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Abstract This paper consists of three parts. After an

introduction that stresses the historical progression of

modeling methods, the motivation for urban modeling

and simulation is explored, and the terms defined.

Next, a meta-review of the literature is conducted,

partially in an attempt to show that urban models

resemble, and indeed share many overlapping issues

with models in parallel fields such as economics and

ecology. Lastly, the specific lessons learned from the

author’s fifteen-year experience developing and sup-

porting a cellular urban growth and land use change

model (SLEUTH) are shared, in the interest of making

these issues generic to current and future modeling and

simulation efforts. The conclusion stresses that future

models face new computing power, new theoretical

paradigms, vastly improved ways of visualizing

simulations, and a rapidly changing audience for

modeling and simulation.
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Introduction

In the light of three recent book chapters examining

over 10 years of the development and use of the

SLEUTH cellular automata (CA) urban growth model

(Clarke et al. 2007; Clarke 2008a, b), this paper

attempts a far broader examination of contemporary

urban simulation modeling by computer. The paper

has three parts: first, the goals, purpose and value of

model-building and simulation for urban regions are

discussed. Second, some past and present modeling

approaches are examined, in particular the paradigm

of multi-agent systems (also known as Agent-Based

Models), as potential inheritors of the baton in the

Olympic relay race for the ideal urban model, i.e. one

that is accurate, accountable, explanatory, predictive,

useful (and used), and simple (enough) (Benenson

2004). Lastly, the specific lessons and limitations of

SLEUTH are discussed as representative of more

general issues for urban modeling, and a few words of

advise given for the runners at the next urban modeling

Olympic games.

Gilbert and Troitzsch (1999, p. 7) have provided a

thought-provoking summary of the history of simula-

tion modeling in the social sciences. In their view, only

three sets of methods predate 1940: differential

equations, stochastic processes, and game theory.
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Each of these led to species of models in the later 20th

century. The systems dynamics approach (e.g. For-

rester models) and tools such as STELLA are direct

descendents of differential equation models, and

indeed still are dominant modeling approaches today.

From the stochastic models came queuing models and

micro-simulation models. New theoretical inputs in

the 1960 s featured multi-scale modeling, cellular

automata and artificial intelligence. From these and

other hybrid approaches, we have seen an extraordi-

nary resurgence of models since about 1995, not the

least successful of which in the urban field have been

cellular automata models (Torrens and O’Sullivan

2001) and agent-based models (Parker et al. 2003;

Clifford 2008). A vast literature on these models

covers the current fields of urban and regional

modeling and planning, ecological modeling, inte-

grated environmental modeling and urban geography.

Yet even the contemporary scene has its critics (e.g.

O’Sullivan and Haklay 2000; Couclelis 2001) and

attempts at more general models based on dynamic

objects (e.g. Torrens and Benenson 2005). Simulation

within the built environment is seemingly at a

crossroads of paradigms. After a continuous research

thrust of work on the CA model SLEUTH and its

refinements that has lasted since at least 1994; after

over 100 applications and innumerable dissertations

and planning reports; and after many sessions of

pondering how to improve or modify SLEUTH, in this

paper I first want to return to the roots of the model’s

motivation, and again pose the question ‘‘Why sim-

ulate cities’’ at all.

Why simulate cities?

The discipline of geography, like many sciences, has a

long tradition of modeling (Chorley and Haggett

1967). Geographical models are inherently spatial

models in that they contain at least data about spatial

primitives, location in x, y and z or the equivalent. The

rise of GIS has increasingly formalized the way that

geographical space, spatial patterns and spatial rela-

tions are represented inside the computer (Longley

et al. 2005). More recently, calls have been made and

prototype systems designed to integrate both time and

space in a more dynamic modeling framework for land

change science (An and Brown 2008). Similarly, there

has been strong interest in simulation in Geography.

But there is an important and subtle difference

between modeling and simulation, and we begin with

definitions of these terms.

The abstraction of a system into a model involves

building a theoretical construct that represents a

phenomenon or object with a set of variables and

relationships among the set members. Changes in the

relations over time and space are referred to as

processes, and models are created to allow reasoning

within a logical framework about these processes, and

so contribute to scientific theory. Spatial modeling

then involves the abstraction of space and spatial

relations. Models can simply represent, i.e. lines and

zones as vectors and rasters in GIS, they can formalize

relations, such as the 9 intersection relations of

Egenhofer and Franzosa (1995), they can suggest

structure and form, e.g. Homer Hoyt’s radial sector

model of urban form (Hoyt 1939) or they can

hypothesize time-space relations, such as SLEUTH

modeling urban growth and land use change. Conse-

quently a model is an abstraction that captures a

simplified version of a reality, such that information

can be gleaned about reality from the formalization

inherent in the model.

Simulation has been defined as the imitative

representation of the functioning of one system or

process by means of the functioning of another

(Merriam-Webster Dictionary). Thus simulation op-

erationalizes a model. This is usually done by

expressing the model as a program or process, and

invoking the process using real or contrived test data

as input. These data for spatial models often take the

form of digital maps for some region of interest, but

we normally also simulate data about the world from

data hardwired into the model, the latter are consid-

ered parameters, factors, controls or limits. These data

can be from published sources, measured phenomena

or rates, derived by trial-and-error, or can even be ad

hoc (and undocumented). Gilbert and Troitzsch (1999)

noted that simulation is a particular type of modeling.

Since experiments are possible when a process is

formalized, then a simulation becomes a vehicle

through which to explore both a model (e.g. by

sensitivity testing) and the world that it represents.

Simulations that use models allow development of

explanations beyond the prediction of specific results.

Both models and simulations are inherently sim-

plifications. It is impossible to build context or process

without a degree of simplification or, as social science
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calls it, reduction. There are excellent arguments for

making models as simple as possible yet not so simple

that they fail to capture the complexity and compli-

catedness of the system in question (Clarke 2004;

Batty and Torrens 2001). It is no coincidence that the

generation of models based on complex systems

theory, which include cellular automata and agent-

based models, are able to capture very complex

behavior with only simple models, an enormous

advantage in simulation. Thus from the point of view

of simulation, reductionism is advantageous, because

models can be created that are of value in simulation,

yet are easily formalized or coded.

Models and simulations can easily cope with

virtually all of the mathematics associated with

models based on differential equations. Using

pseudo-random number generators, they can deal with

the stochastic nature of random processes and game

theoretic models. A stream of evolving methods has

assisted in dealing with ill-defined problems, such as

fuzzy set theory, and model convergence, such as

simulated annealing. There have been equivalent

suites of methods that enhance model fitting and

calibration, such as genetic algorithms. Models have

been constructed that are top-down, e.g. modeling

dynamics based on quantities and rates, and bottom-

up, e.g. cellular automata. They are also increasingly

able to apply to both micro and macro scales, often by

scaling up from the disaggregated to the aggregate. In

planning, models can also be engaged into the process

of scenario generation and choice.

Simulation’s principal advantage is that experi-

ments are cheaper, faster and safer in silico that in

reality. This is especially important in urban geogra-

phy. Humankind is unprepared and unwilling to build

entire experimental cities, make daily adjustments to

transportation networks, or change personal habits and

income. Once built, a city becomes a reality and

further experiments are moot. Yet without harming

anyone, or costing very much money or inconve-

nience, digital cities can be contorted beyond human

expectations. Even completely artificial cities can

form, evolve and instruct. When simulations are

complete, they can explain behavior, forecast futures,

automate human capabilities, train professionals and

users, and even entertain us. Yet of these, it is arguable

that the greatest value of simulations is their ability to

formalize systems, and so discover new structures,

forms and processes.

Cities are the focus of human society, and the

dominant home of the majority of humankind. With

the global population approaching 7 billion, never has

the amount and extent of the world’s urban areas been

so great. Yet cities vary by place, they pave land and

create extra run-off, they alter natural habitats and

ecosystems, they boom and decline over the ages,

indeed they are agents of global change (Mills 2007).

They are also centers of cultural innovation and decay,

disease and cures, learning and social pathology,

crime and punishment (Canclini 1997). That we need

to model and simulate every aspect of cities is obvious,

because without the knowledge created our homes

would be far less worthwhile and enduring. But how to

model, and how to simulate? And what should we do

with our simulations when we have them?

The competitors

The number of models created over the history of

urban modeling is immense. ‘‘Urban modeling also

has had eras of models based on paradigms that have

fallen into and out of favor’’ (Clarke 2008a). While

many past models are now obsolete, they nevertheless

have often led to new generations of models that

overcame their initial limitations and weaknesses.

There is also a tendency to explore with research

models that are new and promising, rather than

improve models that have given satisfactory results

in the past. Of course, both approaches are necessary.

The boundaries of what counts as an urban model is

confusing. Many consider urban modeling a subset of

land change science, where land use and land cover

change models deal with such drivers as deforestation

and agricultural expansion (Lambin and Geist 2006).

From this perspective, two reviews of specific models

and their approaches were Agarwal (2002) and Gaunt

and Jackson (2003). The 50 years tradition of systems

dynamics modeling (Moody 1970) was recently

surveyed (Forrester 2007). Many of the first genera-

tion of urban computational models came from this

tradition, and suffered from the problems of early

generation computing (Klosterman 1994). Similarly,

there are models aimed primarily toward land suit-

ability analysis in the tradition of HcHarg’s Design

with Nature, (Collins et al. 2001); models which

include economic drivers (Irwin and Geoghegan

2001); and the ubiquitous cellular models (Batty and
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Xie 1994). Perhaps less well known outside of

ecology are the spatial process models of succession

and invasion of plants and animal species termed

landscape dynamics modeling (Perry and Enwright

2006; Berling-Wolff and Wu 2004), where agent-

based models (known as individual-based models in

ecology) have also had considerable impact. The field

of transportation modeling also regularly influences

urban modeling, especially in the increasingly-active

field at the intersection of land use and transportation

demand forecasting. Chang (2006) makes a classifi-

cation of these models based on their locational

characteristics, form of decision-making, and degree

on interaction similar to that of Agarwal et al. (2002).

Curiously, especially given the extraordinary size of

the literature on urban modeling (all of the above

citations are literature reviews or model surveys),

relatively little attention by comparison has been

devoted to the role of visualization in modeling

(Simpson 2001). The assumption is commonly made

that GIS supplies a model with data, and then re-ingests

the results and makes them visible. Nevertheless,

model outcomes are often scenarios with measured and

unmeasured uncertainty. While model outputs have

become more sophisticated, so too have the visualiza-

tion methods. Some urban modeling systems (e.g.

CommunityViz, and What-If) have engaged this visual

model approach, most have not. Considering the great

increase in accessibility to viewing tools such as

GoogleEarth and Virtual Globe, with 3D modeling and

much flexibility, the role of the direct use of visuali-

zation of simulations in planning and decision-making

remains somewhat unexplored outside of specific

contexts, such as homeland security and gaming.

In this paper I consider the lessons learned from years

of working with the SLEUTH model, yet it is important

to understand that SLEUTH is only one of many choices

when cellular models are considered. These models

include Logistic-CA (Wu and Webster 1998), CA using

artificial neural networks such as ANN-CA (Li and Yeh

2002 and decision-tree CA (Li and Yeh 2004). In some

cases, these models have been compared (e.g. Irwin and

Geoghegan 2001; Almeida et al. 2003).

Lessons from SLEUTH: toward superior models

SLEUTH, named for its data input layers (slope, land

use, exclusions, urban extents, transportation and a

hillshade visualization) is a land use change model that

couples within computer code two cellular automata,

one to simulate the spread of urban areas and the other

to simulate changes among other land uses. The model

assumes that multiple time-slices of digital map

information are available for the study area, and

requires the files to use a naming convention and a

common format. A script then directs the model to

read these data, and to run the cellular automaton.

Historical data are used to calibrate the model by hind-

casting. This part of the modeling, the calibration, is

time-consuming and immensely computationally

intensive, as the model uses brute force computing,

i.e. for the five parameters that control the cellular

automaton behavior, each of which can vary from 0 to

100, every combination and permutation are computed

and their results matched by regression against the real

historical data. Computing all combinations (1005), is

not tractable, so a phased approach is used to

successively improve on results and close in on the

‘‘best’’ values. The behavior types include diffusive

growth, organic growth, new growth centers, road-

influenced growth and differential reaction to topo-

graphic slopes. The control parameters interact within

a single model run, and so permit non-linear feed-

backs. Lastly, to reduce model uncertainty, the

calibration and forecasting phases both use Monte

Carlo simulation, and build uncertainty forecasts.

In the prior discussions of SLEUTH, we focused on

limitations with regard to modeling land use change

(Clarke 2008a) and on limitations of the model itself as

an approach (Clarke 2008b). To summarize, the best

aspects of SLEUTH were that it works reasonably

well, but also is easily available, open source, and has

a degree of support through the SLEUTH website and

through two discussion forums. The last aspect should

not be underestimated. Access to the model’s design-

ers, and to other users of the model, have greatly

assisted new users with the learning curve. This was

especially important when users were unfamiliar with

the model’s programming environment (unix) or

language (C). Such cross-application knowledge per-

mitted comparisons of the model in different environ-

ments, including a web-based results depository and

research comparing calibration results (Gazulis and

Clarke 2006). The model was also compared against

other models in an attempt to measure the effective-

ness of spatial models (Pontius et al. 2008). Such

comparison or meta-modeling is highly desirable in
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future work, as also is forensic modeling. Forensic

modeling is the examination of past forecasts in places

where events have now arrived at the extent of the

original forecasts, e.g. a 1970 plan forecasting growth

to 2005. Such work is better than mere calibration, it is

a true validation of the modeling approach.

In terms of calibration, SLEUTH demanded years

of attention to the process. If a model is to be credible

for forecasting, it should be able to replicate past

measured urban behavior to an accuracy that is

acceptable to the model’s users. Unfortunately, in

many places where urbanization is proceeding at

unprecedented rates, such as in China’s Pearl River

Delta, long term prior behavior (i.e. before remote

sensing) may be poorly measured, and vastly different

from the behavior to be expected in the future. Some

issues of calibration include: scale sensitivity, i.e. how

well does the model’s results cross spatial scales (Jantz

and Goetz 2005); temporal sensitivity, i.e. how

sensitive is the model to the length, frequency, and

irregularity of the spacing of time-slices used as both

input data and outputs; and sequencing, i.e. does the

model update annually, once, synchronously in space,

or asynchronously in space? Also of concern is the

level of aggregation involved. For example, if a model

uses a hierarchical land use classification, are the

results at the highest level of class aggregation better

than those at lower levels (Dietzel and Clarke 2006)?

Lastly, any stochastic model is ultimately dependent

on the rigor of its computational pseudo-random

number generator (Van Niel and Laffan 2003). High

performance, parallel, and grid computing applica-

tions of models make it essential to question values

that are assumed to be random, because of periodic

cycling and non-randomness of values that are

assumed random. The bottom line is that models that

have not undergone rigorous sensitivity testing should

be regarded as research-grade, and not ready for full

scale application and use until such testing is

complete.

A long term measure of the utility of a model is how

its formalizations have discovered or revealed drivers,

behaviors or relations that were not apparent at the

time of model construction. Such a property has been

termed emergence (Holland 1997; Gilbert and Troit-

zsch 1999), and in SLEUTH was the case for several

observations. The clustering of settlements at places

where highways intersect, for example, was not

programmed into the model, but happened anyway.

The critical nature of topographic slope in steering

growth, the growing power-law settlement size distri-

bution (as predicted by theory), and the dominance of

allometric growth were all unexpected. Also a surprise

was when comparing cities by their calibration

settings, some cities would never have been able to

grow at all other than in their specific geographical

setting, e.g. on a river, a highway, or before a mountain

pass (Gazulis and Clarke 2006). The formalization of

SLEUTH, done by painstakingly testing the behavior

rules, revealed the effective drivers of growth to be

transportation routes, availability of flat land for

growth, and the degree of dispersal of the prior

settlement pattern.

Another consequence of SLEUTH was the realiza-

tion that only rarely is one urban model used in

isolation. SLEUTH has been coupled with models of

landfill siting, urban heat islands, species distributions,

hydrology, climate change, and even long term fire

regime (Clarke et al. 2007). This coupled modeling

approach, whether at the data input level, or using the

so-called tight coupling, is now understood as a highly

effective, indeed superior approach. Linking models

in systems is far more possible using grid computing,

common and open architectures, and in distributed

systems. So far, the many attempts to build modeling

systems have been successful only for prototyping

such systems (e.g. REPAST and SWARM). Open

computing is far more likely to yield coupled

modeling solutions, and much will be possible when

the vision of cyberinfrastructure becomes fact.

There are negatives in the lessons learned too.

Nowhere in my career plans did I expect to be working

on a single model for about 15 years. Development of

any model takes time. But development of a model

that works, reliably gives accurate and justifiable

results, runs on supercomputers with massive data sets

(and on student PCs with insufficient memory), and its

sustenance through over 100 applications is almost a

full time occupation by itself. The model has cost the

United States government and the National Science

foundation approximately a million dollars. Yet it is

sensitive to time resolution and spacing, geographical

scale and resolution, and the classification schema

applied to land use. It is not capable of determining the

interior structure of cities, nor is it capable of creating

density estimates within them. There is an accounting

for, but no explicit model of uncertainty in the model.

The most common critique of the model is that it is

GeoJournal (2014) 79:129–136 133

123



‘‘supply-side’’, i.e. it makes no estimates of the many

demand attributes that urban geographers and planners

crave (households, trips, incomes, jobs, land markets,

etc.) My response is that these features were deliber-

ately left out to concentrate on form and dynamics, and

that I was satisfied to be able to model ‘‘where’’ and

not ‘‘why.’’ If needed, they can be included in coupled

models where SLEUTH is one of many components.

Coupling with agent-based models seems an exciting

possibility.

The unexplored dimensions of SLEUTH include

more use of visualizations on the results, what

constants might also have been variables, exactly

how changes in transportation impact growth, how

dynamic probabilities of land use change could be

included, and how sensitive the model’s assumptions

about topographic slope are (they could be tied to

engineering and soils data about building construction,

for example). On the more theoretical front, a factor of

importance in cross scale modeling is the time a

change propagation ‘‘wave’’ takes to get from any

point in the model space to the most distant places

(Dietzel et al. 2005). This obviously impacts rates of

change, but also concerns the nature of time and

update within the model formalization. For example, if

only a Moore neighborhood updates in one time cycle,

then change will take many cycles to get from one

edge of the map to the other, but if update is

asynchronous, then in theory a change could propagate

across the map space in one time cycle, a very different

process indeed. One might call this phenomenon the

persistence of memory. In CA models, there is

assumed to be no memory at all, although the land

use component of SLEUTH violates this assumption.

And lastly, the self-modification element of SLEUTH

was necessary to emulate the real inclination of cities

to boom and bust, grow in spurts and then slow down

or decline. If this mechanism were fully understood, it

may be possible to model the decline and fall of

civilizations, both today and those of the past.

Another important lesson learned from SLEUTH is

that models have product life cycles. Whether the

model is used primarily for research, or becomes a tool

for planning is an important distinction, especially in

how the model needs to be reported and supported. In

the earliest work, advances were in getting the model

to support single applications, yet every success led to

more of a need for testing, automation and more

computer speed. As of today, four distinct versions of

the model are supported, each with a different flavor: a

PC version, a version for parallel computers and the

Cray memory model, a production version and a

prototype. Each, of course, has to give exactly the

same results on the same data, a truly challenging task.

Including test data and results proved very important,

as did the user discussion forums. Of course, without

web-based documentation, the model might not have

lasted more than a couple of years.

Conclusion

The urban growth that SLEUTH was designed to

model has continued unabated, indeed even acceler-

ated, during the model’s life cycle. Yet out of the new

research on feedbacks, climate responses, and con-

gestion, has come a new paradigm that has had a

powerful impact on planning. The economics and

geographical consequences of sprawl are now univer-

sally seen as disadvantageous to humankind. The

‘‘new urbanism’’ school of planning seeks instead to

build at higher densities in more central locations, to

promote mixed use rather than uniform zoning, to

develop where transportation is available, such as in

transportation corridors, and to try to minimize the

need for people to move beyond a small interior zone

in a city for shopping and employment. With the

recent surge in the price of petroleum, this approach

makes more sense today than ever before.

Yet also, the very nature of urban development is

changing. The era of unplanned, haphazard and

individual growth that CA simulate so well is giving

way to larger and larger planned and phased develop-

ments, that often involve land trades. For example, a

developer will be given the rights to build on part of a

land acquisition at higher densities if some of the land

is left undisturbed or as parks, if businesses and

services are integrated into the plan, and if housing is

set aside for low income residents. In rural areas, many

states and countries now use land conservation trusts

and easements, sometimes even private purchase, to

conserve sensitive habitat or areas of great natural

beauty, or to protect farming, especially on the most

fertile and productive soils (Onsted 2006). Energy

reduction, conservation-based irrigation plans, and

green communities are now beginning to appear as

alternatives to the growth-centered approaches of the

past. To be relevant, future modeling and simulation of
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cities must at the least incorporate these features, or

risk irrelevance.

Lastly, the audience for urban models and simula-

tions is changing. Especially young people are far

more visual, and more internet-savvy, and so expect

data and information in different ways, even beyond

the simple 2-D maps of GIS. This new group of

consumers is spatially aware, familiar with visual

simulation, video games and contributed internet

content, such as in the GoogleEarth community.

Perhaps at last there will be a convergence between

simulations for entertainment, and those for planning

and research, as the eye becomes the direct analyst of

the number, and no longer seeks structure in tables,

charts and graphs. These new users will have their own

social, economic and demographic questions for

which the next generation of models will provide

answers.

This is an auspicious time at which to embark on

new models and approaches. Never before has the

suite of geospatial technologies and socio-economic

data collection schema been so powerful and of such

potential (Lo 2007). Integrated modeling approaches

can select from the best existing models to build

coupled systems of models that bridge entire disci-

plines (Clarke et al. 2002), and use common and open-

source tools to do so. Meta-modeling, using more than

one model to measure confidence in results, is

becoming more commonplace, for now in climate

science but increasingly in social science models. And

lastly, geocomputation, high-performance and grid

computing are on the edge of creating computationally

tractable answers to previously unsolvable modeling

and simulation problems (Guan 2008).

Why simulate cities then? Ultimately, because

urban models and the simulations they build provide

an inexpensive and effective way to prevent poor

urban design, to anticipate problems as cities grow and

land uses change, and perhaps to make our world more

sustainable. Urban modeling is indeed at the threshold

of paradigmatic change, as the resurgence of modeling

meets the power of the next generation of computing,

and of new and different users. Clearly there is much

to be gained by coupling existing models, rather than

trying to build the mother-of-all-models, that may or

may not explain everything. There is also a strong case

for making better use of the models and model results

that we already have; for visualizing them better,

making them more accessible to decision-makers and

the public, and for validating their results. And lastly,

the needs of sustainable urbanism have in many ways

moved the finish-line for urban modeling. Simulation

has an extraordinary role to play in the future of

planning and urban geography, and if we are success-

ful, in creating a sustainable future for us all.
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