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Abstract
With the development of mobile Internet and the prevalence of sharing economy, spatial
crowdsourcing (SC) is becoming more and more popular and attracts attention from both
academia and industry. A fundamental issue in SC is assigning tasks to suitable workers
to obtain different global objectives. Existing works often assume that the tasks in SC are
micro and can be completed by any single worker. However, there also exist macro tasks
which need a group of workers with different kinds of skills to complete collaboratively.
Although there have been a few works on macro task assignment, they neglect the dynamics
of SC and assume that the information of the tasks and workers can be known in advance.
This is not practical as in reality tasks and workers appear dynamically and task assignment
should be performed in real time according to partial information. In this paper, we study
the multi-skill aware task assignment problem in real-time SC, whose offline version is
proven to be NP-hard. To solve the problem effectively, we first propose the Online-Exact
algorithm, which always computes the optimal assignment for the newly appearing tasks or
workers. Because of Online-Exact’s high time complexity which may limit its feasibility in
real time, we propose the Online-Greedy algorithm, which iteratively tries to assign workers
who can cover more skills with less cost to a task until the task can be completed. We finally
demonstrate the effectiveness and efficiency of our solutions via experiments conducted on
both synthetic and real datasets.
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1 Introduction

The development of mobile Internet breeds rich location-based applications and related
research [5, 8, 11, 14, 15, 18]. In recent years, the combination of sharing economy
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and mobile Internet is initiating many kinds of spatial crowdsourcing platforms such as
Gigwalk (http://www.gigwalk.com), TaskRabbit (http://www.taskrabbit.com) and gMission
[30], where requesters of tasks and workers log in and off dynamically at different time and
places. A fundamental research topic on spatial crowdsourcing is task assignment [21, 24],
i.e., assigning suitable workers to nearby tasks with different optimization objectives, such
as maximizing the total utility [27], maximizing the number of completed tasks [26] and
minimizing the total moving distance of the workers [29].

Existing works on task assignment mainly assume that all the tasks are atomic and homo-
geneous, which can be completed byany single worker, such as picking up and delivering
things [31].

However, like the research in the web-based crowdsourcing [22], there are also some tasks
in spatial crowdsourcing which are complex and structural and require a group of workers
with different kinds of skills to work collaboratively. For example, a requester on gMission
can publish a task whose content is to organize a party. Then, workers who are good at
preparing the food, the drinks and the lights may be needed. Or, if the task is yard work,
workers who can mow lawns, repair the fence and take care of the flowers are necessary.

Although there are some studies on assigning workers for complex tasks such as [23, 28],
they only consider the static scenario. In other words, they assume that the information on
the tasks and workers is known in advance, based on which task assignment is performed.
However, in practice, the tasks and workers log in and out of the spatial crowdsourcing
platform dynamically and we always perform task assignment based on the information
released currently. In this paper, we study the Online Multi-skill-Aware Task Assignment
problem (Fig. 1).

We next use an example to demonstrate the above motivation.

Fig. 1 Locations of Tasks and Workers
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Table 1 Information of tasks

Tasks Lists of required skills Location Budget

t1 s1 (Mix drinks), s2 (Prepare food), s3 (Prepare barbecue), (1, 1) 50

s4 (Decorate venues) , s5 (Take photos)

t2 s1 (Mix drinks), s2 (Prepare food), s3 (Prepare barbecue), (2, 2) 50

s4 (Decorate venues) , s5 (Take photos)

t3 s1 (Mix drinks), s2 (Prepare food), s3 (Prepare barbecue), (3, 1) 50

s4 (Decorate venues) , s5 (Take photos)

Example 1 Suppose we have three tasks t1-t3 whose information is shown in Table 1.
Specifically, each task has a required skill list, a location and a budget. In this example, all
the three tasks require workers with the skills of mixing drinks (s1), preparing food (s2),
preparing barbecue (s3), decorating venues (s4) and taking photos (s5). They have different
locations. For example, t1 is located at the position (1, 1). They all have budget of 50.

We also have six workers whose information is shown in Table 2. Specifically, each
worker has a mastered skill list and the corresponding fee of each skill. They also have
locations. For example, the worker w1 masters the skill of s1 (mixing drinks), s2 (preparing
food) and s3 (preparing barbecue). If s/he is assigned to a task and the content of the work
is to mix drinks (s1) and prepare barbecue (s3), s/he will be paid 3 + 10 = 13.

The arriving and leaving time of the above tasks and workers is shown in Table 3. For
example, w1 arrives at 17:05 and leaves at 17:45. Note that we cannot wait until all the
tasks and workers arrive and perform the task assignment, as some tasks or workers have
left by then. Thus, we always need to perform task assignment based on partial information
(namely the tasks and workers that have arrived) and cannot change the decisions that have
been made.

Motivated by the above example, we formalize the Online Multi-skill-Aware Task
Assignment (OMATA in short) problem. In our problem, the tasks with requirement on
different skills and the workers mastering different skills appear and leave dynamically.
We need to perform task assignment before the tasks and workers leave to maximize the
total utility, which is defined as the remaining budget of all tasks after paying the assigned
workers.

Briefly, we make the following contributions.

– We formally define the OMATA problem and prove that even its offline version is
NP-hard.

Table 2 Information of workers
Workers Skills and fees Location

w1 (s1, 3), (s2, 10), (s3, 10) (5, 3)

w2 (s2, 10), (s3, 3), (s5, 10) (4, 5)

w3 (s1, 10), (s2, 10), (s5, 3) (1, 2)

w4 (s2, 3), (s3, 10), (s4, 10) (2, 3)

w5 (s1, 11), (s2, 10), (s4, 10) (3, 3)

w6 (s2, 10), (s4, 11), (s5, 10) (2, 0)
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Table 3 Timeline

Item t1 w1 w2 w3 w4 t2 w5 w6 t3

Arriving time 17:00 17:05 17:10 17:15 17:20 17:25 17:30 17:35 17:40

Leaving time 18:00 17:45 17:50 17:55 18:00 18:25 18:10 18:15 18:40

– Inspired by the research of online micro task assignment, we propose the Online-Exact
algorithm, which always calculates the optimal assignment through brute force search
for each task.

– To release the high time complexity of Online-Exact, we propose the Online-Greedy
algorithm which assigns workers for each task via an effective heuristics method.

– We conduct experiments on both synthetic and real dataset to evaluate the proposed
methods.

The following of the paper is organized as follows. We review the related work in
Section 2, formalize our problem and analyze its hardness in Section 3. Then we propose
our solutions in Section 4 and conduct experiments in Section 5. We finally conclude in
Section 6.

2 Related work

We review related works from two categories: task assignment in SC and team formation in
social networks.

2.1 Task assignment in spatial crowdsourcing

2.1.1 Micro-task assignment

The early works on task assignment in SC mainly focus on micro-tasks, which can be com-
pleted by any single worker. Kazemi and Shahabi [3] propose task assignment problem
in spatial crowdsourcing under the offline scenario and the goal is to maximize the total
number of the assigned tasks. Tong et al. [27] consider online scenario of task assignment
and proposes algorithms with theoretical guarantees to maximize the total utility score of
the assignment. Song et al. [12] also focus on the online scenario and takes the influence
of work space into consideration. Tong et al. [29] study online task assignment to minimize
the total moving distance of the workers. Tong et al. [26] propose a prediction-based method
to solve the online task assignment problem. Liu et al. [2] present a privacy-preserving
task assignment protocol which can protect the privacy for both workers and tasks with
acceptable overheads.

Tao et al. [13] recommend routes for workers to maximize the total utility. Zeng et al.
[16] assign tasks to workers while trading off quality and latency of task completion. Tong
et al. [17] propose a match-based approach to solve the dynamic pricing problem in spatial
crowdsourcing. Tran et al. [20] propose a real-time framework for task assignment.

The differences between the above works and this paper is that we focus on the scenario
where tasks require specific skills and cannot be completed by single workers generally.
Thus, the methods of above works cannot apply to our problem.
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2.1.2 Macro-task assignment

We use macro-task to denote the tasks that have requirement on different skills. Gao et al.
[4, 7] recommend top-k teams with or without leaders to a macro-task, and the goal is to
minimize the total cost of the recommended teams. Song and Cheng et al. [23, 28] study
assigning workers for specialty-aware tasks to maximize the total utility score.

The biggest difference between our work and the above studies is that in our paper
we consider the dynamics of the tasks and workers. Specifically, the tasks and workers
appear dynamically and their information cannot be known in advance. Thus, we must make
decisions (assignments) based on current information. Besides, the assignments that have
been made cannot be canceled. Otherwise, the user experience of both the workers and the
requesters of the tasks may be hurt. Because of the above challenges, existing algorithms
such as those in [23, 28] cannot be applied or extended trivially to solve it, as they have
to be performed on all of the tasks and workers. But in our problem, this information is
inaccessible.

2.2 Team formation problem

Another related topic is the team formation problem, where teams of experts with differ-
ent skills are formed to complete tasks requiring multiple skills and the goal is often to
find a qualified team with the minimal communication cost, which is defined based on the
social graph of the experts [6, 9, 10, 19], such as the diameter and the sum of the weights
of the minimum spanning tree of the team members’ social graph in [9], the communica-
tion cost as the sum of the shortest distances between the members and the leader in [19].
Anagnostopoulos and Majumder et al. [6, 10] also consider the workload balance among
the members of a team.

The difference between our problem and the above works on the team formation problem
and its variants is that (i) the core focus in our paper is the total utility of the assignment
and thus we do not consider the social relationships between users; (ii) we aim at assigning
workers with multiple tasks while the above works mainly focus on assigning a team of
experts with a single task.

3 Problem definition

In this section, we first define our problem and then analyze its hardness via the offline
version.

Definition 1 (Worker) A worker w is defined as < ow, bw, ew, Sw, Pw >, which means a
worker appears at the location ow at time bw and will leave the platform at ew if no task
is assigned to her/him. Sw = {sw

1 , sw
2 , · · · , sw|Sw |} is the set of skills that w masters and

Pw = {pw
1 , pw

2 , · · · , pw|Sw |} is the multi-set of cost for each of the skills in Sw . In other
words, if w is assigned to use her/his skill sw

i to perform a task, the responsible payment
is pw

i .

Definition 2 (Task) A task t is defined as < ot , bt , et , St , Bt >, which means that a task t

appears at the location ot at time bt and will leave if it is not assigned to workers before et .
St = {st

1, s
t
2, · · · , st

|St |} is the set of required skills of t . All skills in St should be mastered
by an assigned worker or t cannot be completed. Bt is the total monetary budget.
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We next define how to calculate a worker’s reward, which includes two parts: (1) reward
for the skills that the worker is required to be responsible for and (2) reward for letting the
worker move from her/his current location to the location of the assigned task. The reasons
are as follows. First, the reward of a worker roots in the labour s/he contribute. Thus, the
reward should include the fees for the specified skills that the workers are assigned. Besides,
to complete a task, a worker should move from her/his location to the location of the task,
which incurs extra cost. We think this cost should be paid to the assigned worker and the
scale of the cost should be calculated according to the distance between the locations of the
task and worker.

Definition 3 (Reward of Worker) If worker w is assigned to perform task t and required
to be responsible for the skills of S′

w ⊆ Sw , the reward of w is R(w, t, S′
w) = γ ·

dis(ow, ot ) + ∑
s∈S′

w
pw

s , where dis(ow, ot ) is the distance between Lw and Lt , which can
be Euclidean distance or road network distance, γ is a global parameter representing the
unit transportation fee.

We next define the utility of a task as follows.

Definition 4 (Utility of Task) If a set of workers Wt is assigned to task t , the utility of task
t is defined as U(t, Wt ) = Bt − ∑

t∈Wt
R(w, t, S′

w), where Bt is the budget of the task and∑
t∈Wt

R(w, t, S′
w) is the summation of rewards of workers assigned to t . Note that if an

assigned set of workers cannot complete the task, the reward of the task is zero.

We finally define our problem as follows.

Definition 5 (Online Multi-skill-Aware Task Assignment (OMATA) Problem) Given a set
of tasks T , a set of workers W and a global unit transportation fee γ , the problem is to
assign workers to tasks to maximize the total utility of the completed tasks and the following
constraints should be satisfied:

– Invariable Constraint: once a set of workers is assigned to a task, it cannot be changed.
– Skill Constraint: the workers assigned to a task should be able to cover the required

skills;
– Budget Constraint: the total rewards of workers assigned to a task cannot exceed the

task’s total budget;

Hardness Analysis We next prove that even the offline version of the OMATA problem is
NP-hard. Thus, the OMATA problem is very difficult to address.

Theorem 1 The offline version of the OMATA problem is NP-hard.

Proof We prove through a reduction from the weighted set cover (WSC) problem [25].
In an instance of the WSC problem, we are given a set U = {a1, a2, · · · , am} and its n

subsets A1, A2, · · · , An ⊆ U . Each Ai has a weight wi . The goal is to find A∗ ⊆ A =
{A1, A2, · · · , An} such that ∪A∗ = U and

∑
Aj ∈A∗ wj is minimized.

We next show how to transform the WSC problem to an instance of the offline version
of OMATA problem. Suppose we only have one task t which requires skills St = U and
has much enough budget Bt . For n workers {w1, w2, · · · , wn}, their required fees for skills
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are all zero, and we adjust their locations and γ to make their transportation fee to perform
t be ci . We aim to find a set of workers K to maximize the utility of t , which in this case
equals Bt − ∑

i∈K ci . Thus we only need to minimize
∑

i∈K ci . In this way, we reduce an
instance of WSC problem to one of the OMATA problem. As the WSC problem is known
to be NP-hard [25], the offline version of OMATA problem is also NP-hard.

4 Method

We introduce the methods to solve the OMATA problem in this section.

4.1 Online-exact algorithm

Basic Idea When a new object obj appears, which could be a task t or a workerw, we calcu-
late the optimal assignment among the current set of tasks Tc, the current set of workers Wc

through obj . In other words, obj must be involved in the assignment if such assignment exists.
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Algorithm Alg. (1) shows the pseudo-code of the Online-Exact algorithm. We first ini-
tialize the current assignment and the sets of tasks and workers which are not assigned
currently in line 1. In Lines 2-3, for each new arrival object, which could be a task or a
worker, we call the Exact Local Assignment (ELA in short) algorithm (see Alg. 2) which
performs an optimal assignment for obj and update the assignment M . We update Tc,Wc

in line 4 and return the final assignment in line 5. In Alg. 2, if obj is a task t (line 1),
for each skill s required by t , we collect the workers who master this skill as set Ws

(lines 3-4). We calculate the Cartesian product of all the Ws to enumerate all cases to
assign workers for t in line 5 and return the case with the maximal utility in line 6. If
obj is a worker w in lines 7-8, for each task t ∈ Tc, we use the method in lines 1-6
to find the assignment Mt

l for t in lines 10-14. We finally update Ml using the assign-
ment with the maximum utility among all {Mt

l } in line 15. We return the assignment in
line 16.

Complexity We assume the number of skills that a task requires or a worker masters is a
constant C. For Alg. (2), the worst case happens when a new worker w arrives. For each
task t that have arrived and have not left (line 10), we have to calculate all possible ways to
assign a group of workers including w with t (in lines 11-14), which consumes O(|Wc|C)

time. Thus the total complexity is |Tc||Wc|C . As a result, the time complexity of Alg. 1 is
(|T | + |W |)|T ||W |C .

We next give an running example of Alg. (1).

Example 2 After w4 arrives, we assign w1, w2, w3 and w4 to t1. Specifically, we let w1
perform the skill of s1, w2 perform the skill of s3, w3 perform the skill of s5 and w4 perform
the skills of s2 and s4. Thus, the utility gained from t1 is 50− 0.1× (4.47+ 5+ 1+ 2.23)−
(3 + 3 + 3 + 3 + 10) = 26.73. After that, Online-Exact does not assign workers for t2 and
t3 as they cannot be completed by the remaining workers.

4.2 Online-Greedy algorithm

Basic Idea Although Online-Exact can optimize the assignment for each task, it has two
drawbacks. First, the time complexity is too high. Second, it may consume too many work-
ers to pursue the optimal assignment for a single task and thus works bad when the workers
are insufficient. In this subsection, we propose the Online-Greedy (OG for short) algorithm,
which considers both the reward gained from a single task and the number of workers the
task consumes.
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Algorithm Alg. (3) shows the pseudo-code of the Online-Greedy, which is similar to Alg.
(1). The only difference lies in the line 3 where we use the Greedy Local Assignment (GLA)
algorithm to perform the assignment for the new arriving object obj . Alg. (4) shows the
pseudo-code of the GLA algorithm. When a task t appears in line 1, we iteratively assign
workers with the minimal R(w, t, S′

w)/|S′
w ∩ St | to it in lines 4-8. The underlying idea is

that we alway assign the worker with low reward and high skill coverage at the same time.
Then we update the state of t by removing the covered skills in line 9 and calculating the
remaining budget in line 10. If obj is a worker w in lines 12-14, we first find the task t∗
with the minimum R(w, t, S′

w) in line 15. Then we assign workers to cover the remaining
skills of t∗ through recursion in line 16. We finally return the assignment in line 17.

Complexity We still assume the number of skills that a task requires or a worker masters is
a constant C. For Alg. (4), the worst case happens when a new worker w arrives. We first
find a task t∗ in line 15 using O(Tc) time. Then, we use O(C|Wc|) time to assign workers
to t∗ (in lines 4-10). Thus the total time complexity is O(|Tc| + |Wc|). As a result, the time
complexity of Alg. 3 is (|T | + |W |)2.

We next give an running example of Alg. (3).

Example 3 When w4 arrives, we find t1 can be completed. We first assign w4 to t1 and let
w4 to perform the skills of s1 and s5. Then, we assign w3 to t1 and let w3 to perform the
skills of s2, s3 and s4 because w3 has the minimal value of R(w, t, S′

w)/|S′
w ∩ St |. After

that, we find t1 is completed and the utility is 10.77. Similarly, t2 cannot be completed until
w5 comes. We assign w5 to t2 and let w5 perform the skills of s1, s2 and s4. Afterwards,
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we assign w2 who has the minimal value of R(w, t, S′
w)/|S′

w ∩ St | to t2. Thus, t2 can be
completed and the utility is 5.5. When t3 comes, we first assign w6 to t3 and let w6 perform
the skills of s2, s4 and s5 because this can get the minimal value of R(w, t, S′

w)/|S′
w ∩ St |.

We assign w1 and let w1 perform the skills of s1 and s3. Finally, the total utility is 24.76.

5 Evaluation

5.1 Experiment setup

Datasets We use both real and synthetic datasets to evaluate our algorithms.
The real dataset is from [1], which is crawled from Meetup, an event-based social net-

work. We use the data from the area of Hong Kong with latitude from 22.209 to 22.609 and
longitude from 113.843 to 114.283. We use the events as the tasks and users as the work-
ers. The tags are viewed as the skills. We remove the tasks which cannot be completed as
they have the skills that are not mastered by any workers, the workers whose mastered skills
do not have any overlap with all the tasks and the skills of workers which are not required
by the tasks. Finally, the statistics of the remaining tasks and workers is shown in Table 4.
Besides, we generate the budgets of tasks and costs of skills mastered by workers following
the Gaussian distribution. Especially, because of the uncertain size of skills that both tasks
require and workers master, we generate the mean of budget depending on the size of skills
required by tasks. The variance of Bt related to one skill is fixed as 10 and the variance of
pw is fixed as 5. The setting of these generated parameters can also be found in Table 4.

We also use a synthetic dataset for experiments. Specifically, we generate data varying
the following parameters.

– |T |: the number of tasks;
– |W |: the number of workers;
– |St |: the number of skills that each task requires;
– |Sw|: the number of skills that each worker masters;
– Mean of Bt : the mean of budgets of different skills required by the tasks following

Gaussian distribution;
– Variance ofBt : the variance of budgets of different skills required by the tasks following

Gaussian distribution;
– Mean of pw: the mean of costs of different skills mastered by the workers following

Gaussian distribution;

Table 4 Real dataset
Factor Value

|T | 1234

|W | 3275

Mean of Bt (Generated) 20 40 60 80 100

Average |Pt | 8.62

Average |Pw | 7.33

Mean of pw (Generated) 10 20 30 40 50

Waiting Time 2h

Skill Range 554

γ (Generated) 0.1 0.3 0.5 0.7 0.9
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– Variance of pw: the variance of costs of different skills mastered by the workers
following Gaussian distribution;

– Skill Range: the total number of skills;
– γ : the global transaction fee for unit distance.

Statistics of the above parameters are shown in Table 5, where we mark our default set-
tings in bold font. The appearing and leaving time of the tasks and workers are generated
following uniform distribution.

Compared Algorithms The following algorithms are compared in the experimental study.

– Baseline, which assigns workers (tasks) to new arriving tasks (workers) according to
the appearing order of the workers (tasks);

– Online-Exact (Alg. (1)), which performs assignment for the new arriving tasks or
workers via ELA algorithm (Alg. (2));

– Online-Greedy (Alg. (3)), which performs assignment for the new arriving tasks or
workers via GLA algorithm (Alg. (4));

Metrics We compare the total utility, runtime and memory cost of the compared algorithms.

5.2 Experimental results on synthetic datasets

Because of the inefficiency of Online-Exact, we first study the performance of all the three
algorithms in a small dataset where the number of tasks and workers is 100x times less than
that of Table 5. We then only compare Baseline and Online-Greedy following the setting in
Table 5.

Results on the small synthetic datasets The results are shown in Fig. 2. It can be seen that
the utility of Online-Greedy is a little less than Online-Exact and outperforms Baseline a
lot. Reasonably, the time and memory cost of Online-Exact is extremely more than that of
Online-Greedy and Baseline, making it useless in real applications. In Fig. 2e, the runtime
of Online-Exact decreases overall with the increment of the number of tasks. The reason is
that when there is only a small number of tasks, each task can be assigned to more workers.
Due to the high time complexity of Online-Exact, more total time is needed. However, when

Table 5 Synthetic dataset
Factor Setting

|T | 1k 2k 3k 4k 5k

|W | 3k 6k 9k 12k 15k

|St | 3 4 5 6 7

|Sw| 3 4 5 6 7

Mean of Bt 100 200 300 400 500

Variance of Bt 10 20 30 40 50

Mean of pw 10 20 30 40 50

Variance of pw 5 10 15 20 25

Skill Range 10 15 20 25 30

γ 0.1 0.3 0.5 0.7 0.9
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Fig. 2 Results on varying the number of the workers and tasks on a small dataset

there are more tasks, each task can only be assigned to a small number of workers. As a
result, although more tasks should be assigned, the runtime is less.

Effects of the number of workers |W | The results are presented in Fig. 3a-c. We first
observe that the total utility increases reasonably with larger |W | for all two algorithms. The
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Fig. 3 Results on varying the number of the workers and tasks
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reason is that more workers are available and thus the utility gained from all the completed
tasks increases. The increment of Baseline is not obvious. The reason is that Baseline does
not try to select suitable workers who can bring more utility. As a result, Online-Greedy
outperform Baseline a lot. We can find that Baseline is even slower than Online-Greedy
when |W | is more than 6,000. The reason is that Baseline is very ineffective and as a result,
there are always many tasks and workers waiting for assigning. Thus Baseline needs to
spend much time to process each new arriving task and worker. While in Online-Greedy,
the number of waiting tasks and workers is small, making it more efficient than Baseline.
Finally, for the memory consumption, the observation is that generally the memory uses
increase when |W | increases. Baseline consumes more memory as the heap of unassigned
tasks and workers.

Effects of the number of tasks |T | The results are presented in Fig. 3d-f. For the total util-
ity score, we can first observe that Online-Greedy still outperforms Baseline. Besides, the
tendency of Online-Greedy is complex. After analyzing the intermediate results of Online-
Greedy, the phenomenon can be explained as follows. The total utility is effected by two
factors, namely the number of finished tasks and the utility gained from each tasks. When
|T | increases from 1,000 to 2,250, more tasks can be finished and the assignment for each
task can be optimized as there are adequate available workers. However, when |T | increases
from 2,250 to 3,000, although more tasks can be finished, the utility of each finished tasks
decreases rapidly. As a result, the total utility deceases, too. When |T | increases more than
3,000, the number of finished workers is stable, as the workers are lacking. Thus, the utility
is also steady. As for running time, we can find Online-Greedy is still faster than baseline.
For the complex tendency of Online-Greedy, the reason is that first with the increase of
|T |, nearly all the workers are assigned and thus few workers are accumulated, making the
assignment for each new arriving task or worker faster. Then when |T | increases further,
more tasks are accumulated, making the running time increase. For memory consumptions,
still Baseline consumes more memory for the heap of tasks and workers.

Effects ofmean of Bt The results are presented in Fig. 4a-c. Firstly we can observe that the
total utility increases reasonably when Bt increases as more utility scores can be obtained
from each accomplished task. Online-Greedy still outperforms Baseline obliviously. As for
running time, when the mean is 100, Online-Greedy is slower than Baseline. The reason
is that the budget is small, thus many tasks and workers cannot be assigned and heap. In
this case, Baseline is faster for its low time complexity. When the mean is bigger, for the
effectiveness of Online-Greedy, less workers and tasks heap up, making Online-Greedy
even faster than Baseline. When the mean is bigger than 400, Baseline can also consume the
tasks and workers efficiently as Online-Greedy and runs faster than Online-Greedy. Finally,
as for memory, when the mean is small, the heap of tasks and workers in Baseline makes it
consume more memory than Online-Greedy. After the mean is large enough, the memory
cost of the two algorithms is similar.

Effects of variance of Bt The results are presented in Fig. 4d-f. Firstly, we can see that
the utility scores keep stable on varying the variance of Bt and Online-Greedy outperforms
Baseline a lot. Second, as Baseline is ineffective, many tasks and workers heap up, making
it consume more time and memory than Online-Greedy.

Effects of mean of the cost of workers’ each skill The results are presented in Fig. 5a-c.
As for the total utility, we can observe that the utility scores decrease as |pw| increases.
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Fig. 4 Results on varying the mean and variance of the tasks’ budget

This is reasonable as utility reduces when workers get more amount of payment. Similarly,
with the increment of the mean, more workers and tasks heap up in Baselines, thus Baseline
consumes more time and memory while the time and memory cost of Online-Greedy is
stable.
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Fig. 5 Results on varying mean and variance of the cost of workers’ each skill
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Effects of variance of the cost of workers’ each skill The results are presented in Fig. 5d-
f. Online-Greedy has more utility and less time and memory cost. The reason is similar.
Baseline is ineffective and many tasks and workers heap up. Thus, although the time com-
plexity of Baseline is lower than Online-Greedy, it still consumes more time and memory.

Effects of the number of required skills of tasks The results are presented in Fig. 6a-c.
Online-Greedy still outperforms Baseline in term of utility. As for time, initially, Baseline
is more efficient. The reason is that the number of required skills is small. Thus all the tasks
can be completed easily and as a result there are not many tasks and workers heaping up in
Baseline. However, when the number is bigger, Baseline cannot find workers to complete
enough tasks which results in the heap of tasks and workers and makes Baseline slower than
Online-Greedy. In terms of memory, with the increment of the number of required skills,
Baseline is influenced for the above reason and consumes more memory.

Effects of the number of mastered skills of workers The results are presented in Fig. 6d-
f. Online-Greedy has more utility than Baseline. Still for the heap of the tasks and workers,
Baseline consumes more time and memory.
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Fig. 6 Results on varying the number of required skills of tasks, the number of mastered skills of workers
and the number of total skills
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Effects of thenumber of total skills The results are presented in Fig. 6g-i. We find that both
algorithms have less utility with the increment of the number of total skills. This is reason-
able as generally the tasks become harder to complete. Besides, Online-Greedy outperforms
Baseline again in terms of utility, time and memory.

Effects of γ The results are presented in Fig. 7a-c. First, with the increment of γ both
of the algorithms has less utility. This is reasonable as the the payment for the workers
is increased. Again Online-Greedy outperforms Baseline. For the heap of the tasks and
workers in Baseline, it consumes more time and memory. The time cost of Online-Greedy
increases quickly as with a larger γ , the degree of accumulate of Online-Greedy is heavier,
to which Online-Greedy is sensitive for its higher time complexity. In Fig. 7b, the runtime
of Online-Greedy increases with the increment of γ . The reason is that the increment of γ

is equivalent to the decrement of the budget. As a result, Online-Greedy has to use more
time to find a group of workers through more loops in the algorithm. On the other hand, the
runtime of Baseline is stable. The reason is that Baseline does not consider much on budget.
It only cares about the order of the workers when assigning a task to them.

5.3 Experimental results on real datasets

In this subsection, we demonstrate the experimental results on real datasets. As in the real
dataset, the total number of skills is 554 (see Table 4), Online-Exact cannot finish in 24
hours. Thus we do not show the results of Online-Exact.

The experimental results are similar with that of the synthetic dataset. Specifically, with
the increment of the mean of the tasks’ budget on each skill (see Fig. 8a-c), both algorithms
have more utility as they can get more profit from each completed tasks. With the increment
of the mean of the cost of the workers’ each skill (see Fig. 8d-f) and γ (see Fig. 8g-i), both
algorithms have less utility as they have to pay more to the workers. Baseline still consumes
more time and memory for the heap of tasks and workers.

5.4 Experimental summary

Online-Exact and Online-Greedy always perform better than Baseline in terms of total util-
ity. Online-Exact is only a little better than Online-Greedy but consumes unbearable time
and memory cost. In most cases, Online-Greedy even has less time and memory cost, as
it can consumes the arriving workers and tasks effectively. While in Baseline, the heap of
tasks and workers makes it even more inefficient.

0.
1

0.
3

0.
5

0.
7

0.
9

U
til

ity

× 105

0

0.5

1

1.5

2

Baseline
Online-Greedy

(a) Utility

0.
1

0.
3

0.
5

0.
7

0.
9

T
im

es
(s

ec
s)

0

10

20

30

40

50

Baseline
Online-Greedy

(b) Runtime

0.
1

0.
3

0.
5

0.
7

0.
9

M
em

or
y(

K
B

)

× 104

1.25

1.3

1.35

1.4

1.45

1.5

Baseline
Online-Greedy

(c) Memory

Fig. 7 Results on varying γ

Geoinformatica (2020) 24:153–173168



Mean of B
t

10
0

20
0

30
0

40
0

50
0

U
til

ity

× 105

0

0.5

1

1.5

2

Baseline
Online-Greedy

(a) Utility

Mean of B
t

10
0

20
0

30
0

40
0

50
0

T
im

es
(s

ec
s)

5

10

15

20

25

30

35

40

45

Baseline
Online-Greedy

(b) Runtime

Mean of B
t

10
0

20
0

30
0

40
0

50
0

M
em

or
y(

K
B

)

× 104

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

Baseline
Online-Greedy

(c) Memory

Mean of pw

10 20 30 40 50

U
til

ity

× 104

0

2

4

6

8

10

12

14

Baseline
Online-Greedy

(d) Utility
Mean of pw

10 20 30 40 50

T
im

es
(s

ec
s)

5

10

15

20

25

30

35

40

Baseline
Online-Greedy

(e) Runtime
Mean of pw

10 20 30 40 50

M
em

or
y(

K
B

)

× 104

1.315

1.32

1.325

1.33

1.335

1.34

1.345

Baseline
Online-Greedy

(f) Memory

0.
1

0.
3

0.
5

0.
7

0.
9

U
til

ity

× 104

1

2

3

4

5

6

7

8

9

Baseline
Online-Greedy

(g) Utility

0.
1

0.
3

0.
5

0.
7

0.
9

T
im

es
(s

ec
s)

5

10

15

20

25

30

35

40

Baseline
Online-Greedy

(h) Runtime

0.
1

0.
3

0.
5

0.
7

0.
9

M
em

or
y(

K
B

)
× 104

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

Baseline
Online-Greedy

(i) Memory

Fig. 8 Results on varying the mean of the tasks’ budget for each skill, the mean of the cost of workers’ each
skill and γ

6 Conclusion

In this paper we formalize a novel Online Multi-skill-Aware Task Assignment problem.
We first analyze the difference of our problem and existing works. Then we prove that
even the offline version of the problem is NP-hard. To solve the problem, we first propose
Online-Exact algorithm, which always find an optimal assignment for the new coming task
or worker. However, because of the high time complexity of Online-Exact, it is not practical
in real applications. We next propose the Online-Greedy algorithm, which considers both
the utility gained from a task and the occupation on the workers. We finally verify the effec-
tiveness and efficiency of our problems via experiments on both synthetic and real datasets.
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