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Abstract
Investigating correlation between example features and example labels is essential to the
solving of classification problems. However, identification and calculation of the correlation
between features and labels can be rather difficult in case involving high-dimensional multi-
label data. Both feature embedding and label embedding have been developed to tackle this
challenge, and a shared subspace for both labels and features is usually learned by applying
existing embedding methods to simultaneously reduce the dimension of features and labels.
By contrast, this paper suggests learning separate subspaces for features and labels by max-
imizing the independence between the components in each subspace, as well as maximizing
the correlation between these two subspaces. The learned independent label components
indicate the fundamental combinations of labels in multi-label datasets, which thus helps to
reveal the correlation between labels. Furthermore, the learned independent feature compo-
nents lead to a compact representation of example features. The connections between the
proposed algorithm and existing embedding methods are discussed in detail. Experimental
results on real-world multi-label datasets demonstrate that it is necessary for us to explore
independent components from multi-label data, and further prove the effectiveness of the
proposed algorithm.
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1 Introduction

In real-world applications such as text categorization and medical diagnosis, an instance
often has multiple labels, which can lead to a multi-label classification problem arising. For
example, a given image may be labeled as ‘sky’, ‘tree’ and ‘mountain’. In recent years,
this multi-label classification problem has drawn increasing attention from researchers and
has been widely studied in many fields, e.g. multimedia annotation [9, 27, 36], web mining
[28, 28, 33], and tag recommendation [1, 19].

The multi-label classification problem can be treated as a generalization of traditional
multi-class classification. The major difference between the two is that labels are mutually
exclusive in multi-class classification; that is to say, an instance can only belong to one class
while multi-label classification focuses on instances that could simultaneously have more
than one label. Independently handling each label through a classical single-label classi-
fication would theoretically be straightforward; in practice, however, connections between
labels often exist. For example, the labels ‘tree’ and ‘mountain’ usually appear simultane-
ously in an image. Investigating the correlation between labels has been demonstrated to
be effective for improving the performance of multi-label classification, and many methods
have been devised to capture label correlation. For example, pruning the label set to distill
the most important label relationship [25, 29], including predicted labels as auxiliary fea-
tures to build up classifier chains [26], and applying the maximum margin strategy to deal
with multi-label data (Rank-SVM) [10] .

Due to the rapid development of the internet and social media, a large number of labels
are often associated with a single instance. For example, in image tagging, the number of
tags can easily go beyond tens or even hundreds of thousands. There are millions of cat-
egories on Amazon, but any new product has to be assigned to only a small number of
relevant categories before it goes on the website. The complexity of traditional methods is
usually increased as the number of labels in the dataset also increases, which makes the
handling of a large number of labels infeasible under most circumstances. Moreover, in a
large-scale multi-label dataset, the dimensions of example features also tend to be large.
Many approaches have been developed to tackle large-scale multi-label classification prob-
lems; these approaches aim to capture label correlation and tackle multi-label classification
from different points of view. The major idea behind embedding methods concerns learning
a low-dimensional subspace of the labels or features. Compared with one-vs-all methods,
these approaches can achieve significant speed-up. Embedding methods can be roughly
grouped into two subcategories; namely, FSDR (feature space dimension reduction) and
LSDR (label space dimension reduction).

FSDR involves learning the subspace of example features, e.g. using locality-preserving
projections to reduce the number of feature dimensions [13, 37, 42], while LSDR acts on
example labels, e.g. PLST [31], which discovers the label subspace using Principal Com-
ponent Analysis (PCA). Instead of separately investigating the subspaces of features and
labels in classical FSDR and LSDR, some works have integrated both feature and label
information, e.g. label-aware FSDR and feature-aware LSDR. MDDM [42] aims to find
a low-dimensional feature subspace with a maximal dependence on the labels. As a least
square extension of Canonical Correlation Analysis (CCA), LS-CCA [30] learns a feature
subspace under the supervision of labels. Moreover, Chen et al. et al. [8] proposed the
conditional PLST, which is a feature-aware extension of PLST.

Label-aware FSDR and feature-aware LSDR can be used effectively to integrate feature
and label information. However existing embedding methods generally rely on a single
subspace, which is discovered from feature space or label space, or shared by the features
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and labels. In practice, while redundancy exists in both features and labels, investigating
feature and label information in a shared subspace does not always yield accurate results;
moreover, although an instance can have a number of labels, the correlation between these
labels would naturally lead to limiting the possible types of label combinations. However,
independent component of labels has not been fully investigated.

In this paper, we propose to combine the advantages of FSDR and LSDR through the
learning of separated subspaces for features and labels. By maximizing the independence
between components in the label subspace, we discover label correlation represented by
independent label components. Furthermore, independent feature components are extracted
from example features so that independent coefficients can provide a compact representa-
tion of examples. We further maximize the correlation between label subspace and feature
subspace via a regression problem. As several existing methods can be regarded as spe-
cial cases of the proposed algorithm, their connections are thoroughly analysed in order to
reveal the advantages of the proposed framework. In addition, we conduct comprehensive
experiments on real-world datasets. The experimental results demonstrate that the pro-
posed algorithm can effectively discover independent components from multi-label data,
and thus bring about classification performance improvement. Furthermore, our method can
be extended to handle non-linear independent components of features and labels; we employ
a powerful non-linear neural network to achieve this extension.

2 Related work

Embedding methods are popular approaches to tackling the multi-label classification prob-
lem due to their simplicity, ease of implementation, and ability to handle label correlation. In
this section, we will first introduce some classic embedding-based approaches, after which
we will review some works that have successfully improved these conventional embedding
approaches.

The most basic multi-label classification method is binary relevance [40], which inde-
pendently trains a classifier for each label. Its primary advantage in multi-label learning
is efficiency. However, since multi-label learning techniques have diverse applications,
pure BR cannot achieve good performance in many specific applications, especially when
features and labels are high dimensional. Accordingly, some FSDR and LSDR meth-
ods were proposed to tackle this problem. Wang et al. proposed ML-LDA [34], which
is a classical Linear Discriminant Analysis (LDA) method for multi-label classification.
These authors redefined the scatter matrices to enable their approach to adapt to both
single-label and multi-label situations. Zhang et al. proposed MDDM [42] which aimed to
identify a low-dimensional feature subspace and maximize the dependence between fea-
ture subspace and label space using the Hilbert-Schmidt independent Criterion as their
measurement of dependence. Yu et al. introduced a supervised Latent Semantic Indexing
(LSI) approach to multi-label classification [39]. This method mapped the original feature
into a low-dimensional subspace that retains the feature information while also captur-
ing the label dependency. Jian et al. proposed a feature selection method know as MIFS
[17]. which first mapped the label information into a low-dimensional subspace that was
later used to guide the feature selection phase. Hsu [14] introduced the LSDR paradigm,
which finds the latent subspace of labels using random projection. Moreover, Tai and
Lin [31] replaced the random transformation with Principal Component Analysis (PCA),
and thereby proposed the principal label space transformation (PLST) for multi-label
classification.
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Conventional LSDR and FSDR methods focus on the latent space of features or labels. It
is widely accepted that using either label information or feature information alone precludes
a full investigation of the multi-label data. Consequently, many feature-aware LSDR and
label-aware FSDR methods, retain both feature and label information, have been devised.
The boundary between LSDR and FSDR has thus become ambiguous; accordingly, we
categorize both of these approaches as embedding-based methods in the remainder of our
paper.

Zhang & Schneider [41] applied Canonical Correlation Analysis to embed features and
labels into a lower-dimensional vector. A codeword was subsequently generated by con-
catenating the original label vector with the lower-dimensional vector; for a given data
point, its new codeword was predicted using Random Forest, although one can choose other
regressors in practice. Bayesian Inference was then used to map the codeword to the label
distribution. Chen and Lin proposed an enhanced version of PLST [31], know as condi-
tional principal component transformation (CPLST). This approach combines the concepts
of PLST and Canonical Correlation Analysis (CCA), thereby improving PLST through
taking feature information into consideration.

Many embedding methods factorize the label matrix to a low-dimensional matrix as a
low-rank approximation. In real-world applications, however, the label matrix is usually
not low-rank due to the existence of tail labels. Rather than striving for global projection,
Bhatia developed a method named SLEEC [5], which aimed to preserve the pairwise dis-
tances between the closest label vectors with local embedding. SLEEC proposed a novel
objective function for preserving the local information of labels while also ensuring recov-
erability. During prediction, SLEEC used a k-nearest neighbor (kNN) classifier. Xu et al.
[38] proposed a robust extreme multi- label classification approach by treating tail labels
as additive noise on true label distribution. Moreover, while all previous embedding meth-
ods found a continuous subspace, Zhou et al. [43] were the first to introduce an embedding
method with binary subspace. These authors found a lower-dimensional embedding that
minimizes the residual error, but forced their low-dimensional vectors to be binary. Due to
the binary embedding constraints, classification is applicable in the learning part rather than
regression, which significantly accelerates their method.

Neural networks have long been known to be powerful non-linear representation learning
tools. For BP-MALL, the first method to utilize neural network architectures to tackle the
multi-label classification problem, a novel loss function was devised to exploit the depen-
dency across labels. Subsequently, some more recent works utilizing deep neural network
techniques have been proposed. For example, CNN-RNN is a method that learns a label
embedding space while capturing label co-occurrence information via a recurrent neural
network. To further utilize the correlation between feature and label, Yeh et al. proposed
C2AE, which utilizes deep canonical correlation analysis and an autoencoder to learn a
latent feature-aware subspace for multi-label classification.

The purpose of our method is to learn an independent representation to better tackle the
multi-label classification problem. The benefits of independent representation have been
noted in many previous papers. Le et al. proposed RICA [21] to efficiently discover the inde-
pendent overcomplete representation for computer vision problems. Dinh et al. proposed a
method called non-linear independent components estimator (NICE), which adopts a neu-
ral network architecture that allows the determinant of the Jacobian matrix to be efficiently
computed, and also reveals that independent representation can improve performance in
many applications. There are also some methods that have tried to generate independent
representations [4, 6]. RICA is a linear model; while NICE is based on a neural network,
However, NICE requires special architecture which restrains its capacity. By contrast, our
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proposed DICE adds a regularization term that can be efficiently optimized. In fact, there
is an approach named disentangled representation learning that assumes the data is gener-
ated from independent factors of variation [7, 32]. Recently, Kageback et al. proposed a
method that contains only the l1 norm of the sample covariance matrix, which encourages
the decorrelation [18]. Meanwhile, the combination of canonical correlation and multiple
autoencoders is not rare in the field of multi-view learning, since learning a correlative sub
space is essential for multi-view learning. Thus, Wang et al. proposed DCCAE [35], which
consists of multiple autoencoders for each view and correlation loss for the representations
of two views.

3 The proposedmethod

In this section, we describe our proposed approach by firstly introducing our motivation and
an overview of our approach, after which technical details are provided.

3.1 Preliminaries

Let {(x1, y1), (x2, y2), ..., (xN , yN)} be the training data, where xi ∈ �d is the feature vector
for the ith multi-label example and yi ∈ {0, 1}l is its corresponding label. We denote X ∈
�N×d as the training sample matrix, and Y ∈ {0, 1}N×l is the label matrix, where xi is the
i-th row of X and yj is the j -th row of Y .

Taking FSDR as an example, the general approach is to find a low-dimensional vector
in latent subspace � : Y → Z, where Z ∈ �N×k(k � l), and then learn a mapping
� : X → Z. A new instance will be firstly transformed into a k-dimensional vector using
�, which is then transformed into original label space with the inverse mapping of �.

3.2 Motivation

FSDR and LSDR are efficient paradigms for multi-label classification; they reduce compu-
tational cost and improve performance by removing redundant information from either the
feature or label perspective. To inherit the advantages of both approaches, we propose to
discover two low-dimensional subspaces for labels and features, respectively. In the context
of multi-label learning methods, it is widely accepted that capturing the label correlations of
data is essential for performance improvement. Label correlations are common in practical
multi-label datasets. By exploring and exploiting correlations among labels, we are able to
better tackle the multi-label learning problem.

Although the number of labels is very large, given label correlations, the combination
in which labels can be combined will be limited in practice. We therefore aim to discover
a subset of label components so as to reconstruct the whole labels. Mathematically speak-
ing, we assume the existence of some base labels {w1, w2, ..., wk}, and the label yi of a data
point can be decomposed as yi = ∑k

j=1 aijwj , and {aij }kj=1 is a new low-dimensional rep-
resentation of the original label. Furthermore, we want to reconstruct the whole labels using
the minimal number of label components. To achieve this, we assume that the combination
coefficients of components are mutually independent.

Since sparsity has a close connection with non-Gaussianity, sparse coding can be formu-
lated as a special case of independent component analysis (ICA). ICA would further reduce
statistical dependencies and produce a sparse and independent representation that will be
useful for the subsequent learning procedure; accordingly, we also employ ICA to find a
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compact independent representation for the features. It would be unreasonable to discover
feature subspace and label subspace separately; there are not only correlations among labels,
but also correlations between features and labels. For example, the features extracted from
an image and the labels of this image are representations of the image content from differ-
ent points of view. Particularly when the number of labels is large enough, we can naturally
treat labels as textual features of the examples. Thus, we not only want to find two indepen-
dent subspaces for features and labels, but also hope that these two subspaces will have a
strong correlation with each other. Many studies have shown that the correlations between
feature and label have a substantial impact on the predictability of the latent spaces [8, 22,
42].

We perform decomposition on both features and labels, Y = AWy,X = BWx , where
Wx and Wy are the bases of features and labels, and A and B are the bases of features and
labels, while A and B are projections on the bases. We assume the bases are orthonormal
to avoid redundant information, and further hold that YWT

y = A,XWT
x = B. We aim to

maximize the non-Gaussianity of every dimension of A and B, which is a common approach
to pursuing independence. Finally, we maximize the correlation of A and B so that there
can be a simple mapping between A and B. Based on this idea, we can write our primary
objective function as follows:

max
Wx,Wy

g(X,W) + g(Y,Wy) + γ h(XWT
x , YWT

y ) (1)

s.t .WxW
T
x = I,WyW

T
y = I

where γ is a trade-off parameter, g(.) is the measurement about non-Gaussianity, h(.) is the
correlation of two latent spaces.

3.3 Non-Gaussianity prior

Discovering independent components from random variables is a complicated endeavour.
This kind of problem can be well formulated as an Independent Components Analysis (ICA)
problem [16], in which the observed matrix is decomposed with a assumption of indepen-
dence. Maximizing independence is equivalent to maximizing the non-Gaussianity in ICA
models. The standard ICA can be defined as the following optimization problem:

min
W

N∑

i=1

k∑

j=1

g(wjxi) (2)

s.t .wiw
T
j = δij

where g is a non-linear convex function to pursue non-Gaussian components [15]. δij is
Kronecker delta function, which equals to 1 if and only if i equals to j , otherwise is zero.
Then we can rewrite formula (1) as

min
Wx,Wy

α
N∑

i=1

kx∑

j=1
g(W

j
x xi) + β

N∑

i=1

ky∑

j=1
g(W

j
y yj )

−γ ∗ h(XWT
x , YWT

y ) (3)

s.t .WxW
T
x = I,WyW

T
y = I

where W
j
x is j -th row of Wx , and αj and βj are trade-off parameters. The presence of

orthonormal constraints will lead to a difficult optimization. One way is orthogonalizing
Wx and Wy during every update, this will result in higher computational costs. Accordingly,
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to get rid of these orthogonal constraints, we aim to create an unconstrained function by
replacing the orthonormal constraints with soft reconstruction cost [21] to achieve efficient
optimization,

min
Wx,Wy

‖X − XWT
x Wx‖2

F + α
∑

i,j
log(cosh(XWT

x ))ij (4)

+‖Y − YWT
y Wy‖2

F + β
∑

i,j
log(cosh(YWT

y ))ij

−γ h(XWT
x , YWT

y ),

where we have adopted log(cosh(·)) as the function g(·).

3.4 Correlation

As noted in our motivation section, we aim to maximize the correlation between the latent
subspaces of features and labels. However, these features and labels might have different
numbers of independent components, which requires us to calculate the correlation between
variables of different dimensions. Canonical correlation seems to be a suitable choice of
algorithm to tackle our problem. This is a correlation defined on two sources of input data
with different dimensions.

ρ = uT 	xyv
√

uT 	xxu

√
vT 	yyv

(5)

where 	xx = 1
N

X̂T X̂,	yy = 1
N

Ŷ T Ŷ , and 	xy = 1
N

X̂T Ŷ . X̂ and Ŷ satisfy
∑

i x̂i =
0 and

∑
j ŷj = 0; this can be achieved by subtracting the empirical mean from the sample.

There are several ways to calculate the correlation; however what we expect to calculate is
the canonical correlation coefficient, rather than the values of u and v. We therefore follow
the solution proposed in [23], which was also adopted by Deep CCA [2], because it is
differentiable.

The total correlation of all components of X̂ and Ŷ can be computed as the sum of all
singular values of T � 	

−1/2
xx 	xy	

−1/2
yy . The sum of all singular values indicates the trace

norm of T . But due to the non-smooth nature of the trace norm, we choose the 
-2 norm of
singular values which is the Frobenius norm of T ,

h(B,A) = ‖TBA‖F = tr(T T
BATBA)1/2. (6)

In conclusion, we decompose both feature and label to discover independent components
by maximizing the non-Gaussianity of the subspaces. Meanwhile, we also maximize the
correlation of the projections on the bases. Overall, therefore, we can rewrite Equation (1)
as follows:

min
Wx,Wy

J (Wx,Wy) = ‖X − XWT
x Wx‖2

F + ‖Y − YWT
y Wy‖2

F

+α
∑

i,j log(cosh(XWT
x ))ij + β

∑
i,j log(cosh(YWT

y ))ij

−γ ∗ ‖T (XWT
x , YWT

y )‖F (7)

3.5 Connections with other methods

Canonical Correlation Analysis is a proven technique that has been widely used in multi-
label learning [30, 41]. Many variants of CCA have been proposed. Based on two lemmas
in [21], we show that our proposed approach can be expressed as a sparse CCA.
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Lemma 1 When the data is whiten, the reconstruction error of whiten data ‖X−XWT W‖2
F

is equivalent to the orthonormality cost ‖I − WT W‖2
F .

Proof For whiten data, we have XT X = I , then

‖X − XWT W‖2
F = tr(X − XWT W)T (X − XWT W)

= tr(XT X − 2XT XWT W + WT WXT XWT W)

= tr(I − 2WT W + WT WWT W) = ‖I − WT W‖2
F

Lemma 2 The column orthonormality cost ‖Ic − WT W‖2
F is equivalent to the row

orthonormality cost ‖Ir − WWT ‖2
F up to an additive constant.

Proof Note that c and r are numbers of columns and rows.

‖Ic − WT W‖2
F = tr(Ic − 2WT W + WT WWT W)

= tr(Ir − 2WWT + WWT WWT ) + c − r

= ‖I − WWT ‖2
F + c − r .

According to Lemmas 1 and 2, we could rewrite Eq. 7 as following

min
Wx,Wy

‖I − WxW
T
x ‖2

F + ‖I − WyW
T
y ‖2

F − γ ‖T (B,A)‖F

+α
∑

i,j

g(B)ij + β
∑

i,j

g(A)ij , (8)

where T (B,A) is a correlation term to measure the correlation between B and A. Hence
for whiten data, our approach is similar to the Lagrangian function of CCA with sparse
constraints.

Our approach consists of two parts: namely, reconstruction and correlation. Some exist-
ing methods have also applied this idea. We will here demonstrate the connection between
CPLST and our proposed approach. CPLST merges the feature-aware in-formation into its
model. The objective function of CPLST can be written as follows:

min
U,V

‖XU − YV ‖2
F + ‖YV V T − Y‖2

F (9)

s.t. V T V = I .

Obviously the feature-aware term min ‖XU − YV ‖2
F of CPLST is a variant of CCA, the

right term is the reconstruction error of label.
FaIE [22] is another multi-label algorithm that has also been developed to utilize recon-

struction and correlation terms. One of its major advancements is that it directly learns a
lower-dimensional representation without making any assumption regarding the encoding
process. Its objective function is written as follows:

min
C

−tr[CT X(XT X)−1XT C] + ‖Y − CCT Y‖2
F

s.t. CT C = I (10)

where the left term is the correlation term between feature X and lower-dimensional rep-
resentation C, while the right term is also the reconstruction error of the label. Obviously,
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CPLST and FaIE are alike. If we ignore the reconstruction term of the feature and set
α = 0, β = 0, γ = 1, we might get a similar result to that obtained by CPLST and FaIE.

From the formulations, it is clear that our proposed approach has no notable connections
to CPLST, sparse CCA and FaIE. Although they have totally different motivations, they
all have reconstruction and correlation terms, which play an important role in embedding-
based approaches for multi-label classification. In contrast with CPLST and FaIE, moreover,
our proposed approach intends to encode features and labels into two different subspaces.
In optimization, the original CPLST and FaIE also involve orthonormal constraints, but
they solve this problem by turning it into an eigendecomposition problem. By contrast, our
approach optimizes an unconstrained function and allows for an unconstrained optimizer
(e.g., L-BFGS, S- GD). Given n examples, both CPLST and FaIE have to compute a n × n

matrix which is infeasible for larger n. So CPLST and FaIE used to cluster data at first. But
clustering will slow down prediction speed. We use mini-batch update, which allows us to
tackle large datasets without clustering (Table 1).

3.6 Mapping between subspaces

After learning subspaces for features and labels, we need to learn a mapping between these
two subspaces, as this will allow us to transform from feature to label in order to accomplish
multi-label learning. Since the two subspaces are low dimensional, we can easily adopt
some efficient multi-dimensional regressors to assist us. We train the regressor based on
following function:

min
f

‖f (XWT
x )Wy − Y‖2

F (11)

where f is an arbitrary regressor e. g. ridge regressor and neural network. Multi-label exam-
ples are supposed to share the independent components. For test sample, we map their
features into the subspace of features. With the learned regressor, we can get the coefficients
of test sample in label subspace, i.e. Ypred = f (XtW

T
x )Wy where Xt is test data and Ypred

is the prediction.

3.7 Neural network extension

To extend our method to a non-linear one, we leverage the power of the neural network. We
can describe our method as a latent representation learning method. The first characteris-
tic of the representation is that it is independent. The independence requirement is like an
advanced concept of decorrelation: decorrelation aims to minimize the co-variance of rep-
resentation, while the independence requirement is an attempt to minimize the high-order
statistic of representation. Some recent works have suggested that independent representa-
tions are more effective. The next characteristic is that it is reconstructable: this means we
can reconstruct the original label with the representation. The final characteristic is that it is

Table 1 A summary of different
multi-label learning methods Algorithm Correlation Reconstruction Regularization

CPLST Yes Only Y Orthonormality

FaIE Yes Only Y Orthonormality

SCCA Yes None Orthonormality

IFLC Yes Both X, Y Non-Gaussianity
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correlative, as many works have shown that feature-aware label subspace is much more use-
ful. Operating under these three guidelines, we present the neural network architecture of
DeepIFLC in Fig 1. The architecture consists of two independent component autoencoders
and one deep canonical correlation analysis (DCCA) module. The objective function can be
written as follows:

J (φx, φy, ψx, ψy) = R(φx) + R(φy) + αT (φx, φy)

+L(φx, ψx) + L(φy, ψy) (12)

where R is the regularizer of autoencoder, T is the canonical correlation term and L is the
reconstruction loss for autoencoder.

It is well known that a non-linear ICA problem is an ill-posed problem that can only
be solved with additional assumptions. Thus, rather than searching for a truly non-linear
independent component estimator, we instead propose a method called Deep Independent
Component autoEncoder (DICE), which satisfies only some essential properties of the ICA
solution. This means that the representation should be uncorrelated, while the independent
representation should minimize some high-order statistic, such as kurtosis. Therefore, our
regularization is quite straightforward. Note that the output of encoder is Z, which has zero
means: thus, the regularizer can be written as follows:

R(φ) = β‖Czz‖1 − γ |n(1T
n Z4)/(1T

n Z2)2 − 3|1k (13)

where Czz is the sample covariance matrix of representation Z, ‖Czz‖1 = ∑
i,j |Cij

zz|. And
1n is a column vector with all one elements, γ is trade-off parameter. Since this regularier
is differentiable, so it can be applied to the autoencoder directly.

Fig. 1 The architecture of DeepIFLC
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3.8 Stochastic independent loss

To apply on neural network, we need to estimate the true covariance and kurtosis of whole
data with mini-batch. Therefore, we propose a stochastic version of Eq. 13. We denote mini-
batch Z ∈ R

m×k , where m is the batch size, k is the number of independent components.
The mini-batch covariance matrix and kurtosis vector for t-step are given as:

Ct
mini = 1

m − 1
ZT Z (14)

Kt
mini = n(1T

n Z4)/(1T
n Z2)2 − 3) (15)

Then we approximate the true covariance and kurtosis by accumulating the history

Ct
accu = δCt−1

accu + Ct
mini (16)

Kt
accu = δKt−1

accu + Kt
mini (17)

where δ ∈ [0, 1). A normalising factor is also computed as ct = δct−1 + 1. Then the
approximate covariance and kurtosis are given as:

Ct
appr = Ct

accu

ct

(18)

Kt
appr = Kt

accu

ct

(19)

Therefore, Eq. 13 can be rewritten as follow:

R(φ) = β‖Cappr‖1 − γ ‖Kappr‖1 (20)

For reconstruction loss, we use L2-loss for feature and BP-MLL loss for label.

L(φx, ψx) = ‖X − ψx(φx(X))‖2
F (21)

L(φy, ψy) =
∑

i

Ei

Ei = 1

|y0
i ||y1

i |
∑

(p,q)∈y1
i ×y0

i

exp(ψy(φy(yi))
q − ψy(φy(yi))

p) (22)

As for correlation term, with the existence of covariance minimization, the L2-loss could be
a good approximation of canonical correlation.

T (φx, φy) = ‖Zx − Zy‖2
F (23)

Geoinformatica (2020) 24:221–245 231



4 Optimization

Due to the existence of correlation term in formula (7), our objective function is not a convex
function for both Wx and Wy . But formula (7) is a convex function for variables Wx or Wy

separately. We can hardly find a global optimal solution with gradient descent method. So
we decide to adopt a greedy strategy to tackle this problem approximately by alternatively
solving the subproblems of formula (7).

4.1 UpdatingWx andWy

The subproblem of solving Wx can be written as following

Wx = arg min
Wx

‖X − XWT
x Wx‖2

F + α
∑

i,j

log(cosh(XWT
x ))ij

−γ ‖T (XWT
x , YWT

y )‖F (24)

where X is the feature matrix. It is hard to write a closed form of formula (24), but
the subproblem is differentiable. So we can use some unconstrained optimizers (e.g., L-
BFGS,SGD) to minimize this loss function. The derivative of Wx consists of two parts:
reconstruction term and correlation term. The derivative of reconstruction term can be
computed as

∇Wx J (Wx,Wy) = 2WxW
T
x WxX

T X + 2WxX
T XWxW

T
x

−4WxX
T X + α ∗ tanh(WxX

T )X (25)

To compute the gradient of correlation term, we could use the chain rule. Given B =
XWT

x and A = YWT
y , the centered matrices are B̂ = B − 1

N
111B and Â = A − 1

N
111A,

where 111 ∈ R
N×N is an all-1s matrix. Assume the singular value decomposition of T (B,A)

is T (B,A) = UDV T . We have

(∇Wx h(B,A))ij =
∑

a,b

∂h(B, A)

∂(B)ab

∂(B)ab

∂(Wx)ij

=
∑

a,b

1

N − 1
(2∇xxB̂ + ∇xyÂ)abXaj δbi

= 1

N − 1
((2∇xxB̂ + ∇xyÂ)T X)ij (26)
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Table 2 Examples of test images from iapr tc12 dataset

Ground Truth Court dress grandstand Bell front spectator Mountain road sky

People player tennis Surfer wall Grey dirt forest

FaIE Sky player court Wall spectator house tree slope mountain

Man building tree Front tree Sky short man

SLEEC Court player stadium Wall front man Slope rock mountain

Tennis grandstand man Sky people Tree man bush

IFLC Player court tennis Spectator wall front Tree slope road

Grandstand man people People man mountain sky forest

For each image, we show the ground truth annotation and the most relevant labels predicted by FaIE, SLEEC
and ours. The labels in black are those that match with ground truth. The labels in blue are related to image
but not include in ground truth. The labels in red are irrelevant annotation

where

∇xy = 	
−1/2
xx UV T 	

−1/2
yy

∇xx = −1

2
	

−1/2
xx UDV T 	

−1/2
xx

Then the total gradient of Sx is as following

∇Wx J (Wx,Wy) = 2WxW
T
x WxX

T X + 2WxX
T XWxW

T
x

−4WxX
T X + α ∗ tanh(WxX

T )X

− γ

N − 1
((2∇xxB̂ + ∇xyÂ)T X), (27)

and the gradient w.r.t. Wy has a similar expression (Table 2).

5 Experiments

5.1 Configuration

In order to validate the proposed algorithm, we perform experiments on six benchmark
datasets from Mulan.1 There are two relatively small datasets: medical [24] and enron [20].
and two other larger datasets: Corel16k [3] and iapr tc12 [11]. For dataset corel16k, it con-
tains over 16,000 different images. It is organized into 10 different samples, we choose three

1http://mulan.sourceforge.net/datasets-mlc.html
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Table 3 Statistics of the datasets in experiments

Domain Train Test Features Labels

medical text 333 645 1449 45

enron text 1123 579 1001 53

corel16k1 image 5188 1744 500 153

corel16k2 image 5241 1783 500 164

corel16k7 image 5266 1747 500 174

iapr tc12 image 17665 1962 1000 291

samples of them for computational cost. All these datasets have already been pre-separated
into training set and testing set. And for iapr tc122 dataset, it is a collection of 19,627 nature
images taken from locations around the world. This includes pictures of different sports
and actions, photographs of people, animals, cities, landscapes and many other aspects of
contemporary life. We adopt SIFT-based representation as [12]. Some statistics of data are
given in Table 3.

In experiment, we compared our method with some competitive methods to validate its
predictive performance. Their brief introductions are given as below.

– CPLST: The label space is encoded by a feature-aware principal label space transfor-
mation. It reduces label while considering feature information.

– FaIE: This approach aims to find a latent space that maximizes its recoverability and
predictability. Linear-FaIE is adopted in experiments.

– LEML: This is one of the state-of-the-art approaches to tackle multi-label problem in
a generic low rank empirical risk minimization framework.

– SLEEC: This is one of the state-of-the-art approaches for learning sparse local embed-
dings in multi-label classification. It finds a latent space that preserves the pairwise
distances between the closest label vectors.

The implementations of all comparison methods were accomplished by using codes pro-
vided by authors. For the hyper parameters, we used the recommendation by authors, if there
is. Otherwise, we tune their hyper parameters to achieve on different datasets. For SLEEC,
it needs to cluster before embedding. We set the number of clusters as Ncluters = 	N/6000

as recommendation, where N is the number of training data. For our method, the hyper
parameters α, β and γ are determined by 5-fold cross validation on training set. They are
chosen from {0.001, 0.01, 0.1, 1, 10}

One key parameter for all methods is the label compression rate k/l, where l and k are
the dimension of latent label space and the original label space, respectively. We compared
all methods under four different rates, 20%, 40%, 60%, and 80%. We also investigate the
sensitivity of parameters on the Corel16k, medical and iapr tc12 datasets.

Following previous works, we use ridge regression as our base regressor for a fair com-
parison. Except for SLEEC, it used kNN to predict. We used two widely-used ranking-based
evaluation metrics to validate all methods, i.e. precision of top-k prediction (P@k) that
counts the fraction of correct prediction in the top-k scoring label, and normalized Dis-
counted Cumulative Gain (nDCG@k). These metrics have been commonly used in many

2http://lear.inrialpes.fr/people/guillaumin/data.php
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multi-label learning experiments. Denote y ∈ {0, 1}l as the ground-truth label, ŷ{0, 1}l as
the predicted label. P@k and nDCG@k are expressed as

P@k :=
∑

i∈rankk(ŷ)
yi ,

and

nDCG@k := 1

k

∑

i∈rankk(ŷ)

yi

log(i + 1)
,

where rankk(ŷ) returns the k largest indices of ŷ ranked in descending order.

5.2 Experiment results

To validate the proposed method, we compare our method with several popular methods,
and then some variants of our proposed method are included to illustrate the reasonability
of our configuration. Tables 4 and 5 show the general result. We evaluate experiment results
in term of Precision@1,3,5 and nDCG@1,3,5. Generally, our approach obtains the best
result. From the experiment results, we observe that: (1) The performance of our proposed
approach improves as the label compression rate increases on almost every dataset; (2)
Compared with other methods, our approach has a significant better performance in top-
1 and top-3 evaluation metrics, and our approach achieves the best top-1 precision on all
datasets; (3) SLEEC did not work very well in enron. We think the reason might be this
dataset has small label size, so that the distance of two label vectors cannot precisely reflect
the label structure; (4) Our approach has a better ranking in nDCG compared to that in terms
of Precision. It is because that nDCG is a cumulative quantity, and the top-1 gain has the
biggest weight. As shown in these two tables, our approach has advantages in terms of top-
1 and top-3 metrics. Therefore, our approach can have a better performance in nDCG; (5)
As an extension of CPLST and FaIE, our approach generally outperforms CPLST and FaIE
on these datasets. Generally, we achieve 1% to 2% average improvement over CPLST and
FaIE.

5.3 Feature independent components

The number of feature-independent components (FIC) is one of the key hyperparameters
in our approach. We analyze the influence of the number of FIC across the three datasets;
in so doing, we fix the other hyperparameters, and adjust only the number of FIC. We also
choose FIC rates (FIC over the feature dimension) between 0.01 and 1.4. Results are pre-
sented in Figure 2. From the Figure, we can observe the following: (1) The performance on
all datasets remain stable as the FIC rate increases, the converges to its best performance.
We can therefore choose a high FIC rate to ensure high performance. Even for lower FIC
rates such as 0.1, however, a good enough result can be expected. This phenomenon sug-
gests that the example feature is often redundant, which is consistent with the motivation of
FSDR methods. (2) We observe a decrease in performance when the FIC rate is below some
threshold (i.e. the red line). Note that the decrease is usually on the left side of the red line,
indication that the dimension of feature subspace is smaller than that of the label subspace.
Under these circumstances, a multivariate regression that maps a low-dimensional space to
a high dimensional space can be quite inaccurate. The performance of conventional embed-
ding methods that discover single subspace should around the red line. As the FIC rate
increases, moreover, the performance of our method becomes slightly better that red line,
especially for the top-1 metric. This explains the superiority of our method in terms of the
top-1 metric. (3) The behaviors of the FIC rate and label compression rate are quite different.
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Fig. 2 Precision under different FIC rates. Where blue line is Precision@1, orange line is Precision@3, and
green line is Precision@5. The red line means the moment that the dimensions of two subspaces are the same

The FIC rate has a small threshold, beyond which performance will barely rely on FIC rate.
Usually, however the higher the label compression rate is, the better performance we will
obtain. As shown in Tables 4 & 5, there is a significant improvement on the medical dataset
under a 20% label compression rate. Note that a 20% label compression rate on the medical
dataset implies that there are nine label-independent components; in other words, there are
nine feature-independent components for the traditional embedding method, while the FIC
rate is around 0.006, which is close to the threshold on the medical dataset. Hence, compar-
ison methods encounter a performance reduction given that the FIC rate is so low. This is
likely why our proposed approach achieves such a significant improvement over compari-
son methods on the medical dataset. It is difficult to determine how many FIC do we exactly
need in practice; however, the experimental results suggest using an FIC rate larger than
0.1, and the FIC should also be larger than the number of label-independent components.

5.4 Comparison with variants algorithm

To validate the effect of each part in our model, we consider the following variants: (1) L-
IFLC considering only ICA terms of label and correlation term. We achieve that by fixing
Wx to an identity matrix; (2) F-IFLC considers only ICA terms of feature and correlation
term; (3) C-IFLC excludes the correlation term. In this experiment, we perform all methods
with 40% label compression rate. For F-IFLC we use 40% FIC rate. Results are given in
Table 6.

From the experimental results, we can draw the following observations. (1) C-IFLC
becomes the worst method. There is a huge gap between C-IFLC and other methods.
Therefore correlation term is very important for our method. (2) In Corel16k1, F-IFLC out-
performs L-IFLC. But in iapr tc12, L-IFLC outperforms F-IFLC. As CPLST suggested,
there are two types of label correlation: feature-unaware correlation and feature-aware cor-
relation. L-IFLC might overemphasize the feature-unaware correlation, and F-IFLC goes to
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Table 6 Performance comparison of variant methods with precision@k

Dataset P@k L-IFLC F-IFLC C-IFLC IFLC

Corel16k1 P@1 33.94 35.14 20.12 36.07

P@3 25.72 26.98 19.26 27.22

P@5 21.39 22.08 13.21 22.19

iaprtc12 P@1 52.03 51.12 47.50 53.11

P@3 40.57 40.48 35.03 41.86

P@5 34.59 34.46 27.69 35.32

the other way. Our method makes a reasonable balance of those two by introducing both
feature and label subspaces, and achieves even better results.

5.5 Results on iapr tc12 dataset

The iapr tc12 dataset is much lager with various label categories. Our approach achieves
the best result over all comparison methods under almost every label compression rates in
terms of different evaluation metrics. Table 2 presents example annotations on the iapr tc12
dataset produced by FaIE, SLEEC and our proposed approach. The top-k predicted labels
from each method were taken as the annotation labels, where k is the number of true labels.
As shown in the table, the mismatched labels of our approach are still quite related to the
image content.

5.6 Comparisons with DNNmethods

In this section, we validate our deep learning version method (DICE) with some state-of-
the-art works:

– BP-MLL: One of the baseline neural network methods for multi-label classification.
– C2AE: Being able to learn a feature-aware label subspace, while it only contains

reconstruction of label.
– CNN-RNN: An unified framework that uses RNN to explore the label co-occurrence,

then combining the recurrent representation and CNN feature to improve the perfor-
mance of classification.

We conduct our experiments on these datasets: iapr tc12, tmc2007, espgame and NUS-
WIDE. These four datasets are all image datasets. For the first three datasets, 1000-
dimensional SIFT features are extracted. For NUS-WIDE, we extract 4096-dimensional
features with pre-trained Alexnet. For fair comparison purpose, we also use the same
pre-trained Alexnet structure for CNN-based method CNN-RNN, in its CNN part.

For neural network architecture, our method, C2AE and BP-MLL use the same archi-
tecture. We use two hidden layers to encode(decode) features, and one hidden layer to
encode(decode) labels. For each hidden layer, a total of 512 neurons are deployed. For out-
put layer, we use Sigmoid function as our activation function. And use leaky ReLU function
for other layers. The batch size is fixed as 500 for C2AE and BP-MLL, DICE’s batch size is
fixed as 100. To select parameters for DICE, we randomly leave out 1/6 of our training data
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Fig. 3 Micro-F1 and macro-F1 of different methods

for validation. We adopt the same strategy for other methods. As for evaluation metrics, we
consider micro-F1, macro-F1, top-k precision and top-k nDCG. But for CNN-RNN we only
validate on micro-F1 and macro-F1.

Figure 3 and Table 7 illustrate and compare the performance of DICE,C2AE and BP-
MLL. From Table 7, we can see that our DICE achieves superior performance against
others. DICE > C2AE > BP-MLL. Both DICE and C2AE contain BP-MLL loss, so the
improvement over BP-ML are quite obvious. And compare to C2AE, DICE introduces the
stochastic independent loss and the reconstruction of feature, which allow it attains better
result. And with the help of stochastic independent loss, we are able to use much smaller
batch size which can save many computing resources. From Fig. 3, we notice that BP-MLL
will suffer more serious performance degradation when the label compression rate is small.
We think that is because of the existence of feature-aware information.

5.7 Results on NUS-WIDE

NUS-WIDE dataset is a web image dataset, which consists of 269,648 images and 5018
tags from Flickr. After some simplifications, only 81 concepts are remained. They are
more accurate and less noisy. Table 8 lists and compares the classification results of all
four methods. CNN-RNN use RNN to exploit label co-occurrence information. According
to the experiment results, label co-occurrence information seems like a weak information
for classification. Since CNN-RNN can not even outperform BP-MLL. C2AE intro-
duces feature-aware information and achieves better results. But our method DICE still
attain promising results among all methods. This supports the benefits of independent
representation and feature reconstruction.

For computation time, due to the learning of RNN, CNN-RNN takes relatively long time
to train. Although DICE takes more time than BP-MLL and C2AE for one epoch, DICE
actually converges faster. Overall, DICE might faster than C2AE, meanwhile achieves better
results.
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Table 8 performance comparison on NUS-WIDE

Method C-P C-R C-F1 O-P O-R O-F1

CNN-RNN 40.5 30.4 34.7 49.9 61.7 55.2

BP-MLL 44.5 39.8 38.3 57.3 68.9 62.5

C2AE 55.8 45.3 48.6 66.2 69.1 67.6

DICE 56.9 46.4 51.1 68.1 70.1 69.1

6 Conclusion

In this paper we proposed a method that learns separated subspaces for features and labels
by maximizing the independence between components in each subspace and maximizing
the correlation between two subspaces. To solve the obtained non-convex problem, we used
an alternating optimization. We also study the connection between our model with some
existing methods. We also shown the principles that we adopted in our method were widely-
used in multi-label classification methods. Experiments on real-world multi-label datasets
showed superior performance of our method and the necessity of exploring independence
components from multi-label data. Further, we propose a stochastic independent loss, and
build up a neural network version of IFLC. Which also attains superior performance.
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laseñor L, Grubinger M (2010) The segmented and annotated iapr tc-12 benchmark. Comput Vis Image
Underst 114(4):419–428

Geoinformatica (2020) 24:221–245242

https://arxiv.org/abs/1801.04062
https://arxiv.org/abs/1710.05050


12. Guillaumin M, Mensink T, Verbeek J, Schmid C (2009) Tagprop: discriminative metric learning in near-
est neighbor models for image auto-annotation. In: 2009 IEEE 12th international conference on computer
vision. IEEE, pp 309–316

13. He X (2004) Locality preserving projections. Adv Neural Informa Process Syst 16(1):186–197
14. Hsu DJ, Kakade SM, Langford J, Zhang T (2009) Multi-label prediction via compressed sensing. In:

Advances in neural information processing systems, pp 772–780
15. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE

Trans Neural Netw 10(3):626–634
16. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley
17. Jian L, Li J, Shu K, Liu H (2016) Multi-label informed feature selection. In: International joint

conference on artificial intelligence, pp 1627–1633
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