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Abstract Detection of spatial disease clusters in

irregular shapes has generated considerable interest

among public health researchers and policymakers.

The existing methods have varying issues such as

enormous computing workloads, peculiar cluster

shapes, and high subjectivity of parameters. To

support fast detection of irregularly shaped clusters,

we are proposing a hybrid method combining Tango’s

restricted likelihood ratio as the test statistic and

Assunção et al.’s dynamic Minimum Spanning Tree

method as the search strategy. We discuss the

advantages and the implementation of the hybrid

method, and systematically compare its performance

with other three well-known scan-based cluster detec-

tion methods, including Tango’s method, Assunção

et al.’s method, and Kulldorff’s circular spatial scan

statistic method. Using simulated data of six cluster

models combining two disease incidence levels and

three true cluster shapes, the performance of the

methods is evaluated in terms of statistical power,

geographic accuracy, and computational intensity.

The experimental results indicate that our hybrid

method with 0.2 as the screening level value has the

third highest average statistical power and the best

average geographic accuracy among the four methods

with all of the tested parameters. The four methods are

then applied to the county-level lung cancer incidence

data of Georgia from 1998 to 2005, and all find a

significant cluster in northwestern Georgia but varying

in shape and size.

Keywords Disease cluster � Irregular shape � Spatial

scan statistic � Restricted likelihood ratio � Dynamic

minimum spanning tree

Introduction

Detection of spatial disease clusters, or hot spots, has

generated considerable interest among public health

researchers and policymakers over several decades

(Besag and Newell 1991; Maheswaran and Craglia

2004; Lawson 2006). Defined as a geographic area

with significant elevated risk of a particular disease

(Lawson 2006), spatial disease clusters may be

resulted from the communicability of some diseases,

adverse effects from physical, socioeconomic, or

psychosocial environment, certain kinds of lifestyles

which are commonly considered harmful to health,

such as smoking, and poor accessibility to healthcare

(Maheswaran and Craglia 2004). Detecting spatial

disease clusters not only aids the analysis of disease

aetiology, but also enables public health authorities to
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improve their disease surveillance, more effectively

distribute resources, and better control possible dis-

ease outbreaks.

Over the past decades, a large body of cluster

detection methods have been proposed by geographers

and statisticians to reflect different interests and

application contexts. A good review on the recent

developments in this field was made by McLafferty

(2015). Among the existing methods, Kulldorff’s

spatial scan statistic (Kulldorff 1997) may be the most

used one for cluster detection among spatial units.1

This approach moves a circular scan window with

varying radii over the study region and identifies the

cluster (i.e., the local set of spatial units) with the

maximum likelihood ratio. Due to the use of a circular

window, this method tends to identify clusters with a

compact circular shape, which may mask the actual

spatial morphology of disease clusters (e.g., a linear

waterborne disease cluster along a river) and can

impede statistical inference about the relationship

between disease clusters and their contributing factors

(Murray et al. 2014). To address these issues, an area

of research has been evolved recently focusing on

finding clusters in irregular shapes. Their methods

usually modify or extend Kulldorff’s spatial scan

statistic. Our research is also along this line.

To support irregularly shaped cluster detection, the

clustering likelihood ideally needs to be examined for

each combination of the spatial units in a study area.

However, such exhaustive search could be computation-

ally unmanageable for study areas with a large number of

spatial units. In addition, the set of spatial units in a

cluster are often assumed to be connected. To address

these issues, a sophisticated search process is desired so

that the whole search space (i.e., all spatial unit

combinations) can be reduced to a subset for clustering

testing. An ideal subset usually has three criteria:

1. Each element in the subset should be a zone

consisting of a connected spatial unit set;

2. The size of the subset should be computationally

manageable;

3. The optimal or suboptimal solution (i.e., the

maximum likelihood cluster) should be included

in the subset.

To obtain an ideal subset, a range of spatial search

strategies have been proposed, including the upper

level set scan (Patil and Taillie 2004), simulated

annealing (Duczmal and Assunção 2004), exhaustive

localized search (Tango and Takahashi 2005), genetic

algorithm (Duarte et al. 2010), fast subset scan (Neill

2012), and multi-objective dynamic programming

(Moreira et al. 2015). However, these methods either

cannot guarantee the connectivity of the identified

clusters, or will obtain a too small reduced subset

where the optimal or suboptimal solution may not be

included, or could easily become computationally

unmanageable, or incorporate many tune-up parame-

ters that are difficult to interpret and determine.

In addition to the above spatial search problems, the

identified maximum likelihood clusters usually end up

with an unrealistic, highly irregular shape (e.g., tree-

shaped) spreading over the whole study region, which

cannot add new information with regard to its special

geographic significance (Duczmal et al. 2006). To

avoid this problem, some methods combine a shape

penalty parameter into the maximum likelihood ratio

function to explicitly penalize the cluster candidates

that have a highly irregular shape, such as the non-

compactness penalty proposed by Duczmal et al.

(2006) and the non-connectivity penalty and the depth

limit proposed by Yiannakoulias et al. (2007). Multi-

objective frameworks have also been proposed to

control the occurrence of highly irregularly shaped

clusters, such as the method proposed by Duarte et al.

(2010) which simultaneously maximizes the spatial

scan likelihood ratio, the cohesion function, and the

geometric function. These geometric penalty param-

eters, however, only use the structure information of

the spatial unit tessellations without considering the

disease/population data in each spatial unit.

In this paper, we are proposing a fast, hybrid

method to detect irregularly shaped clusters, which

combines Assunção et al.’s (2006) dynamic Minimum

Spanning Tree (dMST) method as the search strategy

and Tango’s (2008) restricted likelihood ratio as the

test statistic. The dMST method is a simple and fast

search strategy that can obtain a computationally

manageable subset of connected spatial unit combi-

nations where the optimal or suboptimal solution is

very likely to be included. The restricted likelihood

ratio excludes individual spatial units with low disease

risk from cluster candidates, which, in turn, limits the

extreme irregularity of cluster shapes. Although both

1 For comparative purpose, our discussion is limited to the

Poisson model of Kulldorff’s spatial scan statistic which is used

for aggregated data with spatial units, such as states and

counties.
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the dMST method and the restricted likelihood ratio

are not newly developed, their combination is

expected to be a promising method based on the

advantages of each component. To our best knowl-

edge, however, there is no work in the current

literature discussing their combination and testing its

performance. To fill the gap, our research aims to

implement this hybrid method, compare its perfor-

mance with other well-known cluster detection meth-

ods, and demonstrate its use in real-world problems.

This paper is organized as follows. ‘‘Related work’’

section briefly reviews related work, including Kull-

dorff’s spatial scan statistic, the dMST search process,

and the restricted likelihood ratio function. ‘‘The

hybrid method’’ section describes the implementation

of the hybrid method and discusses its conceptual

relationship with other three well-known methods.

‘‘Performance evaluation’’ section uses simulated data

to test the performance of the hybrid method, which is

followed by an application in ‘‘Application: Georgia

lung cancer incidence, 1998–2005’’ section using all

of the four methods to detect lung cancer incidence

cluster in Georgia from 1998 to 2005. ‘‘Conclusions’’

section concludes the paper.

Related work

Kulldorff’s spatial scan statistic

Following Naus’ pioneering work on scan statistics

(Naus 1965), Kulldorff (1997) developed one of the

most used spatial cluster detection methods where a

circular scan window with various radii is moved over

the space of the study area to detect the maximum

likelihood cluster. The software program for this

method, SaTScanTM, can be easily accessed over the

Internet (Martin Kulldorff and Information Manage-

ment Services Inc. 2015).

Consider a study area composed of m spatial units

(e.g., counties) with total population N and total number

of disease cases C. If ni and ci represent the population

and the number of disease cases in spatial unit i,

respectively, we can then observe that N ¼
Pm

i¼1 ni and

C ¼
Pm

i¼1 ci. Let us denote a zone as a subset of the

spatial units within a circular scan window and Z

represents the zone set including all possible zones in

the study area. Then the number of observed disease

cases in the zone z is cz ¼
P

i2z ci. Under the null

hypothesis that there are no clusters in the study area

and the number of cases in each zone is Poisson

distributed proportionally to its population, the

expected number of disease cases in the zone z would

be lz ¼ C
N

� �P
i2z ni.

Define L0 as the likelihood function under the null

hypothesis and L(z) as the likelihood function under

the alternative hypothesis that the zone z is a cluster

where the occurrence probability of a disease case is

higher than that outside. For the zone z, the logarithm

of the likelihood ratio, LLR(z) = (L(z)/L0), can be

simplified as below (Martin Kulldorff 1997):

Assuming the zone z* has the maximum LLR over

the whole zone set Z, LLR(z*) is then defined as the

scan statistic and the corresponding zone z* is

regarded as the most likely cluster. To test the

statistical significance of the most likely cluster, the

Monte Carlo simulation (Dwass 1957) is used where

the scan statistic is computed for a large number of

simulations under the null hypothesis (e.g., 999 or

9999 simulations), and their distribution is compared

to the scan statistic of the observed most likely cluster,

which produces its p value.

The dMST search strategy

To support irregularly shaped cluster detection,

Assunção et al.’s (2006) proposed a dMST search

method used to replace the circular scan window in

Kulldorff’s spatial scan statistic method. The dMST

method is based on the popular minimum spanning

LLR zð Þ ¼ cz ln
cz

lz

� �

þ C � czð Þ ln
C � cz

C � lz

� �

; if
cz

lz

� �

[
C � cz

C � lz

� �

0; otherwise

8
<

:
ð1Þ
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tree algorithm. As shown in Fig. 1, this method

represents a study region map as a graph G (V, E)

where each spatial unit is a vertex in the vertex set

V and each pair of adjacent spatial units (i.e., sharing a

boundary or a point) are connected by an edge in the

edge set E.

In the graph theory, a path is a sequence of vertices

connected by edges and a circuit is a special path with

the first and the final vertices coinciding. A tree is

defined as a connected graph with no circuits. When

constructing a tree from a graph with circuits, the first

chosen vertex for the tree is defined as the root, and

other vertices in the graph are added into the tree

orderly under the constraint that each vertex added

should be a neighbor of (i.e., be connected to) the

existing part of the tree. Each time when a vertex is

added into the tree, the current set of the vertices in the

tree constitute a zone for clustering testing.

Usually, for the same root, different trees could be

built from a graph with circuits. To improve the

chance that the maximum likelihood cluster is

included in the constructed trees of the study area,

the dMST method uses each vertex as the root to

construct a tree. At each step of the tree construction,

the neighboring vertex added will be the one that can

maximize the likelihood ratio of the existing part of

the tree. To mathematically express the dMST

method, we define Ti (Vi, Ei) and Ti?1 (Vi?1, Ei?1) as

the constructed tree at steps i and i ? 1 respectively.

Ni is the neighboring vertex set of Ti. Then,

Viþ1 ¼ Vi [ arg maxu2Ni
LLR Vi [ uð Þ

� �
ð2Þ

In order to reduce calculation intensity, a search

radius K could be set so that at most K - 1 nearest

neighboring vertices will be involved when building

the tree for each vertex.

The dMST method uses a graph-based representa-

tion to make sure all zones explored are connected.

The algorithm is very efficient and can greatly reduce

the search space while having a high chance to include

the optimal or suboptimal solution. Moreover, the

dMST method is essentially a simple greedy algorithm

without any tune-up parameters to determine

subjectively.

The restricted likelihood ratio

When using Kulldorff’s spatial scan statistic (Eq. 1),

the detected clusters usually include some individual

low-risk spatial units. Such clusters are not very

reasonable. In addition, when using a graph-based

search process, such as the aforementioned dMST

method, these low-risk spatial units are usually found

connecting multiple subsets of spatial units, making

the detected clusters highly irregular-shaped and much

larger than the true clusters (Assunção et al. 2006).

Such kind of clusters provides us little information

regarding geographic significance and could impede

our understanding of the underlying dynamics of

disease clusters. To address these problems, Tango

(2008) proposed a restricted likelihood ratio as the test

statistic, which will not test the cluster candidates with

individual low-risk spatial units inside. Denote

LLR(z) as the logarithm of Kulldorff’s likelihood ratio

(Eq. 1), the logarithm of the restricted likelihood ratio

RLLR(z) can be expressed as:

RLLR zð Þ ¼
LLR zð Þ; if

Q

i2z
I pi\a1ð Þ ¼ 1

�1; otherwise

(

ð3Þ

where I(�) is an indicator function with a value of 1

when the condition is met and 0 otherwise. In the

product of indicator functions:
Q

i2z I pi\a1ð Þ, a1,

ranging from 0 to 1, is a screening level specified by

users for the risk of any individual spatial unit, and pi is

the one-tailed mid-p value of spatial unit i under the

null hypothesis that its risk is an average of the whole

study area. A small pi value indicates that theFig. 1 The graph-based representation of a study area map

696 GeoJournal (2018) 83:693–705

123



likelihood of disease risk in spatial unit i is unusually

high. The one-tailed mid-p value is defined as below

(Tango 2008):

pi ¼ PrfNi � ci þ 1jNi � Pois lið Þg þ 1

2
PrfNi

¼ cijNi � Pois lið Þg ð4Þ

where ci and li denote the observed and expected

numbers of cases in region i respectively. Ni is a

Poisson random variable with a mean of li, It should

be noted that Kulldorff’s likelihood ratio is the special

case of the restricted likelihood ratio when the

screening level a1 = 1.

In the restricted likelihood ratio function (Eq. 3),

the screening level a1 represents user’s belief on the

minimum disease risk of individual spatial unit in a

cluster. The spatial unit with risk less than the

screening level a1 (i.e., pi C a1) will be excluded

from all cluster candidates. This idea is easy to

understand and can efficiently limit the extreme

irregularity of cluster shapes due to the decreased

connectivity among the spatial units used to construct

cluster candidates. However, the choice of the screen-

ing level a1 is totally up to users. Tango (2008)

recommended a1 = 0.2 as a default value when using

a circular scan window.

The hybrid method

The scan-based cluster detection methods typically

consist of two components: a search strategy and a test

statistic. In this paper, we are proposing a hybrid

method combining Assunção et al.’s (2006) dMST

method as the search strategy and Tango’s (2008)

restricted likelihood ratio as the test statistic. This

combination is a natural choice when considering the

underlying dynamics of epidemiological clustering

and manageability of computational intensity. Disease

clusters emerge due to different mechanisms and are

related to geography, environment, population, and

social processes. As a result, the shape and size of

disease clusters vary in different contexts and are

unknown before we understand their forming mech-

anisms. The dMST method is an efficient and flexible

search strategy that allows irregular-shaped clusters to

be identified with manageable computational inten-

sity. In addition, it is reasonable that clusters should

not include spatial units with very low disease risk.

The restricted likelihood ratio naturally filters out

those low-risk spatial units from clustering testing.

Furthermore, excluding low-risk spatial units can

decrease the connectivity among the spatial units

and, in turn, reduce the amount of cluster candidates

for testing, which, as side effects, decreases the

computational intensity and prevents the detected

clusters being unreasonably large and of extremely

irregular shape. Therefore, by taking the advantages of

the two components, this hybrid method is expected to

support fast detection of irregular-shaped clusters

while addressing the issues identified in other

methods.

Figure 2 shows the two components in the four

spatial scan methods, including our hybrid method,

Tango’s method (2008), Assunção et al.’s method

(2006), and Kulldorff’s circular spatial scan method

(1997) (denoted as the CSScan method below).

Essentially, these methods are the four combinations

of two search strategy (circular scan window vs. the

dMST method) and two test statistics (Kulldorff’s

likelihood ratio vs. the restricted likelihood ratio).

It is worth noting that our hybrid method is not the

first time combining the restricted likelihood ratio with

a search strategy that allows irregular-shaped clusters

to be identified. Tango and Takahashi (2012) used the

restricted likelihood ratio to replace Kulldorff’s like-

lihood ratio in their original flexible spatial scan

statistic (Tango and Takahashi 2005). The major

difference between our hybrid method and their

method exists in the search strategy each adopted.

Tango and Takahashi’s flexible spatial scan statistic

uses an exhaustive search which tests all possible

cluster candidates (i.e., a group of connected spatial

Kulldorff’s 
Likelihood Ratio 

Restricted 
Likelihood Ratio 

The dMST 
Method 

Circular 
Scan 

Window 

Our hybrid 
method 

Search Strategy Test Statistic

CSScan 

Assunção et 
al.’s method

Tango’s 
method

Fig. 2 The test statistics and search strategies of the selected

four spatial scan methods
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units) within the search radius of each spatial unit,

easily making the method computationally unman-

ageable. Using the restricted likelihood ratio in their

method can mitigate this problem to some degree

because excluding low-risk spatial units could reduce

the amount of cluster candidates. However, its com-

putational intensity still could exponentially increase

as the screening level a1 or the search radius increases.

On the contrary, our dMST method uses a heuristic

process trying to identify a good and relatively small

subset of cluster candidates for each spatial unit to test.

Combining the side effect of the restricted likelihood

ratio, our hybrid method is expected to have a better

control on the computational intensity.

Since the search strategy and the test statistic

interrelate with each other in the scan-based cluster

detection methods, the algorithms of the method

implementation need to be carefully designed to

achieve good efficiency. Table 1 describes the algo-

rithm of our hybrid method. Its Visual Basic source

code with sample data will be provided when

requested.

Tango (2008) designed four simple cluster models

to test the statistical power of the restricted likelihood

ratio with circular scan windows. However, the

performance of the scan statistic under other situations

has not been studied, such as different levels of disease

incidence in the study area or various true cluster

shapes. In addition, it is needed to examine the

performance of the restricted likelihood ratio with

varying screening levels when using the dMST search

strategy. The result is expected to provide a guide on

the choice of the parameter when using our hybrid

method in the real-world applications.

Performance evaluation

Experimental design

To evaluate the performance of the hybrid method, we

simulated disease data in the State of Georgia (GA),

which includes 159 counties with a total population of

9,210,790 in year 2000 (Fig. 3). For each set of the

simulated data, county populations are fixed to the

census 2000, and only the number of disease cases in

each county is simulated based on the total number of

cases and the true cluster’s location. Specifically, the

location and shape of the true cluster was first

determined, and then a relative risk r[ 1 was assigned

to the counties within the cluster and r = 1 to the

counties outside. Given the total number of disease

cases in the study area, the number of cases in the

county i follows a multinomial distribution with the

Table 1 The algorithm of the hybrid method

698 GeoJournal (2018) 83:693–705
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probability of ripi=
Pm

j¼1 rjpj where ri and pi are the

relative risk and population at risk in the county

i respectively, and m is the total number of counties in

the study area. Following the criterion used by

Kulldorff et al. (2003), the relative risk for the

counties within the cluster is determined using a

one-sided binomial test with a significance level of

0.05 such that the null hypothesis is rejected with

probability of 0.999 when the alternative is a cluster

with a known location. This choice of the relative risk

provides an upper limit of 0.999 for the statistical

power attainable by any test.

Following the procedure described above, we

design three types of cluster shapes (round, line and

trifurcate shape) and two levels of disease incidence

(low: 500 cases and high: 5000 cases). Combining the

two levels of disease incidence and the three cluster

shapes, we have a total of six cluster models, which are

labeled in a code format as ‘X_Shape’ where ‘X’

indicates the level of disease incidence with ‘‘L’’ for

low and ‘‘H’’ for high. Figure 4 shows the locations of

the simulated clusters and the detailed information of

the six cluster models is listed in Table 2.

For each cluster model, 500 replications are sim-

ulated. The statistical significance of the scan statistic

in each replication is tested using the Monte Carlo

method (Dwass 1957) with 999 repetitions. In order to

explore the effect of the screening level a1 in the

restricted likelihood ratio function, five different

values: 0.05, 0.1, 0.2, 0.3 and 0.4 are set, respectively.

Fig. 3 Georgia population

in 2000 by counties
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We compare the performance of our hybrid method

to Tango’s method, Assunção et al.’s method, and

Kulldorff’s CSScan method. All of the four methods

are implemented using Visual Basic programming and

run in a single thread on a personal computer with an

i7-6700 CPU (3.4 GHz) and 16 GB ROM. 20 percent

of population in the study region was set as the upper

limit of clusters in the CSScan method, and the search

radius K in other three methods are correspondingly

set to 30 counties.

Experimental results

Statistical power analysis

The statistical power indicates how effective the

method is in identifying the presence of statistically

noteworthy clusters (Kulldorff et al. 2003; Assunção

et al. 2006; Tango and Takahashi 2005; Tango 2008).

For each cluster model, the power is defined as the

proportion of the replications where a statistically

significant cluster is detected (p\ 0.05) regardless of

the geographical matchness between the detected

cluster and the true cluster. Table 3 shows the results

of the power analysis. The highest value for each

cluster model is highlighted with bold type. The test

statistic used in both Assunção et al.’s method and

CSScan method is regarded as the restricted likelihood

ratio with a1 = 1.

The results indicate that Assunção et al.’s method

has the highest statistical power among the four

methods for all of the six cluster models (the

average power is 0.876). Our hybrid method

outperforms Tango’s method in all models when

taking the same value of a1. When a1 is 0.4 and 0.2,

the hybrid method has the second and third highest

Fig. 4 The simulated clusters: a circular shape, b linear shape, c trifurcate shape

Table 2 Descriptions of the six cluster models

Cluster ID Cluster code Count of cases Population in cluster Cluster size (# of counties) Shape Relative risk

1 L_Round 500 1,802,970 7 Round 1.63

2 H_Round 5000 1.18

3 L_Line 500 1,721,370 5 Line 1.64

4 H_Line 5000 1.18

5 L_Tri 500 427,594 7 Trifurcate shape 2.30

6 H_Tri 5000 1.33

700 GeoJournal (2018) 83:693–705
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average power (0.835 and 0.812) among the four

methods with all of the tested a1. The CSScan

method has a relatively low average power (0.789),

and Tango’s method has the lowest power whatever

the value of a1 is.

In addition, all of the four methods generally

have higher power with a lower level of disease

incidence. Their power also varies among the three

shapes. When a1 increases from 0.05 to 0.4, the

best power of our hybrid method shifts from the

linear clusters to the round clusters and then to the

trifurcate clusters. Assunção et al.’s method and

CSScan method both have higher power to detect

trifurcate clusters than the other two methods with

all tested a1.

Geographic accuracy analysis

In order to understand how well these methods can

identify the correct boundaries of a cluster, Kappa

Index of Agreement (KIA) is chosen to evaluate the

agreement between the identified most likely clus-

ters and the true clusters. One advantage of KIA is

that it excludes the probability that the clustering

units (e.g., counties in the experiments) are identi-

fied merely by chance. Given the study area size

(S), the true cluster size (T), the identified cluster

size (D), and the size of the intersection between the

identified cluster and the true cluster (I), Table 4 is

the contingency table.

Based on Table 4, the KIA equation for this study

can be derived as follows:

KIA ¼ O� E

1 � E
ð5Þ

O ¼ I þ S� T � Dþ Ið Þ
S

;

E ¼ D� T þ S� Dð Þ � S� Tð Þ
S2

where O is the observed proportion of matching values

(i.e., the diagonal elements in the contingency table)

and E is the expected proportion of matches when the

true cluster is assumed independent with the identified

cluster. KIA ranges from 0 to 1, and 1 means a perfect

agreement.

Table 5 shows the results of the geographic accu-

racy analysis and the highest KIA value for each

cluster model is highlighted with bold type. It is found

that our hybrid method generally has a better geo-

graphic accuracy of the identified clusters than

the other three methods across the six cluster models.

Especially when a1 is 0.2, our hybrid method reaches

the highest average geographic accuracy (0.614). In

most of the cases, Tango’s method has a lower

geographic accuracy than our hybrid method when

Table 3 Estimated power

of the four methods

(significance level = 0.05)

Bold highlights the highest

value for each cluster model

a1 Method L_Round L_Line L_Tri H_Round H_Line H_Tri Average

0.05 Hybrid 0.774 0.792 0.82 0.74 0.784 0.696 0.768

Tango’s 0.706 0.75 0.718 0.68 0.732 0.572 0.693

0.1 Hybrid 0.806 0.81 0.79 0.786 0.838 0.696 0.788

Tango’s 0.716 0.764 0.718 0.704 0.74 0.562 0.701

0.2 Hybrid 0.848 0.832 0.826 0.814 0.83 0.72 0.812

Tango’s 0.738 0.758 0.734 0.698 0.75 0.602 0.713

0.3 Hybrid 0.828 0.802 0.862 0.806 0.812 0.752 0.81

Tango’s 0.768 0.766 0.762 0.714 0.742 0.624 0.729

0.4 Hybrid 0.836 0.802 0.904 0.814 0.82 0.834 0.835

Tango’s 0.794 0.748 0.782 0.766 0.748 0.642 0.747

1 Assunção’s 0.868 0.864 0.928 0.842 0.882 0.874 0.876

CSScan 0.768 0.71 0.916 0.744 0.722 0.872 0.789

Table 4 Contingency table of the identified cluster and the

true cluster

Identified most likely cluster Total

Inside cluster Outside cluster

True cluster

Inside cluster I T - I T

Outside cluster D - I S - T - D ? I S - T

Total D S - D S
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taking the same value of a1. It has the highest average

accuracy (0.473) when a1 is 0.4, which is similar to the

average accuracy of the CSScan method (0.475).

Assunção et al.’s method has a relatively low accuracy

(0.435).

From the above results, we also find that all

methods generally have a higher geographic accu-

racy with a lower level of disease incidence. They

also have a varying accuracy among the three types of

shapes. Compared to the linear and round shapes, the

boundaries of the trifurcate clusters are more difficult

to be correctly identified by both our hybrid method

and Tango’s method. Assunção et al.’s method is

better for the trifurcate shape than the other two

shapes, and the CSScan method is better for the round

clusters.

Computational intensity analysis

Given a search radius of K, both the dMST method and

a circular scan window will lead to up to K cluster

candidates for each spatial unit in the study area. The

amount of cluster candidates will be further reduced

by using the restricted likelihood ratio. Therefore, our

hybrid method, in theory, is faster than those methods

which need to test more cluster candidates due to the

use of complex search strategies, such as simulated

annealing (Duczmal and Assunção 2004), exhaustive

localized search (Tango and Takahashi 2005), and

genetic algorithm (Duarte et al. 2010). To understand

the computational intensity of the four methods

compared in this paper, we calculate the average

computing time taken by each method in the exper-

iment and plot them in Fig. 5.

The result shows that, when the screening level

a1\ 0.4, both our hybrid method and Tango’s method

took the least time (4–8 s). However, the time taken by

our hybrid method increases faster than Tango’s

method does as the screening level a1 increases.

Assunção et al.’s method takes the longest time (98 s).

Application: Georgia lung cancer incidence,

1998–2005

The above experimental results indicate that our

hybrid method with the screening level a1 = 0.2 has

the third highest average statistical power and the best

average geographic accuracy among the four methods

with all of the tested a1. To demonstrate its application

in the real-world problems, we use it to detect the lung

cancer incidence cluster in GA from 1998 to 2005. The

Table 5 KIAs between the

most likely clusters and the

true clusters for the four

methods

Bold highlights the highest

value for each cluster model

a1 Method L_Round L_Line L_Tri H_Round H_Line H_Tri Average

0.05 Hybrid 0.519 0.601 0.457 0.503 0.595 0.420 0.516

Tango’s 0.354 0.47 0.296 0.354 0.47 0.27 0.369

0.1 Hybrid 0.606 0.661 0.476 0. 6 0.66 0.451 0.576

Tango’s 0.389 0.499 0.303 0.383 0.497 0.294 0.394

0.2 Hybrid 0.686 0.692 0.505 0.648 0.675 0.48 0.614

Tango’s 0.432 0.5 0.345 0.418 0.498 0.331 0.421

0.3 Hybrid 0.663 0.627 0.507 0.613 0.597 0.471 0.58

Tango’s 0.488 0.492 0.392 0.473 0.495 0.356 0.449

0.4 Hybrid 0.589 0.544 0.506 0.553 0.51 0.456 0.526

Tango’s 0.540 0.496 0.390 0.556 0.49 0.364 0.473

1 Assunção’s 0.454 0.389 0.493 0.434 0.376 0.461 0.435

CSScan 0.582 0.46 0.402 0.572 0.454 0.379 0.475
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Fig. 5 Average computing time taken by each method in the

experiment
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other three methods are also applied for comparative

purpose. The data from the Georgia Comprehensive

Cancer Registry shows that there were a total of

42,521 lung cancer cases in GA during that time

period, where 25,615 cases were males and 16,906

cases were females. The expected number of cases in

each county is calculated based on GA population in

year 2000 (Fig. 2) and adjusted by both age and

gender.

The screening level a1 = 0.2 is used in our hybrid

method and Tango’s method. The search radius (i.e.

maximal cluster size) is set to 30 counties for all

methods. To reflect lung cancer relative risk in each

county, we also calculate its standardized incidence

ratio (SIR), which is a ratio of the observed number of

cancer cases over the expected number of cases. A

county with an SIR value of one has the average risk of

the entire state. Figure 6 shows both the SIR by county

and the lung cancer cluster (significance level = 0.05)

detected by each method. We can see that all methods

find a significant cluster in northwestern GA. How-

ever, these clusters vary in size and shape. Influenced

Fig. 6 Lung cancer incidence clusters in GA, 1998–2005, detected by the four methods (significance level = 0.05). a Hybrid method

(a1 = 0.2), b Assunão’s method, c Tango’s method (a1 = 0.2) and d CSScan

GeoJournal (2018) 83:693–705 703
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by the search strategies, our hybrid method and

Assunção et al.’s method find a cluster with a

relatively irregular shape, while the clusters found

by the other two methods are more compact. By

excluding individual counties with low risk from

cluster testing, the clusters detected by our hybrid

method and Tango’s method are smaller than those

detected by the methods using the same search

strategy but considering all counties for testing no

matter how their individual risk is. Therefore, our

method shows a good balance in both the shape and

size of the detected cluster.

To explain the occurrence of the cluster, we need to

take a further look at this area and examine its

environmental, occupational, behavioral, and social

risk factors related to lung cancer. Smoking is a well-

known main factor contributing to lung cancer.

Among the 18 health districts in GA, the northwest

district including most of the counties in the cluster

had the highest prevalence of cigarettes smoking

among adults from 2000 to 2004 (29% vs. state

average of 22.6%) (GDPH 2004). This may partially

contribute to the emergence of the cluster. In addition,

this cluster is located in Appalachia where increased

lung cancer incidence and mortality have been doc-

umented in the previous research and considered

related to the heavy coal mining activities in the region

(Hendryx et al. 2008). Although no coal has been

mined in GA since the mi-1980’s, the proximity of the

cluster area to the active coal mining sites in the

neighboring states, such as Alabama and Tennessee,

and the fact that 4 out of the 12 coal plants in GA

concentrated within this cluster area (EPA 2000) may

increase the residents’ exposure to air pollution and

contribute to lung cancer. However, all of these

assumptions need further validation with more com-

prehensive data and analysis, which is beyond the

scope of this paper.

Conclusions

Spatial disease cluster detection has been widely used

to identify questionable areas for a further investiga-

tion and explore spatial or spatio-temporal disease risk

patterns. To support fast detection of irregularly shaped

clusters, we are proposing a hybrid method combining

Assunção et al.’s dMST method as the search strategy

and Tango’s restricted likelihood ratio as the test

statistic. Although both of the two components are not

new, their combination and the associated performance

have not been discussed and explored. In this study, we

discuss the advantages and the implementation of the

hybrid method, and systematically compare its perfor-

mance with other three well-known scan-based cluster

detection methods, including Tango’s method, Assun-

ção et al.’s method, and Kulldorff’s CSScan method.

The experimental results show that the four methods all

have a varying performance for different disease

incidence levels and true cluster shapes. This finding

corresponds well with the power analysis conducted by

Waller and Gotway (2004) where most cluster detec-

tion tests show spatially heterogeneous power. There-

fore, when applying these cluster detection methods in

the real-word problems, we need to be very careful to

interpret the results and acknowledge the associated

uncertainty. Among the four methods with all of the

parameters we have compared, our hybrid method with

the screening level a1 = 0.2 has the third highest

average statistical power and the best average geo-

graphic accuracy. Finally, the four methods are applied

to the lung cancer incidence in GA between 1998 and

2005, and all find a significant cluster in northwestern

GA but varying in shape and size.
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