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Abstract
Spatial keyword search has been playing an indispensable role in personalized route rec-
ommendation and geo-textual information retrieval. In this light, we conduct a survey on
existing studies of spatial keyword search. We categorize existing works of spatial keyword
search based on the types of their input data, output results, and methodologies. For each
category, we summarize their common features in terms of input data, output result, index-
ing scheme, and search algorithms. In addition, we provide detailed description regarding
each study of spatial keyword search. This survey summarizes the findings of existing spa-
tial keyword search studies, thus uncovering new insights that may guide software engineers
as well as further research.

Keywords Location · Query · Keyword · Trajectory · Route · Search

1 Introduction

Location-based multimodal data, that most ubiquitous of location-based services and geo-
tagged web contents, has been keeping increasing at a very high speed over the last decade.
It allows both users and service providers to generate and disseminate geo-located textual
content through a variety of social media and map services (e.g., micro-blogging platforms,
photo sharing platforms, peer-to-peer ridesharing apps, foot delivery apps, and news web-
sites). For example, Twitter, a popular micro-blogging service allowing mobile users to
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compose geo-tagged tweets with short text and locations (coordinates or semantic loca-
tions), has gained increased attention among researchers in different disciplines. Other
examples include gao-tagged photos from social photo sharing websites (e.g., Flickr and
Instagram), check-ins in location based social networks (e.g., Foursquare), reviews on local
business websites (e.g., Yelp and TripAdvisor) that contain both text content and locations
of points of interest (POIs), online local or regional news with long documents and location
tags, and trajectories from peer-to-peer ridesharing apps (e.g., Uber, Grab Taxi) and food
delivery apps (e.g., Uber Eats, Delivery.com, Grubhub).

According the input data type, location-based multimodal data can be classified into two
categories: standalone location-based multimodal data (geo-textual object) and connected
location-based multimodal data (e.g., keyword-based route, trajectory with category infor-
mation). One representative example of standalone location-based multimodal data is POIs
generated from Foursquare, Yelp, and Google Maps. Many POIs are being associated with
category information (e.g., Restaurant, Hotel, Bar, etc.) or users’ descriptions and reviews.
As for connected location-based textual data, popular examples include routes associated
with keywords and trajectories associated with category and time information. According
to arrival pattern, we can classify location-based multimodal data into static location-based
multimodal data and streaming location-based multimodal data. Static location-based mul-
timodal data can be regarded as a collection of objects. We basically model it as a data
collection with very infrequent update. Whilst streaming location-based multimodal data
can be modeled as a stream of continuously arriving objects, which is infeasible for us to
index all of them. The most common example of streaming location-based textual data is
geo-tagged tweets.

Location-based multimodal data from various sources has been characterized by big
volume and multi-dimensions. According to existing studies [1, 2], the volume of location-
based multimodal data is keeping growing rapidly over the last couple of decades. Besides
the textual dimension and geo-spatial dimension, location-based multimodal data can be
featured with other dimensions, including time dimension (i.e., the creation time of an
item), user dimension (i.e., user who posted the item), dimension of category (i.e., category
information of an item).

In this survey, we investigate existing studies on querying for location-based multimodal
data on road networks. In particular, we classify existing literature based on the types of
their input data, output results, and methodologies. For each category, we summarize their
common features in terms of input data, output result, indexing scheme, and search algo-
rithms. Description regarding each study of location-based multimodal data management is
presented.

2 Related work

This section introduces existing survey and evaluation studies on the topic of location-based
data management.

2.1 Survey of location-based datamanagement

The earliest survey of spatial keyword search is conducted by Cao et al. [3]. It reviews some
basic spatial keyword queries (standard spatial keyword queries, collective spatial keyword
queries, and moving spatial keyword queries) that were proposed before 2012. However,
this survey does not include a host of recent studies related to spatial keyword search.
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Bao et al. [4] present a survey of recommendation studies on location-based social netowrks.
Specifically, it analyzes the data formulation, the methodology of recommendation, and
the objectives of various recommendation tasks. This survey mainly focuses on recom-
mendation problem instead of querying and data management. Kong et al. [5] and Feng et
al. [6] introduce the trajectory data management and mining from the perspective of applica-
tions and services. Mahmood [7] present an overview and a broad classification of existing
spatio-temporal access techniques published between 2010 and 2017. It covers a wide range
of geo-textual indexing structures. A book chapter is published on scalable processing of
spatial keyword queries [8]. It summarizes the various types of queries that execute over
geo-textual data. However, it does not cover the queries executing over trajectory data.
Cong et al. [9] present a tutorial that provides an overview of the problems addressed in
the area of spatial keyword querying and suggests some important open problems and new
research direction. A high-level review of studies on searching and mining geo-textual data
for exploration before 2016 is presented [10].

2.2 Experiment and evaluation of location-based datamanagement

Chen et al. [11] presents a survey of 12 basic geo-textual indexing structures proposed
before 2013. They develop a benchmark that enables the comparison of the spatial keyword
query performance on different indexing structures. Note that they only consider three types
of basic spatial keyword query: Boolean-Boolean Query, Boolean-Ranking Query, and Full-
Ranking Query (cf. Section 4.1). Liu et al. [12] provide an evaluation of 12 state-of-the-art
POI recommendation models, which uncover a number of significant results regarding the
utilization of POI recommendation models in a variety of scenarios.

3 Data formulation

This section investigates the classification of locaion-based multimodal data defined by
existing studies. Most of the related work in this area study the problem of processing
spatial keyword queries over geo-textual data. We proceed to introduce the data space
(within which the data are positioned), the location-based multimodal data, and the query
formulation, respectively.

3.1 Location-basedmultimodal data

Location-based multimodal data is the items that are being searched or queried. Each item
is assumed to contain a location and a set of attributes of different types. We proceed to
present a brief introduction of each common attribute.

Location attribute: The location attribute can be presented in the following forms:

(1) Physical point in a 2D space: The point specifying a location is represented by a
tuple with latitude and longitude (e.g., 23◦25′43′′ N, 54◦21′78′′ W);

(2) Physical region in a 2D space: GPS location may be inaccurate due to various
reasons (e.g., incorrect settings in end device, weak signal). As a result, we may
also regard the location as a region (most often a circular region) on a 2D space.

(3) Semantic location: Basically, semantic locations are organized by a GIS dictionary
(i.e., geo-spatial definition glossary), which is a hierarchical structure that indexes
geographical terms (e.g., Ann Arbor, MI, U.S.A.).
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(4) Location-based terms: Some documents (e.g., news, reports) do not have a specific
field to specify their locations. However, we may extract location-based terms (e.g.,
football club in north London) to figure out their most-likely locations.

Text attribute: Most of the existing work assumes that the text attribute of a geo-textual
object is a simple, unstructured text string, which is modeled as a term vector or just a
set of keywords.

Time attribute: Location-based multimodal items may contain temporal information. It
may be a timestamp (e.g., 11:59 P.M., Jun 15, 2019), capturing the time when the item
was created (e.g., timestamp of a tweet or review), a time range (e.g., Aug 3, 2019 – Aug
7, 2019), representing the date of a particular event, or multiple time ranges (e.g., 9:30
A.M. to 5:00 P.M. from Monday to Friday), representing the opening hours of a POI.

Category attribute: We may assign one or more categories to a location-based multi-
modal items. Category attributes may denote the classification of an item (e.g., Cafe,
restaurant, hotel, cinema), review summarization (e.g., cosy, sea view, long waiting time),
etc.

3.2 Distancemetrics

We introduce distance metrics defined by existing studies for measuring the spatial distance
between two items. The underlying space used by existing studies on location-based multi-
modal querying can be classified into two categories: Euclidean space and spatial-network
space. We present how to compute the spatial distance between two items in Euclidean
space and spatial-network space, respectively.

Euclidean space: Given two items i1 and i2, the spatial distance between i1 and i2 on
Euclidean space can be regarded as the great-circle distance between i1 and i2 on the
earth.

Spatial-network space: As for spatial-network space, items are located at a spatial net-
work, which is a directed or undirected graph where each vertex has a coordinate (i.e.,
latitude and longitude) and each edge has a weight that captures the great-circle distance
between the two end-points on the edge. Note that in the context of spatial networks,
travel time may also be considered as the relevant distance notion. In that case, travel
times, sometimes time varying, are associated with edges.

4 Querying for individual location-basedmultimodal data

This section introduces existing studies of query processing over a collection of individual
location-based multimodal data or a stream of individual location-based multimodal data.

4.1 Basic spatial keyword queries

Given a collection of location-based multimodal items, queries that returns a subset of indi-
vidual items are named as item-wise spatial keyword queries. The main characteristics of an
item-wise spatial keyword query q are summarized as follows:

(1) q contains both spatial and textual arguments;
(2) The result items returned by q are independent of each other.

We proceed to present the spatial argument and textual argument in detail.
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Spatial argument: A spatial argument is basically a spatial point that denotes the loca-
tion of the query issuance. However, the spatial argument may also be a region or multiple
regions. The region(s) serve as a filter that filters out items whose locations do not fall in
(one of) the region(s).

Textual argument: The textual argument (or query keywords) may be of the same form
as the textual attributes of items. In general, the textual attribute is a set of keywords
provided by a user. The keywords may either serve as a filter that filters out items whose
textual attributes do not contain the query keywords or serve as arguments of a particular
textual similarity function.

Item-wise spatial keyword queries are quite simple. However, these queries lay a solid
foundation for various complex spatial keyword queries of different objectives. The defini-
tions and processing of item-wise spatial keyword queries are extensively investigated by
Chen et al. [11]. Here we summarize the survey result of basic item-wise spatial keyword
queries presented by Chen et al. [11].

Let D be a set of location-based multimodal items. Each item i ∈ D is defined as a pair
(i.loc, i.doc), where i.loc is a spatial point and l.doc is a text document. We proceed to
present three types of basic item-wise spatial keyword queries.

Boolean-Boolean (BB) Query [13–19] Given a BB query q = 〈r, w〉, where r denotes
the query region (i.e., most often a circular or rectangular spatial region) and w is a set
of keywords. Query q returns a subset of D, denoted by Dq , which contains items s.t.
∀i ∈ Dq(dist (i.loc ∈ q.r ∧ q.w ⊆ i.doc). Specifically, Dq denotes items in D whose
documents contain all the query keywords (q.w) and locations fall in q.r .

Boolean-Ranking (BR) Query [19–24] A BR query q = 〈p,w, k〉 has three elements,
where p is a spatial point (query location), w is a set of query keywords, and k represents
the number of items to returned by q. The result of q, Dq , is a k-subset of D s.t. the
document of each item i in Dq contains all the keywords in q.w. and i is a k-NN (i.e., k

nearest neighbors) of q.
Full-Ranking (FR) Query [19, 24–27] An FR query q = 〈p, w, k, α〉 has four elements,

where p is a spatial point (query location), w is a set of query keywords, k is the number
of items to returned by q, and q.α is a preference parameter that balances the weight
between textual relevancy and spatial proximity. An FR query q returns k items ranked
according to a relevance score that takes both spatial proximity and text relevancy into
account. In particular, the relevance between an item i and an FR query q is defined by
Eq. 1

Rel(i, q) = F(SRel(i, q), TRel(i, q)), (1)

where SRel(i, q) denotes the spatial relevance between i and q, which is calculated as
follows:

SRel(i, q) = G(dist (i.loc, q.p)),

where G(x) is a monotone decreasing function ranging between 0 and 1 and
dist (i.loc, q.p) is the Euclidean distance between i and q. Notation TRel(i, q) denotes
the textual relevancy between i.doc and q.w. Function F(x, y), ranging between 0 and
1, is a monotone increasing function in both x and y.

We may compute TRel(i, q) by using an information retrieval model, such as the lan-
guage model (e.g., [25]), cosine similarity (e.g., [27]), or BM25 (e.g., [18]) normalized to a
scale similar to the spatial relevance part.
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4.2 Advanced spatial keyword queries

We proceed to introduce advance spatial keyword queries, which incorporate additional
elements to basic spatial keyword queries.

Reverse spatial keyword search Existing studies on reverse spatial keyword query can be
classified into two categories: Reverse FR query and Reverse BR query. Both reverse FR
query and reverse BR query regard “item” as “query”. In particular, a reverse BR query q

returns all items whose BR query results include q. Likewise, a reverse FR query q returns
items whose FR query results include q. In Euclidean space, reverse BR search is investi-
gated by Fang et al. [28] and the reverse FR search is studied by Lu et al. [29–31]. In spatial
network, Gao et al. [32] proposed a mechanism to process reverse BR search and Luo et
al. [33] studies the problem of processing reverse FR query. Additionally, Shang et al. [34]
investigate Reverse Path Nearest Neighbor (R-PNN) search that finds the most accessible
locations in road networks. Given a route dataset and a query location set, it finds locations
with the highest influence factor. Specifically, if a location o is the Path Nearest Neighbor
(PNN) of k routes, the influence factor of o is defined as k and the R-PNN query retrieves
the location that has the highest influence factor. The R-PNN query is an extension of the
conventional reverse nearest neighbor search.

Collective spatial keyword search Collective spatial keyword query [35–39] basically
consists of a location and a set of keywords. The query can be defined in various format.
However, the basic aim of collective spatial keyword query is to retrieve a set of items such
that: (1) the keywords of result items cover the query keywords; (2) the items are expected
to be close to the query location; (3) The result item set has the smallest inter-item distances.
Specifically, Requirement (2) is optional (the m-Closest Keywords (mCK) query [39, 40]
does not have Requirement (2)). Requirement (3) can be defined by various objective func-
tions (i.e., Sum function [35, 36], Max-Max function [35–37], and Min-Max function [35]).
The processing of collective spatial keyword query is NP-hard. Existing studies mainly
focus on developing efficient exact search algorithm, greedy-based search algorithm, and
approximate search algorithm with provable approximation bounds, to answer the queries.

Diversity-aware spatial keyword search Diversity-aware spatial keyword search not only
considers the relevancy between query and items, but also takes the dissimilarity between
items into account. Mehta et al. [41] defines spatial-temporal-keyword query that combines
keyword search and the problem of maximizing the spatio-temporal coverage and diversity
of the top-k items returned by the query.

The basic query result diversification techniques lay foundation for the study of diversity-
aware spatial keyword search. In particular, Drosou et al. [42] study the problem of
maintaining the k-set with the highest diversity score over a sliding window on the basis
of the Max-min diversification metric. A cover-tree index is maintained for selecting the
most diverse k-set on the fly over a sliding window. Minack et al. [43] develop a streaming-
based query result diversification mechanism to find a diverse set based on both Max-sum
and Max-min diversification metrics. Liang et al. [44] propose a streaming diversification
algorithm that combines information acquired by dynamic Dirichlet multinomial mixture
topic model and a Proportionality based diversification scheme. Cheng et al. [45] focus on
the problem of selecting the minimum number pf representative subset of items from social
media for a small group of queries issued by the same user, which can be easily extended to
support location-based multimodal data (e.g., geo-tagged tweets). Chen et al. [46] develop
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a publish/subscribe system to support diversity-aware publish/subscribe. Zhang et al. [47]
study spatial keyword search diversification on road networks.

Context-based spatial keyword search The problem of context-based spatial keyword
search is to find a set of spatio-textual relevant items by additionally considering (1) seman-
tic meaning or (2) textual information of collection of items when executing the spatial
keyword search.

Derczynski et al. [48] conduct a survey regarding context-based querying, which includes
longitudinal analyses on social media archives, local intent search, and spatio-temporal
intent search. Qu et al. [49] define locality-based spatial keyword query that returns top-k
sets of items based on a ranking function combining spatial proximity and textual similar-
ity. The problem of processing locality-based spatial keyword query is NP-hard, and they
develop exact search algorithm and greedy-based approximate search algorithm to process
the query. Sun et al. [50] focus on interactive spatial keyword querying with semantics,
which improve the basic spatial keyword queries by (1) making sense of the query key-
words and (2) refining the understanding of query semantics through user interactions.
They develop an interactive strategy to infer the latent query semantics of a given proba-
bilistic topic model by taking user feedbacks as input. In each user-feedback iteration, the
returned items are selected to ensure further precise inference of query semantics. Qian
et al. [51] define a semantic-based spatial keyword query that returns the k items that are
most similar to the query by considering spatial proximity and text semantic relevance.
The text semantic relevance is measured by the coherence of semantic meanings between
query and items. They develop a hybrid indexing structure that integrates spatial, textual,
and semantic information in a hierarchical manner. Qu et al. [52] define a spatial keyword
query that considers the spatial proximity and properties of the items. The query takes a
result cardinality, a spatial range, and property-related preferences as parameters, and it
finds a set of items with the given cardinality and in the given range that satisfies the
preferences.

Besides, Han et al. [53–55] study the problem of mining neighborhood patterns from
large labeled graph. These studies are applicable to context-based spatial keyword search.
Yang et al. [56, 57] aim to solve the problem of spatial keyword search with fuzzy
token matching, which considers approximate keyword matching rather than exact keyword
matching.

POI recommendations The problem of Point-of-interests (POI) recommendations has
been extensively studied in recent years. Specifically, the input of POI recommendation
problem is as follows:

(1) A set of POIs P ;
(2) A set of users U ;
(3) A POI set associated with each user u ∈ U ;
(4) Other sources regarding the factors related to the recommendation results (e.g., user

locations, temporal information, social networks).

The output of the POI recommendation problem is recommending for each user a set of
new POIs that are likely to be visited by the user. Existing studies on POI recommendation
problem have various problem settings and different recommendation models are applied
for processing evaluation data. Liu et al. [12] conduct an extensive evaluation that evaluates
the performance of existing state-of-the-art POI recommendation models. Zhao et al. [58]
conduct a survey of POI recommendation problem on location-based social networks.
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Wang et al. [59] is one of the pioneering works on POI recommendation in location-based
social networks (LBSNs). While it is evidenced that both friendships and geographical
distances affect the users’ behaviors, they proposed a random walk approach to produce
improved performance. Instead of further refining recommendation models, Lu et al. [60]
instead proposed a learning framework to integrate multiple models so that any individual
user’s personal preferences can be captured and tracked over time.

According to the classification result [12], existing models for POI recommendation can
be categorized by Collaborative Filtering Model, Matrix Factorization Model that decom-
poses check-in matrix into user matrix and POI matrix, Poisson Factor Model that factorizes
the user-POI check-in matrix by Poisson distribution, Link-based Model that uses a graph to
model the relationship between users, and Hybrid Model that is regarded as a combination
of two or more basic models.

Ye et al. [61] and Zhang et al. [62, 63] propose a collaborative-filtering-based POI rec-
ommendation model that takes user preference, location, and/or social network as the input.
Cheng et al. [64] and Liu et al. [65] develop a POI recommendation model based on Pois-
son factor. Both of them take user preferences and location as input. Liu et al. [66], Lian et
al. [67], and Li et al. [68] use matrix factorization model to solve the POI recommendation
problem. They also take user preferences and location as input. Li et al. [69] additionally
consider user social network to be the input. Gao et al. [70] propose an LRT model, which
is based on matrix factorization model as well. Different from the models proposed by Liu
et al. [66], Lian et al. [67], and Li et al. [68], the LRT model only takes user preferences and
temporal information as input. Ma et al. [71] propose an auto-encoder model to learn the
complex user-POI relations, which include a self-attentive encoder and a neighbor-aware
decoder.

Spatial keyword query authentications Authentications of spatial keyword query is
extensively studied in recent years. It aims at providing users with correct and accurate
results for each spatial keyword query. Su et al. [72] is the first to study the problem of
authenticating top-k spatial keyword queries in outsourced databases. Wu et al. [73] focus on
a different type of query - moving top-k spatial keyword queries. Recently, Obiri et al. [74]
study the problem of authenticating multiple spatial keyword queries simultaneously. Yue et
al. [75] develop a revocable group signature scheme to provide general privacy-preserving
authentications. Its technique is applicable for handling spatial keyword queries.

Privacy-preserving spatial keywordquery The problem of privacy-preserving spatial key-
word query is to process spatial keyword query without disclosing the information from
the users who issue the query. Su et al. [76, 77] focus on privacy-preserving top-k spa-
tial keyword queries over outsourced databases and untrusted cloud environments. Cui et
al. [78] aim at processing Boolean-Boolean spatial keyword queries while preserving the
confidential information from users.

Continuous spatial keyword query processing Most existing studies on processing con-
tinuous spatial keyword queries are based on the publish/subscribe framework, which
is named as location-based publish/subscribe (LPS). In particular, the publish/subscribe
framework consists of two inputs: (1) publish items; (2) subscriptions. Here, in the con-
text of location-based publish/subscribe, the publish items can be modeled as a stream of
location-based multimodal items and subscriptions can be viewed as a set of continuous
spatial keyword queries. A user may register a personalized subscription, which continu-
ously receive publish items that satisfy the subscription requirements. Here, the subscription
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requirements contain spatial requirement (e.g., an item should be located within a sub-
scription region), textual requirement (e.g., an item should contains subscription keywords),
and/or temporal requirement (e.g., an item should be published within a time frame).

Existing studies can be classified into three categories: (1) Item-based LPS [79–92];
(2) Frequency-based LPS [93–98]; (3) Cluster-based LPS [99–101]. Specifically, the idea
of item-based LPS is to deliver relevant items to each subscription. Differently, the idea
of frequency-based LPS is to deliver frequent elements to each subscription. Here, ele-
ment generally denotes term (keyword) in an item. Cluster-based LPS delivers summarized
information to each subscription (e.g., events, topics, and general clusters).

5 Search over connected location-basedmultimodal data

This section presents existing studies on querying over connected location-based multi-
modal data.

5.1 General trajectory search

5.1.1 Trajectory data

The continued proliferation of GPS-equipped mobile devices (e.g., vehicle navigation sys-
tems and smart phones) and the proliferation of online map-based services (e.g., Bing
Maps,1 Google Maps,2 and MapQuest3s) enable the collection and sharing of trajecto-
ries. For example, the sites Bikely,4 GPS-way-points,5 Share-my-routes,6 and Microsoft
Geolife7 enable such sharing, and more and more social network sites, including Twitter,8

Facebook,9 and Foursquare,10 are starting to support trajectory sharing and search. This
development motivates new studies of the management and analysis of massive trajectory
data [102]. Spatial-keyword trajectory search is useful in many popular applications includ-
ing route planning and recommendation, ridesharing, friend recommendation in social
networks, and location based services in general.

Raw trajectory samples obtained from GPS devices are typically of the form of (longi-
tude, latitude, time). If trajectories on network space, we assume that all trajectory sample
points have already been map matched onto the vertices of the spatial network using
some map-matching algorithm (e.g., [103]) and that between two adjacent sample points
pa and pb, the object movement always follows the shortest path connecting pa and pb.
Specifically, a spatial-textual trajectory is defined as follows [104–107].

1https://www.bing.com/maps/
2https://maps.google.com/
3https://www.mapquest.com
4https://www.bikely.com/
5https://www.gps-waypoints.net
6https://www.sharemyroutes.com/
7https://research.microsoft.com/en-us/projects/geolife/
8https://www.twitter.com/
9https://www.Facebook.com/
10https://www.Foursquare.com/
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Definition (Trajectory) A trajectory τ of a moving object is a finite sequence
〈v1, v2, ..., vn〉, where vi = (pi, ti ), i ∈ [1, n], with pi being a sample point and ti being a
timestamp (optional).

5.1.2 Trajectory search over evolving road networks

This category of studies perform trajectory search or route planning on evolving road net-
works. In particular, the weight of edges is time-dependent or changing over time. Hu et
al. [108] study the problem of capturing the dependence among eco-weights of adjacent
edges on road networks. A number of histogram aggregation algorithms are developed for
estimating GHG emissions of routes. Dai et al. [109] focus on estimating past cost distri-
bution by using a collection of past trajectories. Specifically, given a departure time and
a query path, the problem is to select an optimal set of weights with associated paths that
cover the query path. Here, the weights are required to be the most accurate joint cost distri-
bution estimation for the query path. Yang et al. [110] propose a Path-Centric paradigm that
aims at deriving the expected cost of a given path. This paradigm is able to avoid route split
by considering the following two sub-problems: (1) calculating the travel cost distribution
of a path and (2) discovering a source–destination pair.

5.1.3 Trajectory similarity search and join

Trajectory similarity join is a fundamental problem in the area of trajectory data manage-
ment. Specifically, given a collection of trajectory, trajectory similarity join is to find all
trajectory pairs (e.g., 〈τi, τj 〉) where the similarity between τi and τj is above a pre-defined
similarity threshold θ . Note that the computation of trajectory similarity can be varied.
Existing studies apply various trajectory similarity metrics that take spatial proximity and
temporal proximity into consideration. To measure the similarity between two trajectories,
some studies apply a time interval constraint to constrain the temporal proximity of two
trajectories (i.e., [111–114]). According to the attribute of time window, these studies can
be classified into two categories: (1) threshold-based constraint [112, 114]; (2) similarity-
based constraint [111, 113]. The threshold-based constraint only considers trajectory point
pairs whose temporal proximity (time interval) does not exceed the specified threshold. In
contrast, the similarity-based constraint use a similarity score as constraint by considering
both spatial and temporal aggregate proximities. A host of studies exist that focus on devel-
oping effective similarity metrics to measure the similarity between two trajectories. For
example, Li et al. [115] propose a deep representation learning based method to compute
the similarity between trajectories. Yao et al. [116] further improve the efficiency of neu-
ral network based trajectory similarity computation. Xie et al. [117] propose a distributed
trajectory search framework to handle trajectory similarity search over massive trajectories.
Their framework is implemented in Spark and it supports both the Hausdorff distance the
Fréchet distance.

Ta et al. [118] devise a bi-directional mapping similarity (BDS) metric. Given two trajec-
tories τ1 and τ2, the idea of BDS is to match each sample point of τ1 with its closest point on
τ2, and vice versa. Their study claims that it is expensive to enumerate every two trajecto-
ries and compute their similarity. To address their challenge, they propose a signature-based
trajectory similarity join framework. In particular, at the beginning it generates signatures
for each trajectory. After that, a pruning strategy is proposed to filter out unqualified trajec-
tory pairs. Specifically, if two trajectories do not share common signatures, they cannot be
similar. Shang et al. [119, 120] develop a divide-and-conquer search framework to process
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trajectory similarity join. The framework consists of two phases. In the first phase, each
trajectory is selected as a center and all other trajectories similar to the center trajectory
is retrieved. techniques to achieve efficiency. In the second phase, the similar trajectories
of each center trajectory are merged together. This framework is parallelizable because
the searches from each trajectory are independent of each other and can be performed in
parallel.

The problem of Trajectory-to-Location join (TL-Join) [121] is investigated recently. TL-
Join focuses on the matching between trajectories and locations. Specifically, the inputs
are a trajectory set T , a location set L, and a threshold θ . the TL-Join finds all trajectory-
location pairs from T and L with similarity above θ . The similarity metric considers both
spatial proximity and temporal proximity. They develop a parallel framework to perform
the joining operations in parallel.

5.2 Spatial keyword trajectory search

5.2.1 Term-tagged trajectory data

Basically, a term-tagged trajectory is a trajectory augmented with textual description. Two
types of term-tagged trajectory data exist: individually term-tagged trajectory data and
globally term-tagged trajectory data.

Individually term-tagged trajectory (e.g., Han et al. [122]) augments each sample point
with keywords, which is defined as follows:

Definition (Individually term-tagged trajectory) An individually term-tagged trajectory
τ of a moving object is a finite sequence 〈v1, v2, ..., vn〉, where vi = (pi, ti , ki), i ∈ [1, n],
with pi being a sample point, ti being a timestamp (optional), and ki being a set of keywords.

In contrast, globally term-tagged trajectory (e.g., Shang et al. [123]) augments the entire
trajectory with keywords, which is defined as follows:

Definition (Globally term-tagged trajectory) An individually term-tagged trajectory τ of
a moving object is a finite sequence sample points 〈p1, p2, ..., pn〉 and a set Kτ of keywords
that describe the textual attributes of τ , e.g., highway, tollway, off-road, travel style, and
transport.

5.2.2 Problem formulation

We introduce the existing studies of spatial-keyword queries in trajectory databases.
Comparisons of existing spatial-keyword trajectory queries are detailed in Table 1.

User Oriented Trajectory Search (UOTS) is proposed by Shang et al. [123]. Given a set T

of spatial-textual trajectories and a query q that includes a set of query locations and a set
of keywords, the UOTS query finds the trajectory τ ∈ T with the minimum spatial-textual
distance STdist (q, τ ), i.e., ∀τ ′ ∈ T \ {τ } (STdist (q, τ ) ≤ STdist (q, τ ′)). The UOTS query
is conducted on network space and the spatial similarity is defined by summarizing the
network distances between query locations and a trajectory. In the textual domain, approxi-
mation keyword matching is adopted and keyword sets are transferred to high dimensional
vectors by using the TF-IDF encoding method. Hence, the textual similarity is defined by
the distance between two vectors.
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Table 1 Comparisons of existing geo-textual trajectory queries

Query Type Space Textual Temporal

UOTS [123] NN Network Approximation No

TkSK [104] kNN Euclidean Boolean exact No

ATSQ [105] kNN Euclidean Boolean exact No

TkSK [107] kNN Euclidean Approximation No

AKQST [106] kNN Euclidean Approximation No

SKRT [122] Range Euclidean Boolean exact Yes

Example Given a set of sightseeing places and a set of keywords that describe user’s pref-
erence (tollway: 0%, highway: > 70%, off-road: < 10%, travel style: grouped, transport:
by private vehicle), find the trajectory that is spatially close to the sightseeing places and is
textually similar to the user’s preference.

Top-k Spatial Keyword query (TkSK) is first proposed by Cong et al. [104], and then is
extended by Zheng et al. [105–107]. Given a set T of spatial-textual trajectories and a
query q that includes a set of query locations and a set of keywords, a top-k spatial key-
word trajectory query (TkSK) returns k trajectories from T that have the smallest minimum
match distances with respect to q, each associated with the start and end place indexes
that yield the minimum match distance. The TkSK query is conducted in Euclidean space
and the minimum match distances takes (1) the Euclidean distance between query locations
and a trajectory and (2) the travel distance of trajectory (the sum of the matched points)
into account. In the textual domain, boolean exact keyword matching or an approximation
matching (Edit distance) is adopted.

Example Find the trajectory with the smallest minimum match distances that fully covers
the sightseeing places of cave, waterfall, meadow, panda, and kiosk.

Spatial Keyword Range search on Trajectories (SKRT) is proposed by Han et al. [122].
Given a set T of spatial-textual trajectories and a query q that includes a spatial range R,
a timespan [ts , te], and a set K of keywords, the SKRT query finds all (sub)trajectories
locate within region during query timespan [ts , te], and collectively contain query keywords.
The TkSK query is conducted in Euclidean space and boolean exact keyword matching is
adopted in the textual domain.

Example Find trajectories in a nearby region during 3:00 pm to 5:00 pm with activities of
enjoying wonderful local flower and pizza.

5.3 Methodology

We present the methodologies of the existing spatial-keyword trajectory queries. The
comparisons of them is detailed in Table 2.

Collaborative search Shang et al. [123] propose a collaborative algorithm to process the
UOTS query efficiently. In the spatial domain, network expansion is adopted to explore
spatial networks and to find trajectories spatially close to the query locations. In the textual
domain, keyword sets are transferred to high dimensional vectors by using TF-IDF, and
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Table 2 Methodologies of
geo-textual trajectory queries Query Spatial Textual Combination

UOTS [123] Expansion iDistance seperate

TkSK [104] B+-Tree inverted file spatial-first

ATSQ [105] Grid inverted file spatial-first

TkSK [107] R-Tree inverted file spatial-first

AKQST [106] Grid signature spatial-first

SKRT [122] B+-Tree inverted file spatial-first

these vectors are indexed by iDistance in high dimensional space. An upper and a lower
bound of the spatial-textual distance is defined to prune the search space, and a heuristic
search strategy (best-first) is proposed to schedule multiple query sources (query locations
and a vector) in both domains effectively.

Hybrid index and optimizations The hybrid index structure for spatial-textual trajectory
queries is first proposed by Cong et al. [104] and then Zheng et al. [105–107] study its
variants for different applications. The typical procedure of spatial-textual trajectory query
processing includes two steps. First, a hybrid spatial-textual index structure is defined, such
as Bck-tree [104] (B+-tree plus inverted file), Grid index for Activity Trajectories [105]
(GAT, grid index plus inverted file), ITB Tree [107] (R-tree plus inverted file), Grid Key-
word index [106] (GiKi, grid index plus keyword signature), and IOC tree [122] (B+-tree
plus inverted file). Second, a spatial-first search follows the branch-and-bound strategy to
prune the search space and to retrieve the query results.

5.4 Route search and planning

Traditional route search and travel planning Travel planning (a.k.a. route planning) has
been playing an indispensable role in transportation. It is a widely studied problem in the
areas of data management and GIS.

The problem of travel planning takes trajectory data as input. It outputs an optimal
route or a set of routes that are optimized for each traveler. The problem can be classified
as trajectory-to-point search and trajectory-to-trajectory search. In the trajectory-to-point
search, the problem aims at discovering POIs that are spatially close to a query route accord-
ing to a similarity metric. The most common problem in this category is the in-route nearest
neighbor (IRNN) query [124]. The IRNN query is to find a route close to a fixed route
defined by the traveler. Based on the IRNN query, many extension queries are proposed.
For example, the path nearest neighbor (PNN) query [125–127] is an extension of the
IRNN query, which continuously maintains path nearest neighbors as the traveler is trav-
eling along a pre-defined route. Recently, Shang et al. [128] define a cluster-based travel
planning query, the path nearby cluster query, which extends the PNN query by discovering
the point clusters that are close to a pre-defined query path.

Different from trajectory-to-point search, trajectory-to-trajectory search is to find tra-
jectories that are similar to a query trajectory. Note that the similarity is measured by
taking both geometrical similarity and spatial proximity into consideration. Chen et al. [129]
and Shang et al. [102] are the first to study the problem of trajectory similarity search
in Euclidean space and road netowrks, respectively. Recently, Yuan et al. [130] propose a
distributed trajectory similarity search and join framework on spatial networks.
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Shang et al. [131] focus on the problem of finding an optimal travel (ridesharing) arrange-
ment for a set of users located at difference places but have a uniform destination, which is
named as collective travel planning (CTP). In particular, given the locations of a set of trav-
elers Q, a set of meeting points S, a uniformed destination d , and an integer threshold k ,
the CTP problem is to identify a subset A of S with at most k elements that when used as
meeting points results in the minimum global travel cost. The CTP query is Max SNP-hard.
To find the optimal travel arrangement, they present an exact algorithm by enumerating all
possible subsets and an approximation algorithm with polynomial time complexity and and
a bounded approximation ratio of 5.

Keyword-aware route search The problem of keyword-aware route search is to return
an optimal route satisfying user’s keyword-based and threshold-based requirements. A
keyword-aware route query q = 〈s, d, o, c, f 〉 [132–137] is basically defined on the basis
of a set of geo-tagged items on a spatial network G. In particular, s is the source (starting
location) of a route in G, d is the destination (ending location), ø denotes an ordering graph,
which is regarded as a directed acyclic graph where each vertex is mapped to a keyword
and each edge represents that the keyword at the starting point of the edge is required to
be visited before the keyword at the ending point of edge. Note that the keyword match-
ing scheme may be exact matching or approximate matching. Specifically, exact matching
denotes that a keyword in an item must be exactly the same as the keyword in a query.
In contrast, approximate matching introduces a similarity threshold where the similarity is
measured by some string similarity metrics (e.g., edit distance) to determine whether a term
in an item matches a term in a query. � is a budget limit (e.g., travel distance threshold),
which is optional, and f is a function that calculates the objective score of a route (e.g.,
route popularity score). The query returns a path R in G starting at s and ending at d , such
that R optimizes f (R) under the constraints that R satisfies the budget limit � and passes
through locations following the sequence in �.

Location-based route recommendations Given a set of locations (e.g., POIs, taxi loca-
tions), the location-based route recommendation problem aims to derive a new route based
on location information, user preference information, and/or other moving patterns. Ge et
al. [138] and Ye et al. [139, 140] focus on the mobile sequential recommendation problem,
which returns a recommendation result (i.e., a route) by minimizing the potential travel dis-
tance to a taxi driver’s next potential passenger. The objective of the above problem is to
discover an optimal route to a user. Recently, the problem of multiple mobile sequential
recommendation is defined and studied. Specifically, Ye et al. [141] is the first to define
the problem of multiple mobile sequential recommendation that derives a set of routes by
optimizing the travel cost for a group of taxis at different locations.

Apart from mobile sequential recommendation, travel itinerary recommendation is inves-
tigated by recent literature (e.g., [142, 143]). In particular, given a set of user-specified POIs
and a set of constraints, the problem of travel itinerary recommendation is to generate an
itinerary that contains a subset of user-specified POIs, which is named as refined POI set
with a specific source POI and a specific tatget POI. Here, the output travel route containing
the refined POI set is required to be completed within a pre-specified time period. More-
over, Yang et al. [144] focus on the problem of recommending the shortest route to users
based on existing trajectories by considering costs of different categories. Additionally, the
problem of combined route search by locations is proposed [145]. Given a collection of
trajectories, a query POI set Q, and a threshold θ , it returns a combination of trajectories
whose similarity to Q is no less than θ the number of combinations should be minimized.
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Yawalkar et al. [146] study the problem of finding an optimal route s.t. (1) the length of
the route is minimized; (2) the route is expected to cover as many of the query locations as
possible. A goal-directed search algorithm is developed for balancing the trade-off between
route length and the location coverage. Li et al. [147] propose a differentially private fre-
quent time-constrained sequential pattern mining mechanism, which can be used for route
recommendation.

6 Conclusions and future directions

In this paper, we conduct an all-around survey on existing studies of location-based keyword
search. We classify existing works of location-based keyword search based on the types
of their input data, output results, and methodologies. For each category, we summa-
rize their common features in terms of input data, output result, indexing scheme, and
search algorithms. Detailed description regarding each study of spatial keyword search is
elaborated.

Though massive studies regarding spatial keyword search exist, we still have a great
number of open problems. Here, we summarize two directions that are well worthy of being
investigated.

Management of high-dimensional geo-textual data Existing studies use term-based sim-
ilarity metrics (e.g., language model, BM2.5, cosine similarity) to measure the textual
similarity between two items. However, there metrics are computationally expensive, espe-
cially when the number of item pair candidates are very large. As a result, we need to
enhance computation of on high-dimensional geo-textual data management and query pro-
cessing in order to provide web users and social-media service providers with more efficient
and more scalable mechanism in storing and querying over a much broader range of big
multi-modal data. Particular challenge in this field is the exponentially growing time com-
plexity and space complexity in data management and query processing, respectively, when
we increase the number of dimensions of source data. , It will be of great interest to extend
prior hybrid indexing structure, search algorithms, and benchmark systems to handle high-
dimensional streaming data (i.e., with at least 1,000 dimensions) in order to develop more
general, efficient, and scalable indexing and query processing mechanisms.

Mining of latent relationship from big geo-textual data streams It is an open problem
to effectively and efficiently support real-time mining of relationships between different
topics or events in data streams. For example, instead of receiving individual tweets, events,
or topics from a stream, users may want to be notified in real time of casual relationships
among tweets, events, or topics. Furthermore, high velocity data streams from social media
call for distributed solutions. Additionally, data streams can be integrated with static geo-
textual objects (e.g., points of interest). By bridging dynamic data streams and static geo-
textual data, exciting opportunities for data analytics emerge.
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