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Abstract
Key Smart City applications such as traffic management and public security rely heavily
on the intelligent processing of video and image data, often in the form of visual retrieval
tasks, such as person Re-IDentification (ReID) and vehicle re-identification. For these tasks,
Deep Neural Networks (DNNs) have been the dominant solution for the past decade, for
their remarkable ability in learning discriminative features from images to boost retrieval
performance. However, it is been discovered that DNNs are broadly vulnerable to mali-
ciously constructed adversarial examples. By adding small perturbations to a query image,
the returned retrieval results will be completely dissimilar from the query image. This poses
serious challenges to vital systems in Smart City applications that depend on the DNN-
based visual retrieval technology, as in the physical world, simple camouflage can be added
on the subject (a few patches on the body or car), and turn the subject completely untrack-
able by person or vehicle Re-ID systems. To demonstrate the potential of such threats,
this paper proposes a novel adversarial patch generative adversarial network (AP-GAN)
to generate adversarial patches instead of modifying the entire image, which also causes
the DNNs-based image retrieval models to return incorrect results. AP-GAN is trained
in an unsupervised way that requires only a small amount of unlabeled data for training.
Once trained, it produces query-specific perturbations for query images to form adversarial
queries. Extensive experiments show that the AP-GAN achieves excellent attacking perfor-
mance with various application scenarios that are based on deep features, including image
retrieval, person ReID and vehicle ReID. The results of this study provide a warning that
when deploying a DNNs-based image retrieval system, its security and robustness needs to
be thoroughly considered.
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1 Introduction

A major goal of Smart City technologies is to connect, protect, and enhance the lives of cit-
izens with advanced information technology. The research and application of smart cities
are very diverse highly diverse, including smart transport [35], smart health [11, 45], and
smart security [53], etc. In recent years, Deep Learning has driven the development and
application of smart city systems greatly. Benefiting from their strong feature extraction
capabilities, Deep Neural Networks (DNNs) have been widely applied in numerous smart
city systems and achieved state-of-the-art performance in a variety of applications such as
image classification [37], object detection [32], video surveillance [39, 44] and autonomous
driving [4]. Many of these applications, such as smart traffic control or security surveil-
lance are fundamentally relying on Content-based image retrieval (CBIR). For example,
person Re-Identification (ReID), vehicle ReID and face search, which are widely deployed
in the urban video surveillance systems, are all derived from image retrieval algorithms.
These systems are used to retrieve the images of a person or a vehicle, recorded by different
surveillance cameras.

However, the safety and robustness of DNNs have received increasing attention of many
researchers as various investigations report that DNNs are prone to maliciously constructed
adversarial examples [9]. Adversarial example as an attack method to DNNs was originally
introduced in [40]. It found that deep image classification models will output a false result
with high confidence for input images with well-designed indistinguishable disturbances.
Subsequently, adversarial examples were found in the models for various tasks, such as
object detection [55], semantic segmentation [50], image caption [51], etc. DNN’s vulner-
ability to adversarial examples has become one of the major risks for applying DNNs in
critical environments, such as Smart City systems and Automated Driving Systems (ADS).
In this work, we studied the potential security risks of these visual retrieval systems in smart
cities. It warns that when deploying a DNNs-based image retrieval system, it is necessary
to thoroughly consider its security and robustness.

Early methods on adversarial examples need to manipulate each pixel in the digital image
[40], but this is not viable for attacks in the physical world. In real-life Smart City appli-
cations, the image is usually directly captured by the camera, and can not be modified for
each pixel. However, an adversarial patch [3, 7, 19, 41] can serve as an alternative method to
generate adversarial examples and be applied in the physical world (e.g. printed as stickers
on body of subject), as an agent to carry to attack against the retrieval system. Inspired by
recent advances in adversarial patch generation, we further propose a novel method to gen-
erate adversarial patches, which aims at attacking image retrieval systems and its derived
applications: person ReID and vehicle ReID. Our method produces Adversarial Patch with
Generative Adversarial Networks, and is called AP-GAN. AP-GAN aims at attacking the
image retrieval systems by learning to generate the adversarial patches, when ‘sticked’ on
the objects (e.g., buildings, persons, vehicles) regions in the image, the image retrieval sys-
tems return dissimilar images. In Fig. 1, we show the process of generating an adversarial
patch and the example of adversarial patch attack.

Attacking an image retrieval system is very challenging. For the image retrieval system,
the image is represented by the feature maps generated by convolutional layers, and the
similarity between two images is determined by the Euclidean distance or cosine similarity
of their feature vectors. The distance between feature vectors is usually invariant and robust
to minor local changes. Based on this observation, Naveed et al. [1] proposed a nearest
neighbors defense strategy, to defense adversarial images via searching nearest-neighbor
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Fig. 1 The process of generating an adversarial patch by AP-GAN (top), and the example of adversarial patch
attack on person ReID system (bottom). The adversarial example is generated by placing the adversarial
patches on the original image. The person ReID system returns visually dissimilar retrieval results as a result
of the attack. The green and red borders on returned images denote correct and incorrect results, respectively

images from a large-scale image database. It is further proved that for image retrieval, minor
perturbations do not significantly affect the relative similarities or ranking results of the
candidates to the image. Furthermore, the image retrieval datasets lack well-defined labels.
To practically resolve these problems, on one side, we propose a metric learning-based loss
function to break the similarity relationship in the image retrieval system. On the other side,
we train the AP-GAN in a self-supervised way, i.e., only a small amount of unlabeled data
for training. Once trained, the AP-GAN can generate adversarial patches without accessing
the attacked target model any more. Therefore, AP-GAN is a semi-whitebox [49] attack
approach.

To evaluate the performance of our proposed approach, we report results on three tasks:
content-based image retrieval, person ReID and Vehicle ReID. The results show the effec-
tiveness of our method on several widely used benchmark datasets. In addition, we conduct
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a series of ablation experiments to analyze the impact of each component in our architecture
on the performance. The adversarial patches generated by AP-GAN can consistently attack
the image retrieval system successfully, signalling an imperative need for the research com-
munity to improve the security and the robustness of DNNs-basd image retrieval systems.
In summary, our main contributions are four-fold:

– We propose an efficient GAN-based attack framework called AP-GAN for generating
region-restricted adversarial patches which can be physically printed out and carried to
attack image retrieval systems.

– AP-GAN is trained in a self-supervised way and requires only a small amount of
unlabeled images for training. Once trained, it can instantly generate visually natural
adversarial patches for any input.

– We evaluate AP-GAN on three tasks: content-based image retrieval, person ReID and
Vehicle ReID. Empirical results show high effectiveness of Ap-GAN in all tasks.

– Our method exposes potential security risks in the smart city systems, prompting us
to consider its robustness when using the DNNs-based image retrieval models and
enhance the defense capabilities against malicious attacks such as against samples.

The rest of the paper is organized as follows. Relevant literature is surveyed in
Section 2. Our network structure and learning details are presented in Section 3. Section 4
reports comprehensive experimental results and analysis. Finally, we conclude our work in
Section 5.

2 Related work

2.1 Smart city and urban computing

Smart city and urban computing aim to enhance both human life and urban environment
smartly through fusing the computing science with traditional fields in the context of urban
spaces [58]. Most studies on urban computing and smart city focus on managing and ana-
lyzing urban data generated by a diversity of sources in urban spaces. The urban data is
usually massive, heterogeneous, and spatio-temporal [5]. In recent years, surveillance cam-
eras are widely deployed in urban areas. The applications based on video and image data
have become an important part of smart city systems. The range of these applications is very
diverse, including face recognition [33], crowd flows prediction [54], person ReID [57],
vehicle ReID [20], etc. These applications are critical to citizens’ lives and city operations,
so the security risks they may be exposed to need to be thoroughly considered.

2.2 Image retrieval

Image retrieval aims to search from a large scale image database for similar images as the
query.

It has been widely used in real-life Smart City applications. Person ReID and vehicle
ReID are the two most essential derived application of image retrieval, most of the state-of-
the-art methods are based on DNNs. ReID methods aim at searching in the gallery, captured
from non-overlapping cameras, for images containing the same person/vehicle with the
query image. The latest DNN-based image retrieval methods represent images by aggregat-
ing the deep features extracted from a pre-trained or a fine-tuned CNNmodel. The similarity
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between two images is then directly measured by the euclidean distance or cosine similarity
of two image representations in the deep feature space.

An intuitive way to produce the aggregated feature is sum-pooling (SPoC [2]) or max-
pooling (MAC [42]) the feature maps output from convolutional layers. CroW [14] applies
both cross-dimensional and spatial weighting before sum-pooling to create powerful image
representations. There are methods that further improve the performance of image retrieval
by fine-tuning the backbone networks (e.g., VGG, ResNet) on task-related datasets. Filip
et al. proposed a trainable Generalized-Mean (GeM) pooling layer in [30], which has been
shown to outperform previous state-of-the-art approaches.

Person ReID and vehicle ReID, as derived tasks from image retrieval, have attracted a
substantial amount of research efforts for their common usage in Smart City applications.
Feature representation learning methods normally consider a ReID model as a multi-class
classification problem by treating each identity as a distinct class. These methods include:
global feather representation learning [57], local feature representation learning [39] and
hybrid representation learning [44]. Other methods treat ReID as deep metric learning
paradigm, they aim at constructing a feature space by pulling similar images closer while
pushing dissimilar images further in the target feature space, by designing different batch
sampling strategies and metric loss functions. The most commonly used loss functions
include contrastive loss [47], triplet loss [6] and their variants. Some methods study the
strategy for informative batch sample mining, such as hard negative mining [36], semi-hard
negative mining [33], online hard triplet mining [46].

2.3 Generative adversarial networks

Generative Adversarial Networks (GANs) are first proposed by Goodfellow et al. [8], who
formulated the GAN framework as a two-player min-max game between two adversar-
ial networks. Radford et al. proposed Deep Convolutional GANs (DCGANs) [31], which
introduced convolutional layers and convolutional-transpose layers to GANs architecture.

Because of the powerful capability for capturing data distribution and generating realistic
images, GANs have achieved excellent performance on many image-to-image translation
tasks, like image super-resolution [17], image deblurring [15], style transfer [48], image
synthesis [13], etc. Despite the tremendous successes, GANs still suffer from the challenges
of model collapse and instability in training. Numerous methods have been proposed to
address these problems by improving the optimization objectives. For instance, LSGANs
[23] uses the least-squares loss function instead of the sigmoid cross-entropy loss function
for the discriminator, making the training process more stable.

2.4 Adversarial examples

The adversarial example is first proposed in [40], which proves small and intentional per-
turbations can mislead machine learning models to make false predictions. After that, much
effort has been dedicated to construct adversarial examples to attack machine learning sys-
tems. Goodfellow et al. [9] proposed the fast gradient sign method (FSGM), which adds a
small error multiplied by the sign of the gradients to the input to generate adversarial exam-
ples. Basic Iterative Method (BIM) [16] is the iterative version of FSGM, which produces
better adversarial images by applying gradient update and clipping repetitively.

DeepFool [24] assumes that the example space is divided by hyperplane and iteratively
move the input along the direction of closet decision boundary in a few iterations and acquire
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a minimal norm adversarial perturbation. AdvGAN [49] utilizes generative adversarial
networks to produce adversarial examples, which visually closer to the natural image.

Unlike methods that generate different perturbations for each image, Universal Adversar-
ial Perturbations (UAP) [25] computes an image-agnostic adversarial perturbation. In order
to produce imperceptible adversarial perturbations, most of the methods directly modify
pixel values of the digital image. However, in real-world scenarios, such as person ReID,
the input of the model is taken directly by the camera. It is impossible to generate adversar-
ial examples by precisely controlling the value of each pixel in such scenarios. Therefore,
some researchers turn to the study of adversarial patch attack [3], which produces adversar-
ial example by generating an adversarial patch. The patch can be placed in a certain area,
such as the area of a person’s shirt and the wall of a building, so that such attacks could
be performed from the physical world. DPATCH [21] learns and embeds a small patch in
the input image and performs an effective attacking against the state-of-the-art object detec-
tor. Perceptual-Sensitive GAN (PS-GAN) [19] focuses on attacking image classification
models through generating an adversarial patch with GAN. Akshayvarun et al. [38] pro-
posed Occluding Patch, which is generated to fool both the classifier and the interpretation
models of the resulting category, such as Grad-CAM [34]. A recent survey [52] provides a
comprehensive review of adversarial example attacks.

The most related literature to AP-GAN includes recently proposed PIRE [22], retrieval-
based UAP [18] and TMAA [43]. All three methods are targeting at image retrieval systems.
PIRE calculates the perturbations through hundreds of continuous iterations, which is very
time-consuming. In addition, PIRE is a white-box attack, which needs to know all the
details of the target network when generating adversarial examples. Retrieval-based UAP
[18] extends the UAP algorithm [25] from attacking the classification applications to image
retrieval. It seeks a universal image-agnostic adversarial perturbation for all query images.
TMAA is a targeted mismatch attack for image retrieval and is focused on concealing
the query in a privacy preserving scenario. Different from the above works, our AP-GAN
focuses on generating visually natural adversarial patches by GANs. The adversarial patch
attack is closer to the attack mode of the physical world. To the best of our knowledge, this
is the first paper that aims at studying how to generate adversarial patches to attack against
image retrieval systems.

3 Methodology

The core goal of this work is to attack image retrieval systems by adding an adversarial
patch to the query image. In this section, we will first formulate the problem of adversarial
patch attack on deep feature-based image retrieval systems. Then, we present the network
architecture and loss function of our AP-GAN in detail. At last, we introduce the training
process.

3.1 Problem formulation

Given an input image x of sizeH×W , the feature maps (or activations) from a convolutional
layer l are denote as χ ∈ R

c×h×w . Let Tθ () be the target image retrieval network with
parameters θ , and F be the feature aggregate function (pooling function). We denote f as
the final deep representation of x, and fx = F(Tθ (x)). The similarity of two images (xi and
xj ) is measured by calculating the distance between the deep features of the two images via
a metric function d(fxi

, fxj
).
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In general, DNNs-based image retrieval systems improves the retrieval performance in
four ways: designing more effective feature aggregation functions (e.g., PoC [2], RMAC
[42], GeM [30]); fine-tuning pre-trained networks under a more efficient objective func-
tion (e.g., classification loss [26], contrastive loss [30], triplet loss [10]); improving
network architectures that yield more distinctive features(e.g., attention mechanism [26],
multi-branch network [44]); using a re-ranking approach further improving the retrieval
performance. In all four cases, the common purpose is to make similar images (or images
containing the same instance) have small distances in the deep features space, and vice
versa. Therefore, to successfully attack an image retrieval system, we need to invalidate
such properties while keeping the adversarial example as real and similar to its original as
possible.

We use x̃ represents the adversarial example (with normalized color values), which can
be formulated as:

x̃ = clip(x + δ, 0, 1), (1)

where δ represents the perturbation, and function clip(input, min, max) is used to limit all
elements in input into the range [min, max]. Here, we use clip() function to restrict the
pixels of the adversarial examples in the range of digital image space.

The adversarial patch is a special kind of adversarial example. The perturbation is only
added to a small area on the image, while the other areas remain unchanged. We take a
predefined constant binary matrix m as the mask, to determine the location and area of the
disturbance. The dimensions of m are the same with the input image, and we set the value
to 1 on the location of the adversarial patch added and 0 in everywhere else. In the case of
Adversarial patch attack, we can formulate the adversarial example as:

x̃ = clip(x � (1 − m) + δ � m, 0, 1), (2)

where � denotes the element-wise multiplication (hadamard product), and the perturbation
δ is generated by the generator of AP-GAN.

The generated perturbation is expected to push the query image away from the original
image in the deep feature space. This can be described the following objective function:

maximize d(fx, fx̃),

s.t . ‖δ � m‖∞ ≤ ε, x̃ ∈ [0, 1], (3)

where ‖δ � m‖∞ ≤ ε is used to restrict the max volume of adversarial patch through clip()

function, and ε is a parameter.
However, if we only optimize (3), we will obtain an adversarial example that is visually

and significantly different from the original. The distance between the features and the mag-
nitude of the perturbation compete with each other. Excessive distance will result in a big
perturbation, and small perturbation may lead to the inability to effectively push away the
features. To find a balance between maximizing the distance of the features and minimiz-
ing perturbation, we propose a novel loss function based on metric learning, with adaptive
margin, in Section 3.3.

3.2 The architecture of AP-GAN

GANs have achieved remarkable results in many image generation tasks recently [15, 17].
AP-GAN is inspired by these works, and employ a GANs-based framework to generate
effective yet natural and subtle perturbations. The overall architecture of the AP-GAN is
shown in Fig. 2.
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Fig. 2 The overall architecture of the AP-GAN attack framework. We designed four loss functions: the GAN
loss enforces that the adversarial example looks like a natural image as much as possible; the attack loss is
used to push the adversarial example always from the original query image in the deep feature space; the
content loss and TV loss act as regularization to restrict the level of perturbations

AP-GAN contains a generator and a discriminator. The generator that learns to gener-
ate a deceptive adversarial patch for each input image. By adding the adversarial patch to
the input image, we obtain the adversarial example. The discriminator is used to distinguish
generated adversarial examples from the real images in the training phase. In addition, dur-
ing training, we need to be able to obtain the final features of the input images from the
target network. The features are used to calculate the distance between the images in the
deep feature space. In this case, the target network is the feature extraction network of the
target image retrieval system.

3.2.1 Generator

In AP-GAN, the generator G is used to generate query-specific perturbations by mapping
the input query images to the adversarial perturbations manifold. We use the encoder-
decoder CNN architecture to build the generator, which allows the network to fuse the
hierarchical features to generate perturbation. G begins with three convolutional layers
and four residual blocks, with skip-connections [12], down-samples, and encodes the input
image into a latent-space representation. The residual block is composed of two convolu-
tional layers followed by a batch normalization layer, and a ReLU activation layer is placed
after the first convolutional layer. Each convolutional layer in the residual block contains 32
kernels using kernel size of 3 and stride of 1 and padding. The skip-connection in the resid-
ual block is used to accelerate the convergence process by elevating the vanishing gradient
phenomenon. As the deconvolution layer often creates checkerboard pattern of artifacts,
to obtain more realistic images, we use the resize-convolution approaches (an upsampling
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layer followed a convolutional layer) instead of deconvolution layer for up-sampling. The
decoder maps the latent-space representation to the adversarial perturbation space. The size
of perturbation is the same as the input image. Finally, the adversarial patch is obtained by
the element-wise multiplication of the perturbation and predefined mask matrix.

3.2.2 Discriminator

For AP-GAN, the role of the discriminator D is to determine whether the input image is a
generated adversarial example or a real image. The architecture of D is fairly straightfor-
ward: it consists of four convolution blocks, each of which is composed of a convolutional
layer, a batch normalization layer, and a Leaky ReLU function. The last layer of D is
a global average pooling layer followed with the sigmoid function, which generates a
one-dimensional output that represents the probability of input being a real image.

3.2.3 Target network

In the inference phase, the AP-GAN does not need to access the target network. But in the
training stage, in order to calculate the similarity between images, AP-GAN needs to obtain
the representation of the images in the image retrieval system. No matter how diverse the
network structure is, most DNNs-based image retrieval systems represent the image as a
fixed-length feature vector. The similarity between images is measured by a distance metric
function, such as L2 distance or cosine similarity. For AP-GAN, details about the target net-
work’s architecture is insignificant, the only information required is the representation of the
images. The architecture of the network could remain a black box to AP-GAN. This shows
that AP-GAN provides an attack method with excellent transferability and generalizability.

3.3 Loss function

The optimization objective is used to reduce the retrieval accuracy while ensuring the per-
turbation adapts the style of the image. In order to achieve the above objective, we use four
loss functions to jointly guide the training process of the AP-GAN, include a content loss,
a GAN Loss, an attack loss, and a total variation (TV) Loss. The content loss is used to
penalizes the generator for introducing differences from the adversarial example to the input
image. The GAN loss is used to make the generated adversarial examples look like real
images. The attack loss is used to break the similarity relationship between images, which
is the key to achieve an effective attack. The TV loss is a regularization item, to make the
adversarial example smooth.

3.3.1 Content loss

The content loss uses the square error function to measure the difference between the input
image and the adversarial example. We minimize the content loss to ensure that the adver-
sarial example is as visually similar as possible to the original image. The content loss is
formulated as below:

Lcontent = ∥
∥x̃ − x

∥
∥2
2 , (4)

where x is the original image and x̃ is the generated adversarial example. The x̃ is the finally
adversarial example, defined in Eq. 2.
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3.3.2 GAN loss

In AP-GAN, the generator produces adversarial patches, and then adds it to the input image
as adversarial examples. The goal of the generator is to fool the discriminator and make
it mistakenly believe the adversarial example is a sample from the real image distribution.
Meanwhile, the discriminator tries to distinguish the generated adversarial example from
the real image. For a stable training process, we use the least squares loss [23] instead of the
cross entropy loss. The GAN loss for the generator and the discriminator can be defined as
follows:

LGAN D = Ex∼px [(D(x) − 1)2] + Ex̃∼p(x̃|x)
[(D(x̃))2], (5)

LGAN G = Ex̃∼p(x̃|x)
[(D(x̃) − 1)2], (6)

where px is the distribution of real images and p(x̃|x) is the conditional distribution of
adversarial examples, given x ∼ px .

3.3.3 Attack loss

The goal of attack loss is to push the adversarial example away from the original image
and its neighbors in the deep feature space. However, this simple intuition requires much
effort to formulate into feasible optimization objectives. A large distance may lead to the
adversarial patch abrupt, on the other hand, a small distance can not produce an effective
attack. So, how far is it appropriate to push the adversarial example?

To address the problem, we propose an adaptive strategy based on triplet loss [33]
and online hard negative mining [46], It is illustrated at the bottom right of Fig. 2. Let
< x, x̃, x′ > denote a triplet, where x is the original input image, x̃ is the generated adver-
sarial example and x′ is the hardest example (i.e., the image with the largest distance from x

in the batch). AP-GAN determines the appropriate distance by making the distance between
x and x̃ greater than that of x and x′ by a given margin α. The constraint can be written as:

d(fx, fx′) + α+ ≤ d(fx, fx̃), (7)

where α is a given scalar, used to control the margin. The attack loss function can be defined
as:

Lattack = max(d(fx, fx′) + α − d(fx, fx̃), 0). (8)

3.3.4 Total variation loss

The TV loss is most often used for image denoising and image inpainting, for imposing local
spatial continuity. This motivates us to use the TV loss in PS-GAN, making the generated
adversarial patch look smooth and coordinated with the surrounding. The TV loss is:

Ltv =
∑

i,j

√

(x̃i,j+1 − x̃i,j )2 + (x̃i+1,j − x̃i,j )2. (9)
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3.3.5 Total Loss

Finally, the total loss of the proposed AP-GAN is defined by the combination of the loss
functions aforementioned:

LG = LGAN G + λcLcontent + λaLattack + λtvLtv, (10)

LD = LGAN D, (11)

where λc, λa , and λtv are the corresponding weights, as hyper-parameters balance the
contribution of each part.

3.4 Training process

Training AP-GAN is an iterative process that G and D perform alternating gradient descent
over mini-batches. The detailed training procedure is formally presented in Algorithm 1. In
the first step, we sample a batch data from the training set as input images, and send them
to the fixed G (with a mask), to generate adversarial patches. Then we paste these patches
on the original input image as fake images. Both the real images and fake images are then
sent to D to calculate the GAN loss for D (LGAN D) for the optimization of D’s parame-
ters. In the next step, we fix the parameters of D, and send the generated fake images to D

to calculate the GAN loss for G (LGAN D). G is then optimized by the weighted sum of
four losses (i.e., LGAN G, Lcontent and Lmetric). For each batch, D and G are alternately
optimized in such training process. The final output of the training process is the genera-
tor model, which used to generate adversarial patches during the inference time. After the
training is completed, the G can instantly generate the adversarial patches without D.

4 Experiments

In this section, we first describe the experiment setups, including the used datasets, the
evaluation metrics and the implementation details. We then report the performance of our
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approach on three tasks: image retrieval, person ReID and vehicle ReID, respectively. At
last, we conduct a series of ablation studies to analyse the impact of each component on the
performance and show the robustness of adversarial patches generated by AP-GAN.

4.1 Datasets and evaluation protocols

We evaluate the proposed AP-GAN on three tasks: image retrieval, person ReID and vehicle
ReID. Public benchmark datasets are used in our experiments: Oxford5K [27] and Paris6K
[28] for image retrieval, Market-1501 [56] and DukeMTMC-ReID [59] for person ReID
and VeRi776 [20] for Vehicle ReID.

4.1.1 Evaluation Datasets

– Oxford5K is the Oxford Buildings Dataset, which contains 5062 images collected from
Flickr. It offers a set of 55 queries for 11 landmark buildings, five for each landmark.

– Paris6K, similar to Oxford5k, the Paris6k dataset are composed of 6,412 images
collected from Flickr by searching for Paris landmarks.

– Market1501 contains 32,688 annotated bounding boxes of 1,501 individuals. 751
persons’ images are used for training and 750 persons’ are used for testing.

– DukeMTMC-ReID is constructed from a large-scale multi-target multi-camera track-
ing dataset DukeMTMC. We use 702 persons for training and the remaining 702
persons for testing from DukeMTMC-ReID.

– VeRi776 contains 51,035 images of 776 vehicles, which were captured by 20 cameras
on a circular road of 1.0 km2 areas. The training set contains 576 identities and the test
set contains the remaining 200 identities.

It should be noted that Oxford5K and Paris6K do not contain training sets and can
only be used to evaluate the performance of image retrieval systems. Therefore, we use
the images from retrieval-SfM-30k [29] as the training set, when training AP-GAN to
attack image retrieval models. Retrieval-SfM-30k is composed of 30,012 images, down-
loaded from Flickr using keywords of landmarks. When training AP-GAN, we only use
1,691 query images in retrieval-SfM-30k.

4.1.2 Evaluation metrics

We follow widely-used evaluation metrics reported in other research papers, using mean
Average Precision (mAP) and accuracy at Rank-1, Rank-5 and Rank-10 as the evaluation
protocols. We evaluate the attacking performance of AP-GAN by comparing the values of
these metrics before and after the adversarial attacks. Note that lower mAP and accuracy at
Rank-[1, 5, 10] indicate more successful attacks, and hence better attack performance for
the corresponding model.

4.2 Implementation and parameter settings

All of our models and experiments are implemented in PyTorch framework.1 The exper-
imental server is equipped with 4 NVIDIA TITAN Xp GPUs, 4 Intel Xeon Silver CPUs
and 128GB of RAM. Adam is used to optimize the discriminator and generator with the

1https://pytorch.org/
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following hyper-parameters: beta1 = 0.9, beta2 = 0.999, epsilon = 1e − 8. The AP-
GAN model is trained for 10 epochs and the learning rate set to is 0.001 for the generator
and 0.004 for the discriminator. ε in Eq. 1 is set to 0.5, and the margin α in attack loss is set
to 1. We set batch size to 32, λa = 8, λtv = 10 and λc = 1 for image retrieval; and batch
size 256, λa = 8, λtv = 10 and λc = 1 for person ReID and vehicle ReID.

The adversarial patch can be of any shape and size, placed anywhere in the image. For
convenience, in the experiments, we place it in the center of the picture. To verify that the
adversarial patch can adapt to any shape, we set the adversarial patch to:

– a square shape with 200 pixels side length for image retrieval;
– a circle shape with 60 pixels diameter for person ReID;
– a triangle shape with 80 pixels side length for vehicle ReID.

In section 4.4 we will discuss the impact of each component, including the size and position
of the adversarial patch and the weights used in loss functions.

4.3 Adversarial attacks results

4.3.1 Results for image retrieval

For the image retrieval task, we evaluate the attacking performance of AP-GAN on two
target retrieval networks (VGG16 and ResNet101) with two feature aggregate functions
(MAC, GeM). need citations here We performed attacks on four target image retrieval
networks: VGG-MAC, VGG-GeM, ResNet-MAC, ResNet-GeM. The target image retrieval
models are provided by [30],2 including the public released code and pre-trained models.
For Oxford5K and Paris6K datasets, the image size is usually 1024 × 768 for horizontal
images and 768 × 1024 for vertical images. We set the adversarial patches to a square of
200 × 200 pixels, accounting for only 5.09% of the total pixels of the image.

Table 1 summarizes the attacking results of AP-GAN on Oxford5K and Paris6K. The
name ‘original’ represents the case with no adversarial attack. We observe that, on both
Oxford5K and Paris6K datasets, AP-GAN has achieved superior attacking performance
against the four image retrieval models. For example, on the Oxford5K dataset, the origi-
nal mAP of VGG-MAC, VGG-GeM, ResNet-MAC, ResNet-GeM are 0.818, 0.849, 0.769
and 0.862, respectively. Then, the mAP drops drastically to 0.149, 0.289, 0.413 and 0.276
after the attack, indicating that the four image retrieval systems are completely disrupted
by the AP-GAN. From the accuracy at Rank-[1, 5, 10] evaluation metrics, we can see sim-
ilar results where AP-GAN leads to an drastic drop in retrieval accuracy and renders the
retrieval completely a failure.

We compare our proposed AP-GAN with recent released retrieval-based UAP [18], and
the results are shown in Table 1. It is evident that, apart from the ResNet-MAC model,
AP-GAN consistently outperforms retrieval-based UAP on the other target image retrieval
models and all the datasets. For retrieval-based UAP in the ResNet-MAC model, AP-GAN
also obtains close results to the winning model. It is particularly important to note that AP-
GAN only modifies about 5% of the pixels in the image, but the retrieval-based UAP affects
all pixels in the image, which makes UAP unviable as an attack approach from the physi-
cal world for Smart City applications. Figure 3 illustrates a set of examples of adversarial
patch attack results on VGG16-MAC models on Oxford5K and Paris6K datasets. As the red

2http://cmp.felk.cvut.cz/cnnimageretrieval/
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Fig. 3 Examples of adversarial attack results on Oxford5K(top 4 rows) and Paris6K(bottom 4 rows). Each
group contains two rows of images, the first row is the original retrieval results, and the second row is the
image retrieval results after being attacked by AP-GAN
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borders indicate, AP-GAN’s adversarial patches successfully cripple the image retrieval sys-
tem and have it return completely irrelevant images. Observing the adversarial samples, we
can find that the adversarial patch is located in the middle of the pictures as designated and
has a good fusion with the surrounding area.

4.3.2 Results for person ReID

For person ReID, we study two typical networks: ResNet50 [57]3 andMGN [44].4 Resnet50
is a classic method based on global features, and MGN is based on multi-scale features,
using both global and local features. We carry out detailed experiments on Market1501 and
DukeMTMC-ReID datasets.

Table 2 reports the quantitative results recorded at ranks 1, 5, and 10 and mAP on Mar-
ket1501 and DukeMTMC-ReID datasets. We can see that AP-GAN greatly reduces the
effectiveness of the MGN model and the ResNet50 model on both datasets. From empiri-
cal results, we confirm that the person ReID systems are also very vulnerable to adversarial
patches generated by AP-GAN. Comparing the attack results of ResNet50 and MGN, it can
be seen that the attack results on MGN are slightly worse. In other words, the ReID system
based on the MGN model is more robust to attacks. Analysis show that it could be that the
patch only exists in some areas of the original image (usually only 5%), while the other areas
are still unmodified images. Therefore, the methods, such as MGN, that use local features
will be less affected than the methods based on global features.

We quantitatively compare the performance of the proposed method with the previous
state-of-the-art adversarial attack methods on the classification task, including FGSM [9],
BIM [16], DeepFool [24]. Table 2 shows substantial performance advantage of AP-GAN
over all state-of-the-arts with significant leads in both Rank-1 and mAP. The experimental
results reflect that the adversarial sample model proposed for image classification is not
suitable for image retrieval tasks. And AP-GAN has achieved very competitive empirical
results, by tampering with the similarity relationship of the images, through the proposed
loss functions.

Adversarial attack results on Market1501 and DukeMTMC-ReID datasets are presented
in Fig. 4. Again, red borders indicate incorrect images retrieved and green indicates cor-
rect ones. The attack’s effect is very obvious, with almost all the nearest neighbor images
returned being false matches. Looking closely at the images of the adversarial examples,
e.g. the first image in the bottom row, we can observe the unobtrusive circular adversarial
patch in the middle of the person. It can be a sticker physically on the person if we aim to
perform attacks on suivallance systems through live camera feeds.

4.3.3 Results for vehicle ReID

For Vehicle ReID, we tested the attacking performance of AP-GAN on a competitive
existing model: open-VehicleReID,5 which achieved the state-of-the-art performance on
VeRi776 [20] dataset. We report the experimental results of open-VehicleReIDmodel before
and after the adversarial patch attack.

3https://github.com/layumi/Person reID baseline pytorch/
4https://github.com/seathiefwang/MGN-pytorch/
5https://github.com/BravoLu/open-VehicleReID
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Fig. 4 Examples of attack results on Market1501 (top) and DukeMTMC-ReID (bottom) datasets. The green
and red borders denote correct and incorrect results, respectively
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The attack method named ‘original’ represents the situation with no adversarial attack.
As can be observed from Table. 3, the mAP, accuracy at rank-1, 5, and 10 have dropped
down to a very low level. Even the Rank-10 accuracy is below 0.4, which means that we
can hardly find the correct vehicle image from the top 10 results. The results demonstrate
that the vehicle search model has almost no defense ability against the adversarial attacks
from AP-GAN. Some of the adversarial attack results are presented in Fig. 5.

4.4 Ablation study

To verify the effectiveness of each individual component in AP-GAN, we conduct abla-
tion experiments on the Market-1501 dataset for the person ReID task. First, to investigate
the contribution of each part in the overall loss function, we compare the performance of
AP-GAN by deliberately removing certain parts of the loss. Then, we compare perfor-
mance of AP-GAN by setting the hyperparameters at different values. At last, we report the
performance of our approach when setting the different sizes to adversarial patches.

4.4.1 Different loss functions

To optimize the AP-GAN, we use 4 kinds of loss in the final loss function, they are: content
loss, GAN Loss, attack loss, and TV Loss. We use ‘no-content’, ‘no-attack’ and ‘no-tv’ to
represent the AP-GAN without content loss, attack loss, and TV Loss, respectively. The
named ‘original’ represents the results with no adversarial attack. The results are reported
in Table 4.

We found empirically that the ‘no-attack’ model has little impact on reducing the retrieval
performance of resnet50 on the two datasets. The ‘no-content’ and ‘no-tv’ get better attack
results than complete AP-GAN. Such results confirm our expectations when designing the
loss function. That is, the attack effect is controlled by attack loss, and the quality of the
generated adversarial examples are controlled by content loss and TV loss.

4.4.2 Different weights of loss function

In order to further clarify the impact of the weights of different loss functions on the
model, we compared the performance of AP-GAN when different hyperparameters were
adopted. In Table 5, we present the mAP and accuracy at rank-[1, 5, 10] on Market1501 and
DukeMTMC-ReID varying different weights. We also visualize the comparison results in
Fig. 6, to show off how weight parameters influence the attacking performance of AP-GAN.

We can draw the following conclusions from Table 5 and Fig. 6: The weight parameters
λc and are used to control the difference between origin images and adversarial examples,
and λtv is used to make the generated adversarial patch looks smooth and coordinated with
the surrounding. Therefore, increasing these two parameters will improve the visual quality

Table 3 Detailed experimental results of adversarial attack on vehicle re-identification

VeRi776

Target network Attack method mAP rank1 rank5 rank10

open-VehicleReID original 0.747 0.948 0.983 0.992

AP-GAN 0.117 0.156 0.278 0.351
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Fig. 5 Examples of attack results on open-VehicleReID on VeRi776 dataset. Green box for correct samples
and red for incorrect samples

of the adversarial samples, but will result in a decrease in the performance of the adversarial
patch attack at the same time. The parameter λa is used to control the attacking performance
of AP-GAN, and the experimental results show that the larger value of λa , the better the
attacking performance.

4.4.3 Different patch sizes

Another factor that significantly affects the effectiveness of adversarial examples is the size
of the adversarial patch. The patch size determines how many pixels AP-GAN can modify
in an image. In general, the more pixels is modified, the more significant the attack result is.
But large patch sizes will cause a decrease in image quality, and lead to greater difficulties
to perform attack in the physical world. The obtained detailed results are shown in Table 6,
as we set the shape of adversarial patches to be circle shape for person ReID, the value of
patch size represents the diameter of the adversarial patches.

4.5 Robustness of attack

The goal of AP-GAN is to be able to attack various image retrieval systems in the real
physical world. When considering the adversarial attack in the physical world, it is very
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Fig. 6 Results of attacking the ResNet50 model, when setting the weights of the loss function to different values
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different from the digital world. By introducing the adversarial patch methods, we avoid the
need to consider and modify each pixel. Adversarial patch enables a potential risk in the
physical world, that is, successful attacks can be achieved by adding a specific sticker on
the pedestrian’s clothes, the vehicle’s surface, and the building walls, to work against the
retrieval-based systems.

There are two other important issues that need to be resolved if such attacks could be
viable in the physical world:

– First, in the physical world, objects are always moving, which will cause changes in the
position and shape of the adversarial patches.

– Second, usually in the physical world, the attacked target models are not accessible.

For the first problem, we simulate the situation of morphological changes in the real
world by applying affine transformations to the adversarial patches. For the second problem,
we will verify the transferability of AP-GAN across different models, to verify the attacking
performance of an AP-GAN trained by a retrieval model against the other models.

4.5.1 Affine transformation

In the real world, the angle and distance between the object and the camera may change.
For example, if the target is further away from the camera, the adversarial patches on the
target would be smaller. In view of different possibilities in the physical world, we deal with
the adversarial patches by selecting four types of affine transformation, namely translation,
scale, flip, and rotation, to verify the attack ability of the adversarial patches when encoun-
tering a morphological change. In Table 7, we show the results under different types of an
affine transformation. For example, we randomly select a rotate angle between −180◦ and
180◦ for each patch. Then we take the transformed adversarial patches as new adversarial
patches to test the adversarial effect.

From the Experimental results, we can find that despite making various affine transfor-
mations on adversarial patches, AP-GAN still maintains effective attack results. In addition,
it can be seen that the degree of influence of different types of transformations is different.
After the flip and the rotation transformations, the adversarial patches still maintain good
attack performance. However, the translation and the scale transformation greatly weakened
the attack ability of the adversarial patches.

4.5.2 Transferability

The transferability of adversarial attack methods means that the adversarial patch generated
for one target model will also mislead the other models. We evaluate the performance of
transfer attacks by cross-evaluating the performance of AP-GAN trained for different target
image retrieval networks.

Quantitative results are summarized in Table 8. The first column represents the target
model used to train the AP-GAN and the first row indicates the retrieval performance of the
original model without attack. Each subsequent row represents the retrieval performance
of these target retrieval models after being attacked by AP-GAN. Experiments demonstrate
that transferability exists commonly between different image retrieval models. In addition,
it can be seen that the transferability is more obvious between retrieval models based on the
same backbone networks, and weakened between models with different backbone network
structures. For example, the attacking model training for VGG-MAC has the similar attack-
ing performance to VGG-GeM, but has the lower attacking performance to ResNet-MAC
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Table 8 Transfer attacking results for image retrieval models on Paris6K

Trained with

Attack target
VGG-MAC VGG-GeM Res-MAC Res-GeM

no attack 0.788 0.860 0.852 0.907

VGG-MAC 0.126 0.295 0.438 0.424

VGG-GeM 0.180 0.267 0.399 0.377

Res-MAC 0.562 0.439 0.374 0.378

Res-GeM 0.473 0.436 0.382 0.295

and ResNet-GeM. The transferability of AP-GAN shows that even if the target retrieval
network is completely unknown, by training models on other networks, certain attacking
performance can be achieved on unknownmodels. It indicates potential of black-box attacks
in the physical world.

5 Conclusion

In this article, we propose a novel AP-GAN model, which can effectively generate adver-
sarial patch to attack the image retrieval systems, and making them return irrelevant results.
Our method demonstrates a viable method to perform adversarial attacks on image retrieval-
based Smart City applications in the physical world, where it is impossible to arbitrarily
modify the values of pixels in the image. AP-GAN is trained in a self-supervised way,
using only a few unlabeled images. Once trained, it is able to produce effectively image-
specific adversarial patches for any input image. Furthermore, AP-GAN is a semi-white
box attack method because it does not need to access the target network during inference
stage. And it has demonstrated a significant level of transferability across backbone models
for the retrieval systems. We conduct extensive experiments on several widely used bench-
mark datasets, demonstrating that AP-GAN is able to effectively cripple the performance of
various retrieval systems. The experiment results also show that the adversarial patch gen-
erated by AP-GAN has considerable transferable attack capabilities across different target
networks, and is robustness to affine transformations.
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