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Abstract
Identifying the portions of trajectory data where movement ends and a significant stop starts
is a basic, yet fundamental task that can affect the quality of any mobility analytics process.
Most of the many existing solutions adopted by researchers and practitioners are simply
based on fixed spatial and temporal thresholds stating when the moving object remained still
for a significant amount of time, yet such thresholds remain as static parameters for the user
to guess. In this work we study the trajectory segmentation from a multi-granularity perspec-
tive, looking for a better understanding of the problem and for an automatic, user-adaptive
and essentially parameter-free solution that flexibly adjusts the segmentation criteria to the
specific user under study and to the geographical areas they traverse. Experiments over
real data, and comparison against simple and state-of-the-art competitors show that the
flexibility of the proposed methods has a positive impact on results.

Keywords Mobility data mining · Segmentation · User modeling

1 Introduction

Thanks to the wide diffusion of localization technologies and mobile services based on
the positioning of users and devices, the availability of mobility traces is increasing fast
in several application domains. Location-based services provided through smartphones are
nowadays extremely popular, from nearby restaurant suggestions to travel assistants, and
in the near future all circulating vehicles will be equipped with localization capabilities for
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their continuous monitoring. The vast amounts of data produced open the door to several
useful applications that can yield better services, more sustainable cities, improved living
conditions, etc. All this starts from appropriate mobility analysis operations able to trans-
form raw data into useful information in the form of a deeper domain knowledge, patterns,
models, and forecasts.

In mobility analytics one of the fundamental concepts is movement, namely the part of
mobility data that describes a transfer from one place where the individual (or the object)
was staying, to another one were the user will stop. Identifying movements in the raw stream
of positions, for instance the continuous flow of GPS traces of a vehicle, is essential to
many tasks, as it enables the development of mobility data models [19, 38] and applications
like carpooling [2, 17], trajectory prediction [45] and car crash prediction [16], which are
based on stop locations and the transitions between them. Errors in identifying stops and
movements greatly affect the results of modeling, and therefore the overall performances.
While it is simple to define a stop in geometrical terms, it is much less clear how to define
significant stops, i.e. stops that might have some meaning for the user (for instance, stopping
to do some activity before leaving), as opposed to stops that are simply incidental (for
instance, due to a small traffic jam).

Practitioners in the mobility analytics domain defined several simple strategies to select
stops in the mobility data stream (a brief account of literature on this topic is provided in
the next section), each of them apparently capturing well some specific concept or some
application-specific idea of stop. For instance, some solutions simply identify the moments
where the object did not move, based on some thresholds, while others select the stops
that have a duration compatible with some specific task, for instance discarding stops at
a supermarket if their duration is physically too short to be able to enter, buy and exit.
However, most existing solutions suffer from two important limitations: (i) they are based
on critical thresholds that the user needs to choose accurately, and in most cases it is difficult
to understand what value is the best; (ii) such thresholds are global, i.e. the same threshold
value applies to all the individuals, irrespective of any distinctive characteristics they might
have or of the places they visit. The reason of the latter is that, while an overall evaluation
might be performed to select a global threshold, doing that separately for each individual
might be impossible if their number is huge.

In this work1 we try to overcome the limitations highlighted above, providing a gen-
eral methodology that inspects the mobility of the individual, and identifies segmentation
thresholds that apparently match their mobility features. The process allows to get rid of
virtually any input parameter (the only needed one is a spatial threshold that depends to
location accuracy, and therefore is basically fixed for GPS data, ref. Section 4.2), adapts
thresholds to each individual and is completely automatic, thus applicable to large pools
of users. Moreover, we extend the aforementioned approach by observing the typical stops
of other users for areas in which the single individual behavior is not reliable due to a low
number of stops, and use the collective behavior to infer a suggested time threshold for the
individual in those areas.

The paper is organized as follows: Section 2 discusses the related works and how our
proposal differs from existing solutions; Section 3 provides some preliminary definitions;
Section 3 defines the problem we want to tackle; Section 4 introduces our first proposed
method to solve the problem, named ATS, while Section 5 describes a space-aware refinement

1This work extends the paper “Self-Adapting Trajectory Segmentation” presented at BMDA 2020 Interna-
tional Workshop in Big Mobility Data Analytics [4].
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named ACTS, with its variants; Section 6 defines some evaluation measures to quantify the
quality of a segmentation; Section 7 provides empirical quantitative and qualitative evalua-
tions of results, also comparing against some baselines and competitors; finally, Section 8
closes the paper with some conclusions and pointers towards future developments.

2 Related work

Segmentation is a technique for decomposing a given sequence into homogeneous and pos-
sibly meaningful pieces, or segments, such that the data in each segment describe a simple
event or structure. Segmentation methods are widely used for extracting structures from
sequences, and are applied in a large variety of contexts [43], such as: time series [7, 21],
genomic sequences [31, 36, 37], text [28], video data. In the latter case, for instance, [33]
proposes a trajectory segmentation approach for image motion, formulating it as an opti-
mization problem aimed at minimizing the error between the observed motions and the
segments approximating them.

Various simple approaches are currently adopted in practice, the most common being
based on spatial and/or temporal constraints. This is the case, for instance, of the applica-
tion paper in [46] where human trajectories are identified through a predefined rule based
on a pair of spatio-temporal parameters regulating the end of a trajectory and the start
of the subsequent one; and [20], where the trajectory is divided into subsequent trips if
the time interval of “nonmovement” exceeds a certain threshold. In [49] it is described a
change-point-based segmentation approach for GPS trajectories according to the transporta-
tion means adopting a universal threshold for determining whether a segment is “walk” or
“nonwalk”. The work in [6] presents a theoretical framework that computes an optimal seg-
mentation through computational geometry methods based on several criteria (e.g., speed,
direction, location disk) that must be satisfied in each partition, thus making the approach
local. However, the approach is rather general and not clearly applicable to the human tra-
jectory context, where a trip can be complex and not showing the geometrical/movement
uniformity the method looks for. Each criterion mentioned above corresponds to thresholds
that the user must set, without clear guidelines on how to choose them. Finally, we remark
that the implicit objective of such solutions is to identify the situations where the trajectory
physically stops, regardless of its significance for the user. That allows to overcome the lack
of a specific signal in the input data (e.g. car switch on/off) and the presence of artifacts
introduced by GPS errors (e.g. the coordinates of an object change even if in reality it does
not move), yet it does not distinguish between significant stops and irrelevant ones, which
is a more semantic classification.

The authors of [47] segment the trajectories in two steps. The first segmentation is per-
formed by means of simple policies with respect to temporal and/or spatial predefined
constraints. Then, the trajectories are divided into stops and moves observing variations
of the speed of the object. If the variations of the speed is below a speed threshold and
there is a sufficient number of observations, then the portion of trajectory is annotated as
a stop. The speed threshold is not general but changes according to the user behavior and
also to the surrounding of the stop. In [40] it is defined a measure of the density of the
points in the neighbourhood of each trajectory point, the Spatio-Temporal Kernel Window
(STKW) statistics. To determine the start and end points of segments, the algorithm looks
for maximal changes in STKW values. The focus of the approach is on capturing changes
of transportation mode, including stops, which are simply points with low speed.
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Besides to these methodologies, several other solutions to the trajectory segmentation
problem have been proposed in the literature, yet with objectives different from ours.
For example, cost-function based strategies were presented in [24, 25], while clustering-
based ones are introduced in [29, 30], and a method based on interpolation kernels is
described in [10, 11]. All these approaches are more focused on splitting a movement into
homogeneous parts, rather than discovering significant stops, which is the purpose of this
paper.

From a more specific perspective, we can frame our proposal as a methodology for stop-
detection, the segmentation being a consequence of selecting stops as cutting points. Along
this direction, [44] presents a kernel-based algorithm to detect stop locations and estimate
stop durations. The method does not analyze the points sequentially, and instead builds a
kernel density surface from which it extracts local maxima that become activity location
candidates from which to derive the stay time. In [1] it is presented an algorithmic frame-
work for criteria-based segmentation of trajectories through a start-stop matrix that stores
the relation between a trajectory and a criterion. In the criteria-based setting, segments are
chosen such that the movement inside each segment is homogenous w.r.t a given criterion
(e.g., on speed). The work in [48] describes a solution that derives the users’ activity loca-
tions and times from data collected by their phones (GPS, GSM, WiFi, etc.). The main steps
of the procedure consist in generating a first set of candidate stops according to predefined
spatial/temporal windows, then in checking frequently visited places and in merging them,
and finally in removing extra stops. A refinement of this procedure is presented in [39].
In [9] it is described a procedure that starts from fixed atomic segment of a homogeneous
state, i.e., not moving or moving very little), and iteratively extends the segment until a new
state is found. Similarly, [8] illustrates a method for threshold settings for stop detection
focusing on periods of non-movement. In [22] stop points are detected using a density-based
spatial clustering algorithm where a temporal criterion and gaps are also taken into account.
Similarly, in [14] it is proposed a refined version of the DBSCAN clustering algorithm
combined with SVM to identify the activity of stop locations. Finally, also [23] describes a
cluster-centric trajectory segmentation approach exploiting movement characteristics such
as position, direction, and speed of moving objects. Compared to these solutions, our pro-
posal has a twofold objective, since we aim at simultaneously labeling a point as a stop and
to refine the trajectory among two consecutive stops.

In this work we provide a segmentation method that, opposed to most of the existing
ones, is not based on fixed space and/or time thresholds to be selected by the user – this
is the case, for instance, of [20, 27, 46, 47, 49]. Instead, we aim to make the segmentation
parameter-free and also adaptive to the single user’s data [15, 26], giving the opportunity
to have different kinds of segmentation over different users. Also, our approach is comple-
mentary to the STKW-based one [40], as the latter aims to differentiate movements with
different speed profiles, including stops as a particular example, while we focus on stop tim-
ing and try to understand which stops are actually significant (e.g. not too short) for the user.
A work that is closer to our proposal is [10], where the authors introduce a new approach
for unsupervised trajectory segmentation, called Octal Window Segmentation. The solution
is based on a behaviour deviation detection strategy which makes use only of geolocation
data over time. Interpolation methods are adopted to generate an error signal, which is then
used as a criterion to split the trajectories into sub-trajectories. However, while the general
idea has some similarity to ours, the approach seems to be appropriate for identifying route
changes (at least in free movement) and changes of speed, yet much less for identifying
significant stops.
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3 Problem definition

We start by defining trajectory segmentation based on a spatial and a temporal threshold, in
a way similar to standard approaches in literature.

Definition 1 (Individual Trajectory) Given a user u, her Individual Trajectory Tu is the
sequence of n points Tu = 〈p1, . . . , pn〉 that describes her position in time, where each
point p ∈ Tu is defined as a triple p = (p.x, p.y, p.t), representing its spatial coordinates
x and y, and the corresponding timestamp t . Moreover, points are in chronological order,
i.e. ∀1 < i ≤ n.pi−1.t < pi .t .

First, we associate to each point a value corresponding to the time needed to move away
from it farther than a spatial threshold:

Definition 2 (Pseudo-Stop Duration) Given an individual trajectory T = 〈p1, . . . , pn〉
and a spatial threshold σ , the Pseudo-stop duration associated to point pi is defined as
SD(T , i) = min{pj .t − pi .t |i < j ≤ n ∧ d(pi, pj ) > σ }, where d represents the
geometrical Euclidean or geographical distance.

Notice that the last point pn will have SD(T , n) = min ∅ = ∞. Then, we define a
partitioning of trajectories into segments, each terminating with a point having an high
pseudo-stop duration

Definition 3 (Segmented Trajectory) Given a trajectory T = 〈p1, . . . , pn〉, a spatial thresh-
old σ and a temporal threshold τ , we define the (σ, τ )-segmentation of T as T σ,τ =
〈S1, . . . , Sm〉, such that:

(i) ∀i s.t . 1 ≤ i ≤ m, Si is a subsequence 〈ps, ps+1, . . . , pe〉 of T

(ii)
⋃m

i=1 set(Si) = set(T) and i 
= j ⇒ set(Si) ∩ set(Sj) = ∅
(iii) ∀S = 〈ps, ps+1, . . . , pe〉 ∈ T σ,τ , SD(T , e) > τ ∧

∀j s.t . s ≤ j < e : SD(T , j) ≤ τ

where set(I) = {p ∈ I }.

Conditions (i) and (ii) imply that the segments of the segmented trajectory of T form a
partitioning of the elements of T in the strictly mathematical sense. Moreover, condition (iii)
states that all the points in a segment are movement points, i.e., their pseudo-stop duration is
smaller than the given threshold, excepted the last point. Therefore, each point in T that has
a high pseudo-stop duration will act as a split point, and corresponds to a distinct partition in
T σ,τ . Also, an implicit consequence of the definition is that partitions are maximal, i.e., they
cannot be extended with additional points and still satisfy the requirements of Definition 3.

Existing trajectory segmentation methods assume that the same rules and the same
parameters should apply to all moving objects. Since different objects can show very differ-
ent movement characteristics, the above assumption leads to make choices that on average
fit best the dataset, yet potentially making sub-optimal choices on single individuals.

Our objective is to overcome this limitation, making the segmentation process adaptive
to the individual and taking into consideration their overall mobility. Our problem statement
extends the traditional formulation of segmentation as a threshold-based operation, thus the
core issue is to find good parameter values for each user.
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Definition 4 (Individual Cut Threshold Problem) Given an Individual Trajectory Tu, and a
global spatial threshold σ , the problem is to identify the temporal threshold τ that yields the
optimal segmentation T σ,τ .

We notice that the problem definition requires a user-provided parameter σ . However, as
it will commented later in more detail, this is a single global threshold that only depends
on location accuracy and is therefore expected to be rather easy to select for a given data
source type.

In this work we also consider a generalization of the problem, where each user is actually
associated to a set of thresholds instead of just one. In particular, we assume that the correct
temporal threshold can depend on where the user is moving in each specific moment. We
do that by first revising our definition of segmentation:

Definition 5 (Space-Adaptive Segmented Trajectory) Given a trajectory T = 〈p1, . . . , pn〉,
a space partitioning G that maps points to geographical cells, a spatial threshold σ and a
function τG : G → R that associates a temporal threshold to each cell in G, we define the
(σ, τG)-segmentation of T as T σ,τG = 〈S1, . . . , Sm〉, such that:

(i) ∀i s.t . 1 ≤ i ≤ m, Si is a subsequence 〈ps, ps+1, . . . , pe〉 of T

(ii)
⋃m

i=1 set(Si) = set(T) and i 
= j ⇒ set(Si) ∩ set(Sj) = ∅
(iii) ∀S = 〈ps, ps+1, . . . , pe〉 ∈ T σ,τ , SD(T , e) > τG(G(pe)) ∧

∀j s.t . s ≤ j < e : SD(T , j) ≤ τG(G(pj ))

where set(I) = {p ∈ I }.

The change basically consists in replacing the fixed threshold τ of the user with a set
of values, one for each geographical cell visited by the user, formalized as a function from
cells to thresholds. The problem now, therefore, becomes how to find the assignment of
thresholds τG.

Definition 6 (Individual Space-Adaptive Cut Threshold Problem) Given an Individual Tra-
jectory Tu, a space partitioning G and a global spatial threshold σ , the problem is to identify
the set of temporal thresholds τG that yields the optimal space-adaptive segmentation T σ,τG .

Since the number of moving objects can be very large, the process must be completely
automatized and require no human intervention. In Section 4 we will introduce a simple and
effective approach to solve the first problem, and thus find a suitable value of τ for each
user, also providing some basic guidelines to choose a value for the global spatial parameter.
Then, Section 5 will revise the approach to tackle the space-adaptive problem definition,
considering a more flexible context where the temporal threshold of a user can also change
based on the areas visited, thus in principle yielding different values for different spatial
locations.

4 Self-adaptive trajectory segmentation

The first solution proposed for the individual cut threshold problem consists in fixing the
spatial threshold to a global value (i.e. to be used for all users) and then in studying the
segmentations that we would obtain by applying different temporal thresholds. We will start
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describing the process for choosing the temporal threshold, which is the central part of the
solution, and later discuss how the spatial one can be chosen.

4.1 Methodology

When very small values of τ are used, the segmentation obtained will contain a huge number
of very short segments, till the extreme case where each point forms its own segment. As
the threshold is increased, more and more segments will merge together, since some of
the former splitting points will fall below τ . The process is expected to gradually enlarge
the trajectory segments by first including simple slowdowns (i.e. not really stop points),
then temporary stops (e.g. at traffic lights), and so on. Our approach consists in (virtually)
monitoring such progression, and detecting the moment where an anomalous increase in the
number of segments is observed, which represents a sort of change of state. This follows the
same kind of idea adopted in various unsupervised classification contexts, such as the knee
method for deciding the number k of clusters for the k-means algorithm [42], or analogous
solutions to choose the radius for density-based clustering (e.g. DBScan).

In our solution, rather than relying on visual or similar heuristic criteria, we will base the
threshold selection on a statistical test. In particular, we will adopt the Modified Thompson
Tau Test [5] which, basically, checks whether a given value fits the distribution of the rest
of the data or not [18]. Since we look for anomalous values in a sequence, we apply the test
iteratively, comparing each value n(t) (the number of segments obtained with τ = t) against
the values n(t ′) obtained for larger thresholds t ′. This process yields a set of thresholds that
have an anomalous number of partitions as compared to the successive thresholds. Among
them, we simply choose the smallest one, thus deciding to select the segments that emerge
at the first change of state, also representing shorter and finer granularity movements.

The procedure, named ATS (self-Adaptive Trajectory Segmentation) is summarized in
Algorithm 1. Step 1 collects the pseudo-stop durations SD of all the points i of the input
trajectory, and step 2 computes the frequency F of each value, basically representing the
number of new segments obtained using that value as τ w.r.t. the previous smaller thresh-
olds. In our implementation such frequency distribution is computed through smoothed
histograms, grouping values into bins of 1-minute width. Figure 1(left) shows the frequency
distribution of a sample trajectory, the vertical line corresponding to a possible cut point. The
resulting set of segments obtained is described in Fig. 1(right) in terms of segments dura-
tion. Finally, step 3 applies the Modified Thompson Tau Test to all possible cut thresholds,

Fig. 1 Frequency distribution of pseudo-stop durations for a user trajetory (left), and the durations of the
segments obtained using a specific threshold to cut the trajectory (right). The threshold used corresponds to
the vertical line on the left image
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corresponding to all the non-zero values of frequency function F , to identify the frequency
values that appear to be anomalous with respect to the frequency of larger thresholds.
Among all these candidate thresholds, step 4 selects the smallest one as value for τ .

Computational complexity The cost of Algorithm 1 is dominated by step 1, since the
computation of each pseudo-stop duration (SD) could in principle require to scan all the
remaining points of the individual trajectory, thus yielding a O(n2) cost, where n is the
size of the individual trajectory. However, in practical applications the trajectory portion
needed for each SD is relatively small, leading to a quasi-linear cost. The remaining parts
of the algorithm can be realized in linear time, including the Modified Thompson Tau Test,
which can be computed for each point through incremental updates, and considering that
the actual size of F (namely, not considering empty bins where F(a) = 0, which can be
simply omitted) is at most n = |T |.

4.2 Fixing the spatial threshold

In our approach, the threshold σ represents the minimum distance between two (consecu-
tive) points that can be considered as a movement, and the temporal parameter is indeed
measured as the time needed to make a movement. A simple way to fix its value is to adopt
the minimum value that, according to the accuracy of our dataset, cannot be mistaken for
a positioning error, for instance due to GPS uncertainty. In our experiments we adopt road
vehicle GPS traces that are expected to have errors not larger than 10 meters, therefore we
could fix σ = 20 (the worst case distance between two points that have the maximal error
in opposite directions). We decided to slightly increase it to 50 in order to stay on the safe
side, also to take into account that errors are slightly higher than average in urban centers,
which is the application context where our experiments are performed. Since we do not
have data sources from other kinds of transport (ships, planes, etc.) the selected threshold
seems to meet our purposes. However, empirical results confirm that the value of the global
parameter σ is not critical, as our approach shows a low sensitivity to it. For this reason, the
value we chose in our experiments (50 meters) can be considered a good guess for generic
vehicle GPS data. Other data sources with a higher spatial uncertainty might require larger
values, to be ascertained through a (one-shot) analysis of the data produced.

5 Individual and collective adaptive trajectory segmentation

The solution described in the previous section strictly follows the problem formulation of
(σ, τ )-segmentation given in Definition 3, thus implicitly assuming that a user has a single,
optimal threshold that applies well in any area where they move. Clearly, common sense
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suggests that this is an artificial assumption, and the threshold that is correct for a user in a
given place, might be not optimal for the same user in a different location. To loosen such
assumptions, we adopt here the more general notion of space-adaptive segmented trajectory,
introduced in Definition 5, and a corresponding strategy to adapt the thresholds also to
geographical locations.

The problem, now, consists in finding for each user an assignment of thresholds τG that
provides a (potentially different) threshold value for each geographical cell in the space
partitioning G.

We identify here three possible approaches:

1. Local individual approach: following the same idea of AT S, we could restrict the sta-
tistical test used to fix the threshold τ only to the points of the user that fall in a given
cell g ∈ G. While very appealing, empirical evaluations show that the data samples
associated to each cell are too small to apply the test, with very few exceptions. For this
reason, alternative solutions were considered.

2. Local collective approach: this solution assumes that the time threshold τ is actually a
function of the location, and does not directly depend on the user. Therefore, each cell
g is associated to a data sample composed of all the points of all users that fall in g.
This greatly increases the sample size, yet losing the identity of the single user.

3. Wisdom-of-the-crowd collective approach: the idea here is that each user brings an opin-
ion about what is the correct threshold, built from their own mobility data (and therefore
their own τ found through AT S), and over each cell g all users vote for the best local
threshold value, each vote having a weight proportional to the frequency of visit of the
cell. This is a simple application of the classical “wisdom of the crowd” principle [13].

Approaches 2 and 3 provide a candidate threshold value τ ∗ for a user in a given cell,
which can be seen as a suggestion that all users provide as alternative to the individual value
τ . Our proposal is to replace τ with τ ∗ whenever the former has a weak relation with the
cell, i.e. for those locations that the user visited only rarely, and that therefore were not
significantly involved in the computation of the global τ . Both collective approaches result
into a mapping GC : G → R that associates each geographical cell in G to a suggested τ ∗.
The procedure that implements the management of such suggestions is the same for both
approaches, is named ACTS (self-Adaptive and Collective Trajectory Segmentation), and is
summarized in Algorithm 2.
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Besides the individual user trajectories T and the spatial threshold σ , the ACTS proce-
dure takes as input the cell grid GC containing the peudo-stop times of all the observed
users grouped per cell, and the minimum number of stops min stops that an individual user
can have in a cell in order to consider the cell “frequently visited”. In the first step, ACTS

retrieves the user adaptive threshold τ . After that, it identifies the subset GI ⊆ GC of cells
visited by the user, with their visit frequencies. Then, for each cell g (lines 4–10), if the cell
is frequently visited, i.e., the user has in that area at least min stops points, then the indi-
vidual global threshold τ is used (line 7), otherwise we take the most frequent value among
those associated to the cell g (lines 5 and 9).

In order to specify what kind of threshold suggestions we are using in the ACTS pro-
cedure, we will refer to it as ACTSLocal when GC is obtained through the local collective
approach (number 2 of the list above), and as ACTSWOT C when the Wisdom-of-the-crowd
approach is used.

Spatial grid definition In principle, any definition of grid G can be applied to ACTS, pro-
vided that it is a partition of space that covers all points in our users’ trajectories. In our
experiments we opted for a regular grid, which is the most commonly adopted solution in
literature, and in particular we implemented it through a standard geohashing. Geohash [34]
is a very efficient mapping of locations into rectangular grids, and allows to change its spa-
tial granularity in a transparent way. Its main limitation is in the fact that grids are predefined
worldwide, and the spatial granularity can be changed in a limited set of configurations,
the size of each cell doubling when we move from one granularity level to the next one.
Other, more sophisticated space partitioning strategies are used in literature, such as regu-
lar exagonal grids [41] of quad-tree based adaptive partitioning [12], yet evaluating all of
them is out of the scope of this paper. Given an encoding length h, Geohash associates each
pair of latitude-longitude coordinates to a string of h letters and digits, which corresponds
to define a partitioning into square or rectangular cells, each cell corresponding to the set
of points that have the same encoding. In particular, we will consider three levels: h = 5,
resulting into cells of diameter ∼ 4.8 Km; h = 6, with diameter ∼ 1.22 Km; and h = 7,
with diameter ∼ 0.152 Km.

Algorithm 3 summarizes the overall process, including the generation of grid G and
collective suggestions GC , for both variants of ACTS.
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6 Evaluationmeasures

The reconstruction error generally used for evaluating segmentation problems [3] just mea-
sures how well each segment can be approximated with one value, and thus seems not to fit
with trajectory segmentation. Therefore, similarly to clustering evaluation, we propose three
internal evaluation measures [42]. Let T be the sequence of n points and TS = 〈S1, . . . , Sm〉
its segmentation. We denote with At = duration(T ) = pn.t − p1.t the total elapsed
time from the first point of p1 ∈ T to the last point pn ∈ T , and Ad = length(T ) =∑n−1

i=1 d(pi, pi+1) the total distance covered by the trajectory, computed by considering
every couple of subsequent points in T . Let Mt = ∑

Si∈TS
duration(Si) be the sum of the

segments’ duration, i.e., the time spent driving, and Md = ∑
Si∈TS

length(Si) be the sum
of the segments’ length, i.e., the distance traveled. Then, we define the following measures:

– time precision: TP = 1 − Mt/At

– distance coverage: DC = Md/Ad

– mobility f-measure: MFβ = (1 + β2) · TP · DC/((β2 · TP) + DC)

Time precision and distance coverage capture two conflicting effects of segmentation,
namely the time covered by stops and the distances covered by the segments (i.e. the move-
ment points). Indeed, a very aggressive segmentation will identify a large number of stop
points, yielding a high time precision, yet this will make segments shorter, significantly
reducing the distance coverage. Similarly, a very loose segmentation will yield exactly the
opposite results. Any segmentation choice will yield a trade-off between them. Analogously
to the f-measure adopted in Information Retrieval, which is a combination of precision and
recall measures, our mobility f-measure accounts for both aspects simultaneously. In the
experiments we adopt β = 0.25, which weighs time precision higher than distance cover-
age by augmenting the relevance of missing precision in stop detection. The reason is that
i) it is relatively easy to guarantee an high distance coverage, and ii) the main focus of the
paper is on the temporal aspects of trajectory partitioning.

7 Experiments

We experimented the proposed trajectory segmentation approaches ATS and ACTS over real
datasets of GPS vehicle traces. The results commented in the following refer to 2000 users
of the area of Rome (Italy), and London (UK). The means and standard deviations of the
sampling rate for the users analyzed are 12194.67 ± 22575.66 and 4385.76 ± 9359.14, for
Rome and London respectively. The high values and their high variability is due to the
presence of several long time gaps, typically due to parking periods.

In the following, we first analyze the personal temporal thresholds returned by ATS,
and then provide a quantitative and qualitative evaluation of the results for understanding
the benefits of the novel method with respect to existing ones. We compare, in particular,
against the common trajectory segmentation method based on fixed parameters (FTStemp-thr)
as proposed in [46]. Moreover, we consider a baseline consisting in a random trajectory
segmentation method that splits the sequence of points T = 〈p1, . . . , pn〉 into m equal-
length segments (i) with m randomly extracted between 2 and n/2 (RTS1), or (ii) with m set
to the number of segments returned by ATS (RTS2).

Next, we show the results obtained with the two variants of ACTS, ACTSLOC and ActsWOTC,
thus evaluating the impact of considering geography and collective behaviors in the definition
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of individual temporal thresholds. Here, we compare our proposed solutions against a state-
of-the-art approach for trajectory segmentation exploiting a completely different strategy
but relying exactly on the same input data format. We name HEH-D the proposal described
in [22] for detecting stop points using the DBSCAN method. In summary, HEH-D first runs
DBSCAN on the GPS observations only considering the spatial dimension. Then, it further
separates the points in each cluster that have a temporal gap between each other larger than
q seconds, and turns into noise the spatio-temporal clusters composed by less than k points.
Finally, all the noise points are sorted chronologically and modeled as trajectories while
those in the clusters are treated as stop points. According to the suggestions in [22], we
adopted the following parameters setting: min pts = 5, ε = 50 meters, q = 210 seconds.
Also, for the parameter k we evaluated all values between 2 and 6 (the latter being the
choice suggested in the paper), and eventually selected k = 2 since it yields the best results
in terms of mobility f-measure. Additionally, we also experimented with a variant of this
method that replaces DBSCAN with OPTICS, named HEH-O in the experiments, for which
we adopted the same parameters specified for HEH-D. The idea is that OPTICS typically
performs better than DBSCAN when clusters in the data have variable densities, and that
might help improving the quality of the segmentation.

Finally, we conlcude the section with an evaluation of run times of our methods when
the number of users and the duration of their trajectories vary.

7.1 Self-adaptive temporal threshold (ATS)

We observe in Fig. 2 the distribution of the time thresholds selected by ATS for each user
(vertical axis represents value frequencies in log-scale).

Although every user has her own mobility with its own mix of regular and more erratic
behaviors [35], we observe two clear peaks in the distributions for both Rome and London.
This means that ATS mainly recognizes two different types of users regarding to the mini-
mum duration of the stops. This supports the intuition behind our approach, namely to have
a self-adaptive procedure selecting a personalized best temporal threshold for each user.
Selecting one single threshold value for all the data might negatively affect the segmentation
of some users, partitioning their trajectories either too much or too little. The first peak is
at about 600 seconds (∼ 10 minutes), while the second peak is around 1200 seconds (∼ 20
minutes). These values correspond to the temporal thresholds that the ATS procedure uses

Fig. 2 Time threshold distributions for trajectories obtained with ATS in Rome and London. The peaks show
the ideal thresholds to be set to build the trajectories
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to cut each trajectory. There is also a minority of users having values relatively far from the
peaks.

7.1.1 Comparison of evaluation measures

In this section we compare the ATS approach with the baseline methods taken into account.
In Tables 1 and 2 we report the results obtained on our two cities. The first three columns
show the evaluation measures described above. The fourth column shows the ratio between
the average sampling period of movement points (thus discarding the stop portions of the
user’s trajectory) and the average sampling period of the full trajectory, while the last one
reports the average number of segments obtained and its standard deviation. In general, we
can observe that the best results were obtained with the ATS and FTS methods, both for
Rome and London. Analyzing the ratio (fourth column) we can see that values are low for
both ATS and the FTS ones, meaning that the long stops are ignored (i.e. they are recognized
as real stops) and just the short ones are considered. On the contrary, with the random
approaches the ratio is bigger because the algorithm function evaluates all stops in the same
way. Looking at the number of segments it is possible to note that FTS and ATS methods
produce different quantities, especially the FTS120 produces less segments in the Rome case
and much more in London. About the last two approaches, the RTS1 method works with
a random number of segments, so it is normal that the final result differs from the others,
while the RTS2 takes as number of segments the same of the ATS approach so we aspect to
achieve similar results.

For the evaluation measures we can see that ATS reached the goal we expected, i.e.
yielding a quality of results which is always comparable or higher than fixed-threshold
approaches and more robust. Indeed, for both Rome and London the values obtained by ATS

are compatible with the FTS results, even better in the MF.25 for Rome and in the distance
coverage for London. In particular, in the Rome example, having a high MF.25 values means
that also the time precision and the distance coverage are well correlated, leading to satis-
fying result. Looking at the FTS120 results, we can note that the time precision is high but
the distance coverage is very low, because the algorithm builds short trajectories with few
points. An analogous reasoning can be done analyzing the FTS1200 method, which produces
an excellent distance coverage score but a lower time precision. The ATS solution reaches a
good balance, thanks to its adaptive behaviour that allows to control and correct the trajec-
tory fragmentation, and all its evaluation measures are always either the best or the second
best of the group.

Table 1 Evaluation on Rome data

method MF.25 TP DC ratiosr #segms (avg ± std)

ATS .951 .951 .981 0.049 837.34 ± 854.52

FTS120 .925 .996 .456 0.015 592.26 ± 652.78

FTS1200 .948 .947 .997 0.053 746.28 ± 733.96

RTS1 .279 .268 .722 0.700 2094.85 ± 2472.36

RTS2 .124 .118 .877 0.883 899.59 ± 926.03

The first three columns show the measures illustrated in Section 6. The fourth one reports the ratio between
the average sampling period of non-stop points over that of all points, and the last column is the number of
segments
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Table 2 Evaluation on London data

method MF25 TP DC ratiosr #segms (avg ± std)

ATS .955 .953 .999 0.047 433.92 ± 513.72

FTS120 .958 .961 .944 0.040 1131.83 ± 1431.81

FTS1200 .952 .950 .999 0.050 359.55 ± 410.61

RTS1 .267 .256 .695 1.007 2833.72 ± 4203.05

RTS2 .035 .033 .958 1.008 445.65 ± 527.97

The first three columns show the measures illustrated in Section 6. The fourth one reports the ratio between
the average sampling period of non-stop points over that of all points, and the last column is the number of
trajectories

For a better understanding of the quality of ATS, the distribution of MF.25 values for the
different approaches on the two datasets is shown in Fig. 3 through a boxplot visualization.
For the Rome case we can observe that with the ATS approach the median value is the
highest (closest to 1) and the inter-quartile range is smaller than the other two, meaning that
we have a smaller variabiliy and thus more robust results. The London case appears to be
different, and the best MF.25 values are obtained with the FTS1200, although the median is
very similar to ATS and the box is only slightly narrower. This indicates that in some contexts
the flexibility introduced by ATS might be not required, and it only reaches performances
similar to those of simpler solutions.

7.1.2 Comparison of segmentation statistics

In the following we analyze other statistical indicators on the trajectory segments extracted
by the various methods. Indeed, discovering some hidden correlations between trajectory
features and the segmentation approach could lead to a better understanding of the prob-
lem and highlight other relevant aspects. In Fig. 4 we report the distributions of the average
number of points per segment for Rome and London. For all methods, the majority of seg-
ments have less than 20 points, probably meaning that most of the trips take place within
the city. However, in the distribution tails some long trajectories with more points emerge.
We observe that the distribution peaks of ATS place somehow in between the peaks of the
two FTS variants (though closer to FTS1200, especially in London) thus finding a trade-off
between them. Moreover, we can see that the distributions are different in the two cities:

Fig. 3 Boxplots for the MF.25 results. On the Rome data ATS yields better results than the FTS solutions,
while in London all three produce almost the same results. The variability of ATS results is consistently
smaller than the other methods, which is a sign of robustness
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Fig. 4 Distributions of average number of points per segment obtained by ATS

London has a wider distribution than Rome, meaning that the first one has a larger variety
of trips.

Figure 5 shows the distributions of the average number of segments per user. In London
most of the users have less than 20 trajectory segments. The peak of the distribution is
between 5 and 10. Between 30 and 100 segments the distribution remains stable at a small
value larger than zero. In Rome we observe a similar result with a peak between 15 and 20.
Also in this case, the peak of ATS distribution tends to stay in the middle of the FTS ones.

In Fig. 6 we compare the distribution of average length and average duration of the
segments returned by ATS (left) and FTS (right) for the area of Rome. With the ATS method
the peak value is around 10km, thus confirming that most of the trips are short, and likely to
take place around the city. With the FTS methods the peak position depends on the temporal
threshold imposed: with a threshold of 1200 seconds the average distance is similar to ATS,
while with 120 seconds it becomes lower and close to 5 km. The results for the RTS methods
are omitted, since their plots are very similar to FTS. Also, the plots for London show exactly
the same behavior observed on Rome.

In terms of segments duration, ATS yields a distribution with a peak around 1200 − 1500
seconds (∼ 20 − 25 minutes). With the FTS methods the peaks change: for FTS120 the peak
is around 500 seconds while for FTS1200 the peak is centered in 1800 seconds. Also in this
case, the results on London are very similar and omitted here.

Fig. 5 Distribution of the number of trajectory segments over Rome (top) and London (bottom) with each
segmentation method (on the columns, grouped by family)
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Fig. 6 Distributions of the average length (top) and duration (bottom) for the trajectory segments returned
by ATS (left) and FTS (right) for the area of Rome

7.1.3 Case study

In this section we show qualitatively on a case study the effectiveness of ATS with respect
to FTS. In Fig. 7 we report the segmentation returned by FTS1200 [46] (left) and by ATS

(right), the user is traveling from south to north. FTS1200 returns two trajectories (green
and blue), while ATS returns three trajectories (green, orange and blue). The second line of
plots reports the time gap between consecutive GPS points. The colors match the trajectory
segments, while stops are highlighted in red. We observe how ATS identifies the short stop
of less than 15 minutes at the service area similarly to the subsequent longer stop. On the

Fig. 7 Trajectory segmentation returned by FTS1200 (left) and ATS (right). The user is traveling from South to
North. Top: spatial representation showing the trajectory segments. Center: temporal segmentation showing
the inter-leaving time between GPS points. Bottom: zoom on the service area highlighted in the top maps
where the user probably stops for ∼ 15 minutes. Best viewed in color
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other hand, FTS1200 considers the first stop as part of the green trajectory. The map in the
bottom line of Fig. 7 shows the service area which is very close to the GPS points reported
on the bottom right corner of the map. This case study highlights how various existing stops
under a certain predefined threshold can be missed with a segmentation approach like FTS,
while a more data-driven and self-adaptive method like ATS is able to take into account
specific user behaviors and return more detailed results.

7.2 Individual and collective adaptive temporal threshold (ACTS)

In this section we show the impact and improvements given by the ACTS methods exploit-
ing the collective behavior over ATS. First of all we choose a reference geohash precision
looking for a trade-off between the geographical granularity and the number of pseudostops
collected in the cells. We opt for a geohash precision of h = 6 corresponding to an area of
size 1.22km × 0.61km. As shown in the next sections, values h = 5 and h = 7 yield very
similar results, suggesting that any value of h around 6 appears appropriate for this kind of
data. The set G of cells obtained this way are used by Algorithm 3 to compute local sugges-
tions for time thresholds by collecting the pseudo stops of all the 2000 users in the dataset
under consideration. Then, for the ACTSLOC method a distribution of pseudo-stop durations
for every cell is created, which will later pass through the Thompson test. Both ACTS strate-
gies require to define the minimum number of points (visits) of a user in a cell that make
it significant for them. In order to avoid any manual setting, after a preliminary experimen-
tation we decided to derive it directly from the distribution of pseudo-stops durations of
the dataset, fixing it to its 50-th percentile. In our dataset, in particular, that corresponds to
min number = 5, meaning that when a user passes in a given cell, if they have at least 5
points inside it, for that cell we can use their own individual time threshold computed by
ATS; otherwise, we will use the collective threshold assigned to the cell.

We report in Figs. 8 and 9 the distributions of the time thresholds selected respectively
by ACTSLOC and ActsWOTC (Rome dataset on the left and London on the right) for each user
(vertical axis represents value frequencies in log-scale). Similarly to Fig. 2, we can observe
two peaks in the distributions at about 600 seconds (∼ 10 minutes) and 1200 seconds (∼ 20
minutes) for both cities. Compared to Fig. 2, the two ACTS variants show a lower vari-
ability and more focused distributions. ACTSLOC and ActsWOTC produce almost identical
distributions, however, as will be shown later, their threshold assignments (and therefore the
trajectory segmentations they imply) are actually different.

Fig. 8 Time threshold distributions for the users obtained by ACTSLOC in Rome and London. Compared to
ATS, the distributions are more concentrated on the two peaks
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Fig. 9 Time threshold distributions for the users obtained by ActsWOTC in Rome and London. The overall
distributions are very similar to ACTSLOC

7.2.1 Impact of ACTS strategies

In this section we provide a first evaluation of the impact of the selection strategies adopted
in the two ACTS variants to assign threshold values to grid cells and, as effect, to individuals
over those cells. Figure 10 shows the spatial distribution of the number of points (and,
therefore, of pseudo-stop duration values associated) that fall in the cells of the two observed
areas. In both cases, cells are obtained with a geohash precision h = 6. We notice that in the
London dataset (right) the higher number of stops are mainly located along locations with
high population density and within the urbanized areas. On the other hand, the Rome data
(left) shows high values also along the main roads, and covers an area which is larger than
the city itself (southern section of the picture), touching a part of Lazio (outside the city)
and a part of Tuscany.

The plots in Fig. 11 compare the temporal thresholds that ATS and ActsWOTC associate
to each user for each cell they visit (remind that the value assigned by ATS will be the same
for all the cells of a user, while ActsWOTC yields cell-dependent thresholds that will substi-
tute the ATS value when the cell is poorly visited by the user). In both cities we can see
that the differences, and thus the impact of ActsWOTC over ATS, is significant and approxi-
mately symmetric, i.e. sometimes the initial ATS threshold is increased, some other times it
is decreased, with an overall balance between them. The corresponding plots for ACTSLOC
vs. ATS are very similar to the previous ones, and is therefore not reported here.

Fig. 10 Points distribution in Rome and London datasets over the geohash grid (h = 6)
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Fig. 11 Comparison of ActsWOTC vs. ATS thresholds for all user-cell pairs, on Rome (left) and London (right).
In both cases the difference appear significant and overall symmetricv

As mentioned above, the geohash precision is in principle a parameter that should be
chosen by the user. In order to evaluate the sensitivity of the approach over such precision,
we show in Figs. 12 and 13 the same scatter plot replicated with precision h = 5, corre-
sponding to cells of twice the area w.r.t. the previous case, and h = 7, corresponding to cells
of half the original area. As we can see, the impact remains virtually the same as h = 6, sug-
gesting that this is not a critical parameter – although values much smaller or much larger
than these are expected to be not effective, since very small ones yield huge cells poten-
tially covering entire cities, and very large ones create cells that are too small to capture
significant amounts of points.

7.2.2 Comparison of evaluation measures

In the following we first compare the ACTS methods against ATS, and later we compare their
performances with those of the two variants of the competitor considered, namely HEH-D

and HEH-O. All evaluations are based on the metrics defined earlier.
Comparing our approaches, in Table 3 we observe that ACTSLOC improves the perfor-

mance of ATS in terms of MF.25 and TP for Rome dataset. On the other hand, in Table 4 we

Fig. 12 Comparison of ActsWOTC vs. ATS thresholds for all user-cell pairs, lowering the precision value
(h = 5), on Rome (left) and London (right). In both cases the difference appear significant and overall
symmetric
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Fig. 13 Comparison of ActsWOTC vs. ATS thresholds for all user-cell pairs, increasing the precision value
(h = 7), on Rome (left) and London (right). In both cases the difference appear significant and overall
symmetric

can see that on the London dataset all three approaches are comparable in terms of perfor-
mance, reaching higher levels of DC compared to Rome. In terms of sampling ratio (fourth
column) the ACTS methods show an improvement against ATS, since their lower value (more
pronounced for ACTSLOC, and a bit marginal for ActsWOTC) means that the former create
trajectories with smaller internal time gaps. In addition, by analyzing the number of seg-
ments (last column) we can see that values for ACTSLOC are higher than ATS and those for
ActsWOTC are comparable, though slightly higher and with a slightly lower standard devia-
tion. These factors, combined with the smaller ratiosr of ACTS methods with respect to ATS,
imply that overall the local and wisdom of the crowd mechanisms suggest more changes
towards smaller thresholds, therefore leading to more splits.

Figure 14 reports the MF.25 for all our approaches and the FTS baselines as boxplots.
For the Rome case we can observe that the distribution of values of ActsWOTC is similar to
ATS, only slightly more compact, while that of ACTSLOC has slightly higher median and a
significantly smaller inerquartile range. The differences in London are much less visible.
In summary, the evaluation measures suggest that the ACTS methods achieve a small but
interesting improvement over the basic ATS.

The last two lines of Tables 3 and 4 show the measures obtained with the two competi-
tors. We can observe that there is a great discrepancy between them and those obtained with
our methods, suggesting that, on our dataset, the clustering-based methods are not able to

Table 3 Evaluation on Rome data

method MF25 TP DC ratiosr #segms (avg ± std)

ATS .9513 .9507 .9876 0.0462 851.551 ± 717.173

ACTSLOC .9587 .9654 .9174 0.0379 946.743 ± 785.998

ACTSWOTC .9514 .951 .9856 0.0459 857.157 ± 713.349

HEH-O .1560 .1538 .7874 0.0313 2400757.281 ± 2760922.811

HEH-D .1877 .1308 .8586 0.0511 2244814.994 ± 3521517.705

The first three columns show the measures illustrated in Section 6. The fourth one reports the ratio between
the average sampling period of non-stop points over that of all points, and the last column is the number of
segments
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Table 4 Evaluation on London data

method MF25 TP DC ratiosr #segms (avg ± std)

ATS .9547 .9523 .9991 0.0480 433.612 ± 525.916

ACTSLOC .9538 .9517 .9983 0.0472 477.971 ± 588.472

ACTSWOTC .9545 .9523 .9991 0.0478 433.652 ± 525.845

HEH-O .3660 .3492 0.7513 0.0561 66389.061 ± 150547.085

HEH-D .8877 .9140 .8401 0.0459 242882.126 ± 963253.651

The first three columns show the measures illustrated in Section 6. The fourth one reports the ratio between
the average sampling period of non-stop points over that of all points, and the last column is the number of
segments

segment trajectories in an effective way. In particular, both HEH-D and HEH-O produce
highly fragmented segments (see their huge number of segments yielded) leading to a
medium-low distance coverage and a very low time precision – the only exception being
HEH-D on London, which however further shows how its behaviour is unstable. Figure 15
reports the boxplots showing the distribution of MF.25 for the different approaches. We
immediately notice that the scores obtained by HEH-O and HEH-D are significantly worse
than the others. In light of the results obtained, we will not discuss these two competitors
any further in the paper, focusing instead on the behaviour of the other methods.

7.2.3 Comparison of segmentation statistics

Similarly to what done in Section 7.1.2 for ATS, in the following we analyze other statis-
tical indicators on the trajectory segments extracted by the ACTS methods. In Fig. 16 we
report the distributions of the average number of segments per user and points per segment
for Rome (top) and London (bottom). The average number of segments per user (first col-
umn), highlights that in Rome ATS and ActsWOTC yield similar distributions, while ACTSLOC
generates more users with an high number of segments. In London the distribution is more
skewed towards low numbers of segments, again with ACTSLOC with a peak on higher val-
ues. In terms of number of points per segment (right column), we can see that in Rome most
segments have between 5 and 15 points, yet ACTSLOC shows a more concentrated peak on
5-10 points, which is coherent with the previous results (more segments are generated, and
consequently they are shorter, on average). Something similar happens in London, now the
concentration of values being between 15 and 30 points.

Fig. 14 Boxplots for MF.25. On the Rome data ACTSWOTC yields results similar to ATS, while ACTSLOC
significantly improves them. On London the differences are less pronounced
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Fig. 15 Boxplots for MF.25. In this case it is possible to see the comparison in terms of performance between
our approaches and the DBSCAN and OPTICS cluster methods. In both cases the performance of the cluster
methods are visibly worse than those achievable with ATS and ACTS

7.2.4 Run times analysis

We present here some performance experiments regarding the scalability of our proposed
methods w.r.t. the number of input trajectories (i.e. users) and their duration. In the first
experiments, we test how the running time changes by varying the number of users in a range
from 200 to 2000 (in steps of 200 and 250) while in the second ones we test it by varying the
number of months covered by the data. In particular, in the last case we start from the data
of a single month (January) and gradually add the next months one by one, obtaining 12
different datasets. These tests were made on the three ATS/ACTS approaches we proposed,
compared with the two methods used as baseline (FTS and RTS). The experimental results
for both Rome and London are shown in Fig. 17. As it is possible to notice, the trends of
FTS and RTS are linear and very low in both plots, confirming that their simplicity yields
very fast executions. As expected, ATS and ACTS have much higher computation times, yet
their trends appear to be linear or quasi-linear w.r.t. both the dimensions considered (users
and duration), confirming the hypothesis made in Section 4.

Fig. 16 Distribution of the number of segments, points and trajectories (from left to right) over Rome (top)
and London (bottom)
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Fig. 17 Run times experiments in function of the number of users and the data collection period. In both
cases the time trend grows quite linearly

8 Conclusion

In this paper we have presented a set of user adaptive methods for solving the trajectory
segmentation problem, a very common and useful task in mobility data mining, especially
in preprocessing phases. The solutions proposed take into consideration the overall trajec-
tory of the user, identifying an individual cut time threshold (each user can potentially have
a different threshold) and also combining the information coming from the different users
through the spatial regions they share. This process yields thresholds for trajectory segmen-
tation which are not only user-adaptive, but also location-adaptive, thus taking into account
that a stop at different places might require time intervals of different duration to be con-
sidered a significant stay – and thus a trajectory cut point. The experiments show that the
individual and collective adaptive strategies have a significant impact on the thresholds
obtained, which lead to a performance improvement in terms of the metrics defined for this
purpose.

Having a refined segmentation, as those obtained with ATS and the ACTS family, is very
important in applications where the individual behaviour is under study. For this reason,
future works on this line include the integration of our methods into existing applications
in the domain of crash prediction [16] and simulations of Electric Vehicles mobility [32]
which are based on a detailed modeling of users’ mobility history.

Also, the results obtained in this paper suggested us to explore the feasibility of some
more flexible individual mobility models. In particular, the idea is to depart from the notion
of single trips, and instead allow a multi-resolution, hierarchical view where the same
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movement is interpreted both as one trip and, possibly, as a sequence of several small ones.
The different levels of the hierarchy might be obtained by moving the time threshold τ (the
same one that in the present work we tried to fix to either a single value or a few ones
for each user) up and down, linking the segments that originate from a split of an existing
one. The resulting model would clearly be complex and its computation and management
challenging.
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mobility patterns from gps trajectories and contextual information. Int J Geogr Inf Sci 30(5):881–906

41. Stough T, Cressie N, Kang E et al (2020) Spatial analysis and visualization of global data on multi-
resolution hexagonal grids. Japanese J Stat Data Sci 3:107–128

42. Tan PN, Steinbach M, Kumar V (2018) Introduction to data mining Pearson Education India
43. Terzi E, Tsaparas P (2006) Efficient algorithms for sequence segmentation. In: Proceedings of the 2006

SIAM international conference on data mining. SIAM, pp 316–327
44. Thierry B, Chaix B, Kestens Y (2013) Detecting activity locations from raw gps data: a novel kernel-

based algorithm. Int J Health Geographics 12(1):1–10
45. Trasarti R, Guidotti R, Monreale A, Giannotti F (2017) Myway: Location prediction via mobility

profiling. Inf Syst 64:350–367
46. Trasarti R, Pinelli F, Nanni M, Giannotti F (2011) Mining mobility user profiles for car pooling. In:

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, pp 1190–1198

47. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: Mobility data
computation and annotation. ACM Trans Intell Syst Technol (TIST) 4(3):49

48. Zhao F, Ghorpade A, Pereira FC, Zegras C, Ben-Akiva M (2015) Stop detection in smartphone-based
travel surveys. Transport Res Procedia 11:218–226

49. Zheng Y, Zhang L, Ma Z et al (2011) Recommending friends and locations based on individual location
history. ACM Trans Web (TWEB) 5(1):5

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Agnese Bonavita was born in 1993 in Genoa, Italy. In 2015 she
graduated in Physics (bachelor degree) at University of Genoa and in
2018 she graduated in High Energy Physics (master degree) at Pisa
University with a thesis on a rare Higgs decay at CMS experiment
(CERN). She had research experiences in the two most important
particle physics laboratories: Fermilab (Chicago, USA) as summer
students and Cern (Geneve,CH) as undergraduate student. She’s cur-
rently a Ph.D. fellow in Data Science in the joint program offered by
Scuola Normale Superiore, Scuola Superiore Sant’Anna, University
of Pisa, IMT Lucca and National Research Council.

Her research project, included in the smart cities area, is about
human mobility models and predictions. In particular her research
interest is on electric vehicles simulations in order to understand the
benefits of this new technology and on developing a deep learning
method able to predict car accidents and improve risk assessment
analysis. For a year she took part of the Track&Know project included
in Horizon 2020 project which aims to research, develop and exploit

a new software framework that aims at increasing the efficiency of Big Data in the mobility field.

Geoinformatica (2022) 26:451–477476



Riccardo Guidotti was born in 1988 in Pitigliano (GR) Italy. In 2013
and 2010 he graduated cum laude in Computer Science (MS and
BS) at University of Pisa. He received the PhD in Computer Sci-
ence with a thesis on Personal Data Analytics in the same institution.
He is currently an Assistant Professor (RTD-A) at the Department
of Computer Science University of Pisa, Italy and a member of the
Knowledge Discovery and Data Mining Laboratory (KDDLab), a
joint research group with the Information Science and Technology
Institute of the National Research Council in Pisa. He won the IBM
fellowship program and has been an intern in IBM Research Dublin,
Ireland in 2015. His research interests are in personal data mining,
clustering, explainable models, analysis of transactional data.

Topics of interest: Explainable Models, Personal Anaytics, Clus-
tering Analysis of Transactional Data.

Mirco Nanni holds a degree and a PhD in Computer Science (Uni-
versity of Pisa, in 1997 and 2002). He is currently a permanent
researcher at ISTI - CNR in Pisa, member of the KDD Labora-
tory. He was visiting researcher at the Computer Science Department
of College Park, University of Maryland (1999), SENSEable Lab.
at MIT Boston (2008), Transportation Research Institute at Hasselt
University of Belgium(2010) and the Applied Movement Behaviour
Research Group, University of Brunswick - Canada (2012).

He has been working in the computer science research since late
90’s, especially in the databases and data mining areas. He collabo-
rates to the main international conferences in the area, in the roles
of author, program committee member or reviewer. He authored 60+
international publications, mainly on several aspects of human mobil-
ity, such as data mining on spatio-temporal data (theory, algorithms
and applications for clustering, classification and sequential patterns
for trajectories of moving objects), applications on transportation and
smart cities (traffic models, carpooling systems), mobile phone data

analysis (GSM-based estimation of population and flows) and Big Data for Official Statistics (leveraging
mining models for extracting reliable statistics).

He participated to several national and international research projects, as researcher or coordinator, the
most recent and relevant ones being: PETRA (Personal Transport Advisor: an integrated platform of mobility
patterns for Smart Cities to enable demand-adaptive transportation system); ICON (Inductive Constraint
Programming); DataSIM (DATA science for SIMulating the era of electric vehicles); LIFT (Using Local
Inference in Massively Distributed Systems); MOVE (Knowledge Discovery from Moving Objects).

He served as program chair for workshops “SAWM: Statistical Approaches for Web Mining”, 2004,
“STDM: IEEE Workshop on Spatio-Temporal Data Mining”, 2007, “DAMASCA: DAta Mining And Smart
Cities Applications Workshop”, 2015 and program vice-chair for ICDM 2008, IEEE Int. Conf. on Data
Mining. Moreover, he serves as regular program committee member and reviewer for several of the most
prominent conferences and workshops in the fields of databases and data mining, including: ACM CIKM,
ECML/PKDD, IEEE ICDM, ACM KDD, SADM, SIAM DM, SSTD, IEEE SSTDM. Finally, he regularly
contributes to the revision of papers for major journals in the field, including: VLDB J., TKDE, DKE, GeoIn-
formatica, Information Systems, IJGIS, KaIS, SADM J., Machine Learning J. Since 2007, he regularly holds
courses for graduate and undergraduate students, at Università di Pisa, on databases and data mining. Top-
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