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Abstract Although floods are well known for pro-

moting the transmission of malaria, not much effort

has been put to determine the spatial distribution of

this disease at micro-geographical scale in flood prone

areas. Therefore, this paper examines the spatial

variation of malaria and associated socio-demo-

graphic factors in flood-prone areas of Mbire district,

Zimbabwe. A cross-sectional household survey was

conducted between 2018 and 2019 to collect data on

malaria and socio-demographic factors. The study

used the Bernoulli model to determine malaria

hotspots, i.e. area with high number of cases compared

to the surrounding areas. This was followed by a

geographically weighted logistic regression model

used to explore the spatial variation of malaria cases in

relation to socio-demographic factors at household

level. Descriptive statistics and chi-square showed that

types of house material, water sources and age of the

household head had a significant association with

malaria cases (p\ 0.05). The study has demonstrated

that some local communities in flood prone areas

experience increased numbers of malaria cases as

indicated by one significant cluster (p\ 0.05). There

was high malaria risk (2.68) in the significant cluster

compared to its outside. The GWLMmodel with water

sources and the type of house material as exploratory

variables showed the minimum corrected Akaike’s

Information Criterion compared to other models.

Higher level of spatial variability was observed in

type of house material (DIFF of criterion = - 5.742)

compared to water sources (DIFF of crite-

rion = - 1.064). The coefficients of these two

exploratory variables were varying across the study

area and significant (t-values ± 1.96) and high in

other parts including the identified hotspots. The

coefficients of the type of house material ranged from

- 1.136 to 1.323. These were higher than those for

water sources which were between- 0.781 and 0.605.

These results may be used for development and

implementation of place-specific malaria intervention

strategies in flood prone areas.
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Introduction

Floods are amongst the most damaging hydro-mete-

orological disasters worldwide, posing danger to
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human health and socio-economic life of millions of

people (Matheswaran et al., 2019; Rana & Routray,

2018; Shivaprasad et al., 2017). The floods can result

in unprecedented losses to national economies and

bring pathogens which cause outbreak of diseases

(Dandapat & Panda, 2017; Tehrany et al., 2015) such

as typhoid fever, cholera andmalaria.Malaria is one of

the most common water related vector-borne diseases

in flood prone areas of Mbire District, Zimbabwe and

other similar settings around the world (Mudavanhu

et al., 2015; Ochola, 2009; Olanrewaju et al., 2019;

Watson et al., 2007). It is envisaged that climate

change may exacerbate the impact of floods globally

(Watson et al., 2007), which may increase the

outbreaks of water related diseases (Kouadio et al.,

2012). For example, floods will likely promote the

transmission of malaria at micro-geographical scales

in malaria endemic areas. Where weak disease

surveillance systems exist, this may adversely affect

the health of individuals during and after flood events

(Watson et al., 2007). Hence, floods tend to affect

people by creating new or exacerbating existing

inequalities and challenges in public healthcare sys-

tems (Davis et al., 2010). In view of this, an

understanding of the spatial distribution of malaria

during and immediately after floods is important for

health system preparedness and response.

Exposure to floodwaters pose direct dangers to

human health including the risk of malaria infection

(Paterson et al., 2018). Flooding can affect mosquito

breeding sites and malaria transmission differently.

For example, at the beginning, floods tend to clear the

breeding sites for mosquitos but later create new

breeding areas that may even stay longer. This may

result in an increase of mosquito population and

associated malaria cases (Minamiguchi, 2008; Watson

et al., 2007). There is potential for creating areas with

higher number of malaria cases, i.e., hotspots of

malaria at micro-geographical scale as determined by

the flood extent and the socio-economic factors at

household level. This calls for malaria surveillance in

areas affected by floods in order to understand the

latter’s influence at micro-geographical scale. How-

ever, it is not always easy to obtain appropriate

surveillance data in such settings (Watson et al., 2007)

due to limited resources and inaccessibility of these

areas during and immediately after floods. Therefore,

the aim of this study was to examine the spatial

distribution of malaria and the associated socio-

demographic factors in malaria and flood prone areas

ofMbire District in Zimbabwe. The specific objectives

were (1) to identify and map the significant malaria

clusters and (2) to examine the socio-economic factors

associated with the identified malaria spatial patterns.

By examining the spatial distribution of malaria and its

associated socio-demographic factors, this study will

contribute to informed preparedness and appropriate

response at the local level during the different phases

of flooding.

Literature review

Malaria is a mosquito-borne disease which is caused

by protozoan parasite species, key among them are

Plasmodium falciparum, P. vivax, P. ovale, P. malar-

iae, and P. knowlesi (Rosas-aguirre et al., 2015). It is

transmitted by infected female Anopheles mosquitoes

in both humans and other animals through a bite

(Bannister-Tyrrell et al., 2018; Yang et al., 2017). The

disease is endemic in tropical and subtropical regions

(Bannister-Tyrrell et al., 2018; Qayum et al., 2015;

Ramdhani et al., 2018). The epidemiology of malaria

is complex. It is influenced by climate and other

factors pertaining to the malaria parasites, the insect

vectors, the human hosts, and the physical environ-

ment (Chirebvu et al., 2014; Rouamba et al., 2019). As

a result, efforts to eliminate malaria are fraught with

many challenges. Currently, malaria is one of the

major tropical health challenges facing the developing

countries (Ibor & Okoronkwo, 2017). For example,

the Sub-Saharan Africa (SSA) recorded 92% of global

malaria cases reported in 2017 (WHO, 2020).

In Zimbabwe, malaria continues to be a major

public health problem. About seven million people are

at risk of contracting malaria (Chikodzi, 2013;

Mundagowa & Chimberengwa, 2020). Although there

is a declining burden of malaria, periodic outbreaks

still exist which exhibit spatial heterogeneity across

different regions through time and space (Gwitira

et al., 2020). Plasmodium falciparum is the most

common parasite that accounted for 99.7% of the

malaria cases in Zimbabwe reported in 2018 (Gwitira

et al., 2020). Essentially, malaria is an environmental

disease since the vectors and the parasites require

specific habitats with surface water, humidity and

certain temperatures for their reproduction, develop-

ment and survival. Hence, frequent floods in some
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parts of Zimbabwe including Mbire district provide

suitable conditions for the survival and breeding of the

vector mosquitoes. In addition to environmental

conditions, Ibor and Okoronkwo (2017) noted that

socio-economic factors also play a significant role in

the prevalence of malaria. An understanding of

environmental and socio-economic factors associated

to the spatio-temporal dynamics of malaria is of high

importance to control the spreading of the disease

(Rouamba et al., 2019). As argued by Tewara andet al.

(2018) and Stresman et al. (2019), the understanding

of the distribution of malaria cases will help inform

malaria control programs at a smaller scale. In

specific, understanding the transmission spectrum of

malaria can enhance its monitoring and control

(Coulibaly et al., 2013; Stresman et al., 2019). Studies

have revealed that the malaria risk factors influence

the variation in malaria vector distribution, transmis-

sion rates, and incidence over short distances, between

neighbouring villages and even within a single settle-

ment (Chirebvu et al., 2014). Hence the need for more

researches in this domain.

Many studies have also identified household and

individual level factors associated with malaria trans-

mission (Chirebvu et al., 2014). For example, Sharma

et al. (2015) considered how the demographic, socio-

economic and behavioural risk factors contributed to

malaria cases in India. Lowassa et al. (2012) also

assessed the influence of household social economic

status on malaria cases in northern Tanzania. Like-

wise, Degarege et al (2019) noted that lack of

education, low income, low wealth, living in poorly

constructed houses, and having an occupation in

farming may increase risk of Plasmodium infection

among people in SSA. Thus, the epidemiology and

control of malaria is complicated by poverty (Sharma

et al., 2015). Poor people are at increased risk of

becoming frequently infected with malaria (Ibor &

Okoronkwo, 2017). Poorly constructed houses allow

easy entrance of Plasmodium-carrying vectors and

increase chances of infection among family members

(Lindsay et al., 2003). However, there is lack of

empirical evidence about how such factors influence

the spread of malaria in Mbire District. Hence, the

current study determined the contribution of socio-

economic factors to the spatial variation of malaria

occurrence at household level in flood prone areas. An

understanding of this variation is important in the

detection of high-risk groups and for targeted inter-

ventions (Chirebvu et al., 2014).

Methods

Study area

This study was conducted in traditionally flood-prone

areas of Mbire District (Wards 3—Kanongo, 9—

Mushumbi, 10—Chitsungo, 12—Chikafa and 16—

Monozi) in the northern low veld of Zimbabwe

(Fig. 1). These wards are adjacent to the Hunyani

River a tributary of the Zambezi River. The five ward

communities are all exposed to riverine floods that are

precipitated by convectional rains, tropical cyclones or

backflows from the consequent rivers. The floods

usually occur at the peak of the rainy season: January

and February of each year (Mavhura, 2019). The flood

period period coincides with the development of an

intense low-pressure area over northern Zimbabwe

and Zambia. As a result, the inter-tropical conver-

gence zone (ITCZ) shifts over the northern lowveld, a

situation that brings a lot of warm moisture from both

the Indian Ocean and the Zaire Airflow to create

continuous rains (Spear et al., 2018). At this time of

the year, tropical cyclones develop in the Indian Ocean

and, at times penetrate through the vast plains of

northern Mozambique to reach Mbire district. As a

result, flooding occurs in Mbire district. A network of

river systems that cut across the communities creating

interfluves and low-lying floodplains compounds the

flood problem. Tributaries of major rivers may fail to

empty their waters into consequent rivers, a situation

that leads to back flowing of waters into adjustment

low-lying areas. In some areas, the floods last for few

hours while in other, they last for several days. When

this happens, crops and livestock are washed away

while dwellings and other critical infrastructure are

damaged (Mavhura, 2019). The floods are also related

to the increase in malaria outbreaks as they provide the

habitats and breeding sites for vector mosquitoes. This

area is also malaria endemic. In 2018, a total of 9 488

cases and 4 deaths were recorded in Mbire district

(President’s Malaria Initiative Zimbabwe (PMI)

2018).

The study area is also entirely rural, drought-prone,

with high indices of poverty (ZimStat, 2015; Zim-

VAC, 2019). Smallholder farming is the mainstay of
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Fig. 1 Study area—Wards 3; 9; 10; 12 and 16 of Mbire District in Zimbabwe ( Source Mavhura et al., 2020)

123

4442 GeoJournal (2022) 87:4439–4454



the economy, that serve a population of about 70 000

(ZimStat, 2012). Major food crops grown include

maize, sorghum and millet. These crops are mostly

grown along the floodplain, where there is increased

exposure to floods and malaria. Literacy rate is

approximately 83.6%, 79.6% have no water and

sanitation facilities and 82.6% of the population are

in pole and dagga huts (Mavhura, 2020; UNDP, 2016).

These conditions may also contribute to the transmis-

sion of malaria in these wards. A number malaria

prevention and control strategies are being imple-

mented in Mbire district. These include indoor resid-

ual spraying, distribution and use of long-lasting

insecticidal nets (LLINs), and larviciding as well as

intermittent preventive therapy or parasitological

confirmation of the malaria throughMinistry of Health

and Child Care and different stakeholders including

PMI. These strategies are implemented in the context

of the roll back malaria initiative which is still guiding

malaria control and elimination. However, malaria is

still problematic in the study area.

Study design, sample size and sampling procedure

A cross-sectional survey involving 333 household

heads from five purposively selected flood-prone

wards in Mbire District was conducted between

December 2018 and April 2019. Following Olanre-

waju et al. (2019), this study adopted a historic

approach to flood disasters based on the household

survey relating disasters to human health with a focus

on malaria and related socio-economic factors. This

design enabled obtaining historical data of malaria

cases that occurred during and immediately after

floods in the past two decades. The sample size was

10% (304) of estimated number of households in the

flood plain (3042) plus 10% (33) attrition rate to make

it 337. However, only 333 questionnaires were valid

and this was above the required minimum sample size.

The study participants were proportionally distributed

across the wards and randomly selected.

Data collection

Data of malaria cases reported within the household

and socio-economic factors related to the household

including age, gender, education of the household

head and types of dwellings, material flooded, were

collected using household structured questionnaires.

The use of open data kit (ODK) with GPS on tablets

enabled us to georeference all the households (333) in

our sample. The socio-demographic risk factors con-

sidered in this study include age, gender, water

sources, level of education, type of house material,

size of the household and whether the household was

flooded or not. These factors have also been consid-

ered in other non-spatial studies (Yadav et al., 2014;

Yang et al., 2020). Where the head of the household

was not available, we interviewed an adult family

member knowledgeable about floods that affected the

household in the past.

Data analysis

Descriptive statistics and chi-square test were per-

formed to assess the association between malaria cases

and socio-demographic risk factors at household level

using SPSS version 24. The Bernoulli model in

SaTScan (Kulldorff, 2015; Warden, 2008) was used

to ascertain the distribution patterns of reported

malaria cases based on the Global Positioning Systems

(GPS) coordinates from the ODK. Bernoulli model is

mainly used in detecting hotspots or significant

clusters, in this case areas with increased numbers of

malaria cases compared to the surrounding areas. The

Bernoulli model was applied to identify significant

spatial clusters of households (p\ 0.05) where

malaria cases were reported during and after floods.

Spatial cluster was defined as an area of households

that are close together where malaria cases or

incidences were greater than in the adjacent areas

(Bousema et al., 2016). Those households with

reported cases were coded ‘‘1’’ while households

without cases of malaria were coded ‘‘0’’. The last

group acted as controls. SaTScan uses a moving

window, and in this case, it was circular and for each

window the following were determined and recorded:

location and size, the number of observed and

expected observations, percentage cases in area and

relative risk inside the window, likelihood ratio and

relative risk (RR) (Kulldorff, 2015; Warden, 2008).

Equation 1 shows the mathematical notation for

relative risk (Kulldorff, 2018). It compares the risk

inside and outside the identified cluster.

RR ¼ c=E c½ �
C � cð Þ=ðE C½ � � E c½ � ¼

c=E c½ �
C � cð Þ= C � E c½ �ð Þ

ð1Þ
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where c is the number of observed cases within the

cluster and C is the total number of cases in the data

set, E[c] is expected cases within the cluster and

E[C] is expected total number of cases and in this case

E[C] = C.

Equation 2 indicates the likelihood function for the

Bernoulli model (Kulldorff, 2018; Kulldorff & Nagar-

walla, 1995):

c

n

� �c n � c

n

� �n�c C � c

N � n

� �C�c N � nð Þ � C � cð Þ
N � n

� � N�nð Þ� C�cð Þ
IðÞ

ð2Þ

where C is the total number of cases, c is the observed

number of cases within the window, n is the total

number of cases (households where malaria cases

were recorded) and controls (households with no

recorded malaria cases) within the window, while N is

the combined total number of cases and controls in the

data set.

The characteristics of these circular windows

tended to differ as they depended on the spreading of

the presented cases in relation to the households with

no recorded malaria cases which acted as controls

across the study area, hence showing the spatial

pattern. The high-risk clusters were defined as having

up to 50% (cases) of the total number of households in

a moving window and the 999 Monte-Carlo replica-

tions were used for evaluation of their statistical

significance (Manyangadze et al., 2016; Meurs et al.,

2013; Nagi et al., 2014). Only significant clusters

(p\ 0.05) were reported in our study.

Additionally, a Geographically Weighted Logistic

Regression (GWLR) in GWR4.09 was used to deter-

mine the spatial distribution of the reported cases and

these socio-demographic factors in the study area.

GWLR is a form of GWR capable of handling binary

dependent or response variable that vary across space,

i.e., X and Y coordinates (Albuquerque et al., 2016;

Xiao et al., 2019; Yasuo & Nishiura, 2019) and allows

the spatial variation of the local regression coefficients

(Yasuo & Nishiura, 2019). The GWLRM method has

been extensively used to estimate local spatial hetero-

geneity in the factors that explain the binary data in

many fields including diseases modeling (Liévanos,

2018; Mayfield et al., 2018). As noted by Zhang et al.

(2014), the analysis in this study was extended to

GWLRM because the logistic regression was not

capable of presenting the spatial heterogeneity of the

exploratory variables’ coefficients. The GWLRM

showed the spatial variability of the disease in relation

to the exploratory variables. GWLR is expressed as

follows (Nakaya, 2016a, 2016b):

yi �Bernouli pi½ � ð3Þ

The dependent variable yi must be 0 or 1. pi is the

modelled probability that the dependent variable

becomes one.

logit pið Þ ¼
X

k

bk ui; við Þxk;i ð4Þ

where pi is the modelled probability the dependent

variable becomes one i.e. the dependent variable, xk;i

is the kth independent variable ui; við Þ is the x–y

coordinate of the ith location; and coefficients

bk ui; við Þ are varying conditionals on the location.

Adaptive bi-square kernel was used together with

golden search method for optimal bandwidth search.

AICc was used to select the optimal bandwidth.

Adaptive bi-square method is as shown below:

wij ¼ 1� d2
ij=hi kð Þ

� �2

0

(
dij\hi kð Þ
dij [ hi kð Þ

ð5Þ

where i is the regression point index; j is the locational

index; wij is the weight value of observation at

location j for estimating the coefficient at location i; dij

is the Euclidean distance between i and j; h is a fixed

bandwidth size defined by a distance metric measure.

hi kð Þ is an adaptive bandwidth size defined as the kth

nearest neighbour distance.

We produced a set of GWLRM models and then

compared it with the global logistic model (which does

not consider the spatial variation of the regression

coefficients) based on the AICc (Guo et al., 2016;

Manyangadze et al., 2017; Nakaya, 2016a, 2016b).

The model with smaller value of AICc has better

performance. Table 1 below shows the performance of

different models that were tested in this study. Model 9

(Table 1) performed better than other models as it had

the lowest AICc. Hence, this model was chosen for

spatial modelling of malaria cases and related factors

(water sources and type of house material). These are

the only variables, which were included in the

GWLRM in addition to the intercept. The optimum

or best bandwidth size was 125 with the smallest AICc

(366.681).
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We also performed the geographical variability

tests of local coefficients in GWR4.09 to identify

variables with spatial variability. In this test, negative

values of DIFF of criterion (in our cases AICc)

indicates spatial variability and positive values indi-

cate no spatial variability in terms of model selection

criteria. The DIFF of criterion was added to the

convenient 5-number summary that defined the extent

of the variability in the parameter estimates across the

study area. These estimates include minimum, 25

percentile, median, 75 percentile andmaximum values

as presented by Manyangadze et al. (2016).

GWLR does not provide the estimates of regression

coefficients at unknown points or points with no

observation. To show the spatial variation of the

regression coefficients kriging method was used to

perform interpolation of the estimated coefficients and

the significant levels (t-values) in ArcGIS 10.4 across

the study area as done by Zhang et al. (2014) and

Manyangadze et al. (2016). The t-value maps were

shown as isolines and overlaid on the corresponding

regression coefficients as advised by Matthews and

Yang (2012). The Global Moran’s I was used to

calculate spatial autocorrelation coefficients for the

residuals of the GWLR model. The smaller the value

of the Global Moran’s I, the smaller the residual

spatial dependence and the better the performance of

the model fitting, including more spatial relations

(Zhang et al., 2014). This means that if Moran’s I of

the residuals is not significant the model is well

specified. All maps were created in ArcGIS10.4. The

Moran’s I indicated no spatial autocorrelation to the

GWLR residuals (Index 0.005, ZScore: 0.315, p-

value: 0.753) indicating that the model was correctly

specified.

Table 1 Comparison of the GWLR and the global logistic model

Model Coefficients Global

AICc

GWLR AICc and Bi-square

kernel bandwidth

1 Intercept; water sources 386.381 370.203 (57)

2 Intercept; household head occupation 403.767 378.613 (103)

3 Intercept; house material 397.977 368.007 (82)

4 Intercept; household head gender 403.676 373.005

5 Intercept; house flooded 402.336 367.749

6 Intercept; household head education level 402.920 373.843

7 Intercept; household Size 403.776347 369.337 (74)

8 Intercept, household head age 399.321650 369.238 (57)

9* Intercept; water sources; house material 386.095 366.681 (125)

10 Intercept, house material, house flooded 399.329 369.607 (99)

11 Intercept; house material, house flooded; household head gender 401.173 376.065 (138)

12 Intercept; house material, house flooded; household head gender; household

head age

377.131 377.132 (154)

13 Intercept; house material, house flooded; household head gender; household

head age; household size

399.680 379.296 (158)

14 Intercept; house material, house flooded; household head gender; household

head age; household size, household head education level

401.736 385.319 (251)

15 Intercept; house material, house flooded; household head gender; household

head age; household size, household head education level; household head

occupation

403.826268 389.711 (312)

16 Intercept; house material, house flooded; household head gender; household

head age; household size, household head education level; household head

occupation; water sources

392.587981 386.559633 (325)

*Best performing model based on AICc
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Results

Socio-demographic risk factors in relation

to malaria cases

Three variables showed significant association with

malaria cases i.e., types of house material; water

sources and age of the household head (Table 2). Other

factors considered in this study (Table 2) did not show

significant association with malaria cases. For exam-

ple, during the flooding periods whether the household

was flooded or not was not be major factor for the

transmission of malaria. However, as people fetched

water from different sources, they also had different

levels of exposure to malaria vector mosquito bites.

Those with no safe source of water were more exposed

(39.2%) followed by those accessing water from

unprotected wells in other villages (38.5). Those

accessing water from their local boreholes were less

exposed to malaria (12.8%).

Type of house material also showed a significant

association with malaria cases. Pole, anddagga with

thatched roofs were associated with higher number of

cases (45.2%) compared to the other two types of

house material i.e., bricks, cement and thatching and

Bricks, cement and asbestos or iron sheets which had

25.1 and 25.0% respectively. The age of the household

head also showed a significant association with

malaria cases. Household heads aged above 25 years

and below 66 years showed a higher exposure to

malaria compared to those below 25 and above

66 years.

Table 2 Household socio-demographic factors in relation to malaria cases

Socio-demographic variables Categories Frequency Malaria

case(s)

Chi-

square

p-value

Yes (%)

Type of house material Pole, dagga and thatching (1) 62 28 (45.2) 9.905 0.007*

Bricks, cement and thatching (2) 195 49 (25.1)

Bricks, cement and asbestos or iron sheets

(3)

76 19 (25.0)

Houses flooded Yes (1) 141 46 (32.6) 1.717 0.190

No (2) 192 50 (26.0)

Gender (household head) Male (1) 189 52 (27.5) 0.369 0.544

Female (2) 144 44 (30.6)

Water sources Local borehole (1) 86 11 (12.8) 19.036 \ 0.001*

Other village borehole (2) 78 20 (25.6)

Other village well closed (3) 26 9 (34.6)

Other village well unprotected (4) 13 5 (38.5)

No other source of water—open (5) 130 51 (39.2)

Age (household head) 15–25 (1) 62 9 (14.5) 13.836 0.017*

26–35 (2) 70 20 (28.6)

36–45 (3) 74 21 (28.4)

46–55 (4) 52 21 (40.4)

56–65 (5) 40 17 (42.5)

66 and above (6) 35 8 (22.9)

Size of the household 5 and below (1) 180 51 (28.3) 1.0 0.607

6–10 (2) 141 40 (28.4)

11–15 (3) 12 5 (41.7)

Level of education (household

head)

Primary level and below (1) 247 75 (30.4) 1.099 0.294

Secondary level and above (2) 86 21 (24.4)

*Statistically significant,\ 0.05
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Malaria cases hotspots

Figure 2 indicates the spatial distribution of the

households with cases of malaria and the consequen-

tial clusters or hotspots. One significant cluster

(p\ 0.05) was observed in ward 10 (Chitsungo) and

16 (Monozi) (Fig. 2) with high risk to malaria (2.68)

when compared to its outside. The characteristics of

this cluster are shown in Table 3.

Local variation of socio-economic variables

in determining the heterogeneity of malaria

In the spatial analysis, only two factors showed spatial

variability in relation to malaria cases. These are water

sources and the types of house material. Table 4 shows

the summary statistics of the coefficients of the locally

varying variables considered in this study.

DIFF of criterion shows the geographical variabil-

ity levels of the local coefficients of the exploratory

variables. Intercept, water sources and type of house

material indicated spatial variability in terms of the

GWLRM used in this study (negative values of DIFF

of criterion i.e., AICc). Higher level of spatial

variability was observed in type of house material

(DIFF of criterion = - 5.742) compared to water

sources (DIFF of criterion = - 1.064).

The local coefficients of water sources and type of

house material showed spatial variation across the

flood prone areas in Mbire District (Table 4). The

coefficients (or odds rations) of the type of house

material ranged from - 1.136 to 1.323. These were

higher than those for water sources which were

between - 0.781 and 0.605. The spatial variation

and significant levels of the interpolated estimated

coefficients of the varying local coefficients (through

kriging) are shown in Fig. 3.

These coefficients (Fig. 3) indicate how much

malaria cases change with changes in the respective

exploratory variables. Figure 3 also shows that the

Fig. 2 Spatial distribution of malaria cases and the detected cluster/hotspots
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significance (t-values ? / - 1.96) of these coeffi-

cients also varied across the study area. Higher

coefficients or odds ratios a variable designates that

it has more effect in that particular area. Intercept

coefficients were high to the northern part (ward 3 and

12) of the study area and were lower and also

significant (t-values - 1.96) to the south western part

(part of ward 9, 10 and 16) including the malaria

cluster shown in Fig. 2. Type of house material

coefficients were the opposite of the intercept as they

were high to the southern part and lower in the

northern side and were significant in the middle part of

the study area and northern part of the identified

cluster or hotspot. Coefficients for water sources were

also high and significant in the southern part of the

study area including parts of the identified hotspot.

Discussion

Spatial analysis of malaria cases has been widely done

in different settings. However very limited studies

have focused on micro-geographical scale especially

in malaria endemic and flood prone areas. This study

has shown that malaria cases also vary at micro-

geographical scale in flood prone areas. Hence,

preparedness and control of this disease should be

guided by this pattern and other related factors. Doing

so is critical since resources are at times not available

or insufficient to respond effectively to malaria

outbreaks in time. GWLR helped in showing the

spatial variation of the coefficients of the key

variables, in this case types of house materials and

water sources which are helpful to understanding the

contribution of these exploratory variables to the

spatial variation of malaria cases. It is also worth

noting that malaria is common in Mbire District even

during months without floods. Hence, floods may only

exacerbate the underlying risk factors of this disease.

This supports the observation by Kouadio et al. (2012)

that natural disasters do not import diseases most of

the time. Therefore, diseases that are not endemic in

the areas affected by floods may not spread easily or

naturally.

The socio-demographic factors considered in this

study were also considered in other studies (Ibor &

Okoronkwo, 2017; Yadav et al., 2014; Yang et al.,

2020). Water sources and type of house material

Table 3 Characteristics of

malaria cluster detected in

the flood prone area in

Mbire District

*Significant p-value\ 0.05

Property Cluster 1

Coordinates/radius (16.289837 S, 30.435586 E)/2.62 km

Locality Ward 10 and 16

Population 40

Number of cases 26

Expected cases 11.53

Observed/expected 2.25

Relative risk (RR) 2.72

Percent cases in area 65.0

Log likelihood ratio (LLR) 13.0

P-value \ 0.001*

Table 4 Summary statistics of varying (local) coefficients in geographically weighted logistic regression for malaria reported cases,

Mbire

Parameter Minimum 25 percentile Median 75 percentile Maximum DIFF of criterion

Intercept - 4.308 - 3.497 - 0.083 0.170 3.043 - 3.742a

Water sources - 0.781 0.087 0.141 0.454 0.605 - 1.064a

Type of house material - 1.136 - 1.073 - 0.579 0.002 1.323 - 5.742a

aNegative values of DIFF of criterion indicate spatial variability
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emerged as key variables in determining spatial

variation of malaria cases at the household level in

flood prone areas in Mbire distict. Yadav et al. (2014)

observed that house material was a significant predic-

tor of malaria at household level. Yang et al. (2020)

also noted that exposure to unprotected water was

exposing the households to malaria. Unlike these

studies, which were non-spatial, this study has gone

further by using GWLR to show how the influence of

these factors on malaria varies at micro-scale. GWLR

indicated that the spatial associations between the

disease risk (in our case—malaria) and the exploratory

factors vary across the landscape. This was also

confirmed by Wu et al. (2016). The local estimates of

parameters of socio-economic factors showed how

they influenced the spatial variation or occurrence of

malaria cases in the flood prone area in Mbire District.

The maps clearly show the strengths and significance

of these variables as indicated by the t-values espe-

cially for water sources and types of house material

which were even significant in and around the

identified cluster or hotspot.

Fig. 3 Spatial variation and significant levels of the estimated

coefficients variables in the best performing geographically

weighted logistic regression model (GWLRM) applied in

malaria endemic and flood prone areas in Mbire District:

a intercept b house material and c water sources
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Some of the factors did not show a significant

association with malaria cases in this study. For

example, whether the household was flooded or not,

malaria cases remained the same. This could be so

because mosquitoes can fly for an average distance of

3 km. Hence, all the households within the flood prone

areas were equally exposed. Based on the chi-square,

the middle-aged groups where more exposed to

malaria compared to elderly and young age groups.

This is mainly due to different levels of exposure to

mosquito bites in flood prone areas. The middle-aged

group are the most active people working in fields

because the studied communities rely mainly on

rainfed crop production along the flood plains.

Malaria hotspots observed in this study may be

helpful in developing appropriate disease prevention

and control measures that target specific local geo-

graphical areas (Bousema et al., 2013; Meurs et al.,

2013; Platt et al., 2018). These hotspots need to be

timely identified for targeted interventions (Manyan-

gadze et al., 2017;WHO, 2007). Stocking contingency

drugs in health facilities can go a long way in

containing malaria during and after floods (Abeku,

2007). For this to be effective, public health officials

should be on high alert to the outbreak of malaria

during and after floods as mentioned by Greenoough

et al. (2001). Hence, rapid disease risk assessment is

required after every flood event of high magnitude.

The risk assessment will help to determine appropriate

key interventions (Kouadio et al., 2012) and inform

decision making process that protects the health and

wellbeing of people (Kouadio et al., 2012; Okaka &

Odhiambo, 2018).

This study contributes to the increasing demand of

information on disasters and diseases. In many occa-

sions, disaster occurrences trigger the outbreak of

diseases. For example, the Haiti earthquake of 2010

triggered tsunami floods which later led to the

outbreak of cholera and malaria among other diseases

(Schuller & Levey, 2014; Versluis, 2014). In Zim-

babwe, the Tokwe-Mukorsi flood disaster of 2014 was

associated with the outbreak of malaria within the

flood dam basin (Mavhura, 2020). Thus, organizations

providing humanitarian assistance following floods

should also be on the lookout to the increased and

potential spatial distribution malaria cases and related

factors among the flooded communities.

The results of this study could also help in effective

allocation of resources including drugs and personnel

during and after floods, to quickly rejuvenate com-

munity health programs that were functioning before

the disaster. However, due to delays in accessing of

some of the areas, resources need to be prepositioned

in the places likely to be affected by floods. There is

also need to consider other methods of delivering

essential drugs, services and related emergency prod-

ucts/instruments. Such methods may include using

drones despite their limited capacity. Some models

have been developed that showed the effectiveness of

using of drones in disaster response and relief

operations (Chowdhury et al., 2017).

Although this study has shown the potential appli-

cation of GWLR in flood-prone environments, further

studies and improvements to the data and level of

modelling are still required. There is need to generate

data from active surveys and consider the prevention

and control measures at household level such as indoor

residual spraying (IRS) and use of insecticide treated

nets (ITNs) as well as the role of passive immunity and

infected asymptomatic individuals who act as reser-

voirs. Lack of such information may have affected the

current results as there is limited understanding on the

contribution of the prevention and control measures to

the spatial variation of malaria cases at household

level. Furthermore, we had no access to data on the

vector mosquitoes, which could also explain the

spatial variation of malaria cases. There is also need

to consider semi-parametric geographically weighted

logistic regression (s-GWLR)model that combines the

local and global parameters. Hence, variables such as

age, which did not show spatial variability, could be

moved to global level. Despite these limitations, this

study has shown the spatial pattern of malaria cases in

flood prone areas and the spatial variation of the

exploratory socio-demographic variables. This study

has also shown the applicability of GWLR as an

exploratory data analysis tool for malaria risk assess-

ment at micro-geographical level that can be applied

in similar settings.

Conclusion

This study examined the spatial distribution of malaria

cases and the associated socio-demographic factors

household level in flood prone areas of Mbire District

in Zimbabwe. The use of the Bernoulli and GWLRMs

allowed us to determine the spatial distribution of
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malaria cases and key socio-demographic determi-

nants. The type of house material and sources of water

emerged the key factors in determining spatial vari-

ation of malaria cases at household level in flood prone

and malaria endemic areas. Hence, some local com-

munities experience increased number of cases of

malaria during and after floods as determined by these

factors. The maps produced in this study are support-

ing the initiatives for malaria risk assessment in the

flood prone areas. Therefore, the results of this study

could form the basis for place-specific malaria inter-

ventions in Mbire District and other similar settings.

The methodology can also be applied in malaria

endemic and flood-prone places across the globe.
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