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Abstract
Trajectory similarity search is one of themost fundamental tasks in spatial-temporal data anal-
ysis. Classical methods are based on predefined trajectory similarity measures, consuming
high time and space costs. To accelerate similarity computation, some deep metric learn-
ing methods have recently been proposed to approximate predefined measures based on the
learned representation of trajectories. However, instead of predefined measures, real appli-
cations may require personalized measures, which cannot be effectively learned by existing
models due to insufficient labels. Thus, this paper proposes a transfer-learning-based model
FTL- Traj, which addresses this problem by effectively transferring knowledge from several
existing measures as source measures. Particularly, a ProbSparse self-attention-based GRU
unit is designed to extract the spatial and structural information of each trajectory. Con-
fronted with diverse source measures, the priority modeling assists the model for the rational
ensemble. Then, sparse labels are enriched with rank knowledge and collaboration knowl-
edge via transfer learning. Extensive experiments on two real-world datasets demonstrate the
superiority of our model.

Keywords Trajectory similarity · Top k similarity search · Transfer learning

1 Introduction

The utilization of GPS devices has revolutionized our ability to precisely track and document
the movement of objects. There has been an increasing number of research focused on

B Danling Lai
dllai@stu.suda.edu.cn

B Jianfeng Qu
jfqu@suda.edu.cn

Yu Sang
7213107001@stu.jiangnan.edu.cn

Xi Chen
Chenxi10@suda.edu.cn

1 School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, China

2 School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-024-00515-x&domain=pdf


632 GeoInformatica (2024) 28:631–648

spatial-temporal data mining [1, 2]. This wealth of recorded information has given rise to
a rich source of data known as trajectories, which have found diverse applications across
numerous industries, such as trajectory entity linking [3], route recommendation [4] and
anomaly detection [5]. Trajectory similarity search is crucial for various spatial-temporal data
mining tasks. It’s targeted at identifying the Top k most similar trajectories corresponding to
a given query trajectory.

Numerous classical approaches have been developed to assess trajectory similarity by
employing point-based comparisons using predefined metrics like Dynamic Time Warping
(DTW), Edit Distance with Real Penalty (ERP), and the Hausdorff distance. Nonetheless,
these methods tend to demand significant computational resources and are plagued by sub-
stantial time complexity. For efficiency concerns, recent studies have been dedicated to
accelerating the computation. Some of them design approximating algorithms [6–8], sac-
rificing acceptable accuracy in order to alleviate the time complexity. There are also some
methods to perform pruning strategies [9, 10] to speed up the computational process. How-
ever, these methods are specific to a certain measure and lack of generalization.

To enable a generic, efficient, and accurate trajectory similarity search. An increasing
number of learning-based methods [11–14] are proposed. With a deep learning model, these
methods extract the spatial information and structural knowledge of trajectories, in order
to map trajectories into the low dimensional space and reduce space consumption. They
significantly accelerate the similarity computation and achieve high accuracy. However, these
methods suffer from some limitations:

First, it is tough to determine an appropriate measure for some real-world applications,
since a predefined measure that accommodates a certain scenario may not be suitable for
another [15, 16]. The target measure needed by a specific case may not be fully supported by
any predefined measure. It thus requires the full utilization of trajectory similarity labels (e.g.
the pair-wise distance between trajectories, the similarity order of query trajectory on target
trajectories) on target measure. However, these labels are hard to get due to the expensive
cost of manual annotation, which leads to data scarcity on target measures. Hence, it calls for
a few-shot trajectory metric learning strategy that can not only quickly learn from insufficient
target measure labels, but also make meaningful use of predefined measures.

Second, since trajectories are sequential data, existing models [12] often employ RNN
modules to extract spatial features of trajectories. While these methods can effectively cap-
ture knowledge in an informative way to some extent, they only consider LSTM [13] and
ignore other RNN cells, which may lead to redundant parameters. What is more, they exhibit
sub-optimal GPU utilization. Attention-based modules are then used to extract structural
information. However, according to recent research [17], the self-attention mechanism suf-
fers from high time complexity and consumes high memory usage. It thus requires efficiently
combiningRNNand attentionmechanism, in order to effectively extract spatial and structural
knowledge of long trajectories while making full use of GPU and reducing memory usage.

To overcome the above limitations of trajectory similarity learning, we propose a novel
deep-learning-based model FTL- Traj, which is designed for Few-shot Transfer-Learning-
based Trajectory similarity search. It employs ProbSparse self-attention-based Gated
Recurrent Unit(GRU) to obtain trajectory embeddings. Then, metric knowledge from data-
rich sourcemeasures is transferred to the target measure, including the relative ranking orders
and common similarity in source measures. Our contributions can be summarized as below:

• We propose an innovative representation learning method via ProbSparse self-attention-
based GRU to extract spatial and structural knowledge of trajectories, which reduces
memory usage and fully utilizes the GPU resources.
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• We effectively transfer rank knowledge and collaborative knowledge from data-richmea-
sures by developing the triplet-loss-based transfer loss, which mitigates the performance
drop due to sparse labels.

• Experimental results on real-world trajectory datasets demonstrate the effectiveness of
our approach.

2 Related work

2.1 Trajectory similarity search

A trajectory, generated by amoving object, is composed of a series of orderedGPSpoints. The
advancement of LBS (Location-Based Services) devices has generated large-scale trajectory
data, driving progress across multiple disciplines, such as geography and computer science.
Trajectories contain rich information besides location information, such as dwell time [18],
mode of transportation [19], and waypoints, which can be combined with map and road
networks to achieve further research [20–24]. In our paper, we mainly focus on trajectory
similarity search.

For a query trajectory in the dataset T , trajectory Similarity Search calculates the pair-
wise trajectory distance under the specific measure, to obtain the Top k most similar ones in
T . The search process analyzes the spatial and structural relationship between trajectories
and is fundamental for further data mining. Efficiency is crucial when conducting spatial
queries [25–27] such as Top k similar trajectory search inmassive datasets. Existing trajectory
similarity search relies on measures. They can be broadly divided into two types: Heuristic
Measures and Learning-based Measures.

2.1.1 Heuristic measures

Heuristic measures follow predefined formulas to find the optimal matches of points in
trajectories, in order to calculate the pair-wise distance. For example,Hausdorff [15]measures
the greatest distance among all distance values between trajectories. EDR [28] and LCSS [29]
are edit-distance-based measures, which calculate the number of operations that transform
one trajectory into another one. The time complexity of calculating the similarity between Ta
and Tb via heuristic measures is usually O(lalb) where la is the length of Ta , and lb denotes
that of Tb.

To reduce the time consumption during the computation, there have been solutions to
perform pruning via the filter-and-refinement framework [9, 10]. Some methods utilize
approximate algorithms to accelerate the computation [6–8]. Despite their ability to speed
up the computation to some extent, they may still be inadequate to meet the need of the
large-scale trajectory similarity search.

2.1.2 Learning-basedmeasures

With the development of deep learning, learning-based trajectory similarity computation
models are designed to map trajectories into a d-dimensional embedding representation,
thus reducing the complexity of similarity evaluation to O(d). For example, NeuTraj [11]
proposes a spatial memory unit to model the correlation between trajectories. Traj2SimVec
[12] exploits the distance knowledge between sub-trajectories and learns the optimal match-
ing relationship between points with a point-matching function. T3S [13] applies LSTM and
global self-attention network to capture the spatial and structural information of the trajec-
tories. TrajGAT [14] models each trajectory as a graph and captures long-term dependency
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based on graph attention modules. These methods are generic and can support the existing
measures with annotated labels (e.g. the pair-wise distance, and the relative similarity rank
orders). However, they suffer from performance drops on data-sparse measures.

2.2 Transfer learning for trajectory datamining

When employing machine learning methods or deep learning approaches in some real-world
scenarios, there are no abundant labels to support effective training, which leads to sub-
optimal performance. Recently, transfer learning has proven to be a successful approach
to few-shot learning [30, 31]. They focused on transferring useful knowledge from source
domains to the target domain [32, 33].

When performing transfer learning for trajectory data mining, especially for similarity
search, how to identify useful source measures and transfer useful information remains a
hard nut to crack. Different measures focus on different aspects of trajectories, some of them
focus on the points, while others focus on the segment [15]. The measure of diversity leads
to different search results under different measures. As shown in Fig. 1, the retrieved results
between the target measure and source measure conflicts. Directly transferring knowledge
will interfere with the learning of the target measure. What is more, compared with the ERP
distance, the DTW distance seems more consistent with the Hausdorff distance according to
the search results. If such a consistent relationship still holds for the majority of trajectories,
more attention should be paid to theDTWdistance. It thus requires effective prioritymodeling
on source measures.

3 Preliminary

In this section, we describe the related concepts and definitions involved in our work. Based
on the definitions, the problem statement is formulated.

3.1 Definitions

Definition 1 (Trajectory) A trajectory T records the movement of entities via a series of GPS
points with timestamps. Usually, it is denoted by T = [c1, c2, ..., cl ], where l is the length

Fig. 1 The Similarity Search Diversity under different measures
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of the trajectory, and ct = (latt , lngt ) describes coordinate (i.e. the latitude and longitude)
at the t-th point of the trajectory.

Definition 2 (Grid Cells) The whole map of each dataset is divided intom×n grids. Here,m
and n are determined by the size of grids, which are configurable to different scenarios. Then,
each trajectory can be mapped into a grid sequence T g = [g1, g2, ..., gl ], where gt = (xt , yt )
denotes the grid indices of t-th points.

Definition 3 (Trajectory SimilarityMeasure)Given a pair of trajectories Ta and Tb, ameasure
dM (Ta, Tb) calculates the pair-wise distance to describe the similarity between them. The
smaller the distance is, the higher the similarity is.

Definition 4 (Top k Trajectory Similarity Search) Given a query trajectory T , trajectory
similarity search employs a specific measure to calculate the pair-wise distance between
query trajectory and other trajectories in the given dataset T . Then it retrieves the Top k
similar trajectories according to the calculated distance.

Definition 5 (TargetMeasure and SourceMeasure) In many real-world scenarios, predefined
measures may be unable to assess the similarity between trajectories precisely. Therefore,
additional data annotation is required, which is both time-consuming and labor-intensive.We
refer to the sparsely annotated measures involved in these scenarios as the target measure,
which is the primary focus of our research. Meanwhile, other well-annotated measures can
provide us with supplementary information, and we refer to them as source measures.

3.2 Problem statement

Given a set of trajectories in the dataset T , we aim at learning a function f = T → E ∈ R
d

for each trajectory, such that a trajectory T can be mapped into d-dimensional embedding
e which describe the similarity relationship between trajectory in an informative way. Our
problem is to obtain the representations so that the distance between ei , e j can be as close as
possible with the target measure M , i.e. minimizing Lsim = |d(ei , e j ) − dM (Ti , Tj )|.

4 Methodology

In this section, we will first present the overall architecture of our FTL- Traj for the few-shot
trajectory similarity search. As illustrated in Fig. 2, FTL- Traj utilizes a ProbSparse self-
attention-based GRU cell to model trajectories in both the spatial level and structural level,
so that we can capture the similarity relationship effectively. Then, transfer-learning-based
metric learning enriches labels on the data-sparse target measure.

4.1 Overview of FTL-Traj

We scheme the architecture of FTL- Trajwith a neural metric learning framework. It selects
annotated trajectories from the dataset T as anchor trajectory (i.e. the query trajectory) and
samples several target trajectories to evaluate the performance of the model, in order to
achieve efficient optimization. Then, these trajectories are mapped into low-dimensional
vectors. After the learned mapping, the distances between vectors should closely resemble
the actual distances between trajectories. To capture the spatial and structural information of
trajectories, we adopt GRU and ProbSparse self-attention-based mechanisms. To effectively
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Fig. 2 Architecture of FTL- Traj

transfer knowledge from domains with rich data annotation, we design a source measure
prioritymodelingmethod and enrich labels on data-sparse target domainswith the transferred
knowledge from source measures.

4.2 Spatial and structural knowledge preserved representation learning

4.2.1 GRU-based spatial information extraction

Real-world trajectories are typically described as sequences of geographic coordinate pairs
and are initially modeled using RNNs. Nonetheless, basic RNNs are susceptible to infor-
mation loss when handling long trajectories. Recent methods [11–13] employs the LSTM
network to process the coordinate tuples. Compared with LSTM, which has three gates and
employs more parameters, GRU only contains the reset gate and the update gate, which
simplifies the structure and reduces the number of parameters, which contributes to better
generalization. What is more, in few-shot learning, utilizing LSTM to model the sparse train-
ing data may lead to over-fitting problems. Hence, we replace LSTM with GRU to achieve
better efficiency.

In the context of theGRU (Gated Recurrent Unit), when focusing on the forward direction,
sequence information ismanaged through the use of gatemechanisms. For a given input series
represented as T c = [c1, c2, ..., cl ], where ci = (lati , lngi ) ∈ R

2×1, and l is the number of
points, and d is the dimension of embedding vectors. The gate mechanisms are characterized
by their respective mathematical formulations:

zt = σ(Wz · [
ht−1, xt

]
) (1)

rt = σ(Wr · [
ht−1, xt

]
) (2)

ĥt = tanh(W · [
rt × ht−1, xt

]
) (3)

ht = (1 − zt ) × ht−1 + zt × ĥt (4)
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where all the gates share the shame shape Rd×1. In the end, the hidden state at the final step
l, which contains all the coordinate information, will be used as the spatial representation of
the given trajectory.

4.2.2 ProbSparse self-attention mechanism for structural information extraction

In order to capture the structural information of each trajectory, grid cells and coordinate
cells should both be taken into consideration. However, the contribution of each point to the
structural information varies, necessitating the model to focus on the points that are more
critical for structural information. Self-attention modules are able to model the dependencies
within sequential datawhile remaining unaffected by prior interference in sequence distances.
Hence, it will be conducted to extract structural information of trajectories.

In this study, we first concatenate the coordinate inputs and grid inputs of each trajectory
as point inputs. Then, we follow [13] to initialize the grid embedding matrix:

mi = lookup(pi ) + posi (5)

lookup(pi ) = pi · Wl + bl (6)

where pi = (xi , yi , lati , lngi ) is the concatenated input at i-th step. The lookup function
consisting of Wl ∈ R

4×d , bl ∈ R
1×d serves as a projection matrix to project the inputs into

d-dimensional vectors. Then, we combine the vector with positional encoding result posi .
The positional encoding process follows a learned or pre-defined pattern, such as cosine and
sine positional functions, that specify the positions of individual elements. By combining the
lookup representation and positional representation together, we derive the input embedding
mi . We use the mi of each step as the query vectors for self-attention modules. Then, we
perform the dot-product process.

(Q, K , V ) = Mi × (WQ,WK ,WV ) (7)

A(Q, K , V ) = softmax(
Q × KT

√
d

) (8)

Z = A × V (9)

The computation process of self-attention modules can be summarized as above, where
Mi ∈ R

b×l×d denotes the input matrix and b denotes the batch size. Q, K , V are query
matrices, key matrices, and value matrices respectively. After the module, the output result Z
is used as the representation of a grid. To further improve the robustness of our model, multi-
head self-attention is employed in our model. Each of these head learns different attention
patterns, enabling the model to capture various relationships and features within the input
data simultaneously. Finally, we utilize the mean value of vectors in Z as the final structural
representation of the trajectory.

(Qi , Ki , Vi ) = Mi × (Wi,Q,Wi,K ,Wi,V ) (10)

Ai (Qi , Ki , Vi ) = softmax(
Qi × KT

i√
d

) (11)

Zi = Ai × Vi (12)

Z = concatenate [Z1, Z2, ..., Zh] (13)

hs = mean(z1, z2, ..., zl) (14)
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According to previous studies [34], the distribution of self-attention probability has poten-
tial sparsity. Therefore, only a few dot-product pairs in the self-attention modules contribute
to the attention, which forms a long-tail distribution. It thus requires to effectively distin-
guish useful pairs from trivial ones. Inspired by [17], we utilize ProbSparse self-attention
to improve vanilla self-attention modules. First, we employ Kullback-Leibler divergence to
evaluate the likeness between a pair of distributions. Then, we formulate the i-th query’s
sparsity measurement as the formula (15):

QSM(qi , K ) = max
j

qi kTj√
d

− 1

l

∑

j

qi ktj√
D

(15)

Then, the Top k query in QSM result will be selected as Q̂. The rest query will not be
calculated.With ProbSparse self-attention, the time and space complexity of the self-attention
module are both reduced to O(L ln L).

Based on the extracted spatial information hl and structural information hs , we use a
learnable parameter α to balance their weights. Finally, the final representation of each
trajectory e = α · hl + (1 − α) · hs .

4.3 Deepmetric learning via transfer learning

4.3.1 Source measures priority modeling

While different measures may have distinct emphases, their computed results still exhibit
significant overlap. Taking Fig. 3 as an example, given a query trajectory, we calculate the
pair-wise distance between it and 1000 target trajectories under different measures. It can
be concluded from the figure that the Top k search results under various measures still show
a substantial degree of overlap. This provides us with valuable insights: we can learn from
measures with rich annotations and transfer useful knowledge to data-sparse target measures.

The difficulty of making full use of the trajectories is the limited labels on the target
measure. For a given trajectory query, it would be great to provide predictions on source
measures as soft labels in our problems. However, directly transferring knowledge from
source domains without considering the divergence between source domains and the target
domain is harmful to the performance of models. More attention should be paid to high-

Fig. 3 The Overlap Ratio under Different Measures
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quality source domains, where source measures are more consistent with the target measure.
It thus requires effective consistency evaluation on each source measure.

Differentmeasures focus on different aspects of trajectories. In order to better approximate
the target measure, it is preferable for the model to learn more from source measures that are
more consistentwith the targetmeasure on ranking and distance.Hence, it calls for reasonable
methods to evaluate between measures. We adopt the hitting ratio as our evaluation method.

Specifically, for each annotated trajectory, we regard the predicted ranking results on
the target measure as ideal ranking, and the calculated ranking results on source measures
computed by teacher models on source measure will be referred to as optional ranking. For
the target measure, suppose each annotated trajectory is provided with Top u trajectories. We
perform The Top v search on each source measure, in order to calculate the hitting ratio of
the Top u result retrieved. The more the Top v search results on a source measure overlap
with the Top u results on the target measure, the higher score, the source measure will be
assigned. Then, the weight of each source measure is derived.

wi = HRi∑
j∈source measures score j

(16)

4.3.2 Label enrichment from source domains

With the importance weight of each source measure, we are enabled to distinguish more
valuable source measures. Then, to effectively transfer the knowledge, we further assign
each trajectory with soft labels. It contains rank-based information and collaboration-based
information:

Rank-based score When predicting top-K similar trajectory of a given Ti , trajectories at
Top positions aremore relevant to Ti [35]. Hence, treating each trajectory equallywillmislead
the model. We predefined sr as follows. As K increases, the correlation between trajectory
and Ti decreases. We utilize an empirical weight following the geometric distribution [36]
to calculate the rank-based score, where j denotes the rank position, and ρ, r are dataset-
dependent hyper-parameters.

srj ∝ ρ(1 − ρ)r (17)

Collaboration-based score Despite the diversity of measures, some trajectories can be
top-K similar to a given Ti on different measures. Compared with those trajectories that are
only top-K on one source measure, the wrong estimation of ones that are top-K on several
source measures will leave more significant impacts on the target measure. Hence, we define
collaboration-based weight sc as follows:

sc ∝ count(Tj )

q · ns (18)

where ns denotes the number of source measures. count(Tj ) denotes how many times the
trajectory Tj is included in Top q trajectory query under different source measures.

Given Fig. 4 as an example. Trajectory T2 appears in the Top q for all sources, making it
get the highest collaboration score. similarly, T3 and T4 appear twice, while T1 and T5 appear
once, thus their collaboration scores are ranked as shown in the figure. As mentioned earlier,
we are only concerned with the Top q trajectories under the source measure, so rankings
beyond this threshold will not be considered.
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Fig. 4 An example of Collaboration-based score

Given a query trajectory, with the rank-based score and collaboration-based score, we
obtain the consensual rank-based score of the target trajectory Tj as sTj according to the
formula (19).

sTj =
∑

i∈source measures

wi · (srT · scT ) (19)

Then, we rank the target trajectories according to their calculated score. We define the
Top φ trajectories as transfer-positive ones, and the rest of the trajectories are regarded as
transfer-negative ones. Then, we use random sampling to sample r transfer-positive trajec-
tories and r transfer-negative ones. Then we obtain r triples < a1, p1, n1 >,< a2, p2, n2 >

, ..., < ar , pr , nr >. The representations of the anchor trajectories are supposed as similar as
possible to the representation of transfer-positive trajectories, and conversely, those between
anchor trajectory and transfer-negative trajectories should be dissimilar enough. Thereafter,
we define the transfer loss as the formula (20), where ε is the margin value. Finally, the loss
function for the training set consisting of Lsim and Ltrans .

Ltrans = 1

r

r∑

t=1

max(γ · d(eat , ept ) − γ · d(eat , ent ) + ε, 0) (20)

L = Lsim + β · Ltrans (21)

4.4 Experimental settings

In this section, we present our experimental setup and empirical results.We conduct extensive
experiments on real-world datasets to validate our model’s effectiveness.

4.4.1 Datasets

Our experiments are based on two real-world public trajectory datasets. The first one [37],
named Porto, consists of over 1.7 million vehicle trajectories in Porto from 2013 to 2014. The
second dataset referred to asChengdu, contains over 1.4 billion taxiGPS data points generated
by more than 14,000 taxis between August 3, 2014, and August 30, 2014 in Chengdu, China.

Following [11, 13], we choose trajectories in the city center. Then we remove the trajecto-
ries of less than 10 records and randomly select 10k trajectories as our dataset. To evaluate the
effectiveness of our methods on trajectories with different lengths, for Porto, we excluded
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trajectories that exceeded a length of 150. As for Chengdu, we excluded trajectories that
exceeded a length of 250.

4.4.2 Experimental guidance

We compute the similarity on measures including ERP, DTW, SSPD, Hausdorff, and Fréchet
distance. During the training, we selected DTW, Hausdorff, and SSPD as target measures.
When training the model on a specific target measure, the rest of the provided measures are
regarded as source measures.

To simulate the data-sparsity problem in the real application, we randomly partition our
dataset into the training set and test set following a ratio of 1:19.We use 20% trajectories in the
training set. Given a trajectory, only the pair-wise distance of top-15 trajectories is available
in training. The margin value ε of point matching loss is 0.01. We set the batch size as 10,
and the learning rate as 1e− 3. The trajectory representation vector is 128-dimensional (i.e.,
d = 128).

4.4.3 Evaluation metrics

As in [11, 12, 35], two different evaluation metrics are used:

• HittingRatio@k calculates the overlap percentage ofTop k results based on the predicted
Top k and ground truth. A higher hitting rate suggests more accuracy.

• Recall k@R evaluates how many of the Top k ground-truth trajectories are recovered by
the top-R results. Higher recall indicates better recovering capability.

4.5 Comparedmethods

We select our base model among several learning-based trajectory similarity computation
methods, including NeuTraj [11], Traj2SimVec [12], T3S [13], TrajCL [38] and variants
of them. The source code of NeuTraj, TrajCL is available online, so we directly use its
implementation. For other methods, we follow the settings in the paper and implement these
methods on our own. To implement the unsupervisedmethod TrajCL for our similarity search
task, we follow the paper to utilize a two-layer MLP to connect the model, optimizing with
MSE loss.

Additionally, some modules in student models are invalid due to the data sparsity and
should be removed during the training, such as sub-trajectory distance in Traj2SimVec, and
dissimilar sampling loss in NeuTraj. Hence, we change these methods to accommodate our
problem. As shown in Tables 1 and 2, data sparsity leads to the performance drop on each
measure.

4.6 Performance study

In this section, we present the evaluation outcomes for the top-k similarity search task of the
compared methods, considering the SSPD, Hausdorff, DTW, and discrete Fréchet distance
measures. The table 1 and 2 shows the performance evaluation for different methods, with
the bolded entries indicating the best results under different measures on the specific dataset.
As shown in the tabels, our model FTL- Traj surpasses other methods under most evaluation
metrics. For the Porto dataset, the recall rate keeps up to 70
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Table 1 Performance Evaluation for Methods Under Different Distance Measures on Porto Dataset

Approach SSPD Hausdorff
HR@10 HR@50 R5@50 R10@50 HR@10 HR@50 R5@50 R10@50

RNN 0.2805 0.3773 0.6987 0.6218 0.3299 0.4752 0.7655 0.6875

NeuTraj-NoSam 0.3219 0.4077 0.7267 0.6552 0.3707 0.4911 0.7779 0.7264

NeuTraj 0.3244 0.4127 0.7333 0.6595 0.3862 0.5095 0.7901 0.7316

Traj2SimVec 0.3358 0.4208 0.7441 0.6699 0.3864 0.5169 0.7951 0.7413

T3S 0.3428 0.4305 0.7495 0.6776 0.3916 0.5222 0.8006 0.7469

TrajCL 0.2887 0.4061 0.6757 0.6186 0.3521 0.4416 0.6624 0.6002

Ours-No Ltrans 0.3623 0.4322 0.7728 0.6996 0.4179 0.5451 0.8707 0.8161

Ours 0.3559 0.4295 0.7831 0.7072 0.4171 0.5495 0.8788 0.8165

Approach DTW Discret Frechet

HR@10 HR@50 R5@50 R10@50 HR@10 HR@50 R5@50 R10@50

RNN 0.3767 0.4759 0.7836 0.7502 0.3794 0.4934 0.7400 0.6795

NeuTraj-NoSam 0.4272 0.5041 0.8110 0.7618 0.3932 0.5173 0.7653 0.7267

NeuTraj 0.4208 0.5187 0.8313 0.7712 0.4143 0.5301 0.7826 0.7243

Traj2SimVec 0.4325 0.5300 0.8303 0.7782 0.4157 0.5262 0.7821 0.7362

T3S 0.4377 0.5361 0.8384 0.7867 0.4208 0.5353 0.7907 0.7439

TrajCL 0.4010 0.4813 0.7331 0.6794 0.3601 0.4280 0.6609 0.6082

Ours-No Ltrans 0.5471 0.6472 0.9346 0.9043 0.5654 0.6676 0.9228 0.8937

Ours 0.5519 0.6548 0.9432 0.9139 0.5661 0.6715 0.9313 0.9040

Table 2 Performance Evaluation for Methods Under Different Distance Measures on Chengdu Dataset

Approach SSPD Hausdorff
HR@10 HR@50 R5@50 R10@50 HR@10 HR@50 R5@50 R10@50

RNN 0.2498 0.3704 0.6683 0.6214 0.2376 0.3717 0.6608 0.5716

NeuTraj-NoSam 0.2764 0.3885 0.6978 0.6259 0.2617 0.3972 0.6840 0.5796

NeuTraj 0.2853 0.3989 0.6966 0.6309 0.2681 0.3978 0.6891 0.5914

Traj2SimVec 0.2907 0.3987 0.7125 0.6352 0.2737 0.4036 0.6972 0.5951

T3S 0.2937 0.4084 0.7115 0.6416 0.2825 0.4080 0.6988 0.5987

TrajCL 0.2328 0.3716 0.6227 0.5709 0.2426 0.3771 0.5789 0.5302

Ours-No Ltrans 0.3475 0.4190 0.7770 0.7050 0.4115 0.5355 0.8582 0.7974

Ours 0.3599 0.4339 0.7832 0.7104 0.4127 0.5433 0.8659 0.8103

Approach DTW Discret Frechet

HR@10 HR@50 R5@50 R10@50 HR@10 HR@50 R5@50 R10@50

RNN 0.3152 0.4259 0.6997 0.6501 0.2533 0.3496 0.5329 0.5749

NeuTraj-NoSam 0.3363 0.4302 0.7112 0.6586 0.2742 0.3592 0.5377 0.5857

NeuTraj 0.3409 0.4430 0.7254 0.6684 0.2841 0.3714 0.5510 0.5924

Traj2SimVec 0.3390 0.4489 0.7298 0.6724 0.2956 0.3820 0.5630 0.6058

T3S 0.3490 0.4504 0.7326 0.6768 0.2964 0.3819 0.5590 0.6055

TrajCL 0.3272 0.3812 0.6317 0.5986 0.2678 0.3444 0.5414 0.5022

Ours-No Ltrans 0.5503 0.6421 0.9287 0.9006 0.5558 0.6638 0.9255 0.8916

Ours 0.5489 0.6533 0.9410 0.9110 0.5660 0.6691 0.9314 0.9023
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Furthermore, we analyzed the performance of the model on the Chengdu dataset. Due to
the increased length of trajectory data, previous methods were unable to effectively model
longer trajectories, resulting in a decline in performance. The hitting ratio of FTL- Traj is
even 10% higher than simple RNN on each measure, with some measures even showing an
improvement of up to 20%.

Overall, our training time is a bit longer than other supervised methods, with each epoch
taking around 20-40 seconds. Despite introducing new knowledge from other sources and
employing transfer learning, the use of GRU and ProbSparse Self-attention mechanisms has
improved the efficiency of the model. Additionally, all supervised methods have significantly
shorter training times compared to TrajCL, as training TrajCL models requires obtaining
vertex embeddings using node2vec and has higher GPU requirements.

4.7 Ablation study

Next, we conduct the ablation study to evaluate the usefulness of key components. First, we
can conclude from theTables 1 and 2 that the transfer knowledge introduces useful knowledge
from source domains to the target domain and contributes to the model accuracy.

Second, T3S can be viewed as the variant of FTL- Traj, as it employs LSTM and a self-
attention mechanism to extract spatial and structural information of trajectories. Compared
with T3S, FTL- Traj performs much better. It achieves at least 7

4.8 Parameter sensitivity study

In this research, apart from the standard hyperparameters found in the deep learning model
(e.g., the learning rate), we will provide additional vital parameters associated with the
training and testing procedures as follows.

4.8.1 Impact of embedding dimension d

The embedding dimension d is employed to define the latent embedding space for repre-
senting trajectories. It plays a key role in determining the effectiveness of our deep learning
approach since it is interconnected with both training duration and processing time. Smaller
d may reduce the processing duration, but it will sacrifice important knowledge as well.
According to the Fig. 5, increasing d can improve the model performance. However, when

Fig. 5 Performance with different d in metrics HR50, R10@50
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Fig. 6 Performance with different v in metrics HR50, R10@50

d is too large, the model fails to keep complex information. Hence, d is set to 128 in our
experiments.

4.8.2 Impact of v for source measure priority modeling

When modeling source measure priority, we perform a search on the target measure to
determine how many of the Top v search results from the source measure contain similar
trajectories that are annotated similar on the target measure. Taking the divergence between
source measures and target measures into account, their ranking results are not entirely
identical. A small v may lead to missing high-quality source measures, while an excessively
large v may introduce noise and affect the accuracy of priority assessment. Hence, we set the
v to 30 according to Fig. 6.

4.8.3 Impact of q for transfer-positive trajectories division

When enriching trajectory labels with the information from source measures, we generated
the score of target trajectories. Here, trajectories that are ranked among the Top q in terms
of scores are considered transfer-positive. When q is too small, some potentially similar
trajectories might be mistakenly classified. Conversely, when q is too large, the quality of
negative samples deteriorates, affecting the effectiveness of the model. According to Fig. 7,
we set the q as 50.

Fig. 7 Performance with different q in metrics HR50, R10@50
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5 Conclusion

In this paper, we discuss the few-shot trajectory similarity computation. Existing methods
suffer from performance decline when computing data-sparse measures in real applications.
To this end, we propose a transfer-learning-based model FTL- Traj. FTL- Traj overcomes
the hurdle of learning personalizedmeasures by transferring knowledge fromdata-rich source
measures. Notably, it employs a ProbSparse self-attention-based GRU unit to capture spatial
and structural insights from trajectories. Given the diversity of source measures, a priority
modeling approach guides the model in crafting a well-reasoned ensemble. Furthermore,
transfer learning enriches the model with knowledge regarding ranking and collaboration,
building upon sparse labels. Extensive experimentation on two real-world datasets serves as
compelling evidence for the effectiveness and superiority of our proposed model.
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