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Abstract In 1939, Carl Troll pointed out that ‘‘air

photo interpretation is to a large extent landscape

ecology’’. From that time forward, remote sensing has

been applied across different disciplines to compre-

hend the holistic and dynamic spatial layout of the

visual Earth environment. However, its applicability

in the domain of landscape character assessment,

landscape design and planning is still questionable.

The purpose of this paper was to synthesise some

historical and current applications of remote sensing

for the decomposition of the continual visual land-

scape from a bird’s eye perspective and to explore the

potential for bridging geographic processes with

visual perception and an appreciation of the landscape

pattern. From the point of view of landscape ecology,

the organisation of the landscape pattern [namely, the

size, shape (form), number, density and diversity, the

complexity of landscape elements, and colours and

textures of the land cover] is crucial for the cognition

of both the visual landscape experience and the

geographic processes. There are numerous pieces of

evidence from the literature that remote sensing data

are widely implemented in the modelling of physiog-

nomic landscape. The synthesis of the literature

concludes with perspective directions of remote

sensing applications, such as mapping the status of

the ecosystem (landscape) services provision, the

delineation of the boundaries of the protected areas

based on the quality of the visual environment, and the

assessment of the sustainability of the land use

practices, regarding their impact on landscape aes-

thetics extent.

Keywords Visual landscape � Landscape character �
Landscape attributes � Landscape indicators � Earth

observations � Remote sensing

Introduction

One of the most challenging tasks in contemporary

environmental management and planning, as well as

holistic natural resource management, is the opera-

tionalisation of intangible values of nature. This
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presents problems of implementation in holistic nat-

ural resource management and their implementation

into the decision-making process. These values often

formalised in the form of cultural ecosystem services

(CES) assessment (Daniel et al. 2012; Fish et al. 2016;

Hirons et al. 2016; Dickinson and Hobbs 2017) or a

non-tangible natural (environmental) resources

assessment (Saastamoinen 2016). The aesthetic

beauty of nature, including the visual (physiognomic)

landscapes, is a common class of all the CES

classifications, being one of the most frequently

studied among the ecosystem services (Czúcz et al.

2018). It is recognised that the pattern of the visual

landscape, with its symbiotic relationship with the

landscape processes, influences the landscape values

and preferences of people, framing their activities

within the Earth’s environment; the landscape concept

serves as a socio-ecological medium, making ecosys-

tems socially meaningful and manageable (Morrison

et al. 2018). From the beginning of the systematic

observations of Earth from space, including USA

aerial photography surveys shortly after the First

World War (Lee 1922), the 1921 Halifax air survey

mission in Canada (Werle 2016) and satellite imagery

since the 1970s (Antrop 2000), remote sensing (RS)

has significantly contributed to the in-depth under-

standing of the geographic processes underlying the

Earth’s appearance (Miklós et al. 2019). They have

also contributed to knowledge of its composition,

structure and dynamics (Gulinck et al. 2000; Ode et al.

2008), as well as the modelling of the visual landscape

per se (Ervin 2001; van Lammeren 2011). The terms

‘‘visual landscape’’ and ‘‘physiognomic landscape’’

are used interchangeably (Nijhuis et al. 2011). The

difference is that the concept of the physiognomic

landscape seems to be more suitable for mapping

purposes, assuming a bird’s-eye perspective, while the

visual landscape naturally requires the horizontal or

oblique perspective (Antrop and Van Eetvelde 2017a),

thus, we give preference to the ‘‘physiognomic

landscape’’ term. Following on from the ideas of

Granö (Granö et al. 1997), Booth et al. (2017) propose

a distinction between view-based vista aesthetics and

landscape aesthetics, where the environment is expe-

rienced in close proximity. Obviously, this distinction

also highlights the difference of landscape perspec-

tives (Antrop and Van Eetvelde 2017a), which utilise,

on the one hand, the in situ views and require a

viewshed analysis for GIS-based applications,

whereas some other landscape aesthetics studies are

based on merely geographic methods from top-view

perspective, such as remote sensing and, in this

connection, are less observer-dependent.

However, despite the crucial role that remote

sensing plays in recent physiognomic landscape

research, its role has not yet been extensively

discussed beyond the geomatics in general. Further-

more, the potential of Earth observation in the

mapping and assessment of the landscape visual

quality remains underestimated and understudied.

The quantification of landscape physiognomy is

problematic, due to the wide examination of the

aesthetic, axiological, cultural, psychological and

social aspects of the perceived environment (hence,

encountering some of the problems with the replica-

bility and reliability in psychology and social sciences

(Baker 2015), thus the respective quality of landscape

assessment research, involving a strong observer

component, remains questionable).

Noticeably, there is strong evidence in the growing

body of literature (Fig. 1), of a potential bridge

between remote sensing with the aesthetics of land-

scape (Crawford 1994; Antrop 2000; Yokoya et al.

2014; Fry et al. 2009; Dronova 2017). However, most

authors use remote sensing simply as a source of data

for mapping and the operationalisation of the envi-

ronmental indicators. For example, for the purpose of

physical landscape monitoring (Kienast et al. 2015) or

as a source of data for land cover classifications and

further landscape heterogeneity estimations with

common landscape metrics (Plexida et al. 2014).

Few empirical studies have suggested new RS-derived

indicators, specifically for the purpose of mapping the

extent of landscape beauty. For example, some of

those studies focus on the spatial organisation of the

perceived environment or link such indicators to the

landscape values and preferences (Ayad 2005; Ozkan

2014; Karasov et al. 2018). We argue that traditional

landscape-related surveys will complement the objec-

tive remotely sensed data, increasing the replicability

and reliability of landscape science. Of course, remote

sensing methods impose some constraints, as will be

discussed further, but the advantages of unmanned

aerial vehicles (UAV) imagery and satellite-based

Earth observations, strengthened by volunteered geo-

graphic information (VGI) and surveys, can hardly be

overestimated. Visual perception and remote sensing

have a deep intrinsic connection, based on the
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detection of environmental attributes in the visible

spectrum (Pettorelli et al. 2018). This connection

results in numerous attempts to apply remote sensing

techniques to examining the Earth’s environment as

perceived by people, while just a few of those are

articulated as a visual landscape study.

Figure 1 (made with Tableau Public 10.5 software,

Seattle, Washington, USA) provides evidence of the

growing interest in visual landscape examination with

remote sensing techniques. The figure was developed

to examine the current state in this interdisciplinary

field. We aimed to find the papers using cognitive

concepts such as ‘‘harmony’’, ‘‘diversity’’, ‘‘similar-

ity’’, as well as the features of visual landscapes

(points, lines, surfaces, colours, and textures) within

the remote sensing framework. Figure 1 suggests

naturalness and diversity are the most commonly

occurring concepts among the recent remote sensing

studies. Naturalness primarily relates to land cover

classifications and transitions between relatively nat-

ural and artificial land cover classes. Remote sensing

papers also utilize the harmony concept to describe the

dynamic balance between the natural and artificial

land cover, as well as nature-friendly land use (Cao

et al. 2013; Fujiki et al. 2018).

However, bridging geographical and aesthetic

knowledge with the help of remote sensing, still has

several significant uncertainties and a lack of trans-

disciplinary studies. This bridging is needed for a

deeper understanding of the functioning regime, in

terms of the landscape operationalisation and man-

agement of the perceived environment as well as the

assessment of cultural ecosystem services related to

the visual landscape, It seems that this problem exists,

because whilst common applications of remote sens-

ing work with the indicators of the quality of the

physical environment (Fig. 2, applications A), there is

a need to promote the development of remote sensing-

based indicators of the quality of the physiognomic

landscape (Fig. 2, applications B).

To address this need, this paper aimed to examine

the applications of remote sensing technologies to the

analysis of the visual (physiognomic) landscape. Also,

the respective benefits and constraints within the

Fig. 1 Growing numbers of articles in peer-reviewed journals

(indexed by the Web of Science Core Collection indices and

Scopus per year) operationalising scenic landscape-related

attributes with the application of remote sensing. The plot is

based on the key queries reflecting landscape attributes searched

in conjunction with the remote sensing terms (‘‘remote

sensing’’, ‘‘satellite’’, ‘‘earth observation’’, ‘‘UAV’’, ‘‘drone’’)

as well as with the landscape queries (physiognom*, scenic,

landscap*). The cumulative number of studies indicates the

evolutionary potential of remote sensing to landscape physiog-

nomy examination. Noticeably, diversity- and naturalness-

related topics have recently become increasingly popular.

Time-related search queries were excluded from analysis due

to a large number of remote sensing articles dealing with time

series data
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frameworks of the assessment and mapping of the

landscape beauty are discussed, especially regarding

the operationalisation of the landscape values and

preferences. Provided with a wide variety of land-

scape- and remote sensing-related literature, as well

as, more recently, some transdisciplinary studies, we

selected a list of 131 original research papers 15

literature review studies, and 25 books, book chap-

ters and reports. We selected them based on a partial or

full focus on the assessment and mapping of the visual

landscape, utilising, directly or indirectly, the remo-

tely sensed data. For example, landscape studies using

the CORINE land cover database for Europe, derived

from satellite-based Earth observations were included

in this review because they are indirectly based on land

cover classifications. The number of studies related to

physiognomic landscape mapping with remote sens-

ing in some way, is vast and therefore our list of

references is far from comprehensive. At the same

time, we ignored papers dealing with thermal remote

sensing for landscape studies for example, if they did

not involve visual problematics. We started searching

with a combination of keywords, such as ‘‘remote

sensing’’ or ‘‘Earth observation’’ together with ‘‘aes-

thetics of landscape’’, ‘‘landscape aesthetics’’, ‘‘visual

landscape’’, ‘‘physiognomic landscape’’, and ‘‘land-

scape beauty’’ within the research databases Thomson

Reuters Web of Science and Scopus, as well as search

Fig. 2 Conceptual scheme of remote sensing applications to

the perceived environment. The physical environment, which is

perceived visually, constitutes the respective physiognomic

landscape (serving as a factor for the formation of different

perceptual and cognitive phenomena). Remote sensing-based

models are designed to deal with the physical environment

mainly through its physiognomy from a bird’s eye perspective,

and in this way, are used to examine the attributes of the

physiognomic landscape, with the respective indicators. Envi-

ronmental indicators describe the quality of the environment,

while physiognomic landscape indicators refer to the quality of

the visual environment
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engines, such as Google Scholar and Semantic

Scholar.

Specifically, we established our research questions

as follows:

1. How are the cognitive and perceptual landscape

concepts reflected in remote sensing studies?

2. How do the subjective ‘‘landscape-oriented’’

principles complement the objective remote sens-

ing-based indicators for the quality of physiog-

nomic landscapes?

3. What are the related challenges of further remote

sensing applications to the mapping and assess-

ment of the physiognomic landscape?

The spectrum of landscape interpretations

and scales

It is rare to find a recent landscape-related paper that

does not mention the definition of landscape proposed

in the European Landscape Convention as follows:

‘‘an area, as perceived by people, whose character is

the result of the action and interaction of natural and/or

human factors’’ (Council of Europe 2000). This

meaning of landscape is close to the geometric concept

of area, whilst also continuing the geographic tradition

(dating back to A. von Humboldt), which considers the

landscape as having some sort of an intangible

‘‘character’’ or organisation of the objective landscape

components. In this way, still allowing for different

human and artistic interpretations, it serves as a core

for related directions of landscape science, including

landscape policy, landscape quality objectives identi-

fication, landscape protection, landscape manage-

ment, and landscape planning. Obviously, landscape

within these disciplines (such in the landscape man-

agement) is referred to as a material phenomenon,

namely, the Earth environment, with the associated

subjective psychological and social aspects (Simensen

et al. 2018). These aspects are hard to quantify and

even in the case of quantification assessments are

rarely reproducible. Being perceived, the environment

could be also referred to as a mental phenomenon, and

this dichotomy of reality and its mental representation

as a scientific subject are difficult to resolve. Our

perceptions are not equal to the objects of the

environment themselves.

This issue was elaborated by one of the most

influential philosophers of the XIX and XX cen-

turies—Edmund Husserl. Husserl formulated a repre-

sentative theory of perception: physical object affects

observer’s sensory apparatus, and in this way, the

mental representation of the physical object appears in

observer’s consciousness (Zahavi 2003, p. 17). To

focus on the mental phenomena, Husserl suggested

suspending the impact of reality on one’s research; this

process is roughly called ‘‘phenomenological reduc-

tion’’ in contrast to naturalistic reduction (meaning the

traditional objective intentionality of ‘‘hard science’’

directed on the physical reality). It is important to

understand, that remote sensing, as an integral part of

‘‘hard science’’—alongside the naturalistic reduction

of the environment, is able to serve the phenomeno-

logical reduction by mapping the environment as it

appears to an observer with no regard to its biophysical

conditions. In the context of landscape science this

approach would result in mapping the character of

geometric primitives of the environment (points, lines,

surfaces), environmental colours, extent of environ-

mental harmony, complexity, naturalness, contrast,

etc. (Fig. 2) since remote sensing concepts often meet

mental psychological and landscape concepts at some

point (Fig. 3).

Figure 3 illustrates the idea of the operationalisa-

tion of the selected psychological concepts of the

visual landscape quality by means of remote sensing.

For instance, complex patterns and textures of the

perceived environment captured with multispectral

satellite imagery could be examined by reducing them

to the relationships between the pixels:

• similarity or contrast of spectral values,

• their orderliness or entropy,

• correlation or homogeneity within the particular

neighbourhood to generalise and detect the com-

plexity and organisation of the visual environment

(Fig. 4).

According to the most well-known theory of landscape

preferences by Kaplan and Kaplan (1989), diversity

and coherence (organisation) of the visual landscape

are the strongest predictors of landscape preferences.

Remote sensing provides a comprehensive set of

indicators for objective assessment of these and other

drivers of landscape values.
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Contemporary landscape science seems to centre

around the aforementioned psychological and remote

sensing concepts. However, despite the fact that the

vast majority of papers use the standard definition

from the European Landscape Convention, there is

still no final scientific consensus about the use of the

concept of landscape. This is because of the inherent

dichotomous nature of landscapes. Irrespective of the

area concept, landscape explicitly or implicitly means

a phenomenon, emerging from both objective and

subjective (perceptual and cognitive) processes

(Fig. 3). The problem is exacerbated by the fact that

the landscape discourse is avoided in ‘‘remote sens-

ing’’-focused papers due to the uncertainty of the

concept, authors limit themselves to more definite and

objective land units, such as land cover, inland water,

terrestrial and marine environments. Landscape, here,

seems to be unnecessary—indeed, no matter how the

Earth surface is observed from some distance, it will

be called or conceptualised, as the Earth’s surface. In

this connection, the question raised is the following:

What kind of remote sensing studies of the environ-

ment deal with the landscape? In other words, what are

the criteria for treating some scientific works as

dealing with or contributing to landscape problems?

Historically, the introduction of the landscape

concept into scientific (first of all, geographic) vocab-

ulary is attributed to Alexander von Humboldt (Antrop

2013), who used the German word Landschaft,

inspired by Dutch landscape paintings (Kwa 2005).

Etymologically, the roots of the word ‘‘landscape’’ are

Fig. 3 Parallels between the predicates used in remote sensing,

psychology and landscape science: (1) entropy as mathematical

function describes landscape diversity; (2) spatiotemporal and

spectral resolution of imagery corresponds to the details (or

generalisation) of a landscape image; (3) remote sensing-based

calculations of homogeneity indicate simplicity of landscapes;

(4) spectral bands of the visible spectrum correspond to the

human vision of colours; (5) spatial relationships between the

pixels are responsible for harmony and organization mapping;

(6) classification of imagery is based on similarity inside the

classes of land cover; (7) time series of imagery describe feeling

of time; (8) viewshed analysis is based on the landscape

proximity concept; (9) textural and geometrical metrics are

based on the human ability to extract patterns from visual

images

Fig. 4 Remotely sensed data for the area of Eastern Estonia

(a LiDAR-based digital elevation model, b LiDAR-based

normalised digital surface model, c multispectral orthopho-

tograph captured 13.04.2018, natural colours band combination)

which are commonly used to deconstruct the physiognomic

landscape. There are easily recognisable linear patterns, as well

as various textures typical for different land cover classes (water

bodies, crop fields, forest), orthophotograph reflects the

perceivable colours of land cover, DEM and DSM model

surface of perceived environment. Pixels assigned to spectral or

elevation values are in relationships of similarity and contrast,

diversity (data credit: Estonian Land Board, Maa-amet)
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found in German languages, with an emphasis on the

piece of territory and administrative connotations,

while its older analogues, in other languages (for

example, in ancient Hebrew, French or Spanish), have

more scenic connotations. However, starting in the

XIX century, the concept of the landscape was firmly

fixed in a variety of disciplines in science, humanities

and the arts. There are several attempts to categorise

all the approaches that categorise and operationalise

the landscape. For example, Angelstam et al. (2013)

distinguished the biophysical, anthropogenic, intangi-

ble as well as coupled social-ecological interpretations

of landscape. A biophysical approach to landscape

mapping includes physiographic landscape mapping

or ecoregion mapping (Bailey 1983; Olson and

Dinerstein 1998), which are mainly focused on the

categorization of soil, vegetation, climate and biodi-

versity variables. Therefore, such landscape mapping

approach easily utilises remote sensing data, while is

not focusing on the physiognomic landscape features

and landscape perception principles. Similarly, other

authors distinguish between landscape approaches by

describing them as an image, a natural complex, a

natural-socio-economic complex, a structure of land

cover or a holistic entity (Miklós et al. 2019). From

this list, landscape, as a structure of land cover, seems

to be the most convenient for the remote sensing

application. Indeed, this approach, originating in the

American school of landscape ecology (Forman 1995)

is the most fruitful, in terms of filling the gap between

tangible and intangible components of landscape

structure. This is in contrast to ‘‘hard’’ geographic or

the objective landscape characterisation (Mücher et al.

2010; Miklós et al. 2019) and ‘‘soft’’ humanitarian

approaches, such as holistic landscape character

assessment as defined by Miklós et al. (2019).

Emphasising the organisation of the environment as

sensed from space or airborne crafts, is the best way to

meet the most important assumptions of the landscape

definition in the European Landscape Convention,

namely, the human visual perception, the character of

the Earth environment within a defined area and

factors, leading to this character.

Antrop and Van Eetvelde (2017b) synthesised all

the diversity of the landscape deconstruction princi-

ples into 5 main models, including ‘‘Element, Com-

ponent, Structure’’, ‘‘Point, Line, Polygon, Surface’’,

‘‘Patch, Corridor, Matrix, Mosaic’’, ‘‘Mass, Screen,

Space’’, and ‘‘Landmark, District, Path, Node, Edge’’.

For our purposes, we limited ourselves to an amended

model, namely, the ‘‘Point, Line, Polygon, Surface’’

model (with the addition of colour and textures but the

removal of polygons, since they can be represented

with lines). We also indirectly used ‘‘Patch, Corridor,

Matrix, Mosaic’’, reduced to a mosaic of patches, to

discuss the landscape heterogeneity, by utilising the

land use/land cover classification widely.

The deconstruction of landscape patterns necessi-

tates spatial comparisons, classification and assess-

ment of the visual quality of different landscapes.

Hence, landscape values and preferences gain the

raising scientific interest (often within the cultural

ecosystem services framework). Therefore, the fol-

lowing common aspects of the landscape are defined,

and whatever is considered landscape is treated as an

objective entity (system, complex) or a subjective

phenomenon of the mind (mind image):

1. Spatial and organised;

2. Meaningful and valuable for its observers;

3. Originating in the perceived environment, assess-

able using remote sensing.

Attempts to quantify the landscape attributes have

resulted in the creation of a variety of landscape

metrics (landscape indices) appropriate for a GIS-

analysis of landscapes. However, the remote sensing

part in these studies is extremely limited. Usually,

landscape scientists work on the fully processed land

cover classifications (such as CORINE land cover

models) and the digital elevation models (DEMs), and

they rarely process the raw or slightly pre-processed

satellite imagery, orthophotos and LiDAR (light

detection and ranging) data. Additionally, remote

sensing experts are not interested in the aesthetic

problems of Earth observation but prefer examining

more concrete phenomena, such as crop monitoring,

urban sprawl or pollution mapping. Remote sensing

imagery, in this regard, serves as a substitute for the

traditional land-based surveys. Landscape indicators

make the landscape pattern assessable, often using

remotely sensed data thus the following chapter will

be dedicated to the remote sensing applications used in

the typical examinations of the physiognomic land-

scape attributes. These attributes are selected and

generalised from the landscape character assessment

studies (Ode et al. 2008; Fry et al. 2009), landscape

aesthetics manuals (U.S. Forest Service 1995), the
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theory of landscape preferences (Kaplan and Kaplan

1989), the landscape design theory (Bell 2004) and

governmental guidelines (BLM 1986; Tudor 2014).

They provide a comprehensive set of attributes of

physiognomic landscapes, assessable with remote

sensing-based indicators (‘‘Appendix’’, see also elec-

tronic supplementary material).

Figure 4 presents the logic on how the remote

sensing data can be utilised for physiognomic land-

scape deconstruction. Imagery pixels serve as the

elementary unit of physiognomic research and can be

treated as points (especially true for LiDAR data) and,

taken altogether, as surfaces (DEM and DSM). During

the visual examination of these images, one can easily

capture the linear elements of the landscape (roads,

lake shoreline). One can also distinguish between the

land cover classes (categorise image mentally) as well

as recognise the textural differences within the image

(among the different vegetation patches). Overall a

pixel mosaic and land cover variety create a feeling of

diversity, as well as to some extent, harmony (or

incongruity). Some pixels are similar, while others are

to an extent, contrasting (lakes and surroundings, for

example). Thereby, the proposed image serves as a

case for quick visual deconstruction of the visual

landscape using remotely sensed data.

Indicators of the perceptual attributes

of the physiognomic landscape

Indicators of points

The concept of a point in physiognomic landscape

studies varies significantly. For example, according to

Bell (2004), different visual elements are regarded as

points, including isolated standing buildings or trees,

sources of lights, such as stars, and the focal point of

lines of convergence. Continuing with this logic, all

the objects of the environment, mapped as points in

geospatial data collections, such as OpenStreetMap

(OSM Community, n.d.) or the Countryside Survey in

UK (Wood et al. 2018) are narrowed down to

dimensionless points in the observed landscape (de-

pending on scale). These points include features such

as ponds, water features, buildings and landmarks with

different functional purposes, We argue that this logic

is based on saliency as a perceptual quality of the

objects, to be distinguished among others in the visual

scene due to their eye-catching character and the

specifics of the pattern of human eye movements.

Saliency mapping provides an objective method

towards the real modelling of landscape perception

using, for example, a correlation analysis. A high

correlation of photo pixels means a low saliency

potential (Dupont et al. 2017). In this regard, land-

scape points are treated simply as the objects, in

contrast to the rest of the visual environment. Conse-

quently, remote sensing-based mapping of point

objects in the physiognomic landscape should be

based in spatial autocorrelation or pixel-based texture

metrics, such as the Grey-Level Co-Occurrence

Matrix texture metrics (Haralick et al. 1973; Hall-

Beyer 2017). This approach is already utilised for the

detection of stand-alone palm trees, with high-resolu-

tion satellite imagery (Idbraim et al. 2016). However,

no studies were found connecting in situ eye-tracking

analysis with remote sensing-based textural mapping,

thus, this lack of results frames the respective potential

for further research. At the same time, cutting-edge

remote sensing techniques were recently used to

examine single trees as landscape features with high-

resolution data from UAVs (Dandois et al. 2017), this

is potentially useful for the assessment of landscape

aesthetics. The density and spatial configuration

indices (such as entropy) of point landscape data are

the most obvious GIS-applicable indicators of land-

scape character, following the remote sensing-based

detection of single landscape elements.

Indicators of lines

Various elements of the visual landscape are modelled

as lines, including the edges of landscape patches and

different networks (water streams, roads and pedes-

trian trails, streets, ridges and valleys). In these cases,

we ignore their width depending on their scale and

purpose. Usually, the overall length of the lines, their

density and topological regularities (based on graph

theory, such as connectedness), and their line shape

characteristics, such as the fractal dimension, are

treated as meaningful for visual landscape quality.

Remote sensing is widely used for the detection of

linear features of the landscape, including geological

fractures (Yang et al. 2011). Remote-based digital

elevation models, processed from digital surface

models (DSMs), such as the Japan Aerospace Explo-

ration Agency (JAXA) Advanced Land Observing
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Satellite (ALOS) 30-m Digital Surface Model (T.

Tadono et al. 2014), are used for mapping water

drainage networks. This has further implications for

the GIS-based analysis of scenic landscape quality (de

Almeida Rodrigues et al. 2018), as the positive impact

of water landscape elements on the landscape values

and preferences is well recognised (Ode et al. 2008;

Swetnam et al. 2017). The shape of linear landscape

elements is another important aesthetic variable (U.S.

Forest Service 1995; Bell 2012) as is the geometric

properties of landscape lines. For instance, the fractal

dimension of lake coastlines (Sudakov et al. 2017), the

fractal dimension of polygonal patches (Olsen et al.

1993) and the indices of urban morphology (Li and

Yeh 2004) are also successfully derived from mapping

products, based on satellite imagery. Texture features

are reported to be successful for predicting the height,

circumference, stand density of trees in a forest and

other structural parameters (Kayitakire et al. 2006;

Ozdemir and Karnieli 2011) responsible for the

formation of a forest silhouette in the landscape.

Some shape indicators for building classification in

LiDAR remote sensing data have also been developed

(Lu et al. 2014). Thereby, remote sensing techniques,

used in conjunction with the GIS-analysis, perform

well regarding the detection and monitoring of the

linear features of physiognomic landscape. They are

also useful for obtaining an accurate assessment of

their aesthetic properties through indicators, such as

the fractal dimension (Bell 2012) or other metrics.

Indicators of surfaces

Continuous geographic phenomena, such as land

surface, topography, vegetation canopy and urban

structures contribute to the physiognomic landscape.

Remote sensing-based operationalisation of such

phenomena results in two major types of digital

models, namely DSMs and DEMs. DSMs and DEMs

are commonly produced from:

• Synthetic-Aperture Radar (SAR) imagery, such as

Shuttle Radar Topography Mission (SRTM) data

(Farr et al. 2007),

• satellite-based stereo mapping data from sensor,

such as ALOS PRISM (Tadono et al. 2017),

• Airborne Laser Scanning (ALS) data obtained with

LiDAR technology for areas up to the national

level—for example, in Estonia (Estonian Land

Board 2018) or Finland (National Land Survey of

Finland 2018),

• UAV imagery with custom photogrammetry pro-

cessing (Long et al. 2016).

Different spectral, spatial and temporal resolutions, as

well as coverage of remotely sensed data, determine

the different applications for the surface detection and

characterisation. For instance, recent advances allow

automated surface material mapping with hyperspec-

tral remote sensing data and DSM, obtained with

stereo imagery (Heiden et al. 2012). As shown above,

the fractal dimension is frequently used to characterise

the shape of the linear landscape elements. The same

operation as the surface form indicator is also possible

for raster models, such as satellite imagery (Lam

1990) or topographic models, such as DEMs (Polidori

et al. 1991; Xu et al. 1993). This is yet an uncovered

potential for landscape aesthetics assessments, based

on the assessment of the visual quality of the DEMs

and DSMs. There is also a growing interest in the

fractal dimension mapping from SAR data. This

mapping is directly linked to the properties of the

physiognomic landscape under consideration, such as

the landscape topography and the complexity of the

landscape elements (Di Martino et al. 2017). The final

products of the DEM classification (landforms) are

used in map-based landscape aesthetic assessments as

a source of data for landform contrast estimations

(Booth et al. 2017). The smoothness and waviness of

topographies and the terrain roughness estimated from

satellite-derived DEMs are also strong predictors of

the aesthetic values of landscape (de Almeida

Rodrigues et al. 2018).

ALS data has a growing potential for the modelling

and discretisation of the perceived environment as a

continuous surface. LiDAR technology provides a

source of data for digital surface model (DSM) and

digital elevation model (DEM) production, as well as a

reliable classification of products. Thus, it is a

comprehensive toolkit for physiognomic landscape

deconstruction as both points and surfaces, especially

in combination with hyper- and multispectral remote

sensing data (Yokoya et al. 2014). To comprehend the

landscape pattern with LiDAR data, numerous

LiDAR-based metrics for 3D landscape models have

been created (Chen et al. 2014; Lu et al. 2014; Cheng

et al. 2017). With multitemporal LiDAR data, the

evolution of the physiognomic landscape can be traced
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(Mitasova et al. 2011). On the other hand, visibility

analysis is a more prominent trend in LiDAR-based

studies, since it allows for the identification of the

optimal viewpoints within the landscape. It also

provides a map of the visual exposure of objects in

order to estimate the visual impact of the landscape

elements (Domingo-Santos et al. 2011) and performs a

viewshed analysis for point data, such as houses

(Vukomanovic et al. 2018). Indicators of the cultural

ecosystem services provision (Burkhard and Maes

2017) can be obtained from location-based social

media content in the form of points (geotags of

photographs, uploaded to the social media such as

Flickr or VK.com). ALS-based DEMs and DSMs are

also very common in archaeological studies (Frys-

kowska et al. 2017; Witharana et al. 2018), allowing

for the detection of historical remains and the uncov-

ering of the historical value of the physiognomic

landscape (Ode et al. 2008). The role that ALS data

plays in the visualisation and assessment of aesthetic

properties of vegetation canopy can hardly be over-

estimated: one of the first attempts in this direction was

made recently by Vauhkonen and Ruotsalainen

(2017).

Indicators of texture

The evaluation of texture, as an innate property of the

physiognomic landscape (usually varying between

fine and coarse or rough), is very common in landscape

character assessments and scenic resource assess-

ments; hence, it is important for landscape design

purposes (U.S. Forest Service 1995; Bell 2004).

Texture characteristics depend on the size of the

landscape elements, the distance between them and

are scale-dependent. Texture mapping in remote

sensing applications began in the early seventies with

the first theoretical paper in this direction by Haralick

et al. (1973). Easily computable texture metrics, based

on the Grey-Level Co-Occurrence Matrix (GLCM),

have become very popular, with the rapid accumula-

tion of the remotely sensed data at increasingly better

spatial resolution. Despite the slightly different nature

compared to the understanding of texture in landscape

research (where the texture is usually articulated as

fine or coarse), these metrics substantiated a solid

ground for the mapping of land cover texture as the

characteristic of the relationships between the pixel

pairs (similarity, contrast, diversity, orderliness of

pixel values). These principles of texture interpretation

provide a bridge between the quantitative and subjec-

tive interpretations of the relationships between the

elements of the physiognomic landscape and are

modelled in the raster model. The potential of Haral-

ick’s texture metrics applied to the mapping of the

characteristics of the physiognomic landscape is just

gradually being uncovered, and thus, only a few studies

were found. These studies are dedicated to the

examination of the visual landscape quality and

textural features of the land cover extracted from the

remotely sensed data, therefore this topic definitely

deserves a detailed description. It should be mentioned,

though, there are other approaches to texture analysis

suggested, including Tamura’s textures (Tamura et al.

1978), wavelet texture analysis (Picuno et al. 2011) or

variogram (Berberoğlu et al. 2010). However, in the

landscape-related domain of remote sensing science,

Haralick’s GLCM-based textures seem to be dominat-

ing, while landscape texture is indicated with land-

scape metrics (Sahraoui et al. 2016).

In a pioneering work within this direction, Ozkan

(2014) attempted to find the correlation between the

texture metrics for the IKONOS satellite imagery

(result of the Principal component analysis PC1 band

as having the highest variation) and the results of the

visual quality assessment of the landscape within the

woodlands of Istanbul in Turkey (alongside the

Bosporus strait). The article hypothesised that:

1. First-order pixel-based Grey-Level Co-Occur-

rence Matrix (GLCM) texture index, namely,

Standard deviation of grey levels (SDGL);

2. Second-order pixel-based GLCM texture metrics,

namely, correlation (GLCMC), entropy

(GLCME) and homogeneity (GLCMH);

3. Object-based measures of texture: mean of sub-

objects/std. dev. (MSOSD), the average mean the

difference to neighbours of sub-objects (AMSO),

the area of sub-objects/mean (ASOM) and the area

of sub-objects/std. dev.

(ASOSD) were related to the visual quality of the

landscapes under consideration as represented by the

quantitative scores allocated to the in situ photographs

by the participants in the survey. Ozkan reported

strong and positive Pearson correlation with the scores

of the visual landscape quality for the pixel-based

SDGL (r = 0.82, P\ 0.01), as well as for the object-
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based MSOSD and AMSO (r = 0.61 and r = 0.67

respectively, P\ 0.01). A moderate positive Pearson

correlation was also observed for the pixel-based

GLCMC metric (r = 0.56, P\ 0.01), and ASOM and

ASOSD showed a moderate negative correlation

(r = - 0.57, r = - 0.52 respectively, P\ 0.01). The

GLCMH correlation was poor (r = 0.36), and

GLCME showed almost no correlation to the land-

scape quality (r = 0.05, P\ 0.05).

The textural metrics for continuous raster data also

corresponded to the estimation of the landscape

metrics for classified data. For example, GLCM-based

Entropy, derived from the red and infrared bands of

ASTER satellite imagery (window size between

900 9 900 and 1200 9 1200 m) was reported as

most highly correlated to the different landscape

metrics within the forested areas (Ozdemir et al.

2012). Therefore, the textural metrics seem to be very

important for the landscape analysis, since commonly

being pixel-based, they do not require image classi-

fication before their computation, while image classi-

fication biases the results in landscape studies (Shao

and Wu 2008). Avoiding this bias constitutes the

advantage of landscape texture mapping with remote

sensing techniques compared to landscape examina-

tion with common landscape metrics.

Indicators of colours

Colours are the attributes of the perceived environment,

and their importance to people was recognised at the

beginning of the 20th century (Granö et al. 1997). The

first maps of landscape colours were designed at that

time as well. Later, colour discourse, to some extent,

shifted from the domain of environmental science and

geography to landscape design (Bell 2004) and archi-

tecture (O’Connor 2010), despite the fact that colours

were still articulated as important landscape attributes

(Bell 2012; Ode et al. 2008; U.S. Forest Service 1995),

and colour diversity recognised as positively related to

landscape values and preferences (Zhao et al. 2013).

However, even in this case, rare empirical studies,

involving the examination of landscape colours are 1)

often observer-dependent (Bishop 1997) and 2) based

on a ground viewing perspective (Sowi�ska-�wierkosz

2016). Colour diversity and contrast are the most

common landscape attributes in studies, involving such

components (BLM 1986; Arriaza et al. 2004; de la

Fuente de Val et al. 2006; Lengen 2015), while colour

harmony only becomes a problem at the landscape scale

(Sullivan and Meyer 2016).

Remote sensing studies often use colours mapping

for non-aesthetic purposes, for example to examine the

water dissolved organic and inorganic matter (Bukata

et al. 2018) or vegetation greenness (usually not only

with a green band of multispectral imagery but with

various vegetation indices, utilising the invisible near-

infrared bands, such as NDVI). NDVI is used as a

standalone predictor of the aesthetic value of the

landscape (Vukomanovic and Orr 2014; Vuko-

manovic et al. 2018), however there has been no

confirmation that it affects the objective aesthetic

variables, such as the colour harmony of the land cover

(Karasov et al. 2018). Almost no papers on the spectral

properties of the landscape (namely: land cover) from

the remote sensing perspective in the context of the

physiognomic landscape quality were found. This is

despite the fact that the spectral properties of the

landscape are analysed for scanned images (Clay and

Marsh 1997), The exceptions are the recent work on

the remote sensing-based mapping of the colour

harmony of land cover (Karasov et al. 2018) and the

spectral analysis of the plasticulture impact on the

landscape quality (Picuno et al. 2011). Remote

sensing-based analysis of the spectral properties of

land cover in the visible spectrum (colouristic analy-

sis) is a huge gap in our existing knowledge that needs

to be filled, especially owing to the rapid development

of less atmosphere-dependent remote sensing methods

(such as UAV-derived imagery). Increasing the spatial

and temporal resolutions of satellite imagery supports

this direction of landscape research because the

colours of the perceived environment are very depen-

dent on the phenological and seasonal effects. The

accurate detection and monitoring of the colouristic

properties of the land cover with remote sensing data,

in the context of their emotional and aesthetical

meaning for observers, is a relevant task for contem-

porary and future Earth observation applications.

Indicators of the cognitive attributes

of the physiognomic landscape

Indicators of heterogeneity and diversity

Landscape heterogeneity, in all the interpretations, is

likely the most well-studied concept in landscape
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science, according to a recent review on this topic

(Dronova 2017). Originating from a classical geo-

graphic genetic approach, landscape heterogeneity is

connected with the variety, diversity, complexity and

richness of the physiognomic landscape (Fry et al.

2009; Ode et al. 2008), and thus, here, we used all of

these concepts interchangeably. These landscape

attributes are commonly recognised as positive factors

of landscape values and preferences (BLM 1986;

Kaplan and Kaplan 1989). The respective relationship,

however, seems to be non-linear but rather an inverted

U-shaped (Kaymaz 2012). In turn this means the

diversity in highly visually attractive landscape needs

to be present in moderation (Bell 2012; de la Fuente de

Val et al. 2006; U.S. Forest Service 1995). Indeed,

existing studies, indicating landscape diversity mostly

with Shannon entropy (known also as Shannon–

Wiener diversity index as landscape index) and other

diversity indices (fractal dimension for linear ele-

ments, shape indices, Renyi’s, Simpson’s, Pielou’s

diversity indices, etc. (McGarigal and Marks 1995;

Rocchini et al. 2013)) report a wide range of corre-

lation strength between the map- and view-based

landscape diversity and landscape preferences. The

correlations vary from relatively positive (Hunziker

and Kienast 1999; Franco et al. 2003; de la Fuente de

Val et al. 2006; Dramstad et al. 2006) to completely

negative (Ode and Miller 2011), and thus, the asso-

ciation of the perceived diversity with the values and

preferences of the landscape is not simple. In line with

the theoretical findings, the authors of these empirical

studies usually note, that diversity should somehow be

limited, making the landscape legible for observers

(hence, concepts of landscape coherence, harmony

and legibility are raising) and decreasing the mismatch

between the landscape elements, composing diverse

elements into some coherent pattern (Ode et al. 2010).

Therefore, the main message of the vast majority of

papers dealing with landscape heterogeneity in the

visual context is that diverse, visually rich landscapes

should not be messy to be aesthetically attractive.

Quite a large number of heterogeneity indices for

remote sensing data are designed to detect not only

pure diversity but also, to some extent, their organi-

sation into some system, while organised diversity

directly refers to the information concept. In this

connection, these indices are frequently referred to

information and are discussed with regard to the

physiognomic landscape and scenic values (Uuemaa

et al. 2013). There are numerous aspects of landscape

diversity (Mander et al. 1999; Dronova 2017), leading

to the development of various applications of math-

ematical advances to landscape attributes of every

kind.

A ‘‘family’’ of heterogeneity metrics can be applied

to all the elements of the physiognomic landscape

detectable with remote sensing, including:

• point landscape data (Fjellstad et al. 2001; Cheng

et al. 2017),

• vegetation communities and plants (Nagendra

et al. 2013),

• colours (Karasov et al. 2018),

• textures (Sahraoui et al. 2016),

• topography and landforms (Vukomanovic and Orr

2014; Booth et al. 2017; de Almeida Rodrigues

et al. 2018),

• soil cover (Uuemaa et al. 2008),

• land use and land cover patches (Cadenasso et al.

2007),

• the shape of the linear elements and polygons (Li

and Yeh 2004; Martı́n et al. 2016; Booth et al.

2017),

• the temporal change of the landscape pattern

(Pham et al. 2011).

Unsurprisingly, these remote sensing studies have

significantly contributed to this topic. For instance,

Ayad (2005) deployed remotely sensed data in land

use/land cover diversity mapping and linked it with the

landscape visual quality. A modified fractal dimension

index is suggested to measure the landscape diversity

for a Landsat TM image (Olsen et al. 1993). Vegeta-

tion diversity is a frequent subject of remote sensing

studies, and successful examples of spectral and

textural measures of the biological and structural

diversity of urban forests were presented recently

(Ozkan et al. 2016, 2017). Vegetation and land

cover/land use changes are also frequently examined

through the lens of the landscape metrics change (Velli

et al. 2018). Cloud points (LiDAR scanning output)

are even more promising for landscape diversity

estimation. For example, a mobile laser scanning

(MLS) LiDAR data for urban street landscapes was

utilised for calculating the suggested landscape diver-

sity index (function of number and area of landscape

classes and average height of the points in the class).

This was reported as moderately, but still positively
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correlated with the general urban habitability score, as

surveyed with respondents (Cheng et al. 2017).

The excessive landscape heterogeneity and the

respective visual diversity lead to, as shown above, the

decreasing visual landscape quality, which is

described as landscape cluttering (Nijhuis et al.

2011). Remote sensing-based land use/land cover data

is used in GIS-analyses of landscape configurations in

order to evaluate the extent of landscape cluttering

(Wagtendonk and Vermaat 2014) and its impact on the

scenery. It is noteworthy that remote sensing-based

indicators of landscape heterogeneity are so successful

for landscape characterisation that they are even able

to explain up to 59% of the variability of one poverty

index for urban areas (Duque et al. 2015), eliminating

the distinction between physical and social phenom-

ena. The potential of RS-based landscape heterogene-

ity studies in the visual context lies in the application

of diversity indices to a wider number of landscape

elements, such as points, textures, pixels, as elemen-

tary units of the satellite imagery, orthophotographs,

and UAV-derived and LiDAR data of very high spatial

resolution as a landscape model. Furthermore, there is

a need for a deeper understanding of the innate nature

of the diversity indices for harmony and coherence,

cluttering estimations and mappings, since a simple

correlation of diversity to scenic preferences does not

meet the psychological regularities of the landscape

valuation to the full extent.

Indicators of harmony and incongruity

Landscape harmony refers primarily to the pleasant

arrangement of the landscape attributes (U.S. Forest

Service 1995). As discussed above, to a large extent, it

depends on diversity or complexity estimations (Man-

der et al. 1999; Ode et al. 2010; Ode and Miller 2011;

Wagtendonk and Vermaat 2014), which are widely

recognised as a landscape attribute and are positively

associated with scenic preferences (Kaplan and

Kaplan 1989; U.S. Forest Service 1995; Ode et al.

2008; Martı́n et al. 2016; Sowi�ska-�wierkosz 2016).

Landscape harmony is also closely related to land-

scape coherence as an added value to the landscape as

a system (Bell 2012) and is connected with the

ecological concepts of biological connectivity or

physical connectedness (Mander et al. 2010; Ode

et al. 2010; Martı́n et al. 2016).

The foremost application of remote sensing is the

detection of land cover and land surfaces, and this

detection is associated with landscape harmony to

different extents. For example, the detection of

aesthetically polluting plastic covers for plant culti-

vation (Picuno et al. 2011) or the pixel-based differ-

entiation of land cover according to the extent of its

colour harmony (Karasov et al. 2018). Remote sens-

ing-based land cover and land use (LULC) data is a

valuable source of landscape coherence mapping in

both ecological (patch connectedness) and visual

(unity of the scene) contexts (Ode et al. 2010; Martı́n

et al. 2016). Numerous other landscape indices, such

as the contagion index (McGarigal and Marks 1995;

Sahraoui et al. 2016), PLADJ (Uuemaa et al. 2008;

Pham et al. 2011) and many others (Gong et al. 2013),

were designed to assess the objective landscape

fragmentation, including the visual context. Increas-

ing the spatial resolution of remotely sensed data, for

example, by wider use of unmanned aerial systems

(UAS) instead of satellite imagery, frames the per-

spectives of this direction. There are already success-

ful examples of visual disorder detection for urban

areas with such kind of data (Grubesic et al. 2018).

GLCM-based and other texture metrics are a huge

uncovered potential as a landscape harmony indicator,

since they are very promising for the explanation of

the visual landscape quality (Ozkan 2014) and the

mapping of pixel relationships, meeting harmony

assumptions (Karasov et al. 2018).

Indicators of cultural modification and naturalness

Natural landscapes are more visually attractive, than

man-modified or artificial ones (Kaplan and Wendt

1972; Zube 1974; Balling and Falk 1982; Coeterier

1996; Ode et al. 2008) and are perceived as more

visually coherent (Hansson et al. 2012). Ode et al.

(2008) suggested that the percentage of natural

vegetation and water is an indicator of the naturalness

of the landscape. A simpler approach is the estimation

of the area of patches, corresponding to the natural

(Martı́n et al. 2016) or artificial land cover and land use

(Ayad 2005). Similarly, the cost distance from the

roads (Terrain Ruggedness Index as a cost surface) is

used as the index of naturalness or, vice versa, the

cultural modification (Karasov et al. 2018).

Remote sensing data is easily used to detect the

extent of urbanization and vegetation loss, indicating
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the cultural modification of the landscape (Sawaya

et al. 2003; Wilson et al. 2003; Rêgo et al. 2018).

Classifications and utilising spectral properties of the

landscape surfaces are common in the recognition of

natural vegetation (Jahel et al. 2018) and the moni-

toring of land use change intensities (Estoque and

Murayama 2015). Urban sprawl is the typical subject

of remote sensing studies, examining the substitution

of natural or semi-natural environmental surfaces by

artificial ones (Chiang et al. 2014). Backward pro-

cesses, such as the regreening of the industrially

modified landscapes and land reclamation, are also

assessable using remote sensing (Boerchers et al.

2016; Townsend et al. 2009). The potential of remote

sensing applications in the detection and monitoring of

the range of environmental conditions, corresponding

to natural, semi-natural or completely artificial land-

scape elements, therefore, lies in their more accurate

accounting. At the moment, the extent of naturalness is

often determined by LULC classified data with the

respective delimitations or it is focused on phenomena

(vegetation loss, urban sprawl) rather than on the

physiognomic attributes themselves. In this way,

remote sensing applications for such purposes are

currently rather hypothetical but are, of course,

promising.

Indicators of similarity and contrast

Similarity and contrast are landscape attributes that are

crucially important for both landscape perception and

remote sensing, because they determine the mental

discretisation and GIS-based classification and region-

alisation of the continuous environment into the

discrete classes of objects, thus generalising reality.

These concepts are directly connected to landscape

aesthetics, sometimes in a strange manner. For exam-

ple, both contrasting and similar colour combinations

are treated as aesthetically attractive (BLM 1986; U.S.

Forest Service 1995; Arriaza et al. 2004; de la Fuente

de Val et al. 2006; Karasov et al. 2018), depending on

the specific colour features. Similarities and contrasts

affect the distinguishability of the objects from their

background, being extremely important in this vein for

landscape perception and appreciation (Dupont et al.

2017). Remote sensing-based applications to land-

scape similarity/dissimilarity mapping utilise land-

scape indices (Niesterowicz and Stepinski 2016),

GLCM-based textural metrics (Karasov et al. 2018;

Ozkan 2014), and topographic variables, such as the

relative relief contrast (Booth et al. 2017). There is a

lack of knowledge regarding the RS-based mapping of

landscape similarities and contrasts in a visual context,

and thus, there is a need for further investigation in this

field.

Indicators of ephemera (temporal dynamics)

Last, but not least, the temporal dynamics of the

landscape seem to be the most popular topic throughout

all the landscape studies, utilising a remote sensing

approach, since it is based on change detection

methods. Seasonal and weather-driven changes, as

well as successional and other long-term changes (Fry

et al. 2009; Bastin et al. 2012), are easily assessable with

remote sensing data. Temporal data adds reliability to

the landscape quality assessment due to the dynamic

nature of the landscape (Antrop 2000). Historically,

Crawford (1994) was among the first to undertake the

application of remote sensing to visualise the landscape

quality ranking, using complex remote sensing-based

indicators for physiognomic landscape classification.

He used the Landsat MSS product and radar data in

order to perform the maximum likelihood classification

of the land cover and established some visual quality

criteria; these included landforms (slope steepness as

indicator), structures (indicated by texture of MSS

Band 5 band), tree cover (band ratio vegetation index

(RVI) as indicator), water bodies extent (extracted from

land cover classification), activity (as determined by the

predominant land use), outlook (the number of the

potential viewpoints within each landscape unit),

diversity (number of identified land cover classes per

landscape unit), and contrast (average texture for all

MSS bands). As a result, the maps of the Landscape

Visual Quality ranking were designed for two different

years, adding a temporal perspective to the study.

Similarly, any remote sensing-based study can be

enriched with a multitemporal analysis of the status and

the trends in the quality of the physiognomic

landscapes.

There are many approaches to analyse landscape

elements as temporal phenomena using remote sens-

ing with vegetation indices (Ferreira et al. 2003; Hill

et al. 2011), spectral signatures (Arroyo-Mora et al.

2018), image classification (Kadmon and Harari-

Kremer 1999; Sesnie et al. 2008) and multitemporal

LiDAR processing (Eitel et al. 2016; Putman et al.
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2018), etc. We confirm the results of Uuemaa et al.

(2013), suggesting that the changes in the land

use/land cover remain the most widely exploited

application of remote sensing to landscape study,

despite the fact that remote sensing applies to the

change detection of all the physiognomic landscape

elements (Kennedy et al. 2009). Due to the lack of

freely available satellite free imagery combining very

high spatial and temporal resolution, UAVs and

airborne sensors as well as (in the case of significant

technical evolution) the satellite sensors with a very

high spatiotemporal resolution seem to be the most

promising in this regard. An accurate accounting of

the gain and loss of the visual quality of the landscape

helps to analyse the extent of the sustainability of land

use practices and all kinds of environmental manage-

ment. Therefore, adjustment of the management goals

and methods correspondingly and instantly mitigates

the negative impact of human activity on landscape

and preserves it in the desired function for the coming

generations.

Discussion

The results are meaningful in different regards. We

attempted to demonstrate that the remote sensing and

Earth observation themselves are based on the human

cognitive specifics, being developed by people and for

people. However, despite this psychological basis, the

respective psychological problematics (landscape per-

ception and landscape appreciation) are not widely

implemented into the remote sensing studies. The vast

majority of the reviewed studies used remote sensing to

solve the particular scientific tasks, described above,

while just a few authors directly mentioned the visually

perceived environment as the subject of their papers

(Ayad 2005; Karasov et al. 2018; Ozkan 2014;

Vukomanovic et al. 2018). We articulate this problem

and claim that one of the promising directions for

further remote sensing development is a wider use in

remotely sensed data in physiognomic landscape

research. This will complement the in situ surveys of

visual landscape quality and increase the overall quality

of research in the interdisciplinary environmental

science domain. Visual landscape quality is extremely

important to sustain the well-being of billions of people;

nevertheless, its assessment by means of remote

sensing remains highly understudied. At the same time,

soil, water, vegetation, and air quality are among the

most well-studied applications for monitoring with

remotely sensed data (Miklós et al. 2019).

Therefore, we emphasize the necessity of the

remote sensing-based monitoring of the main param-

eters of visual landscape quality utilising remote

sensing approach. Of course, indicators of soil, water,

vegetation, and air quality are much clearer and more

justified. At first glance, the extent of landscape

aesthetics may look intangible and hard to estimate (by

the way, it is). However, borrowing from the regular-

ities of human perception for various visual stimuli

from psychological literature, such as in case with

mapping the degree of colour harmony of land cover

(Karasov et al. 2018), we may achieve a highly reliable

(of course depending on the spatiotemporal resolution

of remotely sensed data) time- and cost-effective

monitoring of the visual quality of the environment on

a permanent basis. The same is true also for other

psychological attributes, such as visual diversity,

complexity, coherence, legibility, naturalness, season-

ality, etc., which are assessable by means of remote

sensing. Numerous authors, as shown above, even

though they did not know it, provided an empirical

basis for accounting these psychological attributes

from space as applied to the physical objects of the

environment. By means of remote sensing, one may

see that so-called ‘‘hard science’’, of studying the state

of the environment in the case of remote sensing,

combined with several perceptual attributes can be

reoriented towards the focus on these perceptual

attributes (or phenomena) themselves. In other words,

above and beyond the role of remote sensing in

biophysical indicators mapping, remote sensing

should be reflective and attempt to investigate visible

landscape characteristics among with traditional ‘‘hid-

den’’ variables, such as vegetation indices.

Consequently, cutting edge remote sensing tech-

niques for environmental applications allows the

transition from mapping the traditional environmental

problematics (land cover mapping, vegetation moni-

toring, assessment of habitat and ecosystems, biodi-

versity mapping, etc.) towards the mapping of

intangible values of nature (mapping the visual quality

of land cover, vegetation appearance mapping, assess-

ment of cultural ecosystem services provision, map-

ping the degree of landscape attractiveness, etc.).

Similarly, in habitat modelling, remote sensing data

could be applied to modelling the multifunctionality of
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the landscape (applicability for various purposes

related, among others, to leisure and recreation),

especially taking into account achievements of the

citizen science and crowdsourcing methods. Google

Street View and alternative services such as Mapillary,

or location-based social media, for example, VK.com

and Flickr, provide a great source of ground-based

data of the visual environment, available to verify and

enrich the results, obtained from a top view perspec-

tive. Nature protection and the extent of land use

sustainability would benefit from including reliable

maps of visual environmental conditions to the

decision-making process, instead of, or complement-

ing, the traditional surveys of visual landscape quality

in situ (Dramstad et al. 2006; Janečková Molnárová

et al. 2017; Sullivan and Meyer 2016).

And last, but not least—regular monitoring of the

visual landscape quality from space is in line with

existing global and regional environmental policies.

For example, the global indicator framework for the

Sustainable Development Goals and targets of the

2030 Agenda for Sustainable Development suggests to

‘‘integrate ecosystem and biodiversity values into

national and local planning, development processes,

poverty reduction strategies and accounts’’ (UN Gen-

eral Assembly 2018). More precisely the same logic is

inherent in the European Landscape Convention

proposing ‘‘to assess the landscapes thus identified,

taking into account the particular values assigned to

them by the interested parties and the population

concerned’’ (Council of Europe 2000). Each country

has its own national legislation and policy implica-

tions, but the idea is shared among them: to preserve

and even enhance the quality of the environment.

Therefore, contributions from remote sensing to the

examination of the visual landscape are important in

the context of implementing the global and local

targets in environmental policy. Visual landscape

quality is essential for nature-based recreation and

tourism, contributing to the national natural capital and

GDP accounting, therefore remote sensing techniques

in visual landscape quality assessment are among the

prerequisites for sustainable economic growth.

Closing remarks

In summary, all the history of active and passive

satellites, airborne and UAV remote sensing provides

solid evidence in favour of the applicability of Earth

observation data for the purpose of physiognomic

landscape mapping and assessment. There is already a

sufficient number of remote sensing techniques for

each attribute of the physiognomic landscape,

described in the respective literature. The increasing

spatial, temporal and spectral resolution of the satellite

imagery makes regular monitoring and change detec-

tions for all the attributes of the physiognomic

landscape potentially possible. At the same time, this

opportunity has not yet been fully put into practice.

The mappings of the physiognomic landscape with

remote sensing remains limited and is still rather

uncertain. Reporting mainly the correlations and

tending to avoid the exploration of the causal

relationships; this avoidance is not surprising, consid-

ering the rapid growth of the quality of remotely

sensed data and the corresponding time for its

adaptation for the common needs of landscape

science. However, the increasing number of remote

sensing techniques potentially or actually used for

physiognomic landscape mapping is encouraging.

Perhaps, we will see a regional and global mapping

of physiognomic landscape and its quality solely with

remotely sensed data in the near future. What is more,

the implementation of physiognomic landscape qual-

ity assessment derived from remote sensing data could

be easily applied to the delineation of protected areas

and used for the other nature protection purposes,

providing the evidence-based knowledge for decision-

makers. However, currently, we must note a lack of

the comprehensive use of remote sensing data for the

mapping of the landscape aesthetics extent per se and

in the context of cultural ecosystem services provision.

It is foreseeable that the problem of the indirect use

and rare mention of remote sensing in landscape

studies will gradually be solved in the coming years.

Land use and land cover classifications, DEMs and

DSMs, while considered simple GIS-datasets, make

remote sensing more visible for the academic com-

munity in landscape science. Most likely, we still have

to face the issue of the multiple meanings of the term

‘‘landscape’’, where remote sensing experts have

tended to avoid its use or use in an objective sense,

with minimal regard to its aesthetic properties and

mainly focused on environmental variables. More

research is required on this terminology bias and

extraction of the knowledge from the remote sensing-

based mapping of the attributes of the physiognomic
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landscape from the existing literature, as well as the

implementation of the new remote-sensing-based

indicators of these attributes into the practice of

remote sensing research. Notwithstanding the above,

remote sensing is a unique example of the synergy of

both the objective and subjective connotations of the

landscape concept. These connotations are inherently

built into the human visual perception of the Earth’s

environment but are also for all kinds of evidence-

based environmental monitoring. This fact removes

the contradictions contained in the European Land-

scape Convention, and thus, remote sensing plays a

crucial role in the implementation of its goals.

Alongside that, there are some challenges to

overcome with remote sensing to make it completely

appropriate for the purpose of physiognomic land-

scape mapping. First, all the remote sensing-based

physiognomic landscape mapping products should be

validated with in situ scenery data, linking the top

perspective with a ground or person perspective—for

example, crowdsourced photographs or street-level

imagery. That is particularly true for colouristic and

textural landscape attributes, which can be mapped

with remote sensing since the validation of the LULC

classifications is quite an easy task. Furthermore, the

freely available satellite imagery of the best spatial

(10 m in the visible spectrum) and temporal resolu-

tion (5 days at the equator) is provided by Sentinel-2,

and such imagery is still not the best by far compared

to the commercial solutions. All the reliable and

practically applicable physiognomic landscape map-

ping and quality assessments should be based on

imagery with centimetric spatial resolution and daily

temporal resolution, coherent to the human scale of

landscape perception. For example, the Estonian Land

Board recently made their database of orthopho-

tographs publicly available for the entire territory of

Estonia. Acts of this nature are extremely important

for the future of remote sensing in this country.

Hopefully, with international efforts, accessibility to

the sources of freely available remotely sensed data of

very high spatial resolution will only increase.

Another challenge is linking the indicators of the

physiognomic landscape not only to the visual land-

scape values and preferences, as it is usually done, but

to purely objective environmental variables, thus

uncovering the hidden regimes of the natural self-

organisation and human organisation of the landscape.

Societies and economies of the countries will benefit

from a better knowledge about the naturally and

anthropogenically induced processes and phenomena

in a visual context in order to preserve and spread the

functioning regimes of the highly valuable landscapes

over all the Earth’s territories, therefore supporting

nature protection and sustainable land use practices.
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Appendix

See Table 1.

Table 1 Approaches for quantifying the perceptual and cognitive attributes of physiognomic landscapes

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Points Viewpoints and iconic places Density of viewpoints Ode et al. (2008)

Other point landscape elements of

all the scales

LiDAR-based point-clouds, LiDAR

metrics

Mitasova et al. (2011) and Nijhuis

et al. (2011)

Lines (shapes) Fractal dimension Area-perimeter relationships of

patches

Siu-Ngan Lam (1990), Schirpke

et al. (2013) and Sudakov et al.

(2017)

Line density Summarised line lengths and total

landscape area ratio

McGarigal et al. (2002) and de

Almeida Rodrigues et al. (2018)
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Table 1 continued

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Shape complexity Shape sinuosity (a function of patch

perimeter and area)

Booth et al. (2017)

Surfaces (forms) Fractal dimension The fractal dimension of contours,

characterising the surface or of

variograms, either of the whole

surface or some of its profiles

Siu-Ngan Lam (1990) and Mesev

et al. (1995)

Pixel-by-pixel fractal dimension

mapping, using a sliding window

Di Martino et al. (2017)

Terrain roughness Terrain Ruggedness Index, the

standard deviation of altitude,

slope variability

Bishop and Hulse (1994), Riley

et al. (1999), Germino et al.

(2001), Vukomanovic and Orr

(2014), de Almeida Rodrigues

et al. (2018) and Vukomanovic

et al. (2018)

Water-body size Area of water inside an area unit Booth et al. (2017)

Visible surface Viewshed density or viewshed area

inside the area unit or other

visibility analyses

Ode et al. (2008), Schirpke et al.

(2013), Vukomanovic and Orr

(2014), Burkhard and Maes

(2017), de Almeida Rodrigues

et al. (2018) and Vukomanovic

et al. (2018)

3D landscape metrics Based on the structure of the digital

surface model and digital

elevation model, LiDAR data

Chen et al. (2014) and Chen and Xu

(2016)

Textures Pixel-based texture metrics (first-

order or second-order metrics) as

patterns of the local spatial

variation of the pixel values

Kernel-based estimations Haralick et al. (1973), Warner

(2011) and Hall-Beyer (2017)

Object-based texture metrics Based on the pixel grouping Ozkan (2014)

Vegetative interspersion Total number of pixels along the

perimeters of the vegetation

patches

Booth et al. (2017)

Colours Colour diversity Number of colours, their contrast Arriaza et al. (2004), de la Fuente

de Val et al. (2006) and Swetnam

et al. (2017)

Colour harmony Second-order pixel-based textural

metrics applied to HSV or HSL

band composite (obtained from

RGB composite), with further

GIS-processing

Karasov et al. (2018)

Greenness Spectral indices calculation, such as

NDVI (normalized difference

vegetation index)

Bremer et al. (2011), Vukomanovic

and Orr (2014) and Vukomanovic

et al. (2018)

Heterogeneity,

complexity,

diversity

Patch density Number of patches per unit of area McGarigal and Marks (1995),

Antrop and Van Eetvelde (2000),

McGarigal et al. (2002), de la

Fuente de Val et al. (2006) and

Booth et al. (2017)
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Table 1 continued

Qualitative

landscape

attributes

Quantitative physiognomic

indicators

Method or technology for

quantification

Sources/references

Patch size standard deviation Root-mean-square deviation in

patch size

Patch-level diversity and evenness

indices

Shannon entropy

Pixel-based texture metrics Kernel-based estimation of entropy

and other multicollinear metrics,

often using Grey Level Co-

occurrence Matrix

Haralick et al. (1973), Anys et al.

(1998), Warner (2011) and Hall-

Beyer (2017)

Fractal dimension See above (here regarding the

geometric complexity of patches)

de la Fuente de Val et al. (2006) and

Plexida et al. (2014)

Spatial autocorrelation Getis statistic for satellite imagery

products and local Moran’s I

measure the pattern of land cover

Fan and Myint (2014)

Terrain diversity Terrain Ruggedness Index (TRI),

VAR index of topographic

heterogeneity

McGarigal and Marks (1995), de la

Fuente de Val et al. (2006) and

Vukomanovic and Orr (2014)

Heterogeneity index The proportion of the pairs of pixels

of the grid, corresponding to the

different land cover classes

Fjellstad et al. (2001) and Dramstad

et al. (2006)

Cultural

modification

and naturalness

The proportion of landscape class

of high naturalness (including

water) or cultural modification

Class area and landscape area ratio Arriaza et al. (2004), Palmer (2004),

Ayad (2005) and Swetnam et al.

(2017)

Line sinuosity See above Booth et al. (2017)

Fractal dimension See above Antrop and Van Eetvelde (2000),

Taylor (2002) and Hagerhall et al.

(2004)

Fragmentation extent Getis statistic as an indicator of

fragmentation

Fan and Myint (2014)

Harmony,

coherence,

incongruity,

disturbance,

fragmentation

Landscape coherence (of

geographic attributes)

Spatial autocorrelation (Moran’s I)

of soils and land use intensity

Mander et al. (2010)

Fragmentation extent See above Fan and Myint (2014)

Fractal dimension See above Lam et al. (2018)

Contagion index Function from a number of patch

classes, the proportion of

landscape occupied by each class

and the number of adjacencies

between the pairs of pixels of the

different classes

McGarigal et al. (2002) and

Sahraoui et al. (2016)

Interspersion and juxtaposition

index

Function from the patch adjacencies

in the landscape

McGarigal and Marks (1995) and

Sahraoui et al. (2016)

Cohesion index Estimation of the physical

connectedness of the patches

McGarigal et al. (2002) and Plexida

et al. (2014)

Connectivity indicator CCI The distance-based function of the

connectedness

Mancebo Quintana et al. (2010) and

Martı́n et al. (2016)
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Ode, Å., Hagerhall, C. M., & Sang, N. (2010). Analysing visual

landscape complexity: Theory and application. Landscape
Research, 35(1), 111–131. https://doi.org/10.1080/

01426390903414935.
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