 0.231** 1.000 -0.840** 1.000 -0.748** 1.000 0.132** 1.000
Booster 0.156** 1.000 -0.680** 1.000 -0.804** 1.000 -0.281** 1.000

Appendix 2 Table 6
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