
https://doi.org/10.1007/s10707-020-00422-x

MTLM: a multi-task learning model for travel time
estimation

Saijun Xu1 ·Ruoqian Zhang2 ·Wanjun Cheng3 · Jiajie Xu1,4

Received: 25 April 2020 / Revised: 26 June 2020 / Accepted: 19 July 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Travel time estimation (TTE) is an important research topic in many geographic applications
for smart city research. However, existing approaches either ignore the impact of transporta-
tion modes, or assume the mode information is known for each training trajectory and the
query input. In this paper, we propose a multi-task learning model for travel time estimation
called MTLM, which recommends the appropriate transportation mode for users, and then
estimates the related travel time of the path. It integrates transportation-mode recommen-
dation task and travel time estimation task to capture the mutual influence between them
for more accurate TTE results. Furthermore, it captures spatio-temporal dependencies and
transportation mode effect by learning effective representations for TTE. It combines the
transportation-mode recommendation loss and TTE loss for training. Extensive experiments
on real datasets demonstrate the effectiveness of our proposed methods.

Keywords Travel time estimation · Deep learning · Trajectory data mining

Saijun Xu and Ruoqian Zhang are equally contributed co-first authors.

� Jiajie Xu
xujj@suda.edu.cn

Saijun Xu
sjxu@stu.suda.edu.cn

Ruoqian Zhang
rqzhang@suda.edu.cn

Wanjun Cheng
chengwj@neusoft.com

1 Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, Suzhou, China

2 School of Computer Science and Technology, Soochow University, Suzhou, China
3 Neusoft Corporation, Shenyang, China
4 Institute of Electronic and Information Engineering of UESTC, Dongguan, Guangdong, China

Published online: 15 August 2020

Geoinformatica (2022) 26:379–395

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-020-00422-x&domain=pdf
http://orcid.org/0000-0001-9667-6563
mailto: xujj@suda.edu.cn
mailto: sjxu@stu.suda.edu.cn
mailto: rqzhang@suda.edu.cn
mailto: chengwj@neusoft.com

1 Introduction

The advance of location acquisition technologies has promoted a rapid increase in the num-
ber of trajectories. A large amount of trajectory data can be used in estimating the travel
time of the path. Travel time estimation is one of the most important location-based services,
which can be applied in many location-based applications in the smart city, such as depar-
ture time suggestion [9], trip planning [18, 20–22, 33, 40], vehicle dispatching [34], route
search [29], etc. However, travel time estimation is still challenging because of dynamic
traffic conditions, different external factors (weathers, holidays, etc) and complex mobility
behaviors.

Travel time estimation has been widely studied in the past. The existing solutions [7,
27] utilize trajectory data to estimate travel time. Recently, with the development of deep
learning, the majority of the research [11, 26, 28, 35] design deep neural models to learn
effective trajectory embeddings and capture latent features by finding appropriate represen-
tations. Then they can find (sub-)trajectories that are similar to the target trajectory based
on trajectory embeddings, and estimate travel time of the target trajectory by aggregating
travel time in (sub-)trajectories. However, all these TTE solutions ignore the transporta-
tion modes’ effect on travel time of a given path and the transportation mode accordingly
affects the travel time due to different moving speeds. Despite the impacts of transportation
mode on travel time has been considered in [31], it assumes that the mode information is
known for each training trajectory and the query phase. However, in reality, some or even
majority of the trajectories in database may not have mode labels. In addition, the suitable
transportation mode of a path may not be known by users at the query time.

Therefore, it is important to investigate the recommendation of transportation mode and
estimate its corresponding travel time of a given path simultaneously. On one hand, given
a path, users often need to choose appropriate transportation mode, such as taking a bus
or riding, and a large number of trajectories provide corresponding knowledge for users to
choose; on the other hand, users need to know the expected travel time for enhanced trip
planning. [2] recommends users’ transportation modes by automatically extracts additional
features using a deep neural network from their movement trajectories. To estimate travel
time, [26, 35] presents a deep neural model to integrate the geographic information to cap-
ture spatial correlations and stacking recurrent unit to capture the temporal dependencies.
However, transportation mode recommendation and travel time estimation are close related
tasks that heavily influence each other. To the best of our knowledge, there are no existing
models that can capture the mutual influence of these two tasks, thus could not achieve more
accurate results. Therefore, a multi-task model that integrates above two tasks in a shared
space is sought after for more accurate travel time estimation.

To this end, in this paper, we propose a multi-task learning model for travel time esti-
mation, namely MTLM, which integrates transportation-mode recommendation into travel
time estimation. Specifically, first, it combines supervised learning task with an encoder
part, which aims to recommend transportation mode of the given path for the user, and
unsupervised learning task with a decoder part, which recovers relevant details discarded by
supervised learning and retains the original data information as much as possible to reduce
the risk of overfitting; second, the model incorporates representations of recommended
transportation modes along with spatial patterns of trajectories and other external factors
(weekdays, holidays) to estimate travel time; furthermore, MTLM is trained to simultane-
ously minimize the summation of supervised loss of transportation-mode recommendation,

380 Geoinformatica (2022) 26:379–395

unsupervised reconstruction loss and time estimation loss by back-propagation. To sum up,
the contributions of the paper are as follows:

– We propose a multi-task learning model for travel time estimation called MTLM, which
recommends the transportation mode and then estimates the related travel time of a
given path for the user. The model combines transportation-mode recommendation task
and TTE task together by the summation of loss functions.

– We further integrate the knowledge of transportation modes, which is recommended
in transportation-mode recommendation task, trajectory information and other external
factors (such as holidays, weekdays or weekends), and designs a uniform deep neural
model MTLM to capture spatial correlations, temporal dependencies and transportation
mode influence for travel time estimation.

– We conduct extensive experiments on real datasets. The results demonstrate the advan-
tages of our approach in recommending transportation mode and then estimating travel
time of the path compared with baseline methods.

2 Related work

Travel time estimation is an important research topic which can be applied in trip plan-
ning [1, 14, 17, 24, 30], traffic speed prediction [12], trajectory activity analyses [23],
etc. Existing approaches of estimating travel time in the path could be classified into two
categories: segment-based and path-based approaches. Segment-based approaches [5, 19,
32] estimate the travel time on each road segment but ignore the correlations between the
road segments; path-based approaches [15, 27] can resolve those issues in segment-based
approaches by extracting and aggregating sub-paths from historical trajectories, but suffer
from data sparsity because there are many sub-paths which cannot be found in historical
trajectory data.

As mentioned above, segment-based and path-based approaches are unable to perform
well in travel time estimation. Meanwhile, with the development of deep learning these
years. More recent studies [26, 28, 35] utilize deep learning in travel time estimation. In
[26], it presents an end-to-end estimation model that employs geo-convolution in the GPS
sequence to capture spatial features and then uses LSTM to learn temporal patterns to
estimate the travel time. Deeptravel proposed in [35] uses the sequence of extracted man-
ually features in the granularity of grid cells as input to feed in Bi-LSTMs, to capture
spatio-temporal patterns to estimate travel time. The WDR model [28] incorporates traf-
fic information and is obtained by a traffic estimator during the feature extraction, then
an ensemble regression model which consists of wide linear models, deep neural models
and LSTM is used to estimate travel time. In [31], it proposes a transportation-mode aware
deep neural model, which estimates travel time by utilizing (sub-)trajectories which are not
only roughly following the target path, but also being consistent with segments of the target
path in terms of transportation mode, it regards the transportation modes as known for each
training trajectory and the query phase. However, in reality, some or even majority of the
trajectories in database may not have mode labels.

The existing methods either have not considered the impact of transportation modes on
travel time or treat the transportation mode as known for each training trajectory and the
query phase. To deal with these issues, it is important to investigate how to suggest a suit-
able mode according to the corresponding travel time on a given path. A unified model to

381Geoinformatica (2022) 26:379–395

effectively support transportation-mode recommendation task and travel time estimation
task is needed to be sought after in our work.

3 Problem formulation

This section introduces some preliminaries and gives a formal statement of the problem
studied in this paper.

Definition 1 (Path) A path P = (v1, v2, .., vn) is a sequence of intersections, where inter-
section vi(1 ≤ i ≤ n) can be represented as a geographical location (longitude, latitude)
and (vi, vi+1)(1 ≤ i < n) is a road segment.

Definition 2 (Trajectory) A trajectory is represented as T = {G,m}, where G =
{g1, g2, ..., gn} is a sequence of GPS points and each GPS point gi is a tuple
(gi .lng, gi .lat, gi .t) which are its longitude, latitude and timestamp respectively, m is the
corresponding transportation mode of T .

The historical trajectory dataset is accordingly represented by a set of trajectories X =
{T (i)|i = 1, 2, 3, ..., N}.

ProblemStatement Given a trajectory dataset X, a path P and a departure time d, our goal
is to recommend the transportation mode and then estimate the related travel time of P , so
as to make it consistent with the real trajectories.

4 TheMTLM framework

In this section, we introduce the architecture of multi-task learning model MTLM, as
shown in Fig.1, which consists of the data preparation layer, a transportation-mode
recommendation layer and a travel time estimation layer.

4.1 Data preparation layer

In this section, we transform raw trajectory data into suitable trajectory embeddings to fully
capture the spatial moving patterns in the trajectories.

First, we map the trajectory data into an area I , which is clipped by ranges of a geo-
graphic area rW × rH and is partitioned into w × w disjoint but equal-sized grids, then raw
trajectories can be transformed as trajectory images [2]. Given a trajectory T , we compute

the centroid of the GPS points in T , that is (

∑n
i=1 gi .lng

n
,

∑n
i=1 gi .lat

n
) and align the centroid

with the center of the region I to unify the basic geographical coordinates. Each grid in the
area represents a pixel in the image, the value of pixels can be calculated in the following
manner: if there is a GPS point gi in the grid I (x, y), the value of I (x, y) increases by 1.
Finally, the raw trajectory can be portrayed as the trajectory image I .

4.2 Transportation-mode recommendation layer

In this layer, we aim to recommend an appropriate transportation mode based on the path
for users by learning an autoencoder from historical data including paths and corresponding

382 Geoinformatica (2022) 26:379–395

2(0,)N

2(0,)N

2(0,)N

(1) ()f

(2) ()f

(1) ()f

(2) ()f

x

~

x x

(1)~

z

(2)~

z

~

y

(1)

z

(2)

z

x(0) (,)g

(1) (,)g

(2) (,)g

(1)z

(2)z

y

(0)

dC

(1)

dC

(2)

dC

x

Travel Time Estimation Layer

Transportation-Mode
Recommendation Layer

CNN

k filters

Data Preparation Layer
x

+External

Features
ResNet

time
Fully-

connected

Layers

Fig. 1 The architecture of MTLM

transportation modes that users labeled. The labels in the data are different transportation
modes that users choose, such as taking a bus, riding a bike, or walking. We use labeled
data to supervise the autoencoder, which recommends transportation modes for users based
on the path. However, even in the era of massive data, there is not much labeled data that
can be used cleanly, which has led to the combination of deep learning and semi-supervised
learning. Therefore, we introduce semi-supervised learning with labeled and unlabeled data
simultaneously to optimize the autoencoder in the training phase.

We adopt a Ladder network [25], which is first applied to semi-supervised learning tasks
in [16], to construct an autoencoder that can recommend the transportation mode of the path
for users. We use the trajectory images I generated in the data preparation layer to represent
the path, in this layer is denoted as x for legibility, as the inputs. Spatial moving patterns
such as the spatial ranges and distributions of the path, are supposed to be captured for
transportation-mode recommendation, because different transportation modes are chosen
based on the topographic ranges and road conditions of the path.

Ladder network structure The structure of the Ladder network is shown in Algorithm 1.
The input of the ladder network is N + M trajectory images derived from raw trajectories,
with N trajectory images with labels of transportation modes {(x(n), y∗(n))|1 ≤ n ≤ N}
and M unlabeled trajectory images {x(n)|N + 1 ≤ n ≤ N + M}, which is denoted as x(n);
the output is the cost functions that include the cost between the recommended transporta-
tion mode and the actual transportation mode that users chose (Cross Entropy costs) and

383Geoinformatica (2022) 26:379–395

unsupervised costs (Reconstruction costs). The objective is to learn a function that models
P(y|x) by using both the labeled and the unlabeled data.

384 Geoinformatica (2022) 26:379–395

The Ladder Network consists of two encoders and one decoder. One encoder applies
additive noise to each layer (an extra Gaussian noise injection term in Algorithm 1) and
therefore it has a regularization effect which helps generalization, called the noisy encoder;
the other encoder which shares parameters with the noisy encoder is responsible for provid-
ing the clean reconstruction targets, i.e., the noiseless hidden activations, called the clean
encoder. The decoder is designed to support unsupervised learning, which tries to recon-
struct the original input from the internal representation and recover details discarded by the
encoder. Formally, the Ladder Network is defined as follows,

x̃, z̃(1), ..., z̃(L), ỹ = Encodernoisy(x), (1)

x, z(1), ..., z(L), y = Encoderclean(x), (2)

x̂, ẑ(1), ..., ẑ(L) = Decoder(z̃(1), ..., z̃(L)), (3)

where Encoder and Decoder can be replaced by convolutional operators [10] and transposed
convolution operators in this case. The variables x, y, and ỹ are the input, the noiseless out-
put, and the noisy output respectively. The true target is denoted as y∗. The variables z(l),
z̃(l) and ẑ(l) are the hidden representation, its noisy version, and its reconstructed version
at layer l. At each layer of both encoders, z(l) and z̃(l) are computed by applying a convo-
lutional network and normalization on h(l−1) and h̃(l−1) respectively. Batch normalization
[6] correction and non-linearity activation are then applied to obtain h(l) and h̃(l). We use
softmax function as activation function and aj = e

zj
∑

k ezk
. In the decoder of the Ladder net-

work, there exists skip connections and through lateral skip connections, each layer of the
noisy encoder is connected to its corresponding layer in the decoder. This enables the higher
layer features to focus on more abstract and task-specific features. Hence, at each layer of
the decoder, two signals, one from the layer above that is the vertical connection u(l), and
the other from the corresponding layer that is the lateral connection z̃(l) in the encoder are
combined to reconstruct ẑ(l) by using vanilla combinator function g(., .), which is in the
following,

g(z̃(l), u(l)) = a(l)E (l) + b(l)sigmoid(c(l)E (l)) (4)

where E (l) = [1, z̃(l), u(l), z̃(l)u(l)]T is the augmented input. a(l) and c(l) are trainable 1× 4
weight vectors, and b(l) is a trainable weight.

Cost function in transportation-mode recommendation Finally, the objective function
of this section is a weighted sum of supervised (Cross Entropy) costs LossCE after the
encoder and unsupervised costs (Reconstruction costs) during the decoder.

Csemi = LossCE + ∑N+M
n=N+1

∑L
l=1λlRecconsCost (z(l)(n), ẑ(l)(n)) (5)

where λl is the weight of the loss in layer l, LossCE is Cross Entropy costs, which measure
the relative entropy between two probability distributions and are commonly used as loss
function in classification problems. It is defined as:

LossCE = − 1

N

N∑

n=1

K∑

k=1

y
∗(n)
k log(pn,k) (6)

where the number of trajectories is N , the number of labels is K , y
∗(n)
k is the the value of

the k-th dimension of the label y∗(n) after one-hot encoding, and pn,k is the probability of
the transportation mode of the n-th path is recommended as the k-th label.

385Geoinformatica (2022) 26:379–395

Unsupervised costs (Reconstruction costs) is square error costs at each layer of the
decoder, which are defined as the following,

ReconsCost (z(l)(n), ẑ(l)(n)) =
∥
∥
∥
∥
∥

ẑ(l)(n) − μ̃(l)

σ̃ (l)
− z(l)(n)

∥
∥
∥
∥
∥

2

(7)

where ẑ(l) is normalized using μ(l) and σ (l) which are the encoder’s sample mean and
standard deviation statistics of the current mini batch, respectively.

4.3 Travel time estimation layer

In this section, we aim to estimate travel time by considering the recommended transporta-
tion mode representations for the path and spatio-temporal characteristics. First, the spatial
moving patterns of the path reflect the movement range and shape, we need to fully extract
the spatial patterns of the historical trajectory, and then find the most similar sub-trajectory
in the space for the trajectory to be predicted. After transforming raw trajectories into tra-
jectory images, we then adopt convolution neural networks [10] in the trajectory images
to capture spatial moving patterns. To be specific, given trajectory image I as inputs, the
spatial representations convolved by the i-th filter is,

si,a = ReLU(Wconvi
∗ Ia:a+h−1 + bi) (8)

where Ga:a+h−1 ∈ R
h×w is the a-th representations in the trajectory image I , Wconvi

∈
R

h×w denotes the parameter weights of the i-th filter and ∗ is the convolutional operation,
bi is the bias, h is the kernel size. Here we use rectifier linear unit (ReLU) [10] as activation
function and ReLU(x) = max(0, x). Then we concatenate si,a convolved by k filters and
obtain the spatial representations of the a-th representations in I which is denoted as,

Sa = {s1,a, s2,a, ..., sk,a} (9)

where Sa ∈ R
1×k , then we scan sub-images of I in the chronological order (in height order

in Fig. 1) with k 1D-CNN filters to get the spatial representations of the trajectory, denoted
as S = {S1,S2, ...,Sw−h+1}.

Apart from spatial representations mined from trajectories, we further incorporate
higher-level recommended transportation-mode features, that is z(L) in the clean encoder
of the Ladder network and L is the number of layers in the previous layer. Besides, there
are external factors which affect the travel time including whether the departure time is
holidays, weekday or weekends, peak or non-peak hours or not and userID that reflects per-
sonalization information. We extract these factors according to the departure time of the
trajectory and encode them into a real spaceR1×A by using the embedding mechanism [13],
which not only reduces the dimension of categorical values but also represents categories in
the transformed space. Then we concatenate these embedding vectors of external features
to obtain low-dimensional vector E.

Finally, all the information can be concatenated as a uniform feature vector V =
{S, z(L), E} which can be utilized to estimate the travel time. Then we feed V as inputs into
a deep residual neural networks [4], which capture spatio-temporal correlations in the fea-
ture vector, are easier to optimize and can gain accuracy from considerably increased depth.
In the end, we further adopt two fully-connected layers to estimate the travel time of the
trajectory. We use the mean absolute percentage error (MAPE) as the objective function in

386 Geoinformatica (2022) 26:379–395

the training phase because it is a relative error that can estimate time of both the short paths
and long paths. We define the loss function of travel time estimation as,

CT T E =
∣
∣
∣
∣
∣

δ − δ̂

δ

∣
∣
∣
∣
∣

(10)

where δ̂ is the estimated travel time of the trajectory and δ is the actual time.
Aiming at the influence of trajectory mis-recommendation on TTE task, on one hand,

by introducing transportation mode labels, the transportation-mode recommendation task
is learned in a supervised way, and the model parameters are optimized to further reduce
the proportion of mis-recommendation; on the other hand, in travel time estimation task
of our MTLM model, in addition to integrating the recommended transportation mode, the
data preparation layer also extracts features from the trajectory for the following travel time
estimation, which can reduce the impact of mis-recommendation on travel time estimation
task.

4.4 Multi-task learning in training

The multi-task learning method combines a travel time estimation task and a transportion-
mode recommendation task in a shared space (i.e., the high-level representation of the
recommended transportation modes), to compute more effective representations and param-
eters for more accurate results in both tasks. We introduce the loss function in our model.
This is an end-to-end model and the training goal is to minimize the loss function in mul-
tiple tasks. We combine the supervised costs for the transportation-mode recommendation
accuracy after the encoder, unsupervised costs during the decoder, and loss function in the
travel time estimation layer, that is,

C = β · Csemi + (1 − β) · CT T E (11)

where β is a weight in the combination of two losses Csemi and CT T E to control the balance
of two tasks.

In the training phase, we aim to minimize the loss function C and optimize all the param-
eters through back-propagation algorithm [3]. In the testing phase, in the transportation-
mode recommendation layer, we skip the noisy encoder and decoder in the ladder network,
and construct the recommendation only through the clean encoder, and then add the high-
level features as input to the travel time estimation layer. Furthermore, we use multiple
metrics to evaluate the estimation accuracy.

5 Experiments

In this section, we conduct experiments on GeoLife dataset to evaluate the performance of
MTLM against several baselines for travel time estimation and compare our model under
different parameter settings.

5.1 Datasets

GeoLife-labeled: We use GeoLife dataset [37–39] published by Microsoft Research. Each
trajectory in GeoLife contains attributes including latitude, longitude, altitude in feet, date,
time. The trajectory points in the trajectories were sampled at an interval of 1-5 seconds

387Geoinformatica (2022) 26:379–395

and 73 users have annotated labels on their trajectories with transportation mode. The trans-
portation labels contain transportation modes annotated by users and the start and end time
of using a certain transportation mode. First, we remove trajectories which users’ trans-
portation labels cannot be mapped into, because the start and end time in the labels were not
in the time period of these collected trajectories. Then we split the trajectory into segments
according to the start time and end time of the transportation mode marked by the user. We
further partition the segment into separate trajectory segments if the interval between two
consecutive GPS points exceeds 20 minutes. Finally, we obtain 6965 trajectory segments
with 7 transportation modes (walk, bike, train, bus, subway, taxi, car) in Beijing.

GeoLife-unlabeled: In order to illustrate the application of our model in unlabeled data
which is in unsupervised learning fashion, we extracted 4434 trajectory segments in Beijing
from GeoLife dataset that users did not annotate transportation modes.

We randomly split a dataset into two folds, 80% data as the training set, 20% as the
testing set on two datasets. On GeoLife-labeled dataset, for each transportation mode, we
divide 80% of the trajectories with this transportation mode into the training set and 20%
of them into the test set. In this way, we can ensure that the testing dataset and the training
dataset contain the same category of transportation modes.

5.2 Implementation details

The architecture of our model MTLM is shown in Fig. 1, parameters of the model and
experimental settings are described as follows:

– In the data preparation layer, ranges of longitude rW and latitude rH is determined by
the range of the trajectory dataset, that is, rW = 20, rH = 20. Each trajectory segment
is mapped into a region with w × w grids, we evaluate our model with different values
of w and finally set w = 100 on GeoLife-labeled and GeoLife-unlabeled dataset.

– In the transportation-mode recommendation layer, we use three layers, the first layer is
the input, the second layer in both of the encoders contains a convolutional network with
kernel size 3 and the number of kernels is 64, the third layer contains a convolutional
network with h = 3 and number of kernels is 7, the same as the number of transporta-
tion modes, then the feature maps are processed by softmax function to obtain the final
recommendation outcome; in the decoder, the deconvolutional operations project the
input back up to the feature maps of the corresponding layer in the encoder.

– In the travel time estimation layer, we use two layers of convolutional networks with
kernel size 3 and the number of kernels 64 and 32 respectively. We fix the residual fully-
connected layers as 3 and the size of each layer is 64. After residual layers, we further
adopt two fully-connected layers to map the R

64 to R
1 to estimate the travel time. In

addition, other external factors which affect the travel time, including userID, the day
of the week, time slot of the departure time, dateID are embedded to R

16, R8,R8, R8

respectively.
– In the training phase, we finally set the coefficient β as 0.2 on two dataset to control the

balance of two tasks.

We set batch size as 64 and use Adam optimizer [8] as the optimization function. The initial
learning rate is set to 0.0001. For each batch in GeoLife-labeled, we use half of the batch
as labeled data for supervised training to construct transportation-mode recommendation
costs, and the remaining half is used in unsupervised training as unlabeled data to construct

388 Geoinformatica (2022) 26:379–395

reconstruction costs. The experiment is implemented by PyTorch. We train and evaluate the
model on the server with one NVIDIA GTX1080 GPU and 24 CPU cores.

5.3 Evaluationmetrics

MAPE is commonly used in regression problems because of its intuitive interpretation in
terms of relative error. MAE is a measure of the difference between two continuous vari-
ables. For MAE, the optimal prediction will be the median target value and it is more
robust when there are outliers in the data that are not conducive to the prediction results.
RMSE is the square root of mean squared error, it measures the deviation between the pre-
dicted value and the real value. For RMSE, the optimal prediction will be the mean target
value and it is more sensitive to outliers. Therefore, by using MAPE, MAE and RMSE,
we can have a more scientific and comprehensive evaluation of the experimental results.
Given Y = {y1, y2, ..., yn} as the actual values, Ŷ = {ŷ1, ŷ2, ..., ŷn} represents the predicted
values. n denotes the number of the data. The metrics are defined as the following,

MAPE(Y, Ŷ) = 100%

n

n∑

i=1

∣
∣
∣
∣
yi − ŷi

yi

∣
∣
∣
∣ (12)

MAE(Y, Ŷ) = 1

n

n∑

i=1

∣
∣yi − ŷi

∣
∣ (13)

RMSE(Y, Ŷ) =
√
√
√
√1

n

n∑

i=1

(yi − ŷi)2 (14)

5.4 Baselines

– GBDT: Gradient boosting decision tree [36] is an ensemble model of decision trees. In
each iteration, GBDT learns the decision trees by fitting the negative gradients. Several
attributes of trajectories are fed into GBDT model, including the departure time, the
GPS point of the origin and destination, uerID. The model is configured with 100 trees.

– MlpTTE: Multi-layer perceptron (MLP) with ReLU activation is applied to estimate
the travel time. The input of MlpTTE is the same as GBDT and is fed into a 3-layer
perceptron with ReLU activation with hidden size 64,32,1 respectively.

– Deeptravel: Deeptravel [35] uses the sequence of extracted manually features in gran-
ularity of grid cells as input to feed in Bi-LSTMs, so as to capture spatio-temporal
patterns to estimate travel time.

– DeepTTE: DeepTTE [26] employs geo-convolution in the GPS sequence to capture
spatial features and then uses LSTM to learn temporal patterns to estimate the travel
time.

5.5 Performance comparison

The comparison results are reported in Table 1 and the results of our MTLM model are in
bold in Table 1. MAPE, MAE and RMSE are evaluation metrics.

From Table 1, we can observe that: first, the GBDT has the worst performance, demon-
strating the effectiveness of deep learning for travel time estimation; second, DeepTTE and
DeepTravel outperform MlpTTE, indicating that effective deep neural models contribute to

389Geoinformatica (2022) 26:379–395

Table 1 Performance comparison of evaluated approaches in metrics MAE, RMSE and MAPE

Dataset GeoLife-labeled GeoLife-unlabeled

Metrics MAE(min) RMSE(min) MAPE(%) MAE(min) RMSE(min) MAPE(%)

MlpTTE 16.42 28.91 11.19% 25.01 55.69 13.85%

GBDT 16.90 31.96 12.21% 27.35 57.83 15.29%

DeepTravel 13.17 24.65 9.05% 21.97 49.92 12.27%

DeepTTE 12.19 21.93 8.37% 19.28 42.55 11.13%

MTLM(Ours) 7.84 14.75 5.49% 12.45 23.87 7.98%

capturing local spatial correlations and temporal patterns for travel time estimation; further-
more, our model outperforms all baseline models, which not only proves the effectiveness
of incorporating the knowledge of recommended transportation mode based on path, in
travel time estimation, but also proves the effectiveness of our model in capturing the
spatio-temporal dependencies. In addition, our model performs well on unlabeled trajectory
dataset GeoLife-unlabeled, which shows the feasibility of our method under unsupervised
conditions.

5.6 Model analysis

In this section, we examine the parameter settings in MTLM and explore the role of the
transportation-mode learning recommendation layer in TTE. To find a more appropriate
parameter in MTLM, we vary different values of parameters.

5.6.1 Different grid size comparison

In the data preparation layer, the trajectory is mapped into the area to generate trajectory
images as the inputs of the transportation-mode recommendation layer and travel time esti-
mation layer, the value of w will affect both the accuracy of the travel time prediction and
performance of the transportation-mode recommendation. We evaluate our model with dif-
ferent grid size w × w from {50 × 50, 100 × 100, 150 × 150, 200 × 200, 250 × 250}, the
estimation results are shown in Fig. 2. According to evaluation results, we find the most
suitable value and finally set w = 100 on GeoLife-labeled and GeoLife-unlabeled dataset
to get more accurate results.

5.6.2 Different convolutional kernel size comparison

In this part, we evaluate different values of convolutional kernel size h from 1 to 5. The
convolutional kernels in the transportation-mode recommendation layer and in the travel
time estimation layer are one-dimensional convolution operation on the trajectory image.
The value of the convolutional kernel size determines the granularity of the trajectory image
processing. A suitable value can fully capture the spatial movement features in the trajecto-
ries such as turning. The performance comparison is shown in Fig. 3, from the comparison
results, we find that, convolution kernels that are too large or too small will decrease the
performance of the model. When the kernel size is 3, it is more easily for our model to

390 Geoinformatica (2022) 26:379–395

Fig. 2 Performance with different grid size in metrics MAPE, RMSE

capture spatial features in the trajectories on two datasets and the model obtains more
accurate TTE results.

5.6.3 The analysis of transportation-mode recommendation layer

In this part, we evaluate the impact of transportation-mode recommendation layer on TTE
task, which recommends the suitable transportation mode for users. We design a model
without this layer, called NoTrans. The details are as follows: this model removes the
encoder and decoder of the Ladder network. Accordingly, NoTrans contains only the data
preparation layer and travel time estimation layer, especially, the knowledge of recom-
mended transportation mode that output from the transportation-mode recommendation
layer is not included in the travel time layer. The performance comparison results of
NoTrans and MTLM are shown in Table 2.

From Table 2, we observe the model using transportation-mode recommendation layer
performs better compared to the model removing this layer in all three evaluation metrics
on two datasets. The outcome demonstrates the effectiveness of integrating knowledge of
the recommended transportation modes based on path, in TTE task.

Fig. 3 Performance with different kernel size in metrics MAPE, RMSE

391Geoinformatica (2022) 26:379–395

Table 2 Comparisons of different settings in the transportation-mode recommendation layer

Dataset GeoLife-labeled GeoLife-unlabeled

Metrics MAE(min) RMSE(min) MAPE MAE(min) RMSE(min) MAPE

MTLM 7.84 14.75 5.49% 12.45 23.87 7.98%

NoTrans 8.36 15.31 5.79% 12.82 26.94 8.21%

6 Conclusion

In this paper, we study the recommendation of transportation mode and estimate its corre-
sponding travel time of a given path simultaneously. Existing approaches either ignore the
impact of transportation modes, or assume the mode information is known for each training
trajectory and the query input. Therefore, we propose a multi-task learning model that inte-
grates transportation-mode recommendation task and travel time estimation task, to capture
the mutual influence of these two tasks for more accurate TTE results. We incorporate the
knowledge of recommended transportation modes, path information and other external fac-
tors (such as holidays, weekends), in a uniform way to capture spatial correlations, temporal
patterns and transportation mode effects for travel time estimation. Extensive experiments
on real datasets demonstrate the effectiveness of our proposed methods.

Acknowledgments This work was supported by the National Natural Science Foundation of China under
Grant Nos. 61872258, 61772356, 61876117 and 61802273, the Open Program of State Key Laboratory of
Software Architecture under item number SKLSAOP1801, Dongguan Innovative Research Team Program
(No.2018607201008), and Blockshine corporation.

References

1. Chen X, Xu J, Zhou R, Zhao P, Liu C, Fang J, Zhao L (2020) S2r-tree: a pivot-based indexing structure
for semantic-aware spatial keyword search. GeoInformatica 24(1):3–25. https://doi.org/10.1007/s10707-
019-00372-z

2. Endo Y, Toda H, Nishida K, Kawanobe A (2016) Deep feature extraction from trajectories for trans-
portation mode estimation. In: Bailey J, khan L, washio T, dobbie G, huang JZ, Wang R (eds) PAKDD,
vol 9652. Springer, Lecture Notes in Computer Science, pp 54–66

3. Gruslys A, Munos R, Danihelka I, Lanctot M, Graves A (2016) Memory-efficient backpropagation
through time. In: NIPS2016, pp 4125–4133

4. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Computer
Society CVPR 2016, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

5. Hofleitner A, Herring R, Abbeel P, Bayen AM (2012) Learning the dynamics of arterial traffic from
probe data using a dynamic bayesian network. TITS 13(4):1679–1693. https://doi.org/10.1109/TITS.
2012.2200474

6. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In: ICML, pp 448–456

7. Jenelius E, Koutsopoulos HN (2013) Travel time estimation for urban road networks using low frequency
probe vehicle data. Transp Res B Methodol 53:64–81

8. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980
9. Kisialiou Y, Sr IG, Laporte G (2018) The periodic supply vessel planning problem with flexible

departure times and coupled vessels. Comput OR 94:52–64
10. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural

networks. In: NIPS, pp 1106–1114

392 Geoinformatica (2022) 26:379–395

https://doi.org/10.1007/s10707-019-00372-z
https://doi.org/10.1007/s10707-019-00372-z
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TITS.2012.2200474
https://doi.org/10.1109/TITS.2012.2200474
http://arxiv.org/abs/1412.6980

11. Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time
estimation. In: KDD. 1695–1704. https://doi.org/10.1145/3219819.3220033, vol 2018

12. Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X (2018) LC-RNN: A deep learning model for traffic speed
prediction. In: Lang J (ed) IJCAI 2018, ijcai.org, pp 3470–3476. https://doi.org/10.24963/ijcai.2018/482

13. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and
phrases and their compositionality. In: NIPS, pp 3111–3119

14. Qian Z, Xu J, Zheng K, Zhao P, Zhou X (2018) Semantic-aware top-k spatial keyword queries. World
Wide Web 21(3):573–594. https://doi.org/10.1007/s11280-017-0472-y

15. Rahmani M, Jenelius E, Koutsopoulos HN (2013) Route travel time estimation using low-frequency
floating car data. In: ITSC 2013, pp 2292–2297. https://doi.org/10.1109/ITSC.2013.6728569

16. Rasmus A, Berglund M, Honkala M, Valpola H, Raiko T (2015) Semi-supervised learning with ladder
networks. In: NIPS, pp 3546–3554

17. Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P (2012) User oriented trajectory search for trip
recommendation. In: 15th International Conference on Extending Database Technology, EDBT ’12,
Berlin, Germany, March 27-30, 2012, Proceedings. ACM, pp 156–167. https://doi.org/10.1145/2247596.
2247616

18. Shang S, Lu H, Pedersen TB, Xie X (2013a) Finding traffic-aware fastest paths in spatial net-
works. In: SSTD 2013, Springer, Lecture Notes in Computer Science, vol 8098, pp 128–145.
https://doi.org/10.1007/978-3-642-40235-7 8

19. Shang S, Lu H, Pedersen TB, Xie X (2013b) Modeling of traffic-aware travel time in spatial networks.
In: 2013 IEEE 14th International Conference on Mobile Data Management, IEEE Computer Society, pp
247–250. https://doi.org/10.1109/MDM.2013.34

20. Shang S, Guo D, Liu J, Liu K (2014) Human mobility prediction and unobstructed route planning in
public transport networks. In: IEEE Computer Society IEEE MDM, pp 43–48. https://doi.org/10.1109/
MDM.2014.66

21. Shang S, Liu J, Zheng K, Lu H, Pedersen TB, Wen J (2015) Planning unobstructed paths in traffic-aware
spatial networks. GeoInformatica 19(4):723–746. https://doi.org/10.1007/s10707-015-0227-9

22. Shang S, Guo D, Liu J, Wen J (2016) Prediction-based unobstructed route planning. Neurocomputing
213:147–154. https://doi.org/10.1016/j.neucom.2016.02.085

23. Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2019) Parallel trajectory-to-location join. IEEE
Trans Knowl Data Eng 31(6):1194–1207. https://doi.org/10.1109/TKDE.2018.2854705

24. Song X, Xu J, Zhou R, Liu C, Zheng K, Zhao P, Falkner N (2020) Collective spatial keyword search on
activity trajectories. GeoInformatica 24(1):61–84. https://doi.org/10.1007/s10707-019-00358-x

25. Valpola H (2014) From neural PCA to deep unsupervised learning. CoRR arXiv:1411.7783
26. Wang D, Zhang J, Cao W, Li J, Zheng Y (2018a) When will you arrive? estimating travel time based on

deep neural networks. In: AAAI 2018, pp 2500–2507
27. Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: KDD

2014, pp 25–34, pp https://doi.org/10.1145/2623330.2623656
28. Wang Z, Fu K, Ye J (2018b) Learning to estimate the travel time. In: KDD 2018, pp 858–866.

https://doi.org/10.1145/3219819.3219900
29. Xu J, Gao Y, Liu C, Zhao L, Ding Z (2015) Efficient route search on hierarchical dynamic road networks.

Distrib Parallel Database 33(2):227–252. https://doi.org/10.1007/s10619-014-7146-x
30. Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition

for personal trip planning. Future Gener Comput Syst 98:274–285. https://doi.org/10.1016/j.future.2019.
03.010

31. Xu S, Xu J, Zhou R, Liu C, Li Z, Liu A (2020) Tadnm: A transportation-mode aware deep neural model
for travel time estimation. in press

32. Yang B, Guo C, Jensen CS (2013) Travel cost inference from sparse, spatio-temporally correlated time
series using markov models. PVLDB 6(9):769–780. https://doi.org/10.14778/2536360.2536375

33. Yang B, Guo C, Jensen CS, Kaul M, Shang S (2014) Stochastic skyline route planning under time-
varying uncertainty. In: IEEE Computer Society IEEE ICDE 2014, pp 136–147. https://doi.org/10.1109/
ICDE.2014.6816646

34. Yuan NJ, Zheng Y, Zhang L, Xie X (2013) T-finder: A, recommender system for finding passengers and
vacant taxis. IEEE Trans Knowl Data Eng 25(10):2390–2403

35. Zhang H, Wu H, Sun W, Zheng B (2018) Deeptravel: a neural network based travel time estima-
tion model with auxiliary supervision. In: IJCAI 2018, pp 3655–3661. https://doi.org/10.24963/ijcai.
2018/508

36. Zhang Y, Haghani A (2015) A gradient boosting method to improve travel time prediction. Transp Res
Part C: Emerg Technol 58:308–324

393Geoinformatica (2022) 26:379–395

https://doi.org/10.1145/3219819.3220033
https://doi.org/10.24963/ijcai.2018/482
https://doi.org/10.1007/s11280-017-0472-y
https://doi.org/10.1109/ITSC.2013.6728569
https://doi.org/10.1145/2247596.2247616
https://doi.org/10.1145/2247596.2247616
https://doi.org/10.1007/978-3-642-40235-7_8
https://doi.org/10.1109/MDM.2013.34
https://doi.org/10.1109/MDM.2014.66
https://doi.org/10.1109/MDM.2014.66
https://doi.org/10.1007/s10707-015-0227-9
https://doi.org/10.1016/j.neucom.2016.02.085
https://doi.org/10.1109/TKDE.2018.2854705
https://doi.org/10.1007/s10707-019-00358-x
http://arxiv.org/abs/1411.7783
https://doi.org/10.1145/2623330.2623656
https://doi.org/10.1145/3219819.3219900
https://doi.org/10.1007/s10619-014-7146-x
https://doi.org/10.1016/j.future.2019.03.010
https://doi.org/10.1016/j.future.2019.03.010
https://doi.org/10.14778/2536360.2536375
https://doi.org/10.1109/ICDE.2014.6816646
https://doi.org/10.1109/ICDE.2014.6816646
https://doi.org/10.24963/ijcai.2018/508
https://doi.org/10.24963/ijcai.2018/508

37. Zheng Y, Li Q, Chen Y, Xie X, Ma W (2008) Understanding mobility based on GPS data. In: Youn
HY, Cho W (eds) UbiComp 2008, ACM, vol 344. ACM International Conference Proceeding Series,
pp 312–321. https://doi.org/10.1145/1409635.1409677

38. Zheng Y, Zhang L, Xie X, Ma W (2009) Mining interesting locations and travel sequences from GPS
trajectories. In: WWW 2009. ACM, pp 791–800. https://doi.org/10.1145/1526709.1526816

39. Zheng Y, Xie X, Ma W (2010) Geolife: A, collaborative social networking service among user, location
and trajectory. IEEE Data Eng Bull 33(2):32–39

40. Zhu S, Wang Y, Shang S, Zhao G, Wang J (2017) Probabilistic routing using multimodal data.
Neurocomputing 253:49–55. https://doi.org/10.1016/j.neucom.2016.08.138

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Saijun Xu received the B.S degree from Soochow University. She
is currently a M.Sc. Candidate of Soochow University. Her research
interest includes Spatio-temporal Data Mining.

Ruoqian Zhang is a faculty member of school of computer science
and technology, Soochow university. Her research interests include
spatial databases and data mining.

394 Geoinformatica (2022) 26:379–395

https://doi.org/10.1145/1409635.1409677
https://doi.org/10.1145/1526709.1526816
https://doi.org/10.1016/j.neucom.2016.08.138

Wanjun Cheng received the Ph.D. degree in Computer Application
Technology in Northeastern University, Shenyang, China, in 2003.
He is an architect and an advanced engineer in Neusoft Corpora-
tion, Shenyang, China. His research interests include spatiotemporal
data mining, software engineering and architecture, computer vision,
natural language processing, information security.

Jiajie Xu received his M.S. and Ph.D. degree from Swinburne Uni-
versity of Technology and University of Queensland in 2006 and
2011 respectively. He is currently an associate professor of Soochow
University. His research interests include Spatiotemporal Database
Systems and Big Data analytics.

395Geoinformatica (2022) 26:379–395

	MTLM: A Multi-task Learning Model for Travel Time Estimation
	Abstract
	Introduction
	Related work
	Problem formulation
	Problem Statement

	The MTLM framework
	Data preparation layer
	Transportation-mode recommendation layer
	Ladder network structure
	Cost function in transportation-mode recommendation

	Travel time estimation layer
	Multi-task learning in training

	Experiments
	Datasets
	GeoLife-labeled:
	GeoLife-unlabeled:

	Implementation details
	Evaluation metrics
	Baselines
	Performance comparison
	Model analysis
	Different grid size comparison
	Different convolutional kernel size comparison
	The analysis of transportation-mode recommendation layer

	Conclusion
	References

