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Abstract

Traditionally, urban analysis has been quick to adopt and benefit from developments in technology (e.g., microcomputer,
GIS) and techniques (e.g., statistics, mathematical programming). This has not been the case, however, with newer methods
of spatial analysis – in particular, spatial statistics. Only recently has this situation started to change. This paper documents
the confluence of spatial statistics and urban analysis by first reviewing developments in spatial statistics, and then presenting
examples of recent applications in urban analysis. The developments reviewed fall under the rubric of global and local forms
of spatial analysis, and cover three major technical issues: spatial association, spatial heterogeneity and the modifiable areal
unit problem. The examples highlight the relevance and usefulness of the techniques reviewed for urban transportation and
land-use applications. The paper concludes with conjectures concerning future developments at the intersection of spatial
statistics and urban analysis.

Introduction

The analysis of urban systems is a discipline that boasts
a long history using the computer for modeling and sim-
ulation. As recounted by Harris (1985), urban simulation,
since its inception in the 1950s, was enabled and stimulated
by developments in digital computing. The influence of the
computer, moreover, was both direct and indirect through
the role that digital computing played in making possible
the present scope of statistical and other methods used in
research (e.g., mathematical programming). The history of
urban analysis is thus intertwined with that of the computer,
on the one hand, and the development of statistical and math-
ematical methods on the other. A recent expression of the
long tradition in urban analysis of rapidly embracing tech-
nological developments can be observed in the adoption of
geographic information systems (GIS). In the last 15 years
or so, a substantial body of research that explores the role
and potential of GIS to support various forms of urban ana-
lysis and planning has accumulated (e.g., Levine and Landis,
1989; Harris and Batty, 1993; Innes and Simpson, 1993).
Indeed, as numerous recent examples show (including a spe-
cial issue of this journal), today GIS is routinely used in
many aspects of urban research (see, inter alia, Vichiensan
et al., 2001; Okunuki, 2001; Du, 2001; Abed and Kaysi,
2003; Liu and Zhu, 2004; Barredo et al., 2004).

The advantages of using GIS for urban analysis are many.
GIS, as a database management tool, offers forward data
mapping functions for displaying geographical information,
and backward data retrieval functions for ‘querying’ maps
(Levine and Landis, 1989). These ‘front end’ and ‘back

end’ operations allow analysts and planners to better man-
age, display and communicate information (Miller, 1999).
The power of these functions, moreover, is augmented by
techniques for interactive data modeling (e.g., cartographic
analysis, data conversion routines), which can enhance
urban transportation analysis (e.g., Wang and Cheng, 2001;
Stanilov, 2003) and land-use analysis (e.g., Landis and
Zhang, 1998a,b). In some cases, using GIS for urban ana-
lysis may even enable a researcher to break ‘free’ from the
‘tyranny of zones’ (Spiekermann and Wegener, 2000). How-
ever, despite its considerable advantages, GIS in and by itself
does not ‘free’ the analyst from the necessity of coping with
the nuances, complexities and subtle relationships inherent
in the spatial data commonly used in urban research.

Regarding the complexities of modeling spatial data, a
recent paper by Fotheringham (2000) poses the question of
whether the adoption of GIS has represented a step forwards
or a step backwards for spatial modeling. In answering the
question, he asserts that, to date, most GIS-based mod-
eling represents a step backwards – although commercial
GIS packages now incorporate spatial models, in addition
to cartographic analysis techniques, these models tend to be
outdated and far away from the research frontier. In the case
of urban analysis, the adoption of GIS has given the strong
impression that the discipline embraces space in modeling.
It has been noted, however, that the statistical models un-
derlying conventional urban analysis remain, for the most
part, aspatial (Landis and Zhang, 2000), and thus ignore
important issues such as the failure of most conventional
statistics to adequately summarize locational information
(the sufficiency criterion; Griffith, 1988), the lack of inde-
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pendence and inherent stickiness of spatial data (e.g., spatial
association), differential effects in spatial processes (e.g.,
heterogeneity), and the implications of shape and repres-
entation in spatial analysis. It is thus surprising, given the
seriousness of these issues (e.g., Anselin and Griffith, 1988),
that compared to the swift adoption of GIS, urban ana-
lysts have been slower to embrace technical developments
in spatial statistics. This is, however, starting to change.

The objective of this paper is to document the conflu-
ence between urban analysis and spatial statistics, which
is now becoming apparent. To this end, a number of de-
velopments in spatial statistics are reviewed, and recent
examples showing how these techniques can be put to work
in urban analysis are presented. Three major technical is-
sues are covered (i.e., spatial association, heterogeneity and
the modifiable areal unit problem) from the perspective of
global and local forms of spatial analysis (i.e., methods that
seek to identify, explore and model large scale relationships,
or rules, and variation at the local scale, or exceptions; see
Fotheringham and Brunsdon, 1999). In order to highlight the
relevance and usefulness for urban analysis of the techniques
reviewed, examples are drawn from the recent literature to
illustrate how spatial statistics can fruitfully assist in the
task of analyzing processes in both urban transportation and
urban land use. Although the potential of spatially explicit
methods remains yet to be realized by many urban analysts
and modelers, the examples presented in this paper indic-
ate an incipient and promising trend towards the application
of increasingly sophisticated spatial statistical methods for
urban analysis.

Urban processes and spatial processes

Urban analysis has been defined as the use of multidisciplin-
ary knowledge and skills with the objective of solving urban
problems (Pacione, 1990). Although valid as a statement
of purpose, a more targeted definition of urban analysis is
required to delineate the scope of this review, and to dif-
ferentiate it from other thematic areas that could benefit
from the use of spatial analysis, but are beyond the scope
of the present paper (e.g., health research (e.g., Robin-
son, 2000; Jerrett et al., 2003), urban crime (e.g., Craglia
et al., 2000; Craglia et al., 2001; Ceccato et al., 2002) and
political-historical processes (e.g., Flint, 2002)).

The primary focus in this review is on the analysis of
urban systems. The term ‘urban systems analysis’ can be
applied to the study of an individual city, conceptualized
as a collection of various interrelated components. Typic-
ally, these components include an activity sub-system that
determines a city’s land-use configuration, a transportation
sub-system and the interactions between these components
(Black, 1981; De la Barra, 1989; Kanaroglou and Scott,
2002). More recently, urban analysts have paid increas-
ing attention to the urban environment and the effect of
land-use and transportation activities on it (a comprehensive
list of urban sub-systems and their interactions is provided
by Moeckel et al., 2003). Processes of interest in urban

analysis include different types of construction (residen-
tial, industrial, transportation infrastructure), economic and
demographic change, mobility (travel, residential choice and
freight) and environment-related processes, such as energy
consumption, emissions and noise. Methodological issues
include the definition of units of analysis, which could
be aggregated (e.g., Traffic Analysis Zones or TAZs) or
disaggregated (e.g., individuals or households).

A characteristic of most urban processes is the fact
that they are intrinsically spatial and, moreover, space-
dependent. Consider, for example, the following description
of a process observed in Britain and the United States in the
mid-1980s (Hall, 1986):

“Starting with the biggest cities and spreading gradually
down to the smaller ones, progressively the growth of
cities tends to slow down. Thus, eventually, they actu-
ally start to lose people to their suburbs. A little later,
they start to lose out to smaller towns in their immediate
vicinity, and then to more distant places. Eventually, they
start to contract; the growth passes to the smaller towns
and to the countryside.”

Urban growth and decline, according to this depiction, are
spatially-conditioned processes, and the outcome at one
location is partially affected by events at other locations.
The spatial concepts of contiguity (e.g., cities start to lose
people to their suburbs), proximity (e.g., population is lost to
smaller towns in the vicinity) and/or connectivity (e.g., the
process starts with the biggest cities and gradually spreads
down) are important elements of these processes. Several
spatial processes relevant to urban analysis have been iden-
tified in the literature on spatial data analysis (see, for
example, Haining, 1990; Krieger, 1991; and Landis and
Zhang, 2000):
• Spatial diffusion. Diffusion is the gradual adoption of a

new attribute by a fixed population. Typically, the like-
lihood of adoption is influenced by distance to previous
adopters or place in a hierarchy, with the consequence
that diffusion results in geographical patterns. The pro-
cess could occasionally be physical in nature (e.g., land
development).

• Exchange and transfer. Urban economies are bound to-
gether by commodity exchange and income transfer. The
spatial structure of some social and economic variables
may be a reflection of spillover effects, which usually
are evident from the data in the form of spatial associ-
ation. Agglomeration economies, on the other hand, may
produce differential effects over space.

• Spatial interaction. Interaction, as a spatial process, has
received considerable attention, especially in the trans-
portation literature. Although this process is usually
conceptualized in terms of physical movement of people
or commodities, information flows can link events at
spatially dispersed locations.

• Segmentation. The partition of a formerly homogen-
eous region into two or more sub-regions each with
clearly unique characteristics is an example of segment-
ation. In an urban context, spatial segmentation may
relate to agglomeration economies, industrial, commer-
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cial and residential stratification, and racial or social
self-selection, among other processes.

The existence of temporal dynamics in urban processes has
long been a topic of interest in urban analysis (e.g., We-
gener et al., 1986). As hinted by the brief description of the
above spatial processes, the existence of what may be termed
‘spatial effects’ is also important. In fact, spatial processes
that translate as clustering and/or dispersion, or as sys-
tematic variability across space, violate basic assumptions
of independence and homogeneity implicit in conventional
statistical analysis. Violation of these assumptions, in turn,
leads to information loss, biased and/or inefficient paramet-
ers and the possibility of seriously flawed conclusions and
policy prescriptions (Griffith and Layne, 1999). Given these
potential pitfalls, it is not surprising that spatial effects have
often been regarded as nuisances. Increasingly, however,
they are perceived rather as opportunities to obtain deeper
insights regarding the processes under study. Regardless of
the view espoused, there are strong methodological and con-
ceptual arguments favoring the adoption of spatial statistical
methods for the analysis of urban processes. The reminder
of this paper reviews some major technical issues in spatial
statistics and presents substantive examples of application in
urban analysis.

Spatial processes: Some major analytical issues

Three major analytical issues, namely spatial associ-
ation, heterogeneity and the modifiable areal unit problem
(MAUP), are reviewed in this section, along with techniques
to deal with them.

Spatial association

One of the major concerns in the analysis of spatial data,
association is the tendency of variables to display some de-
gree of systematic spatial variation. In urban studies, this
often means that high variable values are found near other
high values and low values appear in geographical proxim-
ity. Sometimes, however, the effect may have a negative
quality when the ordering reflects systematic dissimilarity
among neighboring observations. Spatial association may be
caused by a variety of spatial processes, including, among
others, interaction, exchange and transfer, and diffusion and
dispersion. It can also result from missing variables and
unobservable measurement errors in multivariate analysis.

An important feature of spatial association is a form of
serial arrangement similar to the one in the analysis of time
series. This feature invalidates the assumption of independ-
ence, and compromises the applicability of conventional
statistics, which may lead to biased and inconsistent estim-
ates. In what follows, a general approach to modeling spatial
association is presented. This is followed by reviews of two
exploratory techniques for the local analysis of spatial as-
sociation, namely Getis and Ord’s distance-based statistic
(Getis and Ord, 1993; Ord and Getis, 1995) and Anselin’s
(1995) local decomposition of a global statistic of spatial
association.

Spatially autoregressive models
A well-known technique in spatial statistics is the model
with spatially autoregressive components. This approach to
modeling spatial association is primarily an outcome of de-
velopments in geography (e.g., Cliff and Ord, 1981; Griffith,
1988; Haining, 1990), a field often concerned with the ana-
lysis of areal units (e.g., census tracts) or network data (e.g.,
nodes in a network). Although hardly a new addition to the
spatial analysis toolbox (a version of it was first proposed
by Whittle in 1954), it was not until relatively recently that
this model started to find substantial application in urban
analysis. A widely used specification is the one proposed
by Anselin (1988), which can be written in matrix form as
follows:

Y = ρWY + Xβ + ε, (1)

ε = λWε + µ. (2)

This model is a generalization of the linear regression model.
The elements of the model are a vector Y(n×1) of objective
variable observations, a matrix X(n × K) of independent
observations that include the usual constant and a vector
β(1 × K) of parameters corresponding to K independent
variables. Scalars ρ and λ are parameters of spatial associ-
ation corresponding to the objective variable and the error
terms ε, respectively, while µ are independent and possibly
homogeneous error terms.

An important element of the model is the spatial lag oper-
ator W, which is simply a matrix (n× n) containing weights
wij that describe the degree of spatial relatedness (i.e.,
contiguity, proximity and/or connectivity) between units of
analysis i and j . Matrix W can be defined in different ways.
One basic definition is based on physical contiguity with
binary weights that assign a weight of 1 to pairs of zones
sharing a border and 0 otherwise. In addition to, or in place
of contiguity, connectivity can be given in terms of travel
between pairs of origins and destinations, inventories of ma-
terial flows or flows of goods (Peeters and Ruhigira, 2004,
discuss use of the ‘transportation problem’ to measure prox-
imity). Alternatively, proximity can be defined in terms of
distance or various accessibility measures, such as travel
time or generalized costs. Technical details concerning the
matrix of spatial weights are found in Cliff and Ord (1981).

In the above modeling framework, spatial association
may appear under two different guises. Spatial association
of the objective variable (i.e., the association between yi

and spatially-related observations yj ) can sometimes be in-
terpreted as a spatial economic externality (e.g., Murdoch
et al., 1997). Spatial error autocorrelation, on the other hand,
is basically a statistical nuisance and is best described as a
proxy for missing variables that follow a meaningful spatial
pattern. Regardless of the form of association, the model
seeks to explain the covariation between Y and X, ideally
based on some substantive theory of urban processes.

A commonly adopted two-stage modeling strategy be-
gins by estimating a simple aspatial regression model that is
then tested by means of a statistic of spatial association (e.g.,
Moran’s I ; see Cliff and Ord, 1981) or a model-based stat-
istic (e.g., the Lagrange Multiplier tests of Anselin, 1988).
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Failure at this stage to find significant spatial association
leads to the conclusion that the simple model accounts for all
(i.e., spatial and other) observed variability, and the analyst
would not need to estimate spatial models (see, for example,
the analysis by Briggs et al., 1997). Indication of spatial as-
sociation, on the other hand, would be followed by a second
stage where a spatial model is estimated. In this process,
different definitions of matrix W could be seen as altern-
ative hypotheses regarding the process of interest. Detailed
discussion regarding estimation and inference of this type of
model can be found in Anselin (1988).

Local statistics of spatial association
Originating as part of a recent trend in spatial analysis
that emphasizes the study of local spatial effects, two local
statistics of spatial association have received considerable
attention in the last 10 years: the Getis and Ord family of
Gi(d) statistics (Getis and Ord, 1993; Ord and Getis, 1995,
2001) and Anselin’s LISA (Local Indicators of Spatial As-
sociation; 1995). Both statistics are designed to summarize
the level of local spatial association, and are thus useful in
detecting places with unusual concentrations of high or low
values (i.e., ‘hot’ or ‘cold’ spots). They accomplish this in
very different ways.

The Gi(d) is a distance-based statistic that measures the
proportion of a variable found within a given radius of a
point, respective to the total sum of the variable in the study
region. The statistic is defined for location i as follows:

Gi(d) =
∑n

j=1 wij (d)xj∑n
i=1 xi

, (3)

where xj is the value of the observation at j , wij (d) is
the ij element of a binary W matrix with ones for all sites
within distance d of location i and zeros elsewhere (in-
cluding the diagonal), and n is the number of observations.
Matrix W in this case formalizes the concept of proxim-
ity in geographical space. The mean and the variance of
this statistic can be obtained from a randomization process,
and used to derive a standard statistic (i.e., a Z-score). It is
assumed, for inferential purposes, that the statistic is approx-
imately normally distributed. This is reasonable when n (the
number of points in the sample) is large and the distance
d in equation (3) is not too small (i.e., as to encompass
no observations within the radius) or too large (i.e., as to
encompass all the observations in the study area). If the (ab-
solute) value of the standardized statistic is greater than the
cutoff value at a pre-specified level of significance, then pos-
itive or negative spatial association is said to exist. Positive
values of the statistic are interpreted as a spatial agglomera-
tion of relatively high values (more than would be expected
by chance), while negative values represent relatively low
values clustered together.

The Gi(d) statistic gives the proportion of a variable
(the sum of values) within distance d of location i, and
thus intuitively provides a measure of the concentration (or
lack thereof) of values around a given location. The stat-
istic is useful to reveal spatially homogeneous locations in
terms of the concentration of high or low values. By being
distance-based, it provides a very flexible way of studying

local spatial association that works with positive variables
that have a natural origin. Flexibility, on the other hand,
carries a price, as standard rules to guide the selection of
distance d for analysis remain somewhat underdeveloped.

A different approach to the local analysis of spatial
association is decomposing a global statistic of spatial asso-
ciation. Take, for example, the well-known statistic Moran’s
I:

I = n∑
i

∑
j wij

∑
i

∑
j wij(xi − x)(xj − x)∑

i (xi − x)2

= n∑
i

∑
j wij

∑ ∑
wij x̂ix̂j∑
i x̂2

i

(4)

where x is the mean of variable vector x and x̂i,j are de-
viations from the mean. In Moran’s I , spatial association
is measured as the covariance between values at spatially-
related locations (wij are the elements of a spatial lag
operator W), standardized by measures of total variation
(
∑

i x̂2
i ) and connectivity in the system (

∑
i

∑
j wij ). When

values are interrelated in meaningful spatial patterns, similar
values (in deviations from the mean) are found at neigh-
boring locations (i.e., positive spatial autocorrelation), but
when dissimilar values are found at neighboring locations,
negative spatial association is said to ensue. Zero association
implies a spatially random set of observations.

The local version of Moran’s I is given by the following
expression (Anselin, 1995):

Ii = x̂
∑

j wij x̂j . (5)

The sum of (5) over all i is proportional to the global
statistic in (4). As with the Gi(d) statistic, it is possible to
derive the mean and the variance of Ii based on a randomiza-
tion procedure, and inference can be carried out by obtaining
a normalized statistic Z(Ii).

Interpretation of the LISA statistic is less intuitive than
interpretation of the Gi(d) statistic. In general, there are four
patterns of local spatial association:
• High-high association. When the value of xi is above the

mean and the values of xj at ‘neighboring’ zones (i.e.,∑
j wij x̂j ) are generally above the mean, the statistic is

positive;
• Low-low association. When both values are below the

mean, the statistic is positive;
• High-low association. When the value at i is above the

mean and the values at neighboring zones are, in general,
below the mean, this gives a negative Ii ; and

• Low-high association. When the value at i is below the
mean and the weighted average is above the mean, Ii is
negative.

These patterns are not readily apparent from the sign of the
Ii statistic alone, but they can be gleaned from a Moran’s
scatterplot tool (Griffith and Layne, 1999; pp. 15–18). The
combination of LISA and the scatterplot tool provides de-
tailed information on different types of spatial association
at the local level. LISA statistics can also be aggregated to
produce a global measure of spatial association, and thus can
be used to identify influential locations in spatial association
analysis. In addition, the definition of matrix W makes it
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ideal to work with area data, although in other situations this
definition could impose a fairly rigid spatial structure on the
observations.

Spatial heterogeneity

Urban processes often exhibit patterns of spatial heterogen-
eity – that is, they do not always operate in exactly the same
way over space. Spatial heterogeneity is frequently thought
to result from large-scale regional effects or administrative
subdivisions that delimitate the reach of some process (e.g.,
zoning). Heterogeneity may lead to biased parameter es-
timation, misleading significance levels and/or sub-optimal
forecasts. Thus, it should receive serious attention in urban
analysis. Among different potential issues with spatial data
identified by Griffith and Layne (1999), simulations suggest
that heterogeneity is potentially the most damaging effect
(pp. 71–73). Heterogeneity is commonly seen as a statistical
nuisance. Recently, however, with an increased interest in
the role of context and locality in spatial and urban ana-
lysis, the role of spatial heterogeneity is being re-examined,
and the methods used to detect and model it are receiving
renewed attention.

In statistical terms, spatial heterogeneity can be repres-
ented as structural variation in the definition of the variance
or as systematic variation in the mean of the process. Three
models are reviewed below that deal with spatial hetero-
geneity, namely switching regressions, multilevel models
and geographically weighted regression or GWR. Of these
methods, the first two constitute a compromise between
global-local modeling. GWR on the other hand is a local
form of spatial analysis.

Switching regressions
A method originally developed by Quandt (1958), switching
regressions operate on the principle of classifying a dataset
into a number of mutually exclusive and collectively ex-
haustive regimes. Switching regressions pose a solution to
the problem of heterogeneity that is particularly suitable in
situations where data can be classified into a small number
of regimes. Assuming that a dataset can be divided in two
classes (e.g., north and south in a city, or CBD and suburbs),
regression data could be re-arranged to obtain the following
expression (in matrix form):[

Y1

Y2

]
=

[
X1

0

0

X2

][
β1

β2

]
+

[
µ1

µ2

]
. (6)

In the above, two vectors of dependent variables Y1(n1 ×
1) and Y2 (n2 × 1) contain observations that correspond to
two different spatial regimes (n# is the number of observa-
tions in each regime). In a similar way, the set of independent
variables is rearranged to match the locations represented
by vectors Y1 and Y2, resulting in a matrix of dimensions
(n1 + n2) × 2k. Vectors β1 and β2 include the parameters
corresponding to each of the two regimes, and µ1 and µ2
are the error terms of the model. Redefining the variables,
this specification is identical to the linear regression model:

Y+ = X+β+ + ε+. (7)

Unlike the common regression model that assumes ho-
mogeneity, the structure of the covariance in a switching
regression is defined as:

E[µ+µ+′] = � =
[

σ 2
1 I1

0

0

σ 2
2 I2

]
(8)

to give location-specific variance parameters σ 2
1 and σ 2

2 (I1
and I2 are identity matrices of size n1 and n2, respectively).
The method can be easily generalized to more than two
spatial regimes, with the total number constrained by the
incidental parameter problem (i.e., the number of parameters
must be less than the number of observations). In practical
terms, applications must keep the total number of para-
meters, including variance parameters, within manageable
limits.

The switching regression paradigm is a fairly simple
modeling technique that bridges the gap between global and
local analysis. Instead of estimating a set of blanket para-
meters that apply equally to all the study area, parameters
are specific to each regime. Parameters are thus heterogen-
eous between regimes (inter-class heterogeneity), but are
homogenous with a given regime (intra-class homogeneity).

Multilevel models
Multilevel models have been proposed in geographical re-
search as a way to model spatial heterogeneity (Jones, 1991;
Duncan and Jones, 2000). The method, also known as hier-
archical modeling, operates on the principle of expanding
the parameters of a model using random components as part
of the expansion (Jones and Bullen, 1994), a concept that the
following simple bi-level model illustrates:

yij = α + xij β + εij . (9)

The subscripts indicate individual observations i (=1,
2,. . . , n) in the bottom level, and groups of observations in
the top level (j = 1, 2, . . . , q; q � n). Nests in the second
level could be districts, schools, age groups or any other
suitable classification. One way in which the parameters of
equation (9) can be expanded is:

αj = α0 + εα
j . (10)

As result of this expansion, a parameter αj , specific to class
j in the second level is obtained. This parameter consists of
two parts: a global element α0, and a random term specific
to category j . The terminal model becomes:

yij = α0 + xij β + (εij + εα
j ). (11)

All the non-systematic variation in the model is captured by
the two error terms in parentheses. If these terms are nor-
mally distributed, the model can be fully specified by the set
of parameters α0 and β and one variance parameter for each
set of random terms.

Equations (9) to (11) are a simple example of a bi-level
expansion. However, more sophisticated expansions are pos-
sible. For example, deterministic elements can be added
that use additional explanatory variables to produce linear
or quadratic expansions (see Duncan and Jones, 2000). Sim-
ilar to the switching regression framework, the parameters
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in a multilevel model vary between classes or zones, but are
global or fixed within a given class or zone.

Geographically weighted regression
A different method to model spatial heterogeneity is geo-
graphically weighted regression (GWR), a local form of
analysis proposed by Brunsdon et al. (1996) as a simple way
of modeling complex spatial variation. The method is based
on the idea of assigning weights to individual observations
according to geographical distance from a location termed
the focal point o. Underlying this idea is the well-known
geographical concept of distance-decay, thus implying that
the relative importance of particular observations decreases
with distance from the focal point. In practical terms, the
weighting scheme places a moving window over a spa-
tially distributed set of observations, the influence of which
is progressively discounted with distance from the center
of the window. This scheme has the effect of producing
sub-samples of data around specific points in space.

The GWR model takes the following form (see Brunsdon
et al., 1999):

yo = ∑K
k=1 xokβk(co) + εo, (12)

where sub-index o indicates a focal point that needs not cor-
respond to an actual observation of y. The error terms in
the above expression (see McMillen, 1996, p. 105; Brun-
sdon et al., 1999, p. 502) assume the usual conditions of
independence and constant variance. The difference with the
well-known linear regression model is that βk(co) are unspe-
cified functions, not necessarily linear, of the geographical
coordinates co of the focal point. Brunsdon et al. (1999)
note that if the function βk(c.) is reduced to a constant,
the ensuing model is identical to the ordinary least squares
specification. In other cases, the analyst can evaluate the
unspecified function at a given point in space to give local
estimators of the function.

The moving window used to locally estimate the function
βk(co) is defined by a monotonically decreasing function, or
kernel, such as:

g = exp(−γ d2
oi), (13)

where doi is the distance between the location of the focal
point and observation i. A number of alternative kernel func-
tions exist. It is commonly agreed, however, that selection of
parameter γ (which controls the size of the window) and the
number of observations in the sub-sample is more important
than selecting a kernel function (McMillen, 2001, p. 470).
There are at least two possible strategies for the selection of
γ . One is based on a procedure known as cross-validation,
essentially a goodness-of-fit criterion that minimizes the
total sum of squared errors between the observed values and
the values predicted by the model (e.g., Brunsdon et al.,
1996). A second approach, which is adopted by McMillen
(2001), adopts an arbitrary value of to give a predetermined
window size.

GWR is often interpreted as a smoother (a predecessor
is locally weighted regression, a scatterplot smoother pro-
posed in statistics by Cleveland, 1979). Given this, GWR
can be used to approximate to a very high level of accuracy

the observed variable surface, a feature that makes it very
attractive for various aspects of urban analysis.

Modifiable areal units

Urban analysis is often conducted using ‘aggregate’ geo-
graphical data – that is, data reported for pre-defined areal
units such as census tracts and traffic analysis zones. A well-
known spatial analytical issue that can influence the results
of such studies is known as the modifiable areal unit problem
(MAUP). The seriousness of this issue is clearly demon-
strated by the wide variety of techniques whose results are
known to be affected by it. These techniques include cor-
relation analysis (Gehlke and Biehl, 1934; Blalock, 1964;
Openshaw and Taylor, 1979), regression analysis (Fother-
ingham and Wong, 1991; Amrhein and Flowerdew, 1992;
Amrhein, 1995; Okabe and Tagashira, 1996; Tagashira
and Okabe, 2002), spatial interaction modeling (Open-
shaw, 1977b; Batty and Sikdar, 1982a,b,c,d; Putman and
Chung, 1989), location-allocation modeling (Goodchild,
1979; Fotheringham et al., 1995; Hodgson et al., 1997; Mur-
ray and Gottsegen, 1997) and discrete choice modeling (Guo
and Bhat, 2004) – all of which are commonly used in urban
analysis. Furthermore, the MAUP has been shown to affect
indices derived from areal data such as the segregation index
D (Wong et al., 1999) and the excess commute (Horner and
Murray, 2002). Indices such as these are also used in urban
analysis.

The MAUP arises in urban analysis due to the fact that
an infinite number of zoning systems could be construc-
ted to subdivide a city into smaller areal units. Of course,
this implies that the data reported for areal units will differ
between zoning systems. A direct consequence of this is
that results will vary for studies using the same analytical
technique, but different zoning systems for the same city
(see, for example, Wong et al., 1999; Horner and Murray,
2002). In other words, the outcome from a study using data
reported for areal units of a specific zoning system is merely
one manifestation from a range of possible outcomes.

The MAUP has two components: the scale effect and
the zoning effect. The scale effect is a consequence of
spatial aggregation – that is, results from the same analyt-
ical technique tend to vary according to the level of spatial
resolution. Horner and Murray (2002), for instance, have
shown that estimates of excess commuting decrease with in-
creasing spatial aggregation. Other studies have documented
increases in the values of correlation coefficients as spa-
tial resolution becomes coarser (Gehlke and Biehl, 1934;
Blalock, 1964; Openshaw and Taylor, 1979). The zoning
effect, on the other hand, results from the multitude of
zoning schemes that could be constructed and used at any
given scale. Several studies have documented this effect
(e.g., Fotheringham and Wong, 1991; Fotheringham et al.,
1995; Wong et al., 1999; Horner and Murray, 2002). Ba-
sically, they show that for a given level of spatial resolution
there exists a range of possible outcomes from an analytical
technique owing to changes in spatial partitioning.

Clearly, the only way true frame-independence can be
achieved in urban analysis – meaning that the results from
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the analysis do not depend on the zoning system used (Foth-
eringham, 1989; Tobler, 1989) – is to use individual-level
data. Such data differ from areal data in that their locations
are represented by geographical coordinates (e.g., latitude
and longitude), not zones. This implies that the objects or
phenomena under scrutiny are visualized as points in space.
Trips, individuals, households, firms and land parcels are
but a few objects in a city for which individual-level data
are routinely collected by various public agencies. Such data
are, however, difficult to obtain to support basic research
(Fotheringham et al., 2000) for one obvious reason – confid-
entiality must be preserved at all costs. This implies that if
the data are released for public consumption, locational pre-
cision is often sacrificed. At best, locations are represented
by zones. In some instances, however, locations are removed
altogether. Given that we now live in a ‘geocodable’ world
fueled by advances in spatial data capture technologies (e.g.,
global positioning systems and high-resolution satellites),
which not only allow for realistic representations of urban
environments and the recording of human spatial behavior,
but also the exploitation of such knowledge for commercial
purposes (e.g., for location-based services), the issue of pri-
vacy is likely to be revisited in the coming decade. In the
event of such a possibility, which may preclude individual-
level data from being released to researchers as is generally
the case today, and in instances where such data simply do
not exist, other methods are available for mitigating MAUP
effects in urban analysis.

The simplest of these strategies is to employ the smallest
areal units available (i.e., base zones) in an effort to report
the sensitivity of analytical results to scale and zoning ef-
fects (Wong, 1996; Fotheringham et al., 2000). If it can be
demonstrated that the results are stable over a wide range
of zoning systems, then the analyst can express confidently
that the results are meaningful and not simply artifacts of the
way the data are partitioned in space (Fotheringham et al.,
2000). Obviously, this strategy requires that new zoning
systems be created by merging base zones. Several research-
ers (Fotheringham and Wong, 1991; Murray and Gottsegen,
1997; Horner and Murray, 2002) have tackled this prob-
lem by using the Theissen region approach. This method
randomly selects a user-specified number of ‘seed’ zones
around which Theissen polygons are generated. Base zones
are then merged with their closest seed zone to create new
zones. Using this approach, multiple zoning systems (e.g.,
100) are created for each of various scales of analysis, which
are determined by the number of seed zones specified by the
analyst. Although this procedure has been used repeatedly
to address MAUP effects, its handling of the scale effect is
to some extent arbitrary – that is, scale is synonymous with
the number of areal units to be formed. It is assumed that as
the number of seed units decreases, the size of the areal units
will increase. While this may be true in terms of an average,
it is clear that considerable heterogeneity will exist among
areal units in terms of their size. A simple example illustrates
this point. Assume that a city is partitioned initially into 200
base zones. New zoning systems, consisting of 175 and 150
zones, are to be formed. This implies that, at most, 25 zones

in the first system will increase in size, while 150 will re-
main unchanged. For the second system, the numbers are
50 and 100, respectively. Most likely, the number of zones
increasing in size will be fewer than the numbers given due
to the randomness of seed selection – that is, the analyst has
no control over the spatial distribution of the seed zones.

Spatial scale is, however, treated explicitly in a method
developed by Wong (1999). Unlike the Theissen region
approach, base zones are represented by their centroids,
not their boundaries. Space itself is partitioned into regular
square cells of a given size (i.e., grid cells). When more
than one centroid falls into a cell, the data associated with
the centroids are aggregated to form new data for the cell.
To assess the scale effect of the MAUP, the size of the grid
cells is changed systematically. To assess the zoning effect
at any given scale, the grid system is positioned randomly
many times in space. Its exact placement is determined by
first moving it along two orthogonal axes in geographical
space, such as latitude and longitude, and then rotating it.
This method can be easily implemented using a GIS.

A more complex strategy for handling MAUP effects is
to design optimal zoning systems. The idea here is to cre-
ate zoning systems that are less arbitrary. In other words,
zoning systems should be constructed to capture the under-
lying processes that are being investigated. Arguably, the
most comprehensive and well-known work on this subject is
that by Openshaw and his colleagues (Openshaw and Baxter,
1977; Openshaw, 1977a,b, 1978a,b; Openshaw and Rao,
1995). The automatic zoning procedure developed in this
line of work solves a combinatorial optimization problem
that classifies N areas into M regions (where N > M) so as
to maximize some function of the zoning system subject to
spatial contiguity constraints.

Arguably, the most complex of all strategies proposed
to date for addressing the MAUP is that by Steel and Holt
(1996), Holt et al. (1996) and Tranmer and Steel (1998). In
essence, their method adjusts the aggregate-level variance-
covariance matrix (i.e., that derived from zonal data) to
better approximate that pertaining to the individual-level,
which is unknown. The adjusted matrix can then be used
in various statistical techniques, such as correlation analysis
and regression analysis, to correct for aggregation bias. To
work, the strategy requires a set of ‘grouping’ variables,
which must be measured for individuals and must be related
in some way to the process being analyzed at the aggreg-
ate level. These grouping variables account for one of two
sources of aggregation bias identified by the researchers –
the other being a residual bias conditional on the variables.
Despite its intuitive appeal, the strategy does, however, suf-
fer from two limitations. First, it requires individual-level
data to estimate a variance-covariance matrix for the group-
ing variables. As discussed above, such data are not always
available. Second, the strategy remedies the scale effect of
the MAUP only.

Despite the promise of the methods described herein for
mitigating MAUP effects in urban analysis, a general solu-
tion to the issue has yet to be found. This leaves room for
researchers, such as King (1997), to seek solutions to what
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has been regarded as the most stubborn problem in spatial
science to date.

Spatial statistics and urban analysis

Spatial analysis of transportation data and travel behavior

The analysis of transportation data and the study of travel
behavior are necessary components of urban transportation
planning. As noted by Ortúzar and Willumsen (2001), travel
demand is characterized, among other things, as occurring
over space. Indeed, space is treated explicitly by some meth-
ods used in transportation analysis. For instance, the gravity
model is often used to distribute trips between origins and
destinations in a city. The issues of spatial association, spa-
tial heterogeneity and the MAUP, on the other hand, are
not widely known to transportation analysts. For example, a
survey of transportation modeling and planning books (e.g.,
Meyer and Miller, 2001; Ortúzar and Willumsen, 2001) and
a recent perspective on GIS for transportation (Thill, 2000)
shows that these issues have yet to permeate the transport-
ation literature. In fact, it is only in a book by geographers
(Miller and Shaw, 2001) that the explicit spatial analysis of
transportation data is discussed. There is, however, hope that
this situation is changing as there are now a few examples
suggesting that the neglect of spatial issues in the analysis
and modeling of transportation processes is finally being
addressed.

Two approaches have been used by researchers to ana-
lyze transportation data and study travel behavior: aggregate
analysis and disaggregate analysis. Aggregate analysis deals
with group relationships. Outcomes of interest (e.g., num-
ber of trips per zone, proportion of trips by mode, etc.) are
seen as resulting from a myriad of individual decisions. Ag-
gregation and lack of data describing spatial structure can,
however, give rise to spatial association and heterogeneity
problems, not to mention MAUP effects.

The first two issues are recognized by Bolduc et al.
(1995) who analyzed travel flows and modal split. Flow
models are usually written in terms of the number of trips
between pairs of zones (or transformations thereof), and a set
of explanatory variables that include network attributes (e.g.,
in-vehicle travel time, cost) and socio-economic character-
istics of the points of origin and destination (e.g. population,
income, employment) As noted by Bolduc et al. (1995),
the variables used to characterize a flow between zones and
pertain to that market only, while the variables of compet-
ing markets are usually missing. Furthermore, other relevant
variables describing the geography of the region (e.g., size
of zones, length of common borders, etc.) are also typically
ignored. Omission of these variables is significant because
it can lead to spatial association, which in this case could
be interpreted as a statistical nuisance (i.e., spatial error
autocorrelation).

In order to address this situation, Bolduc et al. (1995)
propose a model that blends an error components specific-
ation with spatial error autocorrelation (also see Bolduc
et al., 1989, 1992). The error components model is similar

in principle to the multilevel model, except that errors re-
flect different sources of uncertainty as opposed to random
parametric variation between spatial classes. Errors in the
travel flow model are broken down into three elements that
attempt to capture unmeasured effects at the origin, unmeas-
ured effects at the destination and non-systematic network
variability. Spatial error autocorrelation measures the de-
gree of linear dependency between the error at the origin
(destination/network element) and the corresponding spatial
neighbors, with neighborhood defined in proximity terms
using a distance-decay function. Application of the model
to a case study using empirical modal split data from Win-
nipeg (Canada) suggests that misleading significance levels
could result from ignoring spatial autocorrelation. A car-
related cost variable, for example, becomes insignificant
when autocorrelation is accounted for, and other variables
are revealed to be generic and not specific to a given al-
ternative (i.e., car or bus). Another significant finding is
the indication, based on estimation results, that spatial er-
ror autocorrelation is caused by missing network variables,
but not by unmeasured effects at the origins or destinations.
Overall, the spatial model is found to give a better fit to the
data compared to non-spatial models. An experiment using
synthetic data further suggests that substantial information
gains can be obtained when the proper error structure is used
in estimation.

Aggregate models are, for a number of reasons, including
data availability, the state-of-the-practice. More recently, an
alternative approach known as activity analysis has received
increased attention as a way to study disaggregate (i.e., indi-
vidual or household) behavior, as opposed to the aggregate
behavior of groups of people. Travel in this framework is
seen as a means to reach activity locations – a conceptu-
ally superior formulation that can lead to a more refined
understanding of travel behavior. Moving from an aggregate,
trip-based framework to a more holistic, activity-based study
of travel behavior suggests numerous challenges. Individual
movement, for example, tends to follow complex trajectories
that are influenced by factors in a large number of interacting
dimensions, including, among others, space, time, frequency
and duration of trips, the distribution of activities and so-
cial interaction. Much of this complexity must be reduced
to make the problem tractable. However, before reducing
these dimensions for formal analysis, Kwan (2000) argues
that visualization and exploration of movement patterns can
prove useful to reveal space-time interaction structures. In
turn, these structures can lead to more focused analysis and
therefore more realistic travel models.

Using activity diary data from Portland (Oregon), Kwan
(2000) explores the complexity of travel behavior data using
visualization techniques. Exploration of the spatial distribu-
tion of activities (e.g., work, home and non-work activities)
and activity duration poses the considerable challenge of
presenting and making intelligible tens of thousands of data
points. In this case, visualization is aided by the applic-
ation of kernel estimation (a univariate, moving-windows
form of analysis similar in principle to GWR) to produce
activity-density surfaces. The contribution of spatial ana-
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lysis is to summarize and render legible a large amount of
data – that is, transform data into information. The resulting
surfaces represent the spatial intensities of activity distribu-
tions (the figures can be seen at http://geog-www.sbs.ohio-
state.edu/faculty/mkwan/gis-t/). Moreover, their comparison
is useful to glean potential relationships among them. An
outcome of this exploratory analysis is a strong sugges-
tion of spatial association between the locations of non-
employment activities and workplaces. Clearly, findings
such as this can pave the way to more targeted attempts to
explain the spatio-temporal relationships between different
types of activities and the resulting travel patterns (e.g., most
non-work activities are undertaken near workplaces).

As the above example suggests, the spatial analysis of
activity data, by way of describing and summarizing the
data, can assist the analyst in defining, refining, and/or re-
defining hypotheses. Visualization and exploration do not,
however, explain travel behavior – an objective that requires
a more formal modeling approach. One such a model, pro-
posed by Bhat and Zhao (2002), incorporates the effect of
spatial heterogeneity into a study of household shopping
stops. The challenge faced by conventional (i.e., aspatial)
approaches to modeling stop generation relates to potential
instability in the relationships between the outcome (i.e.,
stops) and the explanatory variables. In other words, conven-
tional approaches do not accommodate local variations in
these relationships. Variation, on the other hand, is likely to
occur in the analysis for reasons that include the possibility
of intrinsic behavioral differences at different geographical
locations, and/or incomplete information regarding relevant
spatial attributes affecting decision-making behavior. In or-
der to accommodate these concerns within their modeling
framework, Bhat and Zhao (2002) adopt a multilevel ap-
proach and adapt it to produce a logit model suitable for
the special needs of transportation models. In the study,
multiple-stop shopping trips are analyzed as a bi-level prob-
lem by nesting individuals into traffic analysis zones (TAZs).
The results of the analysis show that the spatial model gives
a superior statistical fit. Also, the researchers report sig-
nificant heterogeneity in the response to some factors. For
instance, propensity to stop for shopping relates to the level
of accessibility, but this effect may be important only when
accessibility levels are low. Moreover, there is a higher vari-
ability in propensity to stop across rural and sub-urban zones
when compared to urban zones. These potentially useful in-
sights, it should be noted, would have remained uncovered
by a non-spatial model that assumed away heterogeneity.

The study by Bhat and Zhao (2002), like most urban
transportation studies (e.g., Bolduc et al., 1995), employs
a spatial framework consisting of TAZs. While the design of
‘optimal’ TAZs for use in aggregate models of urban travel
demand (i.e., the Urban Transportation Modeling System)
has received some attention in recent years (Bennion and
O’Neill, 1994; You et al., 1997a,b; Ding, 1998), inspired
in part due to concerns about the MAUP, very few studies in
urban transportation have investigated MAUP effects form-
ally. One such study, however, is that by Horner and Murray
(2002) who explore the degree to which a measure known as

excess commuting is influenced by the MAUP. As argued
by Scott et al. (1997), excess commuting is useful in an
environment where sustainable transport is a desired goal
of policy makers because the measure provides an object-
ive assessment of commuting efficiency (i.e., the degree to
which people live near their jobs) in an urban area. Excess
commuting (E) is calculated for workers as follows:

E =
(

Ta − Tr

Ta

)
× 100, (14)

(14) where Ta is the average actual commute and Tr is the
average required commute (i.e., a theoretical minimum that
is obtained by solving for the transportation problem). Both
are measured in terms of travel cost, which can be expressed
in units of time or distance. Horner and Murray (2002) sug-
gest that the MAUP manifests itself in excess commuting
in two interrelated ways. First, as areal units increase in
size, the likelihood that travel will be assigned outside zones
decreases. This, by definition, does not reflect excess com-
muting. In fact, as spatial aggregation proceeds, Tr will be
biased upwards such that it approaches Ta . Second, changes
in zoning schemes will affect calculations of inter- and intra-
zonal travel costs. Obviously, this suggests that estimates
of excess commuting could be highly variable both across
scales (i.e., aggregation effect) and at the same scale (i.e.,
zoning effect).

Horner and Murray (2002) use Boise (Idaho) for their
analysis. Its 286 TAZs are systematically aggregated using
the Theissen region approach to form new zoning systems.
Specifically, 100 unique systems are generated for each of a
series of aggregation levels ranging from 25 to 275 zones in
increments of 25 zones. The excess commute for the original
zoning system (i.e., 286 TAZs) is estimated at 48%. The
results of the study demonstrate clearly that as aggregation
proceeds, estimates of excess commuting decrease at an in-
creasing rate. For instance, at 25 zones, the average estimate
is 26%, which is far less than that for 286 zones. Further-
more, the results show that at any given aggregation level, a
range of estimates exists. Moreover, the range increases as
aggregation proceeds. Again, at 25 zones, the estimates of
excess commuting range from 12% to 37%.

The results of Horner and Murray’s (2002) study suggest
that the MAUP warrants greater consideration in the analysis
of transportation and travel behavior than it has received
to date. This is necessary to ensure that analytical results
capture the processes being scrutinized and not arbitrary ef-
fects of the zoning systems used. Researchers should also
remember that the most commonly used zoning system in
urban transportation, traffic analysis zones, was created with
a specific purpose in mind – aggregate travel demand mod-
eling. For this reason alone, it may not be appropriate for all
types of analyses, especially those pertaining to disaggregate
travel behavior. For instance, one cannot help but wonder
whether the results from Bhat and Zhao’s (2002) study cap-
ture the process under scrutiny or are simply artifacts of the
TAZs. Obviously, this would require further investigation by
the researchers.

Other examples in the transportation literature deal ex-
plicitly with spatial dependencies or heterogeneity. Wang
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(2001), for instance, presents an analysis of intraurban com-
muting variations that uses spatially autoregressive models.
Commuting studies can be and have been conducted using
conventional techniques – a spatial model in this case adds
value to the analysis by providing more reliable estimates.
In other situations, however, there is no better or even worse
alternative to the use of spatial statistics. An investigation by
Steenberghen et al. (2004), which identified accident-prone
areas in a Belgian road network, is an example of a study
where spatial association in transportation data is the direct
objective of the analysis. In this case, spatial analytical meth-
ods do not improve results that could be obtained by other
means – they actually make the research question possible.

Spatial land-use analysis

The theoretical foundation for many problems in urban
analysis originates from basic economic theory that demon-
strates the fundamental relationships between the pattern
of land uses, land values and commuting in a monocentric
city (i.e., Alonso, 1964). This theory relates to a host
of important urban topics, from housing to development
to transportation infrastructure, and has therefore received
considerable attention over the years. Related directly to
these topics is the issue of urban organization – that is, the
question of how to describe and explain the distribution of
population, land values, employment and other structural
variables in a city.

Numerous studies, over the years, have related popu-
lation density to distance from a central business district
(CBD). Since theory indicates that population density in a
monocentric city should decrease with distance from the
centre of the city, a function commonly used to describe
this effect is the negative exponential, which is closely re-
lated to the relatively simple analytical framework required
by economic theory. It has been noted, however, that the
exponential function is not sufficiently sophisticated to ex-
plain the spatial variability observed in many empirical
situations. Growth patterns that produce irregularities at dif-
ferent distances from the centre of the city (e.g., green rings,
employment subcenters) and/or directional variation due to
topographic factors, economically attractive locations or dif-
ferential accessibility levels, represent situations that are at
odds with the homogeneous space formulation implied by
the simple exponential function. Some of these situations
may have contributed to reduce the explanatory power of the
function (e.g., Crampton, 1991).

A number of researchers have applied spatial methods to
grapple with the above issues. Bender and Hwang (1985),
for example, developed a switching regression that takes
into account variations with distance from the CBD. They
applied it to the study of land price profiles and employment
subcenters. More recently, Alperovich and Deutsch (2002)
proposed a more flexible switching regression specification
that controls for directional variation in distance-decay. They
applied their model to data from the municipality of Tel-
Aviv/Yaffo (Israel) to find that the area under investigation
can be divided into two separates regimes, roughly described
as north and south of the CBD. Density functions for these

two regimes have their own parameters, and produce results
that indicate a satisfactory fit of the model to population

density gradients to the north of the CBD (R
2 = 0.543),

but not to the south (R
2 = 0.000 and an inverted but non-

significant gradient). The coefficient of determination for the

conventional model is R
2 = 0.059. Interestingly, the thesis

of separation of regimes is further supported in this case
study by qualitative survey data. These data also contribute
to explain the exceptional character of one tract to the north
of the CBD that is classified by the model along with less
attractive tracts to the south of the city.

Switching regressions, the example suggests, can suc-
cessfully identify heterogeneous regimes of population
density or other attributes, such as land prices, in a city.
A challenging aspect of the approach, on the other hand,
is how to define the location and number of switches. A
number of different criteria can be applied to this end,
including distance to the CBD, distance to subcenters or
political boundaries. Unfortunately, these criteria are not
exempt from some degree of arbitrariness. Using political
boundaries implies that distance measured from a given
point (e.g., the centroid of a zone or a representation of
the CBD) will depend on the zoning system used (Okabe
and Tagashira, 1996). Misidentification of the location of
the CBD, moreover, has been shown to lead to biased pop-
ulation density gradients (Alperovich and Deutsch, 1992).
A more fundamental question, however, is what and where
is the CBD or a subcenter. Many methods currently in use
define a subcenter as a site with significantly larger employ-
ment density than neighboring locations that has an impact
on overall employment density. As discussed by McMillen
(2001), these methods depend on arbitrary definitions of size
(how large is large?), and often require substantial know-
ledge of the study area to become operational. Sometimes
the definitions must be tweaked in order to give reasonable
results (see, for example, McMillen and McDonald, 1998).

It is interesting to note, against this backdrop, that the use
of recent developments in spatial statistics can help to over-
come these limitations – as recent studies that apply local
forms of spatial analysis in an urban context show. Baumont
et al. (2004), for example, use LISA statistics to study pop-
ulation and employment variations in a French city, whereas
a study by Páez et al. (2001) used a statistic of the Gi(d)

family to explore land price variation in a Japanese city. The
results from these studies suggest that a number of popu-
lation and employment subcenters exist in the French city,
while the Japanese city appears to be strongly monocentric
in terms of its land-price structure. Exploratory spatial data
analysis in both papers, moreover, guides model develop-
ment in frameworks that use spatially autoregressive models
(Baumont et al., 2004) and spatially switching-spatially
autoregressive models (Páez et al., 2001). The findings re-
ported confirm the importance of identifying the CBD and
possibly other subcenters. Ordinary models that ignore the
spatial characteristics of the process, it is shown, tend to
under-perform the spatial models, and also may mask other
interesting results. The spatial model used in the Japanese
analysis, for example, suggests that land prices are signi-
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ficantly related to distance to two emerging subcenters, but
distance to the CBD is only significant in the central part of
the city. The emerging subcenters, intriguingly, do not have
a significant presence in the overall land-price landscape in
the city.

A different approach to identify subcenters that uses
geographically weighted regression (GWR) is developed by
McMillen (2001). A feature of GWR that is important within
this context is its role as a smoother, meaning that it can
be used to approximate to a very high level of accuracy the
observed surface (e.g., population density, land values) By
adopting a predetermined window size to give a desired level
of smoothing, McMillen (2001) shows how GWR can be
used in a two-stage procedure that involves the use of semi-
parametric methods in the second stage to identify urban
subcenters in polycentric cities. Use of this method allowed
him to identify subcenters in a large number of American
cities, including Chicago, Dallas and Los Angeles, with little
or no knowledge of the local situation as a pre-requisite to
the procedure.

The above examples illustrate that local methods of spa-
tial analysis can lead to more efficient analysis of urban data
in the context of studying the spatial structure of metropol-
itan areas. In addition to these, other examples exist that
apply spatial statistical methods to urban land-use analysis.
Spatially autoregressive models, for example, have been
used to analyze housing prices and neighborhood effects
(Tse, 2002) and the effect of transportation infrastructure on
housing prices (Haider and Miller, 2000). The concept of
spatial association is also intimately related to the analysis of
land-use change and development, a topic where an underly-
ing question is the extent to which the process is conditioned
by space. Páez and Suzuki (2001) applied a dynamic spatial
logit model to investigate the effect of neighborhood effects
on land-use change. Their findings, using two case studies,
suggest that residential or commercial construction tends
to encourage the same type of development in neighboring
zones. On the other hand, distance to transportation facilities
does not seem to influence land-use change. Cuthbert and
Anderson (2002a,b) also addressed the question of urban
form and land development, but using individual-level (i.e.,
disaggregate) parcel data from Halifax-Dartmouth (Canada).
Kernel estimations and nearest neighbor analysis (i.e., tools
to study spatial association in point patterns) afford them
insights into an evolving urban form possibly undergoing a
multinucleation process.

Other studies have also turned their attention to dis-
aggregate analysis, but from the perspective of locational
decisions by individual households and firms. Along this
line of inquiry, researchers have become interested in the
possible effect of unexplained spatial variability on indi-
vidual decisions (Bhat and Guo, 2004), the interaction
between spatial alternatives and/or decision makers (Mo-
hammadian and Kanaroglou, 2003) and a combination of
both effects (Miyamoto et al., 2004). Also, the MAUP has
received attention in the context of modeling the residen-
tial location choices of households (Guo and Bhat, 2004).
Results from these studies suggest that incorporating spa-

tial analytical issues in disaggregate analysis is important
not only on technical grounds, but also for the realistic
assessment of locational and other transportation-related de-
cisions as a function of transportation systems, land use and
socio-economic variables.

Summary and conclusions

This paper has reviewed a number of developments in spa-
tial statistics and, by means of recent examples from the
scientific literature, has shown how these developments can
improve urban modeling practice and potentially also our
understanding of urban processes. A limitation to the applic-
ation of spatial methods was, for a long time, the availability,
or lack thereof, of adequate software and training materials,
textbooks and data. This limitation has largely disappeared.
Currently, the urban analyst can count on the advantages
of using GIS to manage, process, and visualize data, com-
bined with the ability of spatially analyzing data by means of
specialized software. Existing packages include commercial
software (e.g., SPACESTAT by BioMedware Inc. and HLM
by Raudenbush et al. [2001]) and those available from re-
searchers (e.g., the SAGE project [Wise et al., 2001] and
James P. LeSage’s spatial econometrics MATLAB library
[www.spatial-econometrics.com]). In addition to software, a
wealth of spatial data has become available (e.g., the Bureau
of Transportation Statistics of the United States Department
of Transportation provides georeferenced data on its web-
site [http://www.transtats.bts.gov/]), and a large number of
books now exist that present spatial statistical methods at
different levels of technical expertise, from introductory to
advanced (e.g., Odland, 1987; Anselin, 1988; Griffith, 1988;
Haining, 1990; Cressie, 1993; Bailey and Gatrell, 1995;
Griffith and Layne, 1999).

The examples in this paper represent an incipient trend
in urban analysis towards the use of increasingly sophist-
icated spatial statistical tools. The influence, moreover, is
reciprocal, as there are questions of interest in urban analysis
that help motivate research in spatial analysis. Overall, there
seems to be considerable potential for cross-fertilization
between the two fields. In the future, it seems likely that
development and application of spatial statistical methods
for urban analysis will tend to draw more heavily on various
sources of theory. To date, and despite calls for theory-driven
model development (e.g., Anselin, 1988), at times there
appears to be an excessive focus on the application of the
methods for the application’s sake. Recent research in vari-
ous fields, on the other hand, now provides rich sources of
theory to inspire the derivation of spatially explicit models.
Sources of theory include the ‘new economic geography’
(NEG) of regional science (Fujita et al., 1999), a field
concerned with the spatial distribution of economic activ-
ity; the economic theory of externalities, public goods and
club goods (Cornes and Sandler, 1996); and the sociological
concept of social networks, which provides the framework
for the analysis of social interaction in individual and group
behavior (Wasserman et al., 1994). Efforts to bridge the gap
between highly abstract NEG theory and other approaches
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to economic geography, for example, have been greatly fa-
cilitated by the use of spatial statistical models (Fingleton,
2000). Griffith’s (1999) discussion of the sources of the-
ory in regional science, moreover, intersects some problems
of interest for urban and spatial analysis, such as the loca-
tion of firms and the estimation of urban population density
functions.

On a related note, it appears likely that the greater
emphasis on behaviorally-based explanations for urban pro-
cesses (Kanaroglou and Scott, 2002) will require more
extensive use of discrete choice models with spatial ef-
fects, including interactions, inter-related decision making
and population heterogeneities. The basic technical frame-
work for this type of research has been laid out in the form
of the mixed logit model with its highly flexible covariance
structure. This model has already found application in the
spatial analysis of urban processes (see Mohammadian and
Kanaroglou, 2003; Bhat and Guo, 2004; Miyamoto et al.,
2004). Future research should lead to a better integration
of this technical basis with concepts derived from the the-
ories of economic externalities and social networks. Such
research holds the potential to produce analytical tools cap-
able of addressing richer and more nuanced urban research
questions.

Finally, it must be noted that although closely related to
the topic of urban analysis, space limitations have prevented
this review from covering other important topics such as the
analysis of systems of cities and urban environmental sys-
tems. Interesting developments in these fields include work
by Ramos and Silva (2003) that used local statistics of spa-
tial association to delineate metropolitan areas; the analysis
of spatial spillovers in the provision of transportation infra-
structure (Rietveld and Wintershoven, 1998); research by
Pacheco and Tyrrell (2002) that explored the existence of
clusters of households in a system of cities; the analysis,
using spatially autoregressive models, of network accessibil-
ity and the distribution of economic activity in Eastern Asia
(Páez, 2004); and the use of spatial interpolation techniques
to derive urban pollution maps (Kanaroglou et al., 2002). We
anticipate that future reviewers of spatial and urban analysis
will be hard pressed to cover in a concise fashion the explod-
ing amounts of research that will likely continue to appear in
the literature.
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