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Abstract
Most traditional pedestrian simulation methods suffer from short-sightedness, as they often 
choose the best action at the moment without considering the potential congesting situa-
tions in the future. To address this issue, we propose a hierarchical model that combines 
Deep Reinforcement Learning (DRL) and Optimal Reciprocal Velocity Obstacle (ORCA) 
algorithms to optimize the decision process of pedestrian simulation. For certain complex 
scenarios prone to local optimality, we include expert trajectory imitation degree in the 
reward function, aiming to improve pedestrian exploration efficiency by designing simple 
expert trajectory guidance lines without constructing databases of expert examples and 
collecting priori datasets. The experimental results show that the proposed method pre-
sents great stability and generalizability, evidenced by its capability to adjust the behavio-
ral strategy earlier for the upcoming congestion situations. The overall simulation time for 
each scenario is reduced by approximately 8-44% compared to traditional methods. After 
including the expert trajectory guidance, the convergence speed of the model is greatly 
improved, evidenced by the reduced 56-64% simulation time from the first exploration to 
the global maximum cumulative reward value. The expert trajectory establishes the macro 
rules while preserving the space for free exploration, avoiding local dilemmas, and achiev-
ing optimized training efficiency.
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1  Introduction

With the accelerated urbanization process, various complex buildings and public facilities 
have started to emerge, with people spending more and more time in these indoor environ-
ments. Without a well-developed emergency plan in advance, chaos, crowding, and even 
trampling accidents could occur when emergencies happen [1]. In recent years, crowd 
evacuation has been a hot issue in domestic and international research. Due to the disad-
vantages of costly exercises, it is often difficult to organize evacuation drills in the field 
[2]. Consequently, the pedestrian simulation technology based on computer simulation has 
become the main means to study crowd evacuation nowadays. Currently, traditional pedes-
trian simulation models include the social force model (SFM) [3], cellular automata model 
(CAM) [4], fluid mechanics model [5], and agent-based model, to list a few. However, SFM 
fails to obtain smooth motion trajectories due to its necessity to balance the relationship 
between various virtual forces [6]. The individuals in the CAM are restricted to the grid 
and can only consider information from the surrounding neighborhoods [7]. As for fluid 
mechanics models, they focus on describing the overall motion trends, largely ignoring the 
interactions between individuals. Pathfinder software uses the agent-based model, which is 
a widely used evacuation simulation software. However, unreasonable moving behaviors 
tend to occur in many agent-based simulations. Therefore, it is crucial to develop novel and 
improved pedestrian simulation models.

In recent years, as Deep Reinforcement Learning (DRL) has made significant break-
throughs in video games [8], robot navigation [9], and recommendation systems [10], 
scholars started to apply DRL to pedestrian simulation. DRL integrates the powerful fea-
ture representation capability of deep learning (DL) and the excellent decision-making 
capability of reinforcement learning (RL), realizing the self-supervised learning of agents 
and completing the decision-making in a high-dimensional state and action space. Yao [11] 
proposed a method based on RL and a deep residual network to simulate crowd motion. 
Yao’s method boosted the realism of the simulation but with low evacuation efficiency. 
Xu et al. [12] proposed a hierarchical model consisting of Proximal Policy Optimization 
(PPO) and Optimal Reciprocal Velocity Obstacle (ORCA) for pedestrian simulation in 
local space, considering global path smoothing and local collision avoidance. The study 
by Xu et al. [12] used virtual visual rays to obtain the external environment. However, the 
computational complexity of this method increases exponentially with the number of rays. 
Some scholars [13, 14] improved the multi-agent DRL method and achieved stable and 
effective strategies in some competitive and cooperative scenarios. However, these multi-
agent RL algorithms generate a huge state space with the increase in the number of agents, 
leading to the curse of dimensionality. In addition, given the fact that DRL methods need 
to interact with the environment to obtain training data, The training time for DRL mod-
els is considerably long. In complex scenes containing dead ends and promenades, agents 
are very likely to fall into the dilemma of local optimality [15]. Therefore, it is crucial to 
explore effective optimizing means to reduce the learning difficulty of agents and improve 
the model training efficiency while outputting reasonable and feasible simulation results.

In this study, we propose a single-agent hierarchical pedestrian simulation model that 
combines DRL and local collision avoidance, named D3QN-ORCA. To mitigate the issue 
of falling into local optimum in certain complex scenes with dead ends and promenades, 
we introduce expert trajectory guidance. By adding the expert trajectory imitation degree 
to the reward function, our agents are guided to avoid local dilemmas, leading to improved 
training efficiency.
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2 � Related works

2.1 � Traditional simulation model

In terms of the differences in spatial perspectives, traditional pedestrian simulation mod-
els can be divided into macroscopic models and microscopic models. The macroscopic 
approach mainly considers the global path planning problem, represented by the fluid 
mechanics model and the model based on the potential energy field. Yang [16] proposed an 
improved hydrodynamic model of pedestrian flow, obtained evacuation characteristics in 
several typical evacuation scenarios, and achieved pedestrian flow self-organization. Boun-
ini et  al. [17] searched for feasible paths in the potential field according to the potential 
gradient descent algorithm, added a repulsive potential to the current state in the blockage 
case, and overcame the local minimal problem of traditional potential methods; Wu [18] 
introduced the concept of the dynamic potential energy of the grid, which guides the move-
ment of the crowd based on the crowd density on the dynamic division of the potential 
energy grid.

In contrast, microscopic models, such as SFM, CAM, and ORCA, focus more on the 
interaction and local control among individuals. Zhao [7] proposed an adaptive method 
to calculate the optimal motion vector of pedestrians. He improved the expected speed 
and direction derived from the pedestrian self-driven force in SFM and enhanced the real-
ism of crowd evacuation; Ma et al. [19] introduced the active avoidance force in SFM and 
combined it with the contact theory of the discrete element model of particles. The model 
improves the irrationality of the avoidance behavior of pedestrians walking close to each 
other in the original SFM simulation.

ORCA solves the avoidance jittering behavior of the velocity obstacle (VO) model and 
the collision avoidance dilemma of multiple agents, transforming the velocity selection into 
a simple linear programming problem. Guo et al. [20] proposed the VR-ORCA approach 
that abandoned the assumption that a pair of agents take half of the collision avoidance 
responsibility in the original ORCA and only required their responsibility to sum to one. 
This study solves the asymmetric situation faced by neighboring agents and reduces the 
probability of pedestrian collision and passage time. He et al. [21] combined shadow obsta-
cles with ORCA for large-scale crowd evacuation analysis. Compared with the SFM model, 
it produces simulation with great realism with high computational efficiency. In view of 
the superiority and efficiency of ORCA, we use it as the underlying collision avoidance 
mechanism for pedestrian simulation as a way to control the interaction between individual 
pedestrians.

2.2 � Deep reinforcement learning

With the launch of AlphaGo [22] by the DeepMind team, which defeated the human Go 
world champion, DRL began to receive widespread attention. DRL combines the neu-
ral network perception capability of DL and the interactive trial-and-error idea of RL to 
realize the decision-making process in a high-dimensional state and action space. Deep Q 
Network (DQN) [23], the first DRL algorithm, is a common algorithm applied in discrete 
action space scenarios. The DeepMind team fed original game images from Atari 2600 into 
a convolutional neural network and used tricks like experience replay and target network 
to achieve results beyond the level of top human players in dozens of games. Since then, 
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DQN-based variants have started to emerge. For example, to solve the overestimation prob-
lem of DQN, the Double Deep Q Network (DDQN) algorithm uses a dual network struc-
ture for action selection and value evaluation, respectively [24]; the Dueling Double Deep 
Q Network (D3QN) algorithm improves the stability of the algorithm and the accuracy of 
action selection by improving the neural network structure, decomposing the network into 
a state value function network and an advantage function network [25]; The Prioritized 
Experience Replay DQN algorithm [26] uses Temporal Difference (TD) error to meas-
ure the importance level of experience trajectories, introduces random priority sampling, 
importance sampling, among others, to improve the slow training problem in reward-sparse 
environments.

In continuous action space scenarios, policy gradient methods are more applicable, such 
as the REINFORCE algorithm with reduced variance with baseline [27] and trust region 
policy optimization (TRPO) [28], which mitigates difficulty in determining the learning 
step size and proximal policy optimization (PPO) [29] algorithm. Despite their slightly bet-
ter performance than the DQN series algorithms in terms of convergence and stability, they 
own notable disadvantages: easy to fall into local optimum, large trajectory variances, and 
low sample utilization.

Scholars have combined value-based methods with policy-based methods and proposed 
the actor-critic (AC) method. The actor updates the action based on the policy, while the 
critic evaluates the action through the value function. Some representative algorithms 
include the deep deterministic policy gradient (DDPG) [30], twin delayed deep determinis-
tic policy gradient (TD3) [31], and the soft actor-critic algorithm (SAC) [32], to list a few. 
Although the above algorithms integrate the advantages of value-based and policy-based 
methods, they are hyperparameter-sensitive.

2.3 � DRL‑based pedestrian simulation and optimization

As pedestrian simulation can be modeled as a Markov decision processes (MDP) prob-
lem and RL considers MDP to find the optimal policy and maximize the expected total 
return, a number of studies have applied RL to the field of pedestrian simulation. Lee 
et al. [33] proposed a crowd simulation method based on the AC framework. By setting a 
simple reward function, their agents are able to perceive the surrounding environment and 
the situation of neighboring agents and make decisions independently to achieve collision 
avoidance and end-point approaching. Xu et  al. [12] proposed a hierarchical simulation 
model combining PPO and ORCA, using ray perception of virtual vision as the state input 
to obtain the optimal policy for the movement of the agents. They verified the superiority 
of the algorithm in several classic scenarios. Sharma [34] et al. pre-trained the network 
weights of DQN to incorporate the shortest path information and added the importance 
vector to the action output, leading to significantly simplified action space with reduced 
training time.

Expert knowledge assistance is an effective means to optimize problems prone to occur 
in RL, such as ineffective exploration and local optimality. Many scholars used expert strate-
gies in the form of Behavior Cloning (BC) to guide training. Although BC omits the time 
to interact with the environment, it is prone to error accumulation. In other words, agents 
may fail to fit the expert behavior correctly at some point, step into an unfamiliar state that 
does not exist in the a priori data set, and continues to make decisions that deviate from 
the expert trajectory, eventually leading to data drift [35]. Offline RL [36] also uses static 
datasets to obtain the best strategy. Unlike BC, which is essentially a form of supervised 
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learning, offline RL is still based on standard RL algorithms. All of the above expert experi-
ence-guided methods rely heavily on a priori data, and the quality and composition of the a 
priori data greatly affect the quality and efficiency of agent learning.

Therefore, for complex environments containing promenades and dead ends, the 
dilemma of local optimum still exists in current pedestrian simulation research. In this 
study, when planning the global path of the agent with DRL, we supplement expert 
knowledge, thicken the sparse reward, and introduce expert trajectory guidance into the 
reward function. The proposed approach gives the pedestrian macro-rule guidance while 
encouraging independent exploration, leading to enhanced exploration efficiency.

3 � Methodology

3.1 � Methodology overview

In this study, we define the simulation environment as a two-dimensional plane space. The 
action decision interval is set to one time step, i.e., one frame f  , the total number of simu-
lation frames is Fmax , and the total number of round frames is M . Each pedestrian i can be 
described as a circle with attributes �i = {ri, pi, v

pre

i
, v

fin

i
} , where ri denotes the pedestrian 

radius, pi denotes the current position of the pedestrian, vpre
i

 represents the initial desired 
speed of the pedestrian, and vfin

i
 corresponds to the final speed of the pedestrian after col-

lision avoidance adjustment. The task of pedestrians is to reach the specified target point 
Gi with the shortest time in each round while trying to avoid collision with other agents.

The whole simulation process can be divided into two parts, i.e., environment interac-
tion sampling and neural network training (as shown in Fig. 1). The specific steps of envi-
ronmental interaction sampling in Fig. 1a are as follows.

(1)	 Obtain the state st according to the current environment.
(2)	 Input the state st into the neural network, obtain the expected value of each action after 

noise interference, and output the action at with the largest value.
(3)	 Transform the output action at into a velocity vector vpret  and send it to the ORCA model 

for velocity adjustment, i.e., obtaining collision-free velocity vfint .
(4)	 Update the pedestrian position according to vfint  , obtain the reward rt and the next state 

st+1.
(5)	 Deposit the experience data {st, at, rt, st+1} into the experience replay pool. If the amount 

of data in the experience pool has reached the maximum capacity value Ecapacity , the 
old data are eliminated, with new data deposited in order; otherwise, the new data are 
directly deposited.

(6)	 Repeat steps (1)-(4) until the number of round steps reaches M or all pedestrians reach 
the target point. Then, this round simulation ends, and the simulation environment is 
reset.

(7)	 When the total number of simulation steps reaches Fmax , the environment interaction 
process is terminated.

The specific steps of the neural network training part in Fig. 1b are as follows:
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(1)	 Take Batch_Size bars of experience data from the experience replay pool and feed them 
into the neural network.

(2)	 Calculate the loss function to train the policy network �cur based on the policy network 
�cur and the target network �tar.

(3)	 Copy the network parameters of the policy network �cur to the target network �tar at 
every fixed number of fcopy steps.

Fig. 1   The methodology framework of the proposed approach
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3.2 � Deep reinforcement learning model for pedestrian simulation

3.2.1 � State space

In the same way as the input of the Atari game [23], the state space in this study is designed 
as scene images. To reduce the state input dimension, we convert the color image into a 
grayscale map and scale the image size to 84*84. Meanwhile, the current frame is super-
imposed with four consecutive images of the previous three frames as the current state, 
i.e., st = {ft−3, ft−2, ft−1.ft} , to show the movement trend of the pedestrians. In addition, to 
distinguish the current decision pedestrian from other pedestrians, the pixel value of the 

Algorithm 1:   D3QN-ORCA​
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decision pedestrian is set to 255, the pixel value of other pedestrians and obstacles is set 
to 100 with the same pixel value, and the background pixel value is set to 0 (as shown in 
Fig. 2).

3.2.2 � Action space

The initial desired velocity vpre of the pedestrian can be decomposed into the veloc-
ity direction v� and the velocity magnitude v� . Here, we assume that v� is always the 
maximum velocity limit vmax of the pedestrian, and the action to be obtained is v� . To 

Fig. 2   State space
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reduce the action space and retain certain accuracy, we discretize the action space ℤ of 
pedestrians into eight directions. According to the general orientation method, a direc-
tion is divided every 45 degrees interval starting from due north, and index values 0–7 
are assigned in clockwise order. As a result, the action space ℤ of pedestrian i can be 
expressed as ℤ =

[
ak
i

]
 , and the action decision variables ak

i
= {0,1, 2,… , 7} , represent-

ing the eight directions of up, right up, right, right down, down, left down, left, and left 
up (as shown in Fig. 3). Further, the predicted action direction is transformed into the 
velocity direction v� , which are combined with the velocity magnitude v� to output the 
initial desired velocity vpre . Finally, the final collision-free velocity vfin is further calcu-
lated from ORCA.

3.2.3 � Reward function

RL quantitatively evaluates decision actions by means of a reward function, and its 
optimization goal is to maximize the cumulative reward to guide an agent to explore 
the global optimal solution. Therefore, the design of a reasonable reward function is 
crucial for the convergence and stability of RL. Given that the pedestrian simulation 
aims to explore globally optimal paths and avoid collisions, we perform reward shaping 
for sparse rewards. Meanwhile, we introduce an expert trajectory simulation reward to 
enhance exploration efficiency and optimize simulation results for some complex envi-
ronments that are prone to local dilemmas.

The reward function R defined in this study consists of four components, i.e., goal 
reward rgoal , collision avoidance reward rcollision , movement reward rpunish , and expert tra-
jectory imitation degree reward rimitation . The composition form of the reward function 
is distinguished in different scenarios E = {esimple, ecomplex} ( esimple represents a simple 
environment, ecomplex represents complex environment).

Fig. 3   The action space of an 
agent in this study
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where �1,�2,�3,�4 are the weight coefficients. The target reward rgoal is used to guide 
pedestrians to approach the target point in the following form:

where w is the end-point reward value for reaching the target point, Dthreshold is the distance 
determination threshold. The current pedestrian reaches the end point when the distance 
between the agent and the target point is less than the threshold. dis() denotes the Euclid-
ean distance measure. pt

i
、pt−1

i
 denote the positions of pedestrian i at moments t and t − 1 , 

respectively. Before the pedestrian reaches the target point, agents are encouraged to move 
closer to the target point through the difference form in formula (2), thickening the reward 
distribution in the exploration process.

The collision avoidance reward rcollision is used to avoid mutual collisions between 
pedestrians and pedestrians and obstacles. It can be defined as:

where the denominator is the dot product of the initial desired velocity vpre and the final 
collision-free velocity vfin . The numerator is the product of the respective mode lengths, 
which represent the degree of similarity between the two vectors and map the values to the 
range [-1,1].

The movement reward rpunish is used to control the number of steps the pedestrian moves 
and can be written in the following form:

where wb is the hyperparameter generally set to a fixed negative value to encourage pedes-
trians to reach the target point with the least number of steps.

For some complex environments, agents often fail to explore the optimal strategy, lead-
ing to slow convergence. Thus, we add expert trajectory guidance in some locations of the 
scene. Suppose the current position of pedestrian i is pt

i
 and its predefined expert trajectory 

is Li = {T1

i
, T2

i
,… , Tn

i
} , Tk

i
 is the node of the expert trajectory path, Tk

i
→ Tk+1

i
 represents 

the road section from node k to node k + 1 . We calculate the distance between pt
i
 and each 

road section at this time, find the closest road section Tt
i
→ Tt+1

i
 , thus obtaining the trajec-

tory direction of the road section dguide = Tt+1
i

− Tt
i
 . The expert trajectory imitation degree 

reward rimitation can be defined as:

where the similarity between the predicted velocity vpre and the trajectory direction of the 
current road section is described in the form of a vector dot product. The distance between 
the current position pt

i
 to the current imitated road section Tt

i
→ Tt+1

i
 is described by 

e−dis(p
t
i
,Tt

i
→Tt+1

i ) . wc is a weighting factor that aims to balance the direction simulation degree 

(1)R =

{
�1rgoal + �2rcollision + �3rpunish E = esimple

�1rgoal + �2rcollision + �3rpunish + �4rimitation E = ecomplex

(2)rgoal =

{
dis

(
pt−1
i

,Gi

)
− dis

(
pt
i
,Gi

)
dis

(
pt,Gi

)
> Dthreshold

wa dis
(
pt,Gi

)
≤ Dthreshold

(3)rcollision =
vpre ⋅ vfin

|vpre| ⋅ ||vfin||

(4)rpunish = wb

(5)rimitation =

{
vpre⋅dguide

|vpre|⋅|dguide| + wc ∗ e−dis(p
t
i
,Tt

i
→Tt+1

i ) t + 1 ≤ n

wd t + 1 > n
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and distance excursion. wd is the fixed reward value given to the agent after it has simulated 
Li.

3.3 � Hierarchical model based on D3QN and ORCA​

3.3.1 � ORCA algorithm

For obstacle avoidance, we implement ORCA for short-range obstacle avoidance con-
trol. ORCA solves the problem of frequent jitter and mitigates the difficulty in multi-
agent planning in the VO algorithm. It transforms the velocity space into a bipartite 
plane and finds the optimal solution using simple linear programming to achieve effec-
tive obstacle avoidance for dense crowds [37].

Suppose there exists a pedestrian �A = {rA, pA, v
pre

A
, v

fin

A
} and a pedestrian 

�B = {rB, pB, v
pre

B
, v

fin

B
} , we define VA−B to be the initial relative desired velocity ( vpre

A
, v

pre

B
 

pointing to the target point respectively) and the initial velocity collision range to be a 
circle D with center P and radius R.

Considering the continuity of the moving process, the velocity barrier region is 
extended as a truncated cone, including circle D and its rear range (as shown in the 
shaded part of Fig. 4). Thus, the velocity barrier region VOA|B of pedestrian A relative to 
pedestrian B can be described as:

(6)D(P,R) =
{
VA−B|‖‖VA−B − P‖‖ < R

}

Fig. 4   The VO region and ORCA half-plane
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The collision will occur in time � , if relative velocity falls in VOA|B . At this point, it 
is necessary to find a collision-avoidance vector u , which is the shortest vector from the 
relative expected velocity VA−B to the boundary of VOA|B . The normal of u to the regional 
boundary position as n . Therefore, based on the principle of mutual avoidance, A only 
needs to change 1

2
u of the velocity while the direction is the half-plane pointed by n . The 

half-plane ORCAA|B can be expressed as:

We calculate the ORCA half-planes of A and other agents in turn and generate the half-
plane intersection ORCAA . If v

pre

A
 falls within ORCAA , the final collision-free velocity vfin

A
 of 

A is vpre
A

 ; otherwise, the velocity closest to vpre
A

 is taken in the intersection set. For scenar-
ios with a dense crowd, there exists a situation where the half-plane intersection set is the 
empty set. We choose the shortest velocity of length from the current velocity point to each 
half-plane Euclidean distance maximizing velocity (as shown in Fig. 5).

3.3.2 � D3QN algorithm

In general, the state of the pedestrian at the next moment is only related to the current state, 
which means that the pedestrian motion process owns the Markovian property. Therefore, 
global path planning at the top level can be achieved by DRL. Since we use the scene pic-
ture as the state space input, the current decision pedestrian can perceive the motion state 
of the rest of the pedestrians, so we use the single-agent-based D3QN algorithm that does 
not need to consider individual collaboration.

(7)VOA|B = {v∃t ∈ [0, �]∶ ∶ tv ∈ D(pB − pA, rA + rB)

(8)ORCAA|B =

{
v
||||

(
v − v

pre

A
+

1

2
u
)
⋅ n ≥ 0

}

Fig. 5   Speed selection when a 
half-plane intersection set is the 
empty set
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The core idea of the DQN algorithms is to use the value function Q�(st, at;�) to evaluate 
the value of executing action at for state st under policy � predicted by a neural network with 
parameter � [23]. Q� is known to satisfy the Bellman equation:

To optimize Q� , the mean square error loss function in the neural network is defined based 
on TD error as follows:

Here, two identical networks are introduced to solve the training instability problem. 
The policy network �cur updates the network parameters in real-time to calculate the pre-
dicted values, while the target network �tar is relatively fixed to calculate the target val-
ues, and the parameters are copied from �cur every fcopy step.

By decoupling action selection and value calculation, Double DQN uses the policy 
network �cur to select the action and brings in the target network �tar to determine the 
action value. It mitigates the overestimation problem that tends to occur in the basic 
DQN to a certain extent [24], and only needs to replace the target value calculation func-
tion as follows:

Further, Dueling DQN changes the original network structure of DQN and pro-
poses the concept of the dyadic network by splitting the original output value function 
Q�

(
st, at;�

)
 into two branches, i.e., the state value function V

(
st;�

�
)
 and the action advan-

tage function A
(
st, at;�

�
)
 [25]. The state value function is used to predict the goodness of 

the state, while the action advantage function is used to predict the importance of each 
action under the state st:

At the same time, for its “unidentifiable” problem, it is necessary to set the output vector 
sum of the action advantage function to 0. The value function can be rewritten as follows:

Combined with the actual problem of pedestrian simulation, in many cases, the size 
of the value function Q is often not related to the action but influenced by the environ-
ment. For example, when the scene space and target location are sufficiently empty, the 
left-right movement of the agent at this moment may have no effect on the result, while 
the choice of action only becomes particularly important when there is an obstacle in 
front. Therefore, splitting the value function is an effective means to improve prediction 
accuracy.

In addition, to improve the exploration efficiency, we replace the traditional � − greedy 
exploration method with Noisy net [38]. Compared with adding noises to the action at 
the output of the network, adding noises to the network parameters seems more reason-
able and effective. Given a linear cell with input y and output x:

(9)Q�
(
st, at;�

)
= rt + � max

at+1

Q
(
st+1, at+1;�

)

(10)L(�) = (rt + � max
at+1

Q
(
st+1, at+1;�tar

)
− Q

(
st, at;�cur

)
)
2

(11)Q�
(
st, at;�

)
= rt + � max

at+1

Q
(
st+1, argmaxaQ(st+1, at+1;�cur);�tar

)

(12)Q�
(
st, at;�

)
= V

(
st;�

�
)
+ A

(
st, at;�

�
)

(13)Q�
(
st, at;�

)
= V

(
st;�

�
)
+ A

(
st, at;�

�
)
− meanaA

(
st, at;�

�
)
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where w is the weight and b is the bias, noise �w, �b are sampled from the independent 
Gaussian distribution. The noise linear unit can be described as:

where ⊙ is noted in dot product form, � and � represent the mean and variance, respectively.
The network structure of the target network and the policy network is shown in Fig. 6. The 

state space is 84 × 84 × 4, and the input states pass through three convolutional layers with con-
volutional kernel sizes of 8 × 8 × 4, 4 × 4 × 32, and 3 × 3 × 64, respectively. Further, abstract fea-
tures extracted from the convolutional layers are fed to two fully connected layer branches with 
noise. One branch represents the scalar state value V and the other branch represents the vector 
action advantage function A , with the vector length being the action space length. Finally, the 
results of the two branches are aggregated and output as each action value Q.

3.4 � Pathfinder simulation principle

Pathfinder software is developed by Thunderhead Engineering USA. It uses a triangu-
lar mesh to divide the movement space, where pedestrians move along the mesh given 
to the path planning algorithm. Pathfinder includes two main pedestrian simulation 
models, i.e., the SFPE model and the Steering model. The SFPE model uses the basic 
behavioral simulation approach, controlling pedestrian movement only through a flow 
model [39] without considering interactions among pedestrians. In contrast, the Steer-
ing model uses an approach that combines a guidance mechanism with a collision steer-
ing mechanism to plan paths for pedestrians. The model first uses the A* algorithm to 
generate a path to the goal, which consists of a series of points on a triangular mesh as 
intermediate waypoints. Once the path is determined, pedestrians have the following 
four actions: seek, separate, avoid walls, or avoid pedestrians. For possible collisions, 
the model selects a least-cost action for the pedestrian to move and then redirect to the 

(14)y = w ⋅ x + b

(15)y = (𝜇w + 𝜎w ⊙ 𝜀w) ⋅ x + 𝜇b + 𝜎b ⊙ 𝜀b

Fig. 6   The neural network structure proposed in this study
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next waypoint and smooth the path [40]. Considering that the Steering model is able to 
avoid obstacles and correct routes to a certain extent, we will adopt the Steering model 
in Pathfinder for comparison in the following experiment.

4 � Experiments and results

To verify the effectiveness and superiority of the proposed method, we divide the exper-
iment into two parts and evaluate them in two scenarios, respectively.

•	 In the simple environment, we compare the simulation results of Pathfinder software 
with the traditional simulation model and the proposed D3QN-ORCA hierarchical 
model. The results show that the proposed method is able to achieve higher quality 
pedestrian simulation, taking into account the local collision avoidance among indi-
viduals while planning the global path.

•	 In the complex environment, we compare the simulation results of Pathfinder software 
and D3QN-ORCA with the addition of expert trajectory guidance. The results prove 
the generalization of the proposed method for complex scenarios that are prone to local 
optimums. The addition of expert trajectory can reduce useless exploration and effec-
tively guide the optimal path. The results demonstrate that the proposed method pre-
sents fast and stable convergence with the change of global reward value.

Table 1 shows some of the hyperparameters covered in this study.

Table 1   Hyperparameter settings Hyperparameter Value

Learning rate 1e-4
Discount factor� 0.99
Experience replay capacityEcapacity 7e-4
Batch_Size 256
Total number of simulation stepsFmax 6e-5
Parameter update interval fcopy 1e-3
The maximum speed limit for pedestriansvmax 2
Pedestrian radiusr 2
Distance ThresholdDthreshold 1
�1 1.25
�2 1.25
�3 1.0
�4 1.0
wb 2.1
wc 1.25
wd 1.25
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4.1 � Simple environment

The simple environment aims to verify that combining DRL and ORCA is able to comple-
ment each other and achieve a more refined simulation of pedestrian behavior than tradi-
tional models. Therefore, we design two experimental scenarios:

•	 Room evacuation scenario. The single exit room evacuation scenario is often used to 
evaluate the behavioral strategy of crowd evacuation. In this scenario, we visualize how 
pedestrians in a crowded and chaotic state make decisions to reach the exit as soon as 
possible. We set the environment as a square room with a length/width of 80 and the exit 
width set to 5, allowing only one person to pass through. We also place four static obsta-
cles in the room to increase the complexity of the environment (as shown in Fig. 7a).

•	 Opposite motion scenario. The opposite direction movement is a classic scenario in 
pedestrian simulation. It shows the behavior of two groups of pedestrians moving close 
to each other face to face in an open environment and crossing each other to reach the 
end point on the other side. We set the road length to 120 and the width to 100 and 
place three static obstacles between the two groups of pedestrians to increase the dif-
ficulty of pedestrian decision-making (as shown in Fig. 7b).

4.1.1 � Room evacuation scenario

In this scenario, we generate 15 random pedestrians on the left side of the room, whose 
goal is to exit the room using the right-side door. We visualize the current crowd state 
every 20 frames to explore pedestrians’ behaviors. In particular, the differences between 
our model and Pathfinder software in terms of simulated pedestrian movements between 
obstacles and at exits are compared by five consecutive screenshots during congestion.

Fig. 7   Simple environment
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We notice that both models (i.e., Pathfinder and the proposed D3QN-ORCA) eventu-
ally complete crowd evacuation by frame 140, but their agents behave differently when 
approaching obstacles and at the exit (Fig.  8). Until frame 20, both groups of pedestri-
ans maintain the same movement strategy, but after that, attracted by the target point, the 
pedestrians in Pathfinder start to converge toward the middle of the scene. At frame 40, two 
pedestrians in D3QN-ORCA choose to move towards the top obstacle, while the pedestri-
ans in the middle of the scene have adjusted their position and formed an orderly queue 
to pass through the passage between the obstacles to avoid congestion. Agents in Path-
finder create a blockage, with a few pedestrians still stranded between the barrier aisles 
until frame 60. The same situation occurs at the exit. In comparison, pedestrians in D3QN-
ORCA try to reduce the evacuation time by passing the exit one by one, as the width of the 
exit is only for one person. We notice that Pathfinder fails to present the ability to maxi-
mize the global gain, evidenced by the congestion at the exit. Eventually, pedestrians in 
Pathfinder take 138 frames to complete the evacuation, while the ones in D3QN-ORCA 
take only 127 frames.

Figure  9 presents the motion process of the crowd simulated by the two methods in 
passing through the passage between obstacles for five consecutive frames, namely 
[ ft−2, ft−1, ft, ft−1, ft+2 ]. It can be seen that pedestrians in D3QN-ORCA change the original 
travel route of pedestrians in advance before entering the narrow passage, and the crowd 
forms a neat and orderly queue and crosses the obstacles in turn. In comparison, congestion 
occurs for pedestrians in Pathfinder in the aisle. The great performance of the proposed 
D3QN-ORCA is due to its capability to maximize the overall reward by guiding the pedes-
trians through the DRL while avoiding collisions and optimizing the global path, while the 
Pathfinder makes decisions only for the current moment without considering subsequent 
situations.

4.1.2 � Opposite motion scenario

To analyze the behavior of pedestrians moving in opposite directions, we generate nine 
pedestrians on each side of the obstacles, whose goals are to reach the other side of the 
scene boundary. In this case, we focus on the intersection of the pedestrian streams every 
ten frames, followed by an interval of 30 frames to show the difference in the time taken to 
reach the target point (Fig. 10).

Within the first 20 frames, pedestrians in both approaches avoid static obstacles by split-
ting the queue in two. However, as the two groups of pedestrians are about to meet, their 

Fig. 8   Simulation screenshots of room evacuation scenario (Pathfinder took a total of 138 frames, while the 
proposed D3QN-ORCA took a total of 127 frames)
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behavior patterns start to differ. We notice that, at frame 30, two groups of pedestrians 
in D3QN-ORCA have already transformed into an orderly queue to ensure that they do 
not collide with the oncoming crowd during the subsequent movement. At frame 60, two 
groups of pedestrians in D3QN-ORCA have completed the intersection of the crowd with 

Fig. 9   Five consecutive frames that present the motion process when passing through the passages between 
obstacles in Pathfinder and the proposed D3QN-ORCA methods
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a neat formation. In contrast, Pathfinder still plans the shortest path to the target point for 
all pedestrians when they meet in close proximity and are about to collide, without taking 
into account the future congested situation that may occur. The pedestrians in Pathfinder 
spend a considerable amount of time getting out of the local dilemma in frames 40–60. 
Eventually, five pedestrians are stranded in the scene until frame 120, while D3QN-ORCA 
completes the simulation in frame 112. The above observations demonstrate that, due to 
the powerful autonomous exploration capability of DRL, pedestrians are able to continu-
ously adjust their own strategies by interacting with the environment. At the same time, 
DRL combined with ORCA achieves inter-individual collision avoidance, thus maximizing 
the global cumulative reward and optimizing the pedestrians’ paths.

4.2 � Complex environment

In this section, we further complicate the scenario based on the simple environment to 
explore the generalization of the proposed method in this study and the effectiveness of 
adding expert trajectory guidance in some extreme environments where it is easy to fall 
into local optima. We design two scenarios:

•	 Narrow promenade encounter scenario. In general, conventional pedestrian opposite 
movement scenarios are usually designed to have a relatively open space for pedestrians 
to move around. However, traditional methods become less capable when pedestrians’ 
action space is compressed. In this study, we design a narrow promenade encounter 
scenario to investigate the performance of two groups of pedestrians walking towards 
each other in a narrow area. We randomly place two groups of pedestrians on each side 
of the promenade, and their respective goals are to cross the promenade and walk to the 
other side. The length of the promenade is set to 60 and the width to 10, accommodat-
ing a maximum of two people moving side by side at the same time. The pedestrian 
distribution and the expert-guided route are shown in Fig. 11a.

•	 Crowded obstacle scenario. For traditional models, pedestrians are driven to choose 
the path with the shortest distance when approaching a target, which tends to result in 
congestion. Thus, we design a more complex congregation of pedestrians, where four 
groups of pedestrians are placed in four corners of the environment. Their goals are to 
reach the other end of their respective diagonal while avoiding obstacles. We want to 
explore whether DRL can find better action plans and achieve fast convergence with 
expert guidance. The scene is set as a square with a side length of 70, and the interval 

Fig. 10   Selected frames in opposite motion scenario (Pathfinder took a total of 129 frames, and D3QN-
ORCA took a total of 112 frames)
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between obstacles is set as 10. The pedestrian distribution and the expert-guided route 
are shown in Fig. 11b.

4.2.1 � Narrow promenade encounter scenario

The narrow corridor scenario complicates the opposite direction movement scenario in the 
previous section, as it further reduces the movement space available to the pedestrians and 
compresses the time for them to adjust their formation. We randomly generate ten pedestri-
ans on each side of the promenade, who need to cross the narrow promenade to reach the 
other side. Certain behaviors of pedestrians in key frames are presented in Fig. 12.

We notice that traditional methods present unsatisfactory performance in this complex 
scene. Before frame 40, the pedestrians in Pathfinder, driven by the attraction of the target 
point, always move at the best-desired speed towards the end until two groups of pedes-
trians meet and a speed barrier region is created. Then, pedestrians start to change their 
movement direction. However, by this time, the space available for pedestrian movement 
is limited, and the pedestrians can only fine-tune their respective directions of motion at a 
slow speed. After 20 frames, crowd congestion remains in the middle of the promenade. 
In frame 80, an unreasonable behavior can be observed, where one pedestrian is forced 

Fig. 11   Complex environment

Fig. 12   Selected frames in narrow promenade encounter scenario (Pathfinder took a total of 171 frames, 
D3QN-ORCA took a total of 101 frames, and D3QN-ORCA with expert guidance took a total of 96 frames)



729GeoInformatica (2023) 27:709–736	

1 3

back to the origin. In the end, pedestrians in Pathfinder take 171 frames to complete the 
simulation.

In contrast, the DRL-based approach takes only about 100 frames to complete the 
simulation. At frame 20, we notice that pedestrians in D3QN-ORCA, with the addition 
of expert trajectory guidance, have begun to consciously integrate the pedestrian queue 
into two columns. At frame 40, the basic D3QN-ORCA presents an orderly queue, with 
individual pedestrians still needing to avoid minor collisions, while the expert-guided 
D3QN-ORCA starts to align the crowd, avoiding potential collision future frames. At 
frame 50, both D3QN-ORCA and D3QN-ORCA with expert trajectory present a smooth 
pedestrian moving process, where pedestrians are able to maintain their desired speed 
without considering local dilemmas such as those seen in Pathfinder. Finally, the expert 
trajectory-guided D3QN-ORCA takes 96 frames for all pedestrians to reach the end 
point, while the basic D3QN-ORCA does not complete the simulation until 101 frames 
due to the longer time taken to adjust to the crowd. However, compared to Pathfinder, 
the DRL-based simulation approach aims to maximize the global reward. While the 
action taken at each moment may not be optimal at the moment, it should be the optimal 
global decision.

The reward function curve can also be used to evaluate the effectiveness of the algo-
rithm. To further verify the effectiveness of the expert trajectory guidance, we recorded 
the average cumulative reward value of all agents at the end of each round, smoothed 
the curve with a sliding window to enhance the visualization. We compared the change 
in reward value during training of the basic D3QN-ORCA and expert-guided D3QN-
ORCA and explored their convergence speeds (Fig. 13).

For a more intuitive comparison, we only introduce the expert trajectory imitation 
degree reward at training time for the method with expert trajectory guidance, with the 
sum of the remaining three rewards recorded at plotting time.

Fig. 13   Comparison of D3QN-ORCA reward values with and without expert trajectory guidance
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From Fig.  13, the expert trajectory-guided D3QN-ORCA method gradually explores 
a better action strategy at around 100,000 steps and converges the reward value steadily 
around 0 after about 350,000 steps. In contrast, the basic D3QN-ORCA model falls into 
a local dilemma at the beginning and does not reap a larger reward until around 280,000 
steps, and then gradually converges smoothly at around 500,000 steps. Therefore, we can 
conclude that the expert trajectory guidance can effectively improve exploration efficiency 
by preventing agents from falling into local dilemmas.

4.2.2 � Crowded obstacle scenario

In this scene, we placed more groups of pedestrians and obstacles to increase the dif-
ficulty of the environment, hoping to explore the behavior patterns of pedestrians in the 
highly crowded and chaotic scenarios. We generate four pedestrians in each corner of the 
scene, and their goal is to reach the other side of their respective diagonal. We present 
simulated screenshots of the current environment every 20 frames to compare model per-
formances (Fig. 14).

It is notable that agents in the traditional method behave differently compared to the ones 
in DRL-based methods. Given the short-sightedness of the Pathfinder simulation method, 
pedestrians fail to consider the potential future chaos before a crowded collision and always 
prefer following the path with the shortest distance. At frame 40, due to the symmetry of the 
initial positions, four groups of pedestrians arrive at the middle of the scene almost simulta-
neously, causing congestion of pedestrian flow. The congestion did not ease until after frame 
80. It took 157 frames for agents in the Pathfinder model to end the simulation. In compari-
son, agents in D3QN-ORCA discover the local dilemma after interacting with the environ-
ment and keep seeking other optimal solutions. It adopts a movement pattern of four groups 
of pedestrians going around clockwise synchronously from the beginning. The crowd moves 
smoothly without congestion until frame 120. As a result, all the pedestrians in the basic 
D3QN-ORCA reached the target point at frame 131.

Similarly, given the local dilemma that may result from all pedestrians expecting to 
choose the shortest distance path at the same time, we set the expert-guided trajectory to a 
simultaneous same-direction detour mode for the four groups of people as well. Pedestri-
ans in D3QN-ORCA with expert-guided trajectory present similar performance compared 
to basic D3QN-ORCA, with one frame difference when completing the simulation.

Fig. 14   Selected frames in crowded obstacle scenario (the Pathfinder took a total of 157 frames, D3QN-
ORCA took a total of 131 frames, and D3QN-ORCA with expert guidance took a total of 130 frames)
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From Fig. 15, we notice that the agents in the D3QN-ORCA method without expert trajec-
tory guidance are to jump out of the local optimum before 400,000 steps, with insufficient 
exploration. The model starts to gradually converge from 450,000 steps when better behavioral 
strategies are sampled. On the contrary, in the model guided by expert trajectory, the effective 
exploration rate of the agents does not have a long stagnant phase, presenting a longer, con-
stantly growing pattern. The global optimal decision action that can be achieved in each state 
is gradually explored, and the final reward value converges smoothly at around − 100.

Table 2 presents the total simulation time consumed by each method in all scenarios. 
In the simple scenarios, the overall time difference between the two models is about ten 
frames, while in the complex scenarios, the simulation time based on the DRL method 
is substantially better than that of Pathfinder. Therefore, it is proved that D3QN-ORCA 
has great generalizability, and the more complex the environment, the more prominent the 
advantage of being able to cope with potential congestion situations. Moreover, with the 
introduction of expert trajectory guidance, the simulation process can be further improved 
on the basis of enhancing training efficiency. It gives pedestrians certain guidance while 

Fig. 15   Comparison of D3QN-ORCA reward values with and without expert trajectory guidance

Table 2   Total simulation time consumed by each method in all scenarios (Unit: Frame)

The bolded numbers in the table represent the least numberof frames consuming in that scene

Model Simple environment Complex environment

Room evacu-
ation

Opposite motion Narrow promenade 
encounter

Crowded 
obstacle

Pathfinder 138 129 171 157
Basic D3QN-ORCA​ 127 112 101 131
D3QN-ORCA with expert 

guidance
— — 96 130
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encouraging ensuring that they are left with the space for free exploration and the charac-
teristics of reinforcement learning for environmental interaction sampling to achieve opti-
mization of pedestrian simulation.

5 � Discussion

In this study, we propose a pedestrian simulation model that combines D3QN algorithm with 
ORCA algorithm. By exploring the simulation frames, we notice that our method improves 
the unreasonable human movement behavior and achieves global simulation optimization 
compared to the widely used models. In addition, we introduce expert trajectory guidance, 
which (1) improves the efficiency of pedestrian exploration and (2) can be used to verify the 
validity of the solutions developed by experts and to seek space for re-optimization of the 
solutions. However, our comparison experiments are largely on computer simulations. We 
believe the inclusion of empirical data based on real observations would be more convinc-
ing. Considering the limitation of obtaining such scenario-specific empirical data, we plan to 
apply the method to specific real-world scenarios for further evaluation and validation in our 
future efforts. In addition, we acknowledge that this study makes some prerequisite assump-
tions on pedestrian attributes by assigning them the same attribute information. However, 
in real-world scenarios, each pedestrian owns unique characteristics. Therefore, in future 
research, we plan to further differentiate pedestrian attributes by adding features such as emo-
tions and social relationships, aiming to increase the realism of the simulation.

6 � Conclusion

Pedestrian simulation has received extensive attention over the past decades. Traditional 
pedestrian simulation methods often suffer from the problem of short-sightedness, as 
agents prefer the best action in the present moment without taking into account the poten-
tial congestion in the future. In this study, we combine the D3QN algorithm with the ORCA 
algorithm and propose a D3QN-ORCA hierarchical model. The proposed model plans the 
global trajectory via the D3QN algorithm in the upper layer while avoiding local collisions 
among individuals using the ORCA algorithm in the bottom layer. For certain scenarios 
where local optimum tends to occur, we introduce expert trajectory imitation degree in 
the reward function, which improves pedestrian exploration efficiency by designing sim-
ple expert trajectory guidance lines without collecting priori sample sets and construct-
ing complex expert example databases. We design two different experimental scenarios, 
i.e., simple scenarios and complex scenarios, to verify the effectiveness of the proposed 
method. In simple scenarios, by comparing the overall simulation frames and pedestri-
ans’ behaviors, we notice that the D3QN-ORCA method proposed in this study is superior 
compared with the Pathfinder. The agents in the D3QN-ORCA method can make early 
adjustments for the upcoming congestion, which reduces the overall simulation time by 
about 8-13%. In complex scenarios, the results suggest that our method presents great gen-
eralizability, and the overall simulation time is reduced by about 17-44% compared to the 
Pathfinder. In addition, based on the reward curve graph, we notice that the D3QN-ORCA 
model with expert trajectory guidance improves the exploration efficiency, evidenced by 
the fact that the time from the initial exploration to the maximum cumulative reward value 
is reduced by about 56-64%. Expert guidance facilities pedestrians in terms of moving out 
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of local dilemmas, thus leading to improved training efficiency. The proposed conceptual, 
theoretical, and experimental knowledge this study presents is expected to benefit future 
pedestrian simulation and crowd evacuation studies.
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