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Abstract The study presents a spatial analysis of

particulate pollution, which includes not only partic-

ulate matter, but also black carbon, a pollutant of

growing concern for human health. We developed

land use regression (LUR) models for two particulate

matter size fractions, PM2.5 and PM10, and for dC, an

index calculated from black carbon (BC)—a compo-

nent of PM2.5—which indicates the portion of organic

versus elemental BC. LUR models were estimated

over Calgary (Canada) for summer 2015 and winter

2016. As all samples exhibited significant spatial

autocorrelation, spatial autoregressive lag (SARlag)

and error (SARerr) models were computed. SARlag

models were preferred for all pollutants in both

seasons, and yielded goodness of fit aligned with or

higher than values reported in the literature. LUR

models yielded consistent sets of predictors, repre-

senting industrial activities, traffic, and elevation. The

obtained model coefficients were then combined with

local land use variables to compute fine-scale con-

centration predictions over the entire city. The

predicted concentrations were slightly lower and less

dispersed than the observed ones. Consistent with

observed pollution records, prediction maps exhibited

higher concentration over the road network, industrial

areas, and the eastern quadrants of the city. Lastly,

results of a corresponding study of PM in summer

2010 and winter 2011 were considered. While the

small size of the 2010–2011 sample hampered a multi-

temporal analysis, we cautiously note comparable

seasonal patterns and consistent association with land

use variables for both PM fine fractions over the 5-year

interval.

Keywords Spatial land use regression (LUR) �
Spatially autoregressive lag and error models � Air

pollution fine-scale prediction maps � Air pollution

and human health � Particulate matter (PM2.5 and

PM10) � Black carbon (BC, delta-C, organic vs.

elemental)

Introduction and rationale

Particulate matter (PM) is a mixture of small particles:

acids, organic chemicals, metals, and dust particles

(EPA 2016). Coarse particles (PM10) are 2.5–10

micrometers in diameter; fine particles (PM2.5) are

less than 2.5 micrometers in diameter. Black carbon

(BC) is a component of PM2.5, formed by the

incomplete combustion of biomass and fossil fuels,
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and part of the complex mixture often referred to as

soot (Bond et al. 2013). BC is an indicator of a variable

mixture of particulate material from a large variety of

combustion sources, and can be separated into:

elemental carbon (EC), mainly an indicator of fossil

fuel combustion; and organic carbon (OC), mainly an

indicator of biomass burning. Particulate pollution is

associated not only with reduced visibility, environ-

mental degradation, and climate change (Ramanathan

and Carmichael 2008), but also with adverse health

effects, not limited to respiratory and cardiovascular

morbidity and mortality (Ruckerl et al. 2011; Janssen

et al. 2012). Particle mixture and chemical composi-

tion—as well as health impacts—vary by size fraction,

and health impacts vary across individuals, e.g., by age

and susceptibility (Kelly and Fussell 2012; Tian et al.

2018). Scientific evidence of the environmental and

health effects of BC pollution has grown in recent

years, along with increasing attention to its spatial

variability. Its sources range from diesel engines and

coal-fired power plants to residential wood burning,

agricultural waste burning, and forest fires (Janssen

et al. 2012). Health concerns have sparked debate on

the role of wood-burning fires and stoves as BC

emitters in developed countries, both in the scientific

community (Rokoff et al. 2017) and among the

general public (e.g., The Guardian1), and Canada is

no exception (The Globe and Mail2).

Despite growing awareness of the spatial hetero-

geneity of air pollution, air quality monitoring tends to

remain sparse over space, due to monitoring cost. For

example, the regulatory network of Calgary, a city of

over 800 km2, consists of only three continuous

monitoring stations, which collect PM records (CRAZ

2016). With respect to BC, Canada (ECCC 2018) has

released yearly Black Carbon Inventories since 2015

(with data from 2013), yet data are aggregated at the

Country level. Despite promising advances, satellite

and image analysis technologies allow only for

particle pollution estimates at relatively coarse spatial

resolution (Hu et al. 2014; Zhang et al. 2018); hence,

fine scale air quality measurements continue to be

hampered by high monitoring costs. To date, land use

regression (LUR) models remain a valuable method to

estimate air pollution at high spatial resolution, even at

the intra-urban level, based on the observed relation-

ship between pollution records and land use variables

at sampled sites (Henderson et al. 2007).

This study presents a spatial analysis of particulate

pollution in the city of Calgary, Alberta, Canada. It

focusses on the analysis of two particulate matter size

fractions, PM2.5 and PM10, as well as dC (i.e., OC-

EC), a black carbon index that is used as indicator of

the proportion of pollution associated with fossil fuel

versus biomass combustion. The analysis uses data

drawn from a monitoring campaign conducted with

Health Canada in summer 2015 and winter 2016

(Couloigner et al. 2017). Both PM size fractions as

well as dC exhibit significant spatial variation over the

area; therefore, a spatial version of standard linear

LUR models, i.e., spatial autoregressive (SAR) mod-

els are estimated for each pollutant in each season.

LUR model coefficients are then used to compute air

pollution estimates at fine spatial resolution over the

whole city. Finally, we consider a similar study of PM

conducted over the same area in 2010–2011 (Bertaz-

zon et al. 2016): based on analyses conducted over the

5-year interval, we offer some preliminary thoughts on

the temporal spatial pollution pattern of PM over the

area.

The use of spatial methods in LUR models, in

comparison with standard LUR, i.e., linear models,

reduces the spatial error associated with parameter

estimates; therefore, this study improves our under-

standing of particulate pollution over space, thus

increasing the reliability of fine-scale pollution esti-

mates. These fine-scale pollution estimates can feed

into models of health risk and environmental expo-

sure, to aid the definition of spatially-aware health

policies and healthy behavior guidelines, potentially

reducing the health risks associated with particulate

pollution. Furthermore, the LUR analysis of dC can

contribute to our understanding of the role of domestic

wood burning in black carbon pollution.

The LUR literature presents relatively few analyses

of particulate matter, the majority of which, despite

some exceptions (e.g., Bertazzon et al. 2016; Hender-

son et al. 2007; Xu et al. 2018; Zhang et al. 2015), are

concerned with PM2.5. Studies focusing on black

carbon have only begun to emerge in recent years

(Clougherty et al. 2013; Dons et al. 2013; Saraswat

et al. 2013; Hankey and Marshall 2015; van Nunen

1 https://www.theguardian.com/money/2018/may/26/wood-

burner-open-fire-pollution-cleaning-up-air-quality.
2 https://www.theglobeandmail.com/life/home-and-garden/

design/the-quest-for-cleaner-fire-why-its-time-to-rethink-our-

favourite-way-to-get-warm/article28780027/.
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et al. 2017; Weichenthal et al. 2016; Lee et al. 2017).

The main contribution of this paper to the LUR fine

particle literature is the development of explicitly

spatial LUR models, that is, spatial lag autoregressive

models. Furthermore, the paper analyzes an array of

particles, and models the difference between organic

and elemental carbon (dC), providing insights on the

main contributor of BC pollution: residential biomass

burning in winter versus forest fires in summer, or

fossil fuel combustion. Finally, the study addresses the

seasonal and temporal dimension of fine particle

pollution over a large urban area: it presents models

estimated for two consecutive diametric seasons

(summer 2015 and winter 2016), as well as their

corresponding analyses for summer 2010 and winter

2011 over the same area for PM2.5 and PM10. Due to

sample limitations of the 2010–2011 study, this paper

cannot provide a multi-temporal spatial analysis.

Methods

Study site and monitoring data

Calgary is located on the eastern foothills of the Rocky

Mountains, with an elevation range of 300 m around

the 1050 m of the downtown core. Its climate is cold

and dry, with prevailing cold and dry strong Arctic

(northern) winds, with periods of warmer, moister

western currents from the Pacific Ocean (see Fig. 1).

The metropolitan area extends over more than 825

square kilometers; with a population of almost 1.4

million, it ranks as the fourth largest metropolitan area

in Canada (Statistics Canada 2017). Industrial land use

(light manufacturing) lies mostly in the eastern

quadrants of the city. Commercial and urban trans-

portation occurs on a network of roads and two

railroads across the city.3 Lying on the transition

between the foothills and the prairie, the urban area is

surrounded by livestock operations, hay growing and

agriculture, satellite communities, and First Nations

territories (Tesar 2018).

The sampling campaign was conducted in summer

2015 (August 5–19) and winter 2016 (January 20–

February 3), with the deployment of 125 monitors over

an extended regional study area; of these sites, 84 were

located within the city of Calgary. In addition to the 84

urban sites, this study used sites located within a

10-km buffer around the city, for a total of 108

monitoring sites. Using a modified version of the

location–allocation (L–A) method suggested by

Kanaroglou et al. (2005), sampling sites were identi-

fied to optimize spatial coverage and site representa-

tiveness, with a minimum 1-km distance between any

two sites, as detailed by Bertazzon et al. (2015, 2019).

The campaign made extensive use of volunteered

geographic information (VGI) (Goodchild 2007).

Volunteer hosts contributed to the campaign success

in many ways, e.g., by allowing for optimal monitor

location, by avoiding disturbances to the recordings,

such as mowing the lawn or smoking near the

monitors, and by promptly alerting the research team

of power outages and any other malfunction or

potential interference with the recording.

For each pollutant (PM2.5, PM10, and BC), the

analyses yielded 85–86 valid samples in summer 2015

and 93–100 valid samples in winter 2016 (Couloigner

et al. 2017). All these sample sites are shown in Fig. 1.

Health Canada analyzed the recordings for each

pollutant and provided validated 2-week integrated

pollutant concentrations for each season (Couloigner

et al. 2017). Gravimetric PM2.5 and PM10 measure-

ments were collected using Harvard Cascade Impac-

tors developed by Lee et al. (2006) with 37 mm Teflon

filters. BC was measured via optical scanning of

gravimetric PM2.5 samples using a SootScan Model

OT21 transmissometer, for which the analysis was

conducted at two wavelengths: 880 nm (measuring

EC) and 370 nm (measuring OC), thus generating

2-week integrated measures of EC and OC. dC (= OC

– EC) was calculated to provide an indication of fossil

fuel combustion (when dC\ 0) versus biomass burn-

ing (when dC[ 0) (Wang et al. 2012).

Predictors

Predictors were computed from information acquired

from several sources, detailed by Bertazzon et al.

(2019), which included land use (Calgary Region

2016), topography (AltaLIS lidar), industrial emis-

sions (Environment and Climate Change Canada

2014; Environment and Natural Resources Canada

2015), and transportation network (Natural Resources

Canada 2016) data. Predictors were calculated on
3 Light rail transit lines run alongside some of the main roads.
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circular buffers defined on each monitoring site, listed

in Table 1.

LUR and spatial methods

Following the methodology described by Bertazzon

et al. (2015, 2019), standard descriptive statistics and

exploratory spatial data analyses were conducted on

the response and predictor variables. Moran’s I spatial

statistical tests (Getis 2008) were conducted to assess

spatial autocorrelation and clustering in the response

variables. Predictors were identified using cross-

correlation analysis as well as a combination of expert

knowledge, stepwise selection, and subsets regression

methods, as detailed by Bertazzon et al. (2019). Model

selection was conducted independently for each

model. Models were assessed by conventional regres-

sion diagnostics for spatial autoregressive modelling.

The goodness of fit of spatially autoregressive models

was assessed by a pseudo R2, calculated as the squared

correlation between observed and predicted values,

following Anselin (1988). The adjusted pseudo R2 was

computed with the standard adjusted R2 formula (Burt

et al. 2009).

Standard linear LUR models (Hoek et al. 2008) are

described by Eq. 1 and are generally estimated by

ordinary least squares (OLS). Preliminary LUR mod-

els were estimated for each pollutant and season using

this method. The residuals of each model were tested

via Lagrange Multiplier and residual Moran’s I tests

(Getis 2008).

yi ¼ b0 þ
X

k

bkxik þ �i ð1Þ

In light of the spatial pattern exhibited by all the

response variables and the OLS model residuals, lag

and error spatially autoregressive (SAR) models

(Anselin 1988; Bivand et al. 2013) were estimated.

Lag SAR models (referred to as SARlag throughout

the paper) are described by Eq. 2, and error SAR

models (referred to as SARerr throughout the paper)

are described by Eq. 3.

yi ¼ b0 þ
X

k

bkxik þ qWyi þ �i ð2Þ

yi ¼
X

k

bkxik þ ui; u~¼ kWu~þ �~ ð3Þ

Fig. 1 Monitoring sites for summer 2015 and winter 2016 for the city of Calgary, Alberta, Canada
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where yi is the response variable at location i; bk are

the regression coefficients; xi1 through xik, are the

predictor variables; q and k are the spatial autoregres-

sive coefficients (for lag and error model respec-

tively); W is a spatial weights matrix (which was

created using 3 nearest neighbors); and e is the error.

Spatial autocorrelation in OLS model residuals is

conceptualized and addressed differently in the

SARlag model (Eq. 2) versus the SARerr model

(Eq. 3): the SARlag specification models a spatially

autocorrelated dependent variable, whereas the SAR-

err specification models a spatially autocorrelated

error, which may be associated with model misspec-

ification, e.g., a missing independent variable.

Land use and environmental variables were created

using ESRI ArcGIS. LUR models and fine level

predictions were calculated in R (R Core Team 2018)

using mainly the ‘spdep’ (Bivand et al. 2013; Bivand

and Piras 2015), ‘car’ (Fox and Weisberg 2011) and

‘lmtest’ packages (Zeileis and Hothorn 2002). All

maps were created using ESRI ArcGIS.

Results

Descriptive statistics

Descriptive statistics for all the pollutants are sum-

marized in Table 2: the measures of central tendency

are median and mean; the measures of dispersion are

standard deviation (SD) and interquartile range (IQR);

the measure of normality is the Shapiro–Wilk (S–W)

test; and the measure of spatial autocorrelation and

clustering is global Moran’s I.

The two PM size fractions exhibited similar values

in both seasons (mean and median), with greater

variation in the winter (SD and IQR), whereas dC

exhibited larger values and greater variance in the

winter. dC exhibited negative values, indicating that

elemental carbon was always greater than organic

carbon. The distributions could be considered statis-

tically normal (S–W C 0.95), and both PM fine

fractions, as well as dC, exhibited significant spatial

autocorrelation (Moran’s I) and clustering (Florax

et al. 2003) in both seasons. Spatial autocorrelation

was lower for both PM size fractions in the summer.

Summer LUR models

Lag and error SAR models for summer 2015 are

summarized in Table 3.

All three summer models yielded identical sets of

significant predictors. These sets comprised: two

industrial indicators, i.e., industrial land use (within

a 1000-m buffer) and the respective PM emitters (in all

cases within a 3000-m buffer); one traffic indicator,

i.e., collector roads within a 500-m buffer; and

elevation. In terms of goodness of fit, the adjusted

pseudo R2 lay around 0.60 for both PM2.5 models,

around 0.70 for the PM10 models, and around 0.80 for

the dC models. Consistent with AIC, these results

Table 1 Land use regression predictors. Adapted from Bertazzon et al. (2016)

Variables Unit or description Circular buffers (m)

Elevation Elevation at the sampling site in meters

Local roads Total length of road segments within buffer, in meters 100, 200, …, 500, 750, 1000

Collector roads

Arterial roads

Expressways and highways

Major roads Sum of Collector and Arterial road segments within buffer, in meters

Land use: residential Percentage of area covered by zoning category within buffer 100, 200, …, 500, 750, 1000

Land use: industrial

Land use: commercial

Land use: institutional

Land use: parks

Industrial PM2.5 emissions Reported emitting points 1000–6000 every 1000

Industrial PM10 emissions
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indicate a slightly better performance of the lag model

for PM2.5 and dC, whereas the error model performed

slightly better for PM10. RSS exhibited consistent

values for PM2.5 and dC in contrast with higher values

for PM10. The intercept for PM2.5 was high in SARerr

(? 29.7% compared to the maximum observed PM2.5

concentration) while it was similar to the median

observed value (Table 2) for SARlag. Likewise, the

intercept for PM10 in SARerr was higher than SARlag

(? 56.4% vs ? 9% compared to the maximum

observed PM10 concentration). For dC, the intercept

of SARerr was as well high compared to the maximum

observed dC. For these reasons, SARlag was the

preferred model in all cases, and will be used to

estimate fine-scale concentration levels.

Winter LUR models

Lag and error SAR models for winter 2016 are

summarized in Table 4.

The winter models for all pollutants yielded similar

sets of predictors, which were also consistent with the

summer models. Significant predictors were: indus-

trial indicators, i.e., land use within 1000 m; the

respective PM emitters within 6000 m; traffic indica-

tors, i.e., local roads within 100-m or major roads

within a 750-m buffer; and elevation; in addition,

commercial land use within 500 m was marginally

significant only for PM2.5. The rank order of signif-

icance of the predictors varied across models.

Overall, the winter models achieved greater good-

ness of fit than the summer ones, with adjusted pseudo

R2 around 0.86 for PM2.5 and dC, and in the high

0.70 s for PM10. The two PM2.5 models were similar,

with slightly lower AIC and RSS for SARlag. The

intercept of SARerr was again high (? 83% compared

to the maximum observed PM2.5 concentration) while

it was ? 7% for SARlag. For PM10, the SARlag model

achieved lower AIC and RSS, as well as a lower

intercept. For dC, the two models were very similar,

with lower RSS, AIC, and intercept for SARlag.

Hence, SARlag was, again, the preferred model in all

cases, and will be used to estimate fine-scale concen-

tration levels for the winter.

Estimated concentration surfaces

Using the coefficients yielded by the SARlag models

summarized in Tables 3 and 4, PM2.5, PM10, and dC

concentrations were estimated, for summer 2015 and

winter 2016, for the whole city. The estimation scale

was the Dissemination Block (DB) level (Statistics

Canada 2011), i.e., more than 7100 points within the

urban area.

Descriptive statistics were calculated on the esti-

mated DB level concentrations (Table 5) in order to

compare them with the observed ones (Table 2) as a

map accuracy assessment.

With respect to central tendency, the tables show

that the medians of the estimated values were similar

to those of the observed ones, with the estimated

values slightly lower (\ 5%), with the exception of

winter PM10 (? 8%) and summer dC (- 42%).

Estimated mean values were similar to the observed

ones, again with the single exception of summer dC

(- 29%). The interquartile range was generally lower

in the estimated values (by 19% to 38%), with the

exception, again, of winter PM10, where it was 8%

Table 2 Descriptive statistics of valid PM samples and delta C index for the 2015–2016 campaign

N Min Median IQR Max Mean SD S–W test p(S–W) Moran’s I p(z(I))

PM2.5

Summer 86 4.50 6.60 1.28 8.90 6.61 0.86 0.98 0.17 0.45 7.0E?09

Winter 100 1.60 6.75 4.30 14.30 6.66 2.66 0.98 0.09 0.79 \2.2e-16

PM10

Summer 85 8.10 12.60 4.40 19.90 13.31 2.88 0.96 5.3E-03 0.43 1.3E-09

Winter 93 2.70 11.80 7.30 23.40 11.59 5.00 0.98 0.14 0.71 \2.2e-16

dC

Summer 86 - 0.86 - 0.12 0.27 0.15 - 0.17 0.20 0.95 1.5E-03 0.68 \2.2e-16

Winter 96 - 1.34 - 0.58 0.47 - 0.12 - 0.61 0.33 0.95 1.8E-03 0.79 \2.2e-16
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higher. As well, the standard deviation of the

estimated values was similar to that of the observed

values. Overall, the pollutants’ estimations exhibited

slightly lower values than the observed concentrations

and with lower dispersion. Notably, the sample size of

the estimated values was over 70 times larger than the

observed ones, which may affect the comparability of

the statistics.

DB-level PM2.5 and PM10 estimated concentration

maps obtained from SARlag model coefficients are

shown in Fig. 2 for summer 2015 and in Fig. 3 for

winter 2016. DB-level dC estimated concentration

Table 5 Descriptive statistics of fine-scale estimated PM and dC from the 2015–2016 models

N Min Median IQR Max Mean SD

PM2.5

Summer 15 7137 5.10 6.42 0.80 10.03 6.57 0.74

Winter 16 7137 0.31 6.69 3.06 15.86 6.90 2.49

PM10

Summer 15 7137 7.79 12.58 2.84 25.58 13.08 2.69

Winter 16 7137 - 2.64 12.76 7.89 39.24 14.04 6.50

dC

Summer 15 7137 - 1.19 - 0.07 0.18 0.17 - 0.12 0.21

Winter 16 7137 - 1.90 - 0.55 0.38 0.09 - 0.60 0.33

Fig. 2 Estimated concentration maps of summer PM2.5 and PM10 at fine scale using the SARlag models
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maps, obtained with the same method, are presented in

Fig. 4.

The estimated concentration surfaces for the two

PM size fractions exhibited consistent patterns, with

elevated values over the industrial areas and the road

network. PM2.5 exhibited a higher background level

outside these areas, with a more diffused pattern. For

both fine fractions, maps show slightly higher con-

centrations in the eastern part of the city, according to

the prevailing winds, captured by the spatial autore-

gressive term, which are westerly in the summer and

northwesterly in the winter.

Winter and summer surfaces are mapped using a

consistent classification for each pollutant. For both

fine fractions, the estimated winter spatial patterns

exhibited association with industrial zones and with

the road network. The association with the local road

network was more pronounced in winter than summer.

They both exhibited higher concentrations over the

east.

The summer estimated concentration surface of dC

presented slightly positive values and exhibited a

sharp contrast between low concentrations in the west

quadrants versus high concentrations in the east

quadrants: the industrial areas emerged clearly even

from the eastern polluted background. The winter map

exhibited a more consistent pattern of pollution over

all quadrants. In the winter, pollution also radiated

more gradually from industrial areas.

PM models for summer 2010 and winter 2011

A corresponding campaign was conducted for PM2.5

and PM10 in summer 2010 (August 4–18) and winter

2011 (January 29–February 11), deploying 50 moni-

tors within the city limits with the allocation strategy

described above. Due to power outages, equipment

failures, and other interferences, the campaign yielded

only 27 valid samples in the summer and 29 in the

winter. Due to the unpredictable nature of the

malfunctions, the spatial sample was more random

than planned (Zhang et al. 2015; Bertazzon et al.

2016). Descriptive statistics are summarized in

Table 6.

In summer 2010, both PM fractions exhibited

greater (mean and median) values than in winter 2011,

Fig. 3 Estimated concentration maps of winter PM2.5 and PM10 at fine scale using SARlag model coefficients
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yet both fine fractions exhibited greater variability

(IQR, standard deviation) in the winter. Both fine

fractions could be considered normal in the winter (S–

W C 0.95) but not in the summer (S–W B 0.95).

Neither fine fraction exhibited significant spatial

autocorrelation in either season.

In light of these results, standard regression meth-

ods, i.e., OLS, were employed to estimate the LUR

models, summarized in Table 7.

Summer 2010 LUR models yielded one industrial

indicator and two traffic indicators. For both PM size

fractions, adjusted R2 lied in the low 0.70 s and

residual spatial autocorrelation was not significant.

RSS for PM10 was approximately twice as large as for

PM2.5. Similarly, the intercept of PM10 was approx-

imately twice as large as that of PM2.5.

Winter 2011 LUR models were less consistent. For

both fine fractions they featured two industrial indi-

cators, i.e., industrial land use (over buffers ranging

Fig. 4 Estimated concentration map of summer and winter dC at fine scale using SARlag model coefficients

Table 6 Descriptive statistics of valid PM samples for the 2010–2011 campaigns. Adapted from Bertazzon et al. (2016)

N Min Median IQR Max Mean SD S–W test p(S–W) Moran’s I p(z(I))

PM2.5

Summer 27 7.03 8.29 1.03 10.74 8.41 0.85 0.94 0.11 0.00 7.8E-01

Winter 29 2.32 5.29 1.61 9.75 5.48 1.65 0.98 0.85 0.07 0.42

PM10

Summer 27 11.30 14.26 2.97 23.76 15.16 2.69 0.90 0.01 0.11 2.3E-01

Winter 29 4.17 8.66 4.36 16.33 9.13 3.09 0.97 0.60 0.13 0.21
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greatly in size) and PM emitters over identical buffers;

the third predictor was major roads for PM2.5, and park

land use, with negative coefficient, for PM10. For both

fine fractions, adjusted R2 lied around 0.50 and

residual spatial autocorrelation was not significant.

RSS of PM10 was approximately four times larger than

that of PM2.5, and the intercept of PM10 was approx-

imately twice that of PM2.5.

Discussion

Seasonal and spatial distribution of PM and dC

The two PM size fractions exhibited consistent

seasonal and spatial patterns. Seasonally, concentra-

tions were similar in summer and winter, with greater

variability in the winter. As well, spatial autocorrela-

tion was significant in both seasons, yet greater in the

winter. dC exhibited similar seasonal and spatial

patterns, yet with greater values in winter than

summer.

Winter PM pollution is generally associated with

heating and winter driving; summer PM pollution in a

prairie city with dry climate and strong winds may be

associated with dust, dirt, and soil particles, largely

originating naturally in open spaces in and around the

urban area. In the winter, the snow cover might keep

particles on the ground, reducing the suspended

amount. Summer particulate pollution may also be

associated with smoke from forest fires, which occur

in the late summer in the forested mountain areas west

and southwest of Calgary and have become increas-

ingly frequent and severe in recent years. Smoke and

particles are transported over the city by westerly

winds, at times posing visibility and health hazards.

However, no major forest fire events were recorded in

the nearby mountain areas during the summer cam-

paign (Mirzaei et al. 2018).

dC exhibited consistently negative values, indicat-

ing that the elemental carbon fraction was always

Table 7 Standard LUR models for PM2.5 and PM10 in summer 2010 and winter 2011. Adapted from Bertazzon et al. (2016)

PM2.5 Beta t value PM10 Beta t value

Summer 2010

Intercept 7.87E?00 39.49 Intercept 1.42E?01 33.47

Industrial WR1 3000 m 5.86E-07 7.35 Industrial WRa 5000 m 6.82E-07 5.53

Local roads distance - 5.11E-03 - 3.13 Local roads distance - 1.16E-02 - 2.28

Sum major roads 750 m 7.25E-05 2.60 Expressways 400 m 2.33E-03 2.90

(p)-R2/adjusted 0.75 0.72 (p)-R2/adjusted 0.75 0.72

AIC 39.71 AIC 101.25

RSS 4.75 RSS 46.41

Moran I/p(z(I)) 0.01 0.64 Moran I/p(z(I)) - 0.12 0.57

LMerr Res 0.25 0.62 LMerr Res 0.74 0.39

Winter 2011

Intercept 4.25E?00 11.34 Intercept 8.31E?00 10.90

Industrial WR1 3000 m 1.00E-05 2.76 Industrial 300 m 1.31E-05 1.91

PM emitters 6000 m 2.43E-01 1.84 PM emitters 6000 m 0.44 1.82

Major roads 200 m 1.55E-03 1.95 Parks 200 m - 5.05E-05 - 2.40

(p)-R2/adjusted 0.51 0.45 (p)-R2/adjusted 0.54 0.48

AIC 99.68 AIC 134.33

RSS 37.41 RSS 123.57

Moran I/p(z(I)) - 0.04 0.46 Moran I/p(z(I)) - 1.43E-03 0.33

LMerr Res 0.06 0.80 LMerr Res 1.00E-04 0.99

aWR: wind rose buffers, i.e., shapes created from circular buffers to represent prevailing winds
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larger than the organic carbon fraction. Specifically,

the negative sign of dC in the winter suggests that

domestic biomass burning, through wood-fire burning

stoves and fireplaces, provides no more than a modest

contribution to BC pollution. These results thus appear

to challenge the widespread narrative that ascribes

much of the BC pollution to Calgarians’ wood burning

in their fireplaces during the winter. Further, dC is

lower in winter than in summer, indicating that the

portion of elemental carbon pollution is larger in the

winter, which is consistent with higher PM pollution in

the winter, associated with gas heating and winter

traffic, with vehicle engines running harder and idling

more, therefore polluting more during the cold months

(i.e., when daily temperatures average - 7.5 �C,

versus 15.2 �C summer average daily temperatures).

Spatial LUR models and predictors

All models achieved a goodness of fit aligned with—

or greater than—results reported in the literature (e.g.,

Hankey and Marshall 2015; Lee et al. 2017; van

Nunen et al. 2017; Weichenthal et al. 2016). Spatially

autoregressive models often achieve goodness of fit

greater than the corresponding standard models,

owing to the additional autoregressive term (refer to

Eqs. 1, 2, and 3). While varying in value, the autore-

gressive q and k coefficients consistently exhibited

high and significant values. These results, along with

residual spatial autocorrelation tests, suggest that the

spatial autoregressive models effectively address the

spatial autocorrelation observed in the response vari-

ables. The better performance of the SARlag models,

compared with the SARerror models, further suggests

that the observed spatial autocorrelation is indeed

associated with the spatial clustering in the response

variables, rather than an indication of misspecifica-

tion, e.g., missing variable. Overall, SARlag models

appear to be adequate tools for all three response

variables in both seasons. This said, both SARlag and

SARerr PM10 models exhibit high RSS in both

seasons, higher than for the corresponding PM2.5

models, despite R2 and AIC values that are substan-

tially aligned across the two size fractions. This

residual variability does not appear to be associated

with spatial clustering, as residual Moran’s I and LM

tests are never significant. It may be, therefore, simply

associated with greater variability in the response

variable, as PM10 exhibits higher IQR and standard

deviation than PM2.5 in both seasons.

Summer models feature an identical set of four

predictors across the three pollutant species, almost in

the same rank order of significance: two industrial

pollution indicators, one transportation indicator, and

elevation. Winter models feature more diverse sets of

predictors. Elevation ranks among the most significant

predictors in all three winter models. Notably, the

winter buffer of industrial land use for PM2.5 is twice

as large as the corresponding summer buffer. The

winter traffic pollution indicator is local roads within a

100-m buffer, as opposed to collector roads within

500 m in the summer, which suggests a more local

dimension of traffic PM pollution in this season, as

noted above. As discussed elsewhere (Bertazzon et al.

2015), this may also be a spurious indicator, repre-

senting residential pollution, i.e., heating. In addition,

the PM2.5 model contains commercial land use within

a 500-m buffer, possibly indicating an association with

parking, starting, and idling vehicles, which may occur

both with delivery trucks and consumer vehicles on

shopping trips. For dC, industrial buffers are smaller,

elevation is relatively less significant, and the traffic

indicator is major roads, over a relatively large 750-m

buffer.

Larger buffers and more significant elevation in the

winter suggest the effect of stronger and more variable

winds, in conjunction with lower temperatures.

Indeed, these meteorological variables may be asso-

ciated with the greater variability and spatial variabil-

ity observed for all particles in the winter.

Estimated concentration surfaces

Estimated surfaces were calculated from model coef-

ficients and local land use variables. These variables

remain constant across seasons. With consistent

summer models, differences across surfaces result

only from differences in coefficients, whereas in the

winter they emerge also from a more diverse set of

predictors and buffer sizes.

Descriptive statistics of the estimated concentra-

tions (map analysis) indicate that the estimated

concentrations are slightly lower than the observed

ones, with slightly lower dispersion. The only

notable exception is summer dC, which exhibits mean

and median estimated values approximately 30–40%

lower than observed values. This difference may be
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related to natural particles, as well as smoke from

forest fires, as discussed above. The prediction map

suggests that the western part of the city, closer to

meadows and open land, is slightly more affected by

dust than by transportation and industrial pollution.

Dirt particles and forest fire smoke would enter the

study area from the less-polluted west and southwest,

forming a local anomaly, possibly associated with

elevation, but not with traffic or industrial activities.

Given the prevalence of other associations across the

sampled points, this anomaly may have escaped the

LUR models, resulting in under-prediction in the

city’s western quadrants.

Summer estimated concentration surfaces portray a

more intense pattern of PM10 compared with PM2.5,

with higher concentrations over the industrial areas

and the road network. Pollution appears to decline

gradually from industrial areas and medium-size

roads. Higher concentrations over the eastern quad-

rants are consistent with industrial land use and

prevailing winds. The winter surfaces present sharper

contrast between high- and low-pollution areas. Visu-

ally, industrial areas and road network merge forming

highly polluted blotches that also coincide with valley

bottoms where roads run, and pollution may stagnate

in the winter. Larger buffers of model predictors form

a more continuous winter pollution pattern over the

road network. Conversely, dC exhibits more contrast

in the summer and a more diffused pattern in the

winter. Higher pollution over the east quadrants is

more a feature of summer than of winter. The road

network exhibits association with pollution only

locally in the winter, e.g., NW, NE, and SW of the

industrial areas. Pollution is not discernibly higher

over major roads, which is consistent with model

predictors, and suggests that heavy traffic travels on

the partially completed ring road (Bertazzon et al.

2019), as recommended by the city of Calgary truck

route bylaw (City of Calgary 2020).

Preliminary considerations: 2015–2016

versus 2010–2011 models

Despite the smaller sample size of the 2010–2011

study (approximately 1/3 of the 2015–2016 study),

PM seasonal patterns were consistent across the two

campaigns, although concentrations were higher in

summer 2010 than winter 2011. In 2010–2011, spatial

autocorrelation was not significant, suggesting that the

spatial properties detected in a large and regular

sample could not be detected in a smaller and more

random spatial sample.

The spatial properties of the sample led to the

estimation of standard, rather than spatial, LUR

models for 2010–2011, which exhibited no significant

residual spatial autocorrelation. Some predictors used

in that study were not the same as in 2015–2016, yet

they were consistent indicators of the same phenom-

ena (Bertazzon et al. 2016, 2019). This said, the sets of

predictors were consistent, especially for the summer

models. Winter 2011 models featured industrial

predictors, along with major roads for PM2.5 and park

land use, with negative sign, for PM10. The latter

predictor may be associated with the snow cover, as

discussed, or may be a spurious predictor, possibly

related to the high variability of larger particles in the

winter. Despite the use of standard models in

2010–2011 and spatially autoregressive models in

2015–2016, goodness of fit was comparable, with the

exception of winter 2011, which was lower than winter

2016, as well as lower than summer 2010. Interest-

ingly, despite the noted differences in sample size,

model specification, and predictors, the 2010–2011

PM10 models exhibited higher intercept and RSS than

the corresponding PM2.5 models, as did the 2015–2016

models.

The limitations of the 2010–2011 sample prevented

us from conducting a multi-temporal analysis across

the 5-year interval; nonetheless, we note, with due

caution, consistency between seasonal patterns and

association with land use variables both for PM2.5 and

PM10. Building on these preliminary, yet promising

results, the research team was planning a new

monitoring campaign for summer 2020 and winter

2021, which was halted by the COVID-19 pandemic.

New campaigns will be conducted as soon as the

conditions permit it.

Conclusion

The study analyzed two particulate matter size frac-

tions, PM2.5 and PM10, along with black carbon (BC),

a component of PM2.5. Specifically, the BC index dC

was calculated, as an indicator of the portion of

organic versus elemental BC. Land use regression

(LUR) models were estimated for particulate samples

collected over the city of Calgary (Canada) in summer
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2015 and winter 2016. All samples, PM2.5, PM10, and

dC, exhibited significant spatial autocorrelation in

both seasons. Therefore, spatial LUR models were

computed, to reduce the spatial error associated with

standard LUR models. Spatial autoregressive lag

(SARlag) and error (SARerr) models were compared,

and SARlag models were preferred for all pollutants in

both seasons. The SARlag LUR models yielded

goodness of fit aligned with or higher than values

reported in the literature. Both seasonal PM10 models

exhibited relatively high intercept and residual sum of

squares, compared with the corresponding PM2.5

models. All three summer models yielded identical

sets of predictors, representing industrial activities,

traffic, and elevation. The three winter models exhib-

ited more diversity in predictors and related buffer

sizes; in all models, elevation was more significant in

winter than in summer. The model coefficients were

used in combination with local land use variables to

compute fine-scale concentration predictions over the

city, i.e., at the dissemination block level, or for over

7100 points. The predicted surfaces exhibited seasonal

variation, as well as differences across size fraction

and pollutants. Descriptive statistics of estimated

values indicated that predicted concentrations were

slightly lower (mean and median) and less dispersed

than the observed concentrations. Summer dC exhib-

ited the largest difference between observed and

estimated concentrations. The visual pattern dis-

cernible on the maps shows higher concentration over

the road network and industrial areas, as well as the

down-wind eastern quadrants. Lastly, the results of a

corresponding study of the two PM size fractions in

summer 2010 and winter 2011 were considered. Due

to fewer monitors and random recording malfunctions,

the 2010–2011 sample size was approximately 1/3 of

the 2015–2016 sample size, which hampered a multi-

temporal LUR analysis of PM. Preliminary thoughts

drawn from the two studies suggest consistency of PM

seasonal patterns and their association with land use

variables over the 5-year interval.
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