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Abstract We study multi-attribute trajectories by combining standard trajectories (i.e., a
sequence of timestamped locations) and descriptive attributes. A new form of continuous k

nearest neighbor queries is proposed by integrating attributes into the evaluation. To enhance
the query performance, a hybrid and flexible index is developed to manage both spatio-
temporal data and attribute values. The index includes a 3D R-tree and a composite structure
which can be popularized to work together with any R-tree based index and Grid-based
index. We establish an efficient mechanism to update the index and define a cost model to
estimate the I/Os. Query algorithms are proposed, in particular, an efficient method to deter-
mine the subtrees containing query attributes. Using synthetic and real datasets, we carry
out comprehensive experiments in a prototype database system to evaluate the efficiency,
scalability and generality. Our approach gains more than an order of magnitude speedup
compared to three alternative approaches by using 1.8 millions of trajectories and hundreds
of attribute values. The update performance is evaluated and the cost model is validated.
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1 Introduction

1.1 Motivation

Trajectory data, keeping track of historical movements of moving objects such as vehicles
and ships, is becoming ubiquitous due to the widespread use of GPS devices. Such data that
records geographical locations changing over time is of crucial importance for emerging
applications, e.g., route recommendation [9], tracking [28], monitoring [60], crowdsourcing
[47, 49], to name but a few.

Despite tremendous efforts made on studying trajectory databases, proposals in the lit-
erature mainly deal with standard trajectories [33, 50, 66], i.e., a sequence of timestamped
geo-locations, and the majority of queries are limited to the spatio-temporal evaluation such
as range queries [51], nearest neighbors [21] and convoys [27]. In the real world, typical
moving objects such as vehicles and persons are associated with pieces of descriptive infor-
mation. The database system should fully represent moving objects and allow users to query
objects with extensive knowledge to better understand the movement and users’ behavior.

As a fundamental step towards that, we investigate a new form of trajectories called
multi-attribute trajectories, each of which consists of a standard trajectory and a set of
attribute values. Standard trajectories have been well established in the literature. Attributes
have various semantics according to applications. The combination allows users to query
trajectories by specifying certain attributes. We study continuous k nearest neighbor queries
over multi-attribute trajectories, CkNN MAT for short. Given a standard trajectory, the num-
ber of neighbors k and attribute values, CkNN MAT returns k trajectories at each defined
time instant, each of which (i) contains query attribute values and (ii) belongs to k nearest
neighbors of the query trajectory. Returned objects should fulfill the condition: (i) attribute
consistency and (ii) time-dependent distance closeness. Distances between moving objects
vary over time, and thus returned objects change at certain time points, complicating the
evaluation. The Euclidean distance is measured.

Consider a running example. A database stores five vehicle trajectories {mo1, mo2, mo3,
mo4, mo5} in which each contains a sequence of timestamped locations and two attribute
values from domains COLOR = {RED, SILVER, BLACK} and BRAND = {BENZ, VW,
TOYOTA}, respectively, as illustrated in Fig. 1. An interesting query “Continuously report
the nearest SILVER VW to mo4” is issued. CkNN MAT returns {([t1, t2], mo5), ([t2, t4],
mo3)} indicating the key aspect that only objects fulfilling the attribute condition will be
evaluated on the time-dependent closeness. Although mo1 and mo2 are closer than mo3
and mo5 to the query trajectory, they do not contain (SILVER VW) and will be excluded.
The query cannot be answered in standard trajectory databases because the attribute is not
defined and the system does not know which trajectories are SILVER VWs. If attributes are
ignored, the query becomes traditional nearest neighbor queries [16, 21, 46] and will report
{([t1, t2], mo2), ([t2, t3], mo1)}.

The combined data enriches the representation and exposes semantics that is orthogonal
to location data, which most semantic-enriched trajectories focus on [2, 61, 62]. Multi-
attribute trajectories raise a range of novel queries by integrating the attribute value into
the evaluation. We do not deal with attributes such as speed and acceleration that can be
calculated from the motion function and are not necessarily to be defined.

Geoinformatica (2018) 22:723–766724



Fig. 1 The motivating example

1.2 Previous works and challenges

In the current state-of-the-art, standard trajectories with additional information have been
investigated, e.g., semantic trajectories [36, 61], activities trajectories [64], and transporta-
tion modes [56]. A semantic/activity trajectory is typically defined to be a sequence of
locations attached with semantic labels, e.g., park, restaurant. In principle, semantic/activity
trajectories is an enriched version of standard trajectories in terms of semantic labels
describing locations. This is orthogonal to multi-attribute trajectories. We point out major
differences in this section and provide a thorough comparison in related work.

(i) Attributes represent a range of aspects of the objects and provide a full picture of
moving objects, as opposed to semantics limited to locations. This will support a
different (even broader) range of applications.

(ii) Semantic locations are sparsely defined because among a person’s trajectory a few
locations have semantics. Attributes are location-independent and associated with
the complete trajectory. They are not derived from timestamped locations or the
geographical environment.

(iii) Semantic trajectories cope with similarity search or ranking queries rather than con-
tinuous queries with the exact match on attribute values, leading to different tasks
when developing the index. Semantic trajectories are grouped in terms of locations
and semantics, but attributes are not related to locations.

Efficiently answering CkNN MAT is not trivial. Standard trajectory indexes such as R-
tree [24], TB-tree [37], SETI [6] and TrajStore [35] only deal with the spatio-temporal data
without managing attributes. We cannot use the index to perform the selection on attribute
values. Furthermore, the pruning technique of min and max distances cannot be applied if
trajectories attributes are not determined. The trajectory subset containing query attributes
dynamically changes according to the query and cannot be pre-computed. False dismissals
will occur if we perform the pruning without the awareness of attribute values. Consider the
example in Fig. 1. Although mo2 has smaller distances to mo4 than mo3, we cannot prune
mo3 because mo2 does not contain (SILVER, VW).
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CkNN MAT could be answered by employing an attribute index. We evaluate the
attribute condition to receive trajectories containing query attributes and then proceed to
processing standard trajectories. However, this method is limited in scope and inherently
suffers from the performance issue. Standard trajectories will be processed by either per-
forming a sequential scan or accessing an on-line built index. If the attribute predicate is
selective, the query cost may be acceptable because a small dataset is processed. If the
attribute predicate has a bad selectivity, a large number of trajectories will be returned.
Both the sequential scan and building an on-line index incur high CPU and I/O costs.
Furthermore, creating an index for each query at runtime causes extra storage space.

To sum up, the main challenge is how to let the index effectively and efficiently preserve
the spatio-temporal proximity, and also maintain attributes. Individually managing each part
can be easily achieved but does not achieve an optimal performance. We aim to develop a
general structure that can be used for a range of queries rather than ad-hoc methods for a
particular query workload.

1.3 The solution

We start by modeling attributes and then use a relational interface to integrate standard tra-
jectories and attributes. This ensures that existing operators on standard trajectories can be
leveraged, avoiding starting from scratch. To reduce approximations of standard trajectories,
we identify small pieces of movements and pack them to have a compact dataset to build the
index. To manage multi-attribute trajectories, we propose an index structure made up of a
3D R-tree and a composite structure BAR. The 3D R-tree is to preserve the spatio-temporal
proximity, and BAR built on top of R-tree is to manage attribute values.

We do not tightly integrate attribute values into the spatio-temporal index, but offer a
versatile approach such that BAR is compatible with most spatio-temporal indexes and can
be discarded if attributes are not defined. We provide a dynamic structure to support tracking
incoming data and also define a cost model to estimate the update costs.

We design a query framework following the filter-and-refine strategy. The filter accesses
BAR to determine the R-tree nodes fulfilling the attribute condition in which an efficient
access method is proposed to determine the nodes and a thorough analysis is provided. We
traverse the R-tree from top to bottom level during which one evaluates both attribute and
spatio-temporal predicates for each accessed node. The filter returns a set of candidate tra-
jectories, each of which contains query attributes and approximately belongs to k nearest
neighbors. The refinement runs the accurate distance computation. The proposal is imple-
mented in an extensible database system SECONDO [20] to have a practical result and
achieve the system development. The contributions of the paper are summarized as follows:

– We offer insight into multi-attribute trajectories by providing the data representation
and proposing a new query CkNN MAT. A query expression is defined to formulate
attribute values.

– We propose a hybrid and flexible index on a compact dataset by packing standard
trajectories and provide an optimal access method. The storage cost of the index is
analytically provided.

– Employing a light-weight structure, we develop a method to efficiently update the
index to keep track of incoming multi-attribute trajectories and establish a cost model
to estimate update I/Os.

– Efficient query algorithms are developed to answer CkNN MAT in which different
forms of query attributes are supported.
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– Using large real and synthetic datasets, an extensive experimental study is conducted to
demonstrate the significant performance advantage of our method over three baseline
methods in terms of efficiency and scalability.

The rest of the paper is organized as follows: The problem is defined in Section 2. We
present the index structure in Section 3 and turn to the update issue in Section 4. Query algo-
rithms are introduced in Section 5. Section 6 reports the evaluation, Section 7 discuses the
generality of the proposal, and Section 8 surveys the related work, followed by conclusions
in Section 9.

2 Problem definition

2.1 Standard trajectories

A standard trajectory is typically modeled by a function from time to 2D space. In a database
system, a discrete model is implemented, that is to represent the trajectory by a sequence
of so-called temporal units, as illustrated in Fig. 2. Each unit records start and end loca-
tions during a time interval, and locations between start and end locations are estimated by
interpolation. A data type called mpoint is defined. The comprehensive framework refers to
[15, 22].

Definition 1 Standard trajectories
Dmpoint = {< u1, ..., un > | ∀i ∈ [1, n], ui = (t1, t2, p1, p2), t1, t2 ∈ instant, p1, p2 ∈

R
2 }

2.2 An integration

Let A = {A1, ..., Ad} denote d attributes to be combined with standard trajectories, d ≥ 1.
We refer to the domain of each attribute as dom(Ai) (i ∈ {1, ..., d}) and define ∀ i ∈ {1,...,d}:
dom(Ai) ⊂ Z

+. A d-attribute object is represented by the following data type.

Definition 2 Multi-attributes
Datt = {(a1, ..., ad)| ai ∈ dom(Ai), i ∈ {1, ..., d}}

Fig. 2 Standard trajectory representation
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The overall domain is denoted by dom(A) =
⋃d

i=1dom(Ai). Attribute semantics is set
according to real applications. In the running example, we have two attributes A1 = COLOR
and A2 = BRAND with domains dom(A1) = {RED, SILVER, BLACK} and dom(A2) =
{BENZ, VW, TOYOTA}, respectively. We use a composite data model D(Trip; Att) to rep-
resent a multi-attribute trajectory database, where Trip denotes standard trajectories and Att
denotes multi-attributes. The data model is translated to a relation with the schema (Id: int,
Trip: mpoint, Att: att) by embedding data types mpoint and att as relational attributes, as
shown in Table 1. The advantage of the relational interface is that (i) it allows combin-
ing heterogeneous data models; and (ii) existing operators on standard trajectories can be
leveraged, benefiting the system development.

2.3 Queries

We incorporate attribute values into the evaluation and define the query expression

Definition 3 Attribute query expression
Qa = (a1, ..., ad), ai ∈ dom(Ai) or ai = ⊥.

The attribute expression for “Continuously report the nearest SILVER VW to mo4” is
formed by Qa = (SILVER, VW). We use the notation ⊥ for an undefined value. If the user
does not define any attribute, the query regresses to traditional nearest neighbor query. Given
a d-attribute object o ∈ Datt , let o.Ai refer to the value of the attribute Ai . An operator
called contain is defined.

contain(o, Qa) returns true if ∀ ai ∈ Qa : o.Ai = ai or ai = ⊥.
Let dist(t , Trip1, Trip2) return the distance between two standard trajectories at a time

point t . CkNN MAT is formally defined as follows.

Definition 4 CkNN MAT
Given a query standard trajectorymq, an integer k, andQa , CkNN MAT returns k trajec-

tories denoted by D′ ⊆ D at each time t ∈ T (mq) such that ∀ mo′ ∈ D′ : contain(mo′.Att,
Qa) ∧ ∀mo ∈ D \D′ : dist(t , mo′, mq) < dist(t , mo, mq)

Referring to Fig. 1, CkNN MAT returnsmo5 during [t1, t2] andmo3 during [t2, t3]. In the
following, we will use the notation t for a time point and also a time interval, and explicitly
indicate the meaning. Users can also define multiple values of an attribute, e.g., “Continu-
ously report the nearest SILVER or BLACK VW to mo4”. We generalize the expression of
the query attribute.

Definition 5 An extension
Qa = (X1, ..., Xd), Xi ⊆ dom(Ai) or Xi = 
.

Table 1 Integrate standard
trajectories and attributes Id Trip Att

mo1 location + time (RED, BENZ)

mo2 location + time (BLACK, VW)

mo3 location + time (SILVER, VW)

mo4 location + time (SILVER, TOYOTA)

mo5 location + time (SILVER, VW)
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Fig. 3 Index architecture

At the concept level, Qa = (X1, ..., Xd ) defines the component for each attribute over
{A1, ..., Ad}, in which Xi is a set of attribute values. The multi-value query “SILVER or
BLACK VW” is formed by Qa = ({SILVER, BLACK}, {VW}). At the implementation level,
the query is defined by a relation in which a tuple supports multi-valued attributes.

The operator contain is extended accordingly:
contain(o, Qa) returns true if ∀ Xi ∈ Qa : o.Ai ∈ Xi or Xi = 
.
Table 2 summarizes notations frequently used in the following paper.

3 The index

3.1 An overview

The proposed index structure consists of a 3D R-tree and BAR, as shown in Fig. 3. The
3D R-tree that serves as indexing standard trajectories is a height balanced tree. Each node
contains an array of entries, each of which couples i) a pointer pointing to a subtree or
an object with ii) a rectangle that bounds data objects in the subtree. BAR is a composite
structure that includes a B-tree, a relation Att Rel and a record file RF, and will be elaborated
in Section 3.3.

We build BAR on top of the 3D R-tree by extracting attribute values from multi-attribute
trajectories. The structure builds the connection between attribute values and R-tree nodes,
and enables us to know attribute values in a sub-tree. In a leaf node, each entry stores a
pointer pointing to a tuple in the relation. We access the tuple to obtain the value. For a
non-leaf node, attribute values are collected by performing the union on values from child
nodes. BAR maintains attribute values in an efficient way such that we are able to fast settle
the R-tree nodes that (i) contain query attributes and (ii) fall into the query time.

Table 2 Summary of notations
Notation Description

D Multi-attribute trajectory database

mo, mq Multi-attribute trajectory, query standard trajectory

d The number of attributes

dom(Ai ), dom(A) The domain of Ai , the overall domain

Qa Query attribute expression

k The number of nearest neighbors

t A time point or interval
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3.2 Packing standard trajectories

The R-tree is supposed to be built on sorted minimum bounding rectangles (MBRs) that
approximate trajectories.

By observation we find that raw trajectories from GPS records contain a large number of
small units due to short time intervals or slow movement.

In order to reduce the size of the dataset, we pack small pieces of movements to have less
but larger units. Let ui denote the unit extent in the ith dimension. The average extent over
all units in the ith dimension is denoted by Δi . Then, the deviation of a unit is given as:

f (u) =
∑ ui

Δi

, i ∈ {dx, dy, dt }. (1)

A threshold Bound is defined to select small units. We remove duplicate values to
overcome the impact of the number of small units and analytically estimate the lower bound.

Bound = Avg(Unique(�f (u)�)) ≥ Avg(�f (u)�) ≈ 3.

Let U be the set of all temporal units and we define

u∗ = argmax
u∈U

Unique(�f (u)�).

Not all values in {0, 1, ..., �f (u∗)�} may be defined and thus the upper bound is

Bound ≈ Avg(0 + ... + f (u∗)) ≤ f (u∗)
2

.

Using GPS records of ShangHai taxis [1], we calculate the unit deviation over 500 tem-
poral units and report their values as well as Bound in Fig. 4. One can see that the majority
of units have the derivation smaller than Bound. We pack successive small units of the same
trajectory as one unit such that the deviation of the unit is larger than Bound. The over-
all number of trajectory approximations (MBRs) is greatly reduced, leading to a compact
dataset to build the index.

Lemma 1 Given |U | temporal units, the number of MBRs is less than 3
4 · |U | after packing.

Proof Let Us = {u|u ∈ U ∧ f (u) < Bound} ⊂ U be the set of small units. Suppose
that the lower bound Avg(�f (u)�) is taken, leading to |Us | ≈ |U |

2 . We have Bound =

Avg(Unique(�f (u)�)) ≥ Avg(�f (u)�) and therefore have |Us | ≥ |U |
2 . Each u ∈ Us will be
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Fig. 4 Demonstrate packing
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packed with at least one unit.1 In the sequel, |Us | units will become |Us |
2 units at most and

the number of units after packing is (|U | - |Us |) + |Us |
2 = |U | - |Us |

2 ≤ |U | - |U |
4 = 3

4 · |U |.

The packing can be treated as building the R-tree in a different way. We pack small
pieces of trajectories to obtain large units and take them as the input for a leaf node. The
index uses the same threshold as the bulk load method [4] to group units into one leaf
node, guaranteeing the spatio-temporal locality. The defined Bound is the average value
over Unique(f (u)) and thus will not result in grouping units into a large extent. During the
packing procedure, neither raw units are modified/simplified nor data is lost. We do not
need extra storage space and maintain the same amount of original units. After packing, the
R-tree is built by bulk load.

3.3 BAR

We need an appropriate structure to manage trajectory attributes in order to prune the data
when traversing the index. One possible approach is to integrate attribute values into exist-
ing trajectory indexes. However, each multi-attribute trajectory is associated with a set of
attribute values, leading to a complex task for a large number of trajectories. Modifying
existing trajectory indexes will complicate the structures and also make them ad-hoc. We
keep the original trajectory index and build a structure on top of that to manage attributes.

3.3.1 The Relation Att Rel

The key component in BAR is the relation Att Rel that builds the connection between
attribute values and R-tree nodes. The relation schema is defined as

Att Rel(A VAL: int, H: int, RecId: int).
For each attribute value, we maintain a tuple for all nodes containing the value at the

same height. The nodes are stored in a record. A tuple stores the attribute value, the height,
and the record identifier. The relation is created as follows. First, for each a ∈ dom(A)
we traverse the R-tree in depth-first search to collect all nodes containing a and create an
intermediate tuple for each node. We set a as the key and record the node height. Second,
the intermediate tuples are grouped according to the height and a record is used to store all
nodes containing a at each height. A tuple is created to store the record id. We repeat this
procedure for all a ∈ dom(A). The number of tuples in Att Rel is O(|dom(A)| ·H) in which
|dom(A)| is the overall number of attribute values and H is the R-tree height. We create a
B-tree on Att Rel by making a key combining A VAL and H. Using example trajectories,
we show the 3D R-Tree and BAR in Fig. 5.

Unique attribute values We need a unique key for each attribute value. The ideal case
is that attribute domains do not overlap. In practice, it may be not possible to have non
intersecting domains, but this problem can be solved. One can use a composite number to
represent the attribute value. This is achieved by combining the attribute id and the value.
In turn, a two-dimensional point (i, a) (i ∈ [1, d], a ∈ dom(Ai)) is formed. Then, a space-
filling curve Z-order is used to map points of a two-dimensional space to one-dimensional

1Trajectories containing only a single unit are treated as dirty data and will be removed from the dataset. It
is rare and impractical that two consecutive GPS records have a major deviation.
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Fig. 5 Exemplify the index structure

values. This is done by interleaving the binary coordinate values and is able to guarantee
that attribute domains do not overlap. We prove this in Appendix.

3.3.2 Record storage

Record format We maintain a list of items in each record. Each item is represented by a
three-tuple: (nid, b, t), in which nid is the node id, b is a bitmap and t is a time interval.
The bitmap represents the entries containing the attribute value in a node and t is the overall
time of the entries. We make the design based on the observation that the number of entries
containing an attribute value is no larger than the total number of entries, usually much
smaller. Also, the number of entries containing an attribute value increases from leaf level
to root level. This is because if a node contains the value, all its ancestor nodes will contain
the value. Consider SILVER by referring to Fig. 5. Only one entry in N2 contains SILVER
but all entries in NR contain SILVER. To efficiently settle the entries fulfilling the attribute
condition, we access the bitmap instead of performing a linear scan over all entries.

Bitmap Let m denote the length of a collection of bit-vectors and E be the node fan-out.
We perform the mapping between bitmaps and entries. There are two cases. (i) m ≥ E, each
bit maps to a unique entry. If the ith ∈ [0, m) entry contains the value, we have b[i] = 1.
Otherwise, b[i] = 0. (ii) m < E, each bit maps to a sequence of entries. The corresponding
entries for the ith bit are calculated by [i · �E

m
�, (i + 1) · �E

m
�). We define b[i] = 1 if one

of the entries contains the value. The bitmap index incurs little storage overhead and is
efficient for processing data in small quantity due to the speed of bit-wise operations. The
length m depends on the implementation (e.g., a 32-bit integer) and E is bounded by the
minimum and maximum numbers of entries in a node. The bitmap is able to fast determine
qualified entries for the intersection condition of several attributes. By defining m = 8, Fig. 5
gives the bitmap of each item in the record. Consider Qa = (SILVER, VW). At H = 2, we
access Records 1 and 3, and retrieve b = 00000111 for SILVER and b = 0000110 for VW,
respectively. By performing the bitwise AND operation, the 0th entry is not defined and
therefore N0 will not be further considered. A data type is embedded into an relational to
represent the records.

Definition 6 Record
Drec = {((nid1, b1, t1), ..., (nidn, bn, tn))|nidi ∈int, bi ∈ int, ti ∈ interval}
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Fig. 6 Report defined bits

3.3.3 Querying the bitmap

In order to know the entries containing the query attribute we need to access the bitmap to
report defined bits. A straightforward way is to apply a linear scan, leading to the time com-
plexity O(m). We propose an optimal method to boost the performance when the number
of defined bits is smaller than m. Let B = < 20, 21, ..., 2m−1 > be a sequence of integers.
Given a bitmap b, its defined bits are reported as follows: Step 1, by performing a binary
search we find the smallest 2i ∈ B such that 2i ≥ b. Step 2, if 2i = b, we report i and ter-
minate the search because the bit is already found and no more bit is to be reported. If 2i >

b, we report i - 1 and update b = b - 2i−1. Then, we repeat Steps 1-2 until b decreases to
0, during which bits are progressively reported from high to low positions. Figure 6 depicts
the procedure of reporting b = 00000110 in Record 3.

We give the query algorithm in Algorithm 1. Let P denote the set of defined bit positions,
initially empty. Two indexes s and e are used to define the sth and eth integers in B. To find
the smallest i such that 2i ≥ b, the procedure performs a binary search and terminates when
either b is equal to an integer in B (line 8) or e = s + 1 (line 14). In the former case, all bits
are found already. In the latter case, the position of the highest bit is found and put into P

(lines 16-17).

To continue searching the bits, we update b as well as s and e. The baseline method to
update s and e is to set s ← 0 and e ← m after each iteration. Consequently, the binary
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search is repeatedly performed on the overall bit set. Motivated by the fact that b decreases
after each iteration, the position of the next defined bit cannot be larger than s. Thus, we
perform the update by setting e ← s and s ← 0. The correctness is proved in the following.

Lemma 2 If 2s ≤ b < 2e and e = s + 1, the highest bit in b is s.

Proof Let s′ �= s be the highest bit and there are two cases:

(i) s′ > s, that is s′ ∈ [e, m). Then, we have b ≥ 2s′ ≥ 2e. This contradicts b < 2e.
(ii) s′ < s, that is s′ ∈ [0, s). Then, we have 2s > b because s′ is the highest bit. This

contradicts 2s ≤ b.

Time complexity We need O(logm) to report the highest bit and denote the position by p

∈ [0, m). To find the second highest bit, a binary search is performed, leading to O(logp).
The iteration time depends on p. The smaller p is, the less iterations are needed. If p ∈
[m/2, m), we need logp = logm iterations. If p ∈ [0, m/2), we achieve logm - 1 iterations.
To report the ith highest bit, the iteration time is between [logm - (i - 1), logm], depending
on where the bit is located. To sum up, we have

Theorem 1 Upper Bound
O(|b| logm)

Theorem 2 Lower Bound

O

⎛

⎝
|b|∑

i=1

(logm − (i − 1)

⎞

⎠ = O(|b| logm − (|b| − 1)|b|/2)

Proof We perform a binary search to look for |b| defined bits in O(m). In the worst case,
they are the |b| highest bits and we needO(logm) for each iteration, leading toO(|b| logm).
An optimal case is that we need O(logm - 1) for the second iteration when the position of
the second highest bit is smaller than m

2 . If the position of the second highest bit is ≤ m
4 , we

need O(logm - 2) for the third iteration and so on.

The binary search guarantees an optimal performance as long as |b| ≤ � m
logm

�. The
advantage may be not significant when the number of bits is large and the bits are mostly
located at high positions. For example, if |b| = m, the upper bound is actually larger than
the linear search performance, O(|b| logm) = O(m logm) > O(m). If this happens, we just
perform a linear search.

3.3.4 The storage

BAR includes the relation Att Rel, the B-tree and the record file. The storage cost of Att Rel
is O(|dom(A)| · H), also the B-tree. The size of the record file depends on the number of
record items. Each tuple in Att Rel points to a record and the number of record items is
determined by the node height. Specifically, the number of nodes at h ∈ [1, H ] is O(EH−h)

in which E is the node fan-out and h = 1 is for leaf nodes. Consider two extreme cases.
Only one node O(E0) contains the value at the root level and O(EH−1) nodes contain the
value at h = 1. The number of record items is calculated by

∑

a∈dom(A)

∑

h∈[1,H ]
EH−h =

∑

a∈dom(A)

(1 + ... + EH−1)
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Theorem 3 The storage cost is O(|dom(A)| · H) + O(
∑

a∈dom(A) EH ).

The cost increases when the number of trajectories rises and is also proportional to the
number of attribute values. We will verify this in the experimental evaluation.

4 Update

The database needs to keep track of the incoming data and allow querying both the historical
and new data. An important task is to synchronize index structures in order to be consistent
with the underlying data space. Given a set of incoming multi-attribute trajectories, inserting
them into the index incurs updating two structures: (i) 3D R-tree and (ii) BAR. In general, a
new R-tree namedRu is created on new trajectories and BAR is built onRu. To distinguish
between historical and new structures, we term BARu for the new one. Ru and BARu are
inserted into historical structuresR and BAR, as illustrated in Fig. 7.

4.1 Updating R-tree

We pack the incoming trajectories and create a new R-tree by bulk load. The new R-tree is
maintained by the same storage file as the historical R-tree in order to simplify the procedure
of accessing the structure. Otherwise, one has to detect whether the accessed node belongs
to the new R-tree or the historical R-tree and select the corresponding file. It is a rather
complex task to maintain many storage files for frequent updates.

Ru is inserted into R as follows. Let Hu and H denote the heights of the two R-trees,
respectively. We assume Hu ≤ H because the amount of incoming trajectories for one time
update is usually much smaller than that of the historical data. If Hu = H , a new root node
is created to hold root nodes of R andRu as two entries. If Hu < H , we add the root node
of Ru as an entry to an appropriate node in the target tree R whose height is equal to Hu.
This is achieved by performing a top-down traversal in the target tree until a node whose
height is equivalent to the new R-tree. During the traversal we always choose the last entry
of each accessed node as the node to be processed at the next level. This is because entries
are increasingly sorted by time and incoming trajectories are certainly located after existing
trajectories. If the node is not full, we insert the root of the new R-tree as an entry into the
node. Otherwise, we create a new node for the new R-tree.

Consider a new trajectory mo6 = (< u12, u13 >, (SILVER, VW)) in Fig. 8. We exemplify
the update procedure as follows. Ru contains only one node and will be inserted into the
3rd entry in NR . We record a path denoted by Pu along with insertingRu intoR. The path
starts from the root node and ends at the node to insert the entry. Each element in Pu is of
the format (h, nid, pos) in which h is the node height, nid is the node id, and pos marks the

Fig. 7 An outline for updating
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Fig. 8 InsertRu into R

entry position in the updated node. After the insertation the path will be Pu = <(H , nid,
pos),..., (Hu, nid, pos)>, and we reversely update the spatio-temporal box of each node in
the path.

Theorem 4 the time complexity
Inserting a new R-tree into the existing one requires O(H) in which H is the height of

the existing R-tree.

Proof We requireO(H) to find the node whose height is the same as the new R-tree because
only one node is accessed at each level. Then, we update each node in the path by following
the bottom-up approach. The length of the path isO(H) and thus the updating cost isO(H).
To sum up, the merging operation requires O(H).

Theorem 5 the number of node accesses
Inserting a new R-tree incurs O(H) node accesses in total.

Proof Finding the node in the existing R-tree to insert the new R-tree needs to access O(H)

nodes and only these nodes will be updated after the insertion.

4.2 Updating BAR

The procedure of building BARu is the same as in Section 3.3.1. To update BAR, we insert
BARu into BAR: step 1, for each tuple in BARu.Att Rel, we search the matching tuple in
BAR.Att Rel and append record items for the nodes in Ru; step 2, we update record items
for each node appearing in Pu.

Definition 7 Matching tuple
A tuple y ∈ BAR.Att Rel is the matching tuple of the tuple x ∈ BARu.Att Rel if

x.A VAL = y.A VAL ∧ x.H = y.H .

Figure 9 shows BARu for the new trajectory. Consider the tuple for SILVER at H = 1.
After determining the matching tuple, we append a new item in Record 2 for N3. If the
matching tuple is not found (the attribute value does not appear in BAR), we create the tuple
as well as the record and insert them into BAR.

Ru is inserted intoR as a sub-tree and the nodes in Pu are updated in terms of (i) spatio-
temporal boxes; and (ii) attribute values. Part (i) is processed in Section 4.1 and part (ii)
is processed as follows. For each attribute value in new trajectories, we look for tuples in
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Fig. 9 Exemplify the update

BAR.Att Rel having the value and the appropriate height according to Pu. Note that the
height is increasingly numbered from leaf to root level, guaranteeing that the heights of R
and Ru are consistent. If we find the tuple, we access the record to update the item for the
node. Precisely, the bitmap and the time box are updated. For example, the items of Records
1 and 3 are updated in Fig. 9 because N3 is inserted into NR . Later, we refresh the record to
synchronize the data.

New trajectories incur an ongoing expansion of the time. The time range of the nodes
in Pu overlaps with that of new trajectories. To enhance the update performance, we
increasingly sort the items on time and update the items from the end of the list.

Definition 8 Sorted record items
The items in a record are increasingly sorted according to time intervals. Consequently,

Definition 6 is updated to Drec = {(<nid1, b1, t1), ..., (nidn, bn, tn) > |t1 < ... < tn, nidi ∈
int, bi ∈ int, ti ∈ interval}

If a new root node is created, we will not find the matching tuple in BAR.Att Rel. There-
fore, we create the tuple as well as the record and insert them into BAR. Afterwards, we
drop BARu and Pu. Let Du be the set of new arrival trajectories. The update algorithm is
given in Algorithm 2 and the complexity is provided.
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Theorem 6 The time complexity of updating is O(|dom(A)| · H)

Proof The time complexity depends on (i) the domain of attribute values and (ii) the
maximum value between Hu and |Pu|, that is O(H).

4.3 Maintaining light-weight BAR

By performing some test workloads, we find that step 1 is not a costly procedure in terms of
I/O accesses because one just appends new record items or creates tuples. On the contrary,
step 2 is an expensive procedure in which we update record items for the nodes appearing
in Pu. For each attribute value, we look for the tuple in BAR that contains the value and the
corresponding height. We then access the record file to load the entire record into the main-
memory, find the record item to update (may also create), and write the record back into the
disk. This incurs a lot of I/O accesses because all items are loaded from the disk. Figure 10
illustrates the procedure of updating the records for SILVER.

In view of the deficiency, we propose a light-weight BAR named lw-BAR to reduce the
I/O cost. We buffer record items in lw-BAR rather than update BAR. A relation and a B-tree
make up lw-BAR and there is no record file. The relation schema is of the form

lw-Att Rel: (A V AL : int, H : int, RecI tem : rec).

For each attribute value appearing in BARu, we use a tuple in lw-Att Rel for the node inPu.
In the update path, there is only one node at each height from Hu to H , and therefore the
number of updated items in a record is one. The lw-BAR only stores one item in a record. To
have a compact structure, we merge the record component (managed in a record file in BAR)
into the relation by replacing the record id by the record item. Employing the lw-BAR, the
number of I/O accesses for updating will be considerably reduced because only one tuple is
processed. Continuing the example, the light-weight structure is depicted in Fig. 11.

To accommodate frequent updates, the record items for Pu have to be updated whenever
Ru is inserted into R. If the entries in the inserted node do not overflow, we only update
record items for historical nodes. However, under a continuous update load, frequent inser-
tions will cause the node overflow and lead to new nodes, as illustrated in Fig. 12. In this
scenario, we merge the record item in lw-BAR into the one in BAR and create another record
item in lw-BAR for the new node. We give the enhanced update algorithm in Algorithm 3.

Fig. 10 Update records
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Fig. 11 lw-BAR for mo6 (SILVER, VW)

Our method has low latency which is very important for on-line applications. The query
evaluation can be executed whenRu and BARu are created but not yet inserted intoR and
BAR. If the system detects that the updating is not complete, we can separately search R,
BAR andRu, BARu and perform the union on their results to obtain the final answer.

4.4 The cost model

Recall step 2 in which for each attribute value we update the record for each node inPu. The
number of updated records is determined by (i) the domain of attribute values dom(A), and

Fig. 12 Overflow and Update lw-BAR, BAR
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(ii) the length of the update path, denoted by |Pu|. Let Rec denote the I/O cost of accessing
a record. We measure the update cost by

Cost(I/O) =
∑

h∈[Hu,H ]

∑

a∈dom(A)

Rec (2)

We assume that |dom(A)| is static. Updating new trajectories one by one is expensive
because each update involves Cost(I/O) = H · |dom(A)| · Rec. The larger Hu is, the less
the cost is. An optimal case occurs if Hu = H . In this setting, a new root node is created
and a new record is created for the root node, leading to Cost(I/O) = |dom(A)| · Rec. This
is consistent with the fact that updating by bulk load is more efficient than individually
performing the update [4]. Rec is the cost of loading record items for all nodes containing
an attribute value at a particular height. E is the capacity of the R-tree node. Let B be the
block size. The I/O cost of accessing a record for the nodes at h is estimated by

Rec = EH−h

B
, h ∈ [Hu,H ] (3)

Combining Eqs. 2 and 3, the update cost is

Cost(I/O) =
∑

h∈[Hu,H ]
|dom(A)| · EH−h

B
. (4)

Employing the lw-BAR, we only insert one record item for each attribute value at each
height, reducing the cost to O( 1

B
). In contrast, the method in Section 4.2 has to load all

record items into the main-memory. If a new node is created, record items for all nodes

at Hu are loaded into the main-memory, leading to O
(

EH−Hu

B

)
, although only one item is

updated. To sum up, the cost of the enhanced method is

Cost(I/O)lw = EH−Hu

B
+

∑

h∈[Hu,H ]

|dom(A)|
B

(5)

5 The algorithm for CkNN MAT

We outline the query procedure in Fig. 13. By default, we introduce the method by consid-
ering a single value for each attribute and will explicitly point out the difference for multiple
values when necessary.

Filter We access BAR to determine the R-tree nodes that include query attribute values
and intersect the query time, denoted by Na . We take Na coupled with mq and k as input to
traverse the R-Tree in breadth-first order, during which the search space is pruned by taking
into account spatial and temporal parameters as well as attributes. The filter returns a set

Fig. 13 The query framework
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of candidates, each of which fulfills the attribute condition and approximately belongs to k

nearest neighbors.

Refinement Unpack each candidate trajectory to get the original temporal units and
perform the exact distance computation to return k nearest neighbors at each query time.

Since the refinement is trivial, we focus on the filter phase, as given in Algorithm 4,
which calls two subroutines CollectNodes and Candidates, respectively.

5.1 Collecting R-tree nodes

We collect the nodes containing Qa level by level. For each a ∈ Qa , we start from h = 1 and
access BAR to find the records. For each item (nid, b, t) in the record, we check whether
the item identified by nid is already in Na . If not, we insert the item into Na by attaching
a counter, initialized by 1. Such a value represents the number of query attribute values
contained in the node. The extended record item is denoted by λ. If the item already exists
in Na , we increase the counter and update the bitmap by performing the bitwise AND. This
is because a node fulfilling the condition must contain all values in Qa . Let |Qa | return
the number of attribute values. We present the algorithm in Algorithm 5 and use Lemma
3 to prune the items. Figure 14 depicts the procedure of determining the nodes for Qa =
(SILVER, VW).

Lemma 3 Given an item λ ∈ Na , the item is pruned if λ.counter �= |Qa | or λ.b = 0.
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Fig. 14 Determine the nodes at h = 1

Proof (i) λ.counter �= |Qa | : It is impossible that λ.counter > |Qa | because distinct
attribute values are counted. If λ.counter < |Qa |, the number of attributes in the node
is less than |Qa | and λ can be safely pruned.

(ii) λ.b = 0 : There is no entry in the node containing all query values and we safely
prune λ.

Time complexity The time cost includes (i) searching BAR.Att Rel to find the tuples and
(ii) collecting record items. We perform a lookup on the B-tree for each attribute value at
each h ∈ [1, H ]. This requires

O(d · H · log(|dom(A)| · H))

as at most d attributes are queried. Next, we consider the number of processed record items
for an attribute value at a particular height. Such a value is equivalent to the number of
nodes fulfilling the attribute condition. Obviously, the maximum value occurs at leaf level,
leading to O(EH−1) nodes. Assume that attribute values are uniformly distributed. Let

δa = max

{
1

|dom(A1)| , ...,
1

|dom(Ad)|
}

be the maximum ratio of a single value to all values in the domain among all attributes and
δt be the ratio of T (mq) to the overall time. The number of leaf nodes containing a query
value is approximated by

O(EH−1 · δa · δt ).

The total number of accessed record items will be
∑

h∈[1,H ]
EH−h · δa · δt = O(EH · δa · δt ).

Theorem 7 Given a query with O(d) attribute values, the time to report the nodes
containing the query is O(d · (H · log(|dom(A)| · H) + EH · δa · δt )).

5.2 An extension: multiple values

We make an extension that a query attribute defines multiple values. A node is satisfied if it
contains one of the values. We extend the aforementioned λ ∈ Na to (nid, b, t , aid) by adding
the attribute id. The bitwise OR is performed on bitmaps for values from the same attribute.
Algorithm 5 is slightly modified, see Algorithm 5.2, and Lemma 4 is used for pruning.
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Fig. 15 BLACK in BAR

Lemma 4 Let AttCount(Qa) (≤ |Qa |) return the number of query attributes. An item λ ∈
Na is pruned if λ.counter �= AttCount(Qa) or λ.b = 0.

Consider the query “Report the nearest SILVER or BLACK VW to mo4”. We look for
qualified nodes that contain SILVER/BLACK and VW. Based on Fig. 5, we report BAR for
BLACK by referring to Fig. 15.

We exemplify the procedure of reporting qualified nodes for ({SILVER, BLACK}, VW)
at h = 1 in Fig. 16. Records 2 and 6 are returned for SILVER and BALCK, respectively. We
perform the bitwise OR on bitmaps and do not increase the counter. Next, we find the nodes
containing VW and perform the bitwise AND to determine the nodes containing {SILVER,

Fig. 16 Multiple attribute values at h = 1
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BLACK} and VW. The counter increases if the bitmap is not zero. Non-qualified nodes are
pruned according to Lemma 4.

Theorem 8 The time cost for multiple values is O(|dom(A)| · (H · log(|dom(A)| · H) +
EH · δa · δt )).

5.3 Reporting candidates

The algorithm, given in Algorithm 7, traverses the R-tree from root to leaf level during
which we prune the search space using both spatio-temporal and attribute predicates. A list
L is used to maintain accessed nodes. For each node n ∈ L, we determine whether (i) n

belongs to Na ; and (ii) objects in the subtree rooted at n will contribute to the result. If n

/∈ Na , we prune it. If n ∈ Na , we extend the method in [21] to maintain the candidates in
terms of count and their distances to mq. The query needs only k neighbors. If there are k

candidates at each defined time, objects that are further than current candidates to mq can
be safely pruned, see Lemma 5.

Lemma 5 Given a node n, if there are k objects in the candidate set during T (n) and their
distances to mq are smaller than dist(n, mq) at each t ∈ T (n), n is safely pruned.

To determine whether there are enough candidates, a segment tree is maintained by stor-
ing the time interval, the distance and the number of trajectories in a node. The key point
is that the number of trajectories in the segment tree is not the number of all trajectories in
an R-tree node, but the number of trajectories fulfilling the attribute condition. Such a value
depends on the query. Although we can do the pre-computation for each attribute value and
use it for |Qa | = 1, one has to calculate on-the-fly for |Qa | > 1, which is a costly procedure.
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Fig. 17 The number of trajectories in NR for SILVER and VW

This is because the result is the intersection set of several query attributes and one needs to
traverse the sub-tree to count the number of trajectories containing query attributes. We do
the pre-computation for a single value. For each a ∈ dom(A), we maintain a temporal inte-
ger to represent the distribution. Each node needs O(|dom(A)|) temporal integers. If |Qa |
= 1, we create candidates using temporal integers and insert them into the segment tree. If
|Qa | > 1, we receive temporal integers until trajectories (leaf nodes) are accessed. Using the
index in Fig. 5, we report possible temporal integers for SILVER and VW of the root node,
as illustrated Fig. 17. We do the intersection on SILVER and VW to determine trajectories
containing both attributes and report the trajectory count.

If n belongs toNa and candidates are not enough, we open the node to look up entries and
search objects. We call ReportBitPos to establish the entries containing query values. If n is
a leaf node, we retrieve the tuple from the relation to precisely evaluate the attribute. This is
because if a bit maps to several entries (m < E), we set the bit as long as one entry contains
the value. Therefore, the value is accurately checked for each entry. If m ≥ E, this step is
ignored. If n is a non-leaf node, its child nodes will be put into L for further consideration.
Using the running example, Fig. 18 exemplifies the procedure of reporting candidates.

The procedure of processing multiple query values is the same as processing a single
value, but more nodes will be accessed. Using the query “Continuously report the near-
est SILVER or BLACK VW to mo4”, we depict the procedure of reporting candidates in
Fig. 19.

Fig. 18 Return candidates for (SILVER, VW)
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Fig. 19 Candidates for ({SILVER, BLACK}, VW)

5.4 The refinement

This step includes two phases: (i) unpack each candidate to obtain temporal units; (ii) apply
the slightly modified plane-sweep algorithm [3] to determine the k lowest time-dependent
distance curves to report the result.

Phase (i) is straightforward. Phase (ii) takes in a sequence of candidate trajectories, tem-
porally ordered on time. We compute their time-dependent distances to the query trajectory
and find the k nearest objects at each defined time point. To achieve this, one needs to
determine pieces of movements with overlapping time and apply the distance function by
employing the linear interpolation on each piece [15, 16]. We manipulate temporal units to
calculate the distance. The distance function is of the form the square root of a quadratic
polynomial, as illustrated in Fig. 20. The lowest curve corresponds to the nearest trajectory
to the query. Since distances change over time, split points between curves are found to
determine the k lowest pieces of curves.

6 Experimental evaluation

We implement the proposal in C/C++ and perform the evaluation in an extensible database
system SECONDO [20]. A standard PC (Intel(R) Core(TM) i7-4770CPU, 3.4GHz, 4GB
memory, 2TB hard disk) running Suse Linux 13.1 (32 bits, kernel version 3.11.6) is used.

6.1 Datasets and parameter settings

Real datasets are from a company Datatang including Shanghai taxis (TAXI) and Bei-
jing buses (BUS) [1]. TAXI includes taxi GPS records from four companies in 2014. The

Fig. 20 Distance curve
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Table 3 Datasets and parameters

Name |D| (million) |U | (million) d dom(A)

TAXI 3.0 32.5 1 [1, 4]

BUS 1.1 8.3 1 [1, 384]

MAT5 1.8 110.88 10 [1, 127]

Parameter settings

|Qa | {1, 2, 3, 4, 5} k {1, 5, 10, 20, 50, 100}

company id is defined as the attribute. BUS contains bus card records in 2014. Each record
stores when (the time reading the card) and where (locations of bus stops) passengers get
on and off the bus. Each bus is identified by its id and bus stops are identified by orders in
the route and their locations. We build bus trips from bus card records by grouping records
on bus id and then sorting them on time. There are 384 bus routes in total and the route id
is set as the attribute. Part of the data is published at (http://dbgroup.nuaa.edu.cn/jianqiu/).

Synthetic datasets are generated by utilizing a tool MWGen [56]. Several datasets are
created in terms of the number of trajectories, the attribute quantity and the attribute domain.
For each attribute, the value is randomly selected from the domain. In the system, one can
flexibly define parameters to generate datasets in different settings. We provide the default
dataset MAT5 here and will report other datasets when they are used in the evaluation. In
each query, the standard trajectory and attribute values are randomly selected over domains.
Datasets statistics and query parameters are listed in Table 3, in which default query values
are marked.

6.2 The effect of packing

We report the packing effect on all datasets by referring to Fig. 21. A compact dataset is
achieved and the number of temporal units decreases by an order of magnitude, demonstrat-
ing that the effect in practice is better than the theoretical analysis in Lemma 1. In turn, the
number of R-tree nodes is greatly reduced and the tree height decreases. This leads to an
index structure with small size, reducing the storage overhead and accessing cost.

6.3 Searching the bitmap

We compare the performance of querying the bitmap between the binary search and
the linear search. The results are reported in Fig. 22. The binary search achieves better
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Fig. 22 Querying the bitmap (|Qa | = 3 and k = 5)

performance than the linear search for BUS and MAT5, but the two methods have the same
performance for TAXI. This is because the average number of bits per attribute value is less
than O(m logm) for BUS and MAT5, and therefore the binary search guarantees an optimal
performance, as we analyzed in Section 3.3.3. However, this does not hold for TAXI whose
attribute domain is small (dom(A) = [1, 4]) and the average number of bits per attribute
value is larger than m logm.

6.4 Performance evaluation

In the evaluation, CPU time and I/O accesses are used as performance metrics and the results
are averaged over 20 runs. Three baseline methods are developed.

(i) 4D R-tree. One can treat attributes as an extra dimension in addition to spatial and
temporal. Therefore, a high-dimensional index can be utilized. For each multi-attribute
trajectory, attribute values (a1, ..., ad ) are decomposed into d individual values and each
is combined with the standard trajectory, e.g., mo1(RED, BENZ) will yield mo′

1(RED)
and mo′′

1(BENZ). A relation with the schema (Id: int, Trip: mpoint, Att: att) is created in
which Att is a single-value attribute. The tuple quantity of the relation is O(d · |D|). To
answer CkNN MAT, we need |Qa | query boxes each of which is created on the query
attribute value and the defined time T (mq). The procedure starts from the root node and
evaluates each accessed node. If the node intersects query boxes, we open the node and
access its child nodes for further consideration. Otherwise, we safely prune the node. A
multi-attribute trajectory is returned only if among its d trajectories there are |Qa | trajec-
tories intersecting query boxes. The method enlarges the data set d times, leading to high
storage cost, and does not achieve a good locality when grouping objects for a large d.

(ii) 3D R-tree + Attribute Relation (3D RAR). The paper [21] develops an algorithm that
employs a 3D R-tree with auxiliary structures to efficiently answer continuous nearest
neighbor queries over standard trajectories. We extend the paradigm to support proposed
queries by recording the set of attribute values contained in each node. A relation stores
attribute values contained in R-tree nodes. During the query procedure, we first determine
whether the accessed node contains all values in Qa by performing a lookup on a B-tree
built on the relation. If yes, we open the node and move forward to the spatio-temporal
evaluation. Otherwise, we prune the node. The main drawback is that recording attribute
values is able to determine whether the node contains a particular value but cannot make
the decision on the AND predicate for several attributes.
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(iii) 3D R-tree + Inverted Bitmap (RIB). In the field of spatial keywords search, a lot of
R-tree based indexes have been proposed. According to [7], the method in [53] is the
most efficient to answer boolean kNN queries. The approach partitions the data into
multiple groups such that each group shares as few attributes as possible. In the context
of multi-attribute trajectories, trajectories are grouped on attributes (a1,..., ad ), which can
be viewed as a point in d-dimensional space. We apply Z-order to map the d-dimensional
value to one-dimensional and group objects based on Z-order values. Objects are then
sorted by attribute values, time and spatial data. The 3D R-tree is employed. Each R-tree
node contains a pointer to an inverted bitmap that records positions of entries defining
the attribute value. A relation is used to store the bitmaps and a B-tree is created by
combining the node id and the attribute value as the key. The bitmap length is the fan-out
of a node. For each accessed node, a sequential scan is made on the bitmap to determine
entries containing query values.

6.4.1 Scalability

We conduct the experiments to obtain insights into different aspects affecting the perfor-
mance: (i) the number of multi-attribute trajectories; and (ii) attributes. Table 4 reports
dataset settings.

Table 4 Datasets for scalability
Name |D| (mil)

(a) |D|, d = 10

MAT1 0.27

MAT2 0.54

MAT3 0.9

MAT4 1.35

MAT5 1.8

d dom(A)

(b) scaling d

1 [1, 5]

3 [1, 28]

6 [1, 76]

10 [1, 127]

20 [1, 247]

d dom(A) d dom(A)

(c) scaling dom(A)

1 [1, 5] 10 [1, 79]

[1, 13] [1, 127]

[1, 50] [1, 247]

[1, 100] [1, 427]

[1, 150] [1, 857]
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Fig. 23 Index storage

Index storage When scaling |D| and d , we report the storage cost of the index structure
including 3D R-tree and BAR. As shown in Fig. 23, the storage costs of both structures
increase when we enlarge the number of trajectories. By fixing the number of trajectories,
the storage cost of BAR rises proportionally when d is enlarged. This is consistent with the
analysis in Section 3.3.4.

Scaling |D| The query efficiency is reported in Fig. 24. The results demonstrate that when
the data size grows the costs of all methods rise proportionally, but our method achieves two
orders of magnitude better performance than baseline methods.

Tuning d (|D| = 1.8 million) Figure 25 reports the result of tuning d in which |Qa | = 3
by default and |Qa | = 1 for d = 1. Our method achieves the best performance in all settings
and RIB performs competitively to our method when d = 3. RIB orders the data on attribute
values and the predicate has a good selectivity when |Qa | = d. However, when d increases,
the performance degrades dramatically. We analyze that Z-order values cannot preserve the
locality when the dimension becomes large and the linear scan is inferior to our bitmap
querying approach. The 4D R-tree has poor performance because the dataset is enlarged d

times.
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Tuning dom(A) (|D| = 1.8 million) We enlarge attribute domains by conducting two
experiments: d = 1 and d = 10. In the former case, there is no AND predicate (|Qa | = 1) and
the number of attribute values affects the attribute selectivity. In the latter case, we set |Qa |
= 3. Our method consistently outperforms baseline methods in two settings, as demonstrated
in Figs. 26 and 27. One can see that the performance of our method and RIB increases when
dom(A) becomes large. This is because the selectivity of the attribute predicate increases.
The RIB performance shows different behavior by tunning d and dom(A). The method is
sensitive to attributes and thus limited in scope.

6.4.2 Effect by |Qa|
Figure 28 reports the experimental results, demonstrating that our method achieves more
than an order of magnitude faster than three baseline methods. The proposed method is able
to efficiently find R-tree nodes containing query attribute values. When |Qa | increases, less
nodes fulfill the condition, reducing the number of disk accesses. Formally, given a query
attribute value a ∈ dom(Ai), assuming |dom(Ai)| is the minimum among all domains, the
number of trajectories containing a is calculated by |D| · δa (defined in Section 5.1). The
number of trajectories containing Qa (a1 AND a2 ... a|Qa |) is approximated by |D| · δ

|Qa |
a .
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6.4.3 Effect by k

The results are reported in Figs. 29, 30 and 31. TAXI and BUS contain only one attribute,
and thus we set |Qa | = 1. The query costs of all methods are not sensitive to k and our
method substantially outperforms alternative methods. For BUS (d = 1, dom(A) = [1, 384]),
the RIB performance is close to ours in a few cases due to good attribute selectivity. How-
ever, the performance decreases for TAXI (d = 1, dom(A) = [1, 4]) and MAT5 (d = 10,
dom(A) = [1, 127]). An interesting behavior is that the query performance is not sensitive
to k. The reason is, the majority of the time cost is in the filter step in which the pruning
ability is not significantly affected by k. The refinement step requires little time cost and the
number of processed candidates does not rise proportionally to k.

In the filter step, we prune a node if there are enough candidates. That means, during the
time covered by the node there are at least k trajectories in the candidate set whose distances
to the query trajectory are smaller than the distance between the node and the query trajec-
tory. However, for CkNN MAT queries such a value can not be determined before the query
is issued (|Qa | > 1). Computing the value on-the-fly is not acceptable because we need to
traverse the subtree to count all trajectories containing Qa . We will obtain the value only
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when leaf nodes are opened to evaluate trajectory attributes. The pruning method can only
be applied when trajectories in leaf nodes are accessed, postponing the pruning procedure.
A large number of nodes have been accessed before we can perform the pruning. We record
the time cost of the filter step which is almost equal to the overall running time. Although
the refinement step iteratively processes each candidate, the overall number of candidates is
not large, as reported in Fig. 32. The number of candidates does not rise proportionally to k

because the candidates depend on not only k but also Qa and the query time.

6.4.4 Applying packing to baseline methods

Our packing method can be applied to all baseline methods. Using datasets MAT5, TAXI
and BUS, we run baseline methods by building the index on packed data. Default query
parameters are used. As expected, the performance of all baseline methods increases due to
a compact data representation and less index overhead. Using TAXI and MAT5, our method
still exhibits the best performance, about 3 times faster than other methods. The performance
difference among all methods is marginal for BUS because the attribute is quite selective
(Fig. 33).
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Short, median and long query trips For each standard trajectory, we calculate the
trajectory deviation by considering spatial and temporal dimensions, applying Eq. 1 in
Section 3.2. Then, we intentionally select short, median and long trajectories as query tra-
jectories in terms of deviation values. Figure 34 shows that our method outperforms baseline
methods by a factor of 3-100.

Multiple values for one attribute Using |Qa | = 3, we let one of query attributes include
a set of values, i.e., |Qa.Xi | > 1, and scale the number of values from {2, 4, 6, 8, 10}. The
other two attributes only define one value. As reported in Fig. 35, when |Qa.Xi | increases,
the query costs rise for all methods because more data objects are involved in the evaluation.
Our method performs at least 2 times faster than other methods.

6.4.5 Update evaluation

Update efficiency Using MAT5 and BUS, we build the historical database on part of the
dataset and take the rest as new trajectories, denoted byDu. The performance is evaluated by
scaling |Du|. The overall time is measured, as reported in Fig. 36a. Although |Du| increases
in several orders of magnitude, the updating cost only rises marginally. We also carry out
the evaluation of performing a series of updates by defining |Du| = 500,000 for MAT5 and
|Du| = 300,000 for BUS, respectively, and building the historical index on D - Du. Then,

Fig. 32 The number of returned
candidates (MAT5, |Qa | = 3)
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50 updates are continuously performed in which |Du|
50 trajectories are processed each time.

We measure the overall update time and report the result in an accumulated way, as shown
in Fig. 36b. The time cost increases slightly.

Performance between BAR and lw-BAR We evaluate the efficiency of updating BAR
by comparing the baseline method and the one using the light-weight structure. As illus-
trated in Fig. 37, the lw-BAR substantially outperforms the baseline method, validating the
proposed cost model. Using MAT5, an interesting behavior occurs when |Du| arrives at
200,000. The two methods almost have the same I/O accesses. We detect that under this
workload the height of the new R-tree is equal to that of the historical R-tree. A new root
node is created to hold two subtrees and the length of the updating path is 0. A small update
cost is required for both methods.

We evaluate the query performance by building the index on the same dataset in different
ways. One method involves updating by initially creating the structure on D - Du (|Du| =
500,000 for MAT5 and |Du| = 300, 000 for BUS) and then continuously performing 10
updates ( |Du|

10 in each update). The other method creates the index on D, i.e., without any
update. We aim to test whether the update will influence the query performance. Default
query parameters are used. Figure 38 reports the query costs, showing that continuously

 0.1

 1

 10

 50
 100
 200

short median long

C
P

U
 t

im
e(

se
c)

4D R-tree
3D RAR

RIB
BAR

 1

 10

 100

 1000
 2000

short median long

I/
O

 A
cc

es
se

s

4D R-tree
3D RAR

RIB
BAR

Fig. 34 Short, median and long query trajectories

Geoinformatica (2018) 22:723–766 755



 1

 10

 100

2 4 6 8 10

C
P

U
 t

im
e(

se
c)

4D RTree
3D RAR

RIB
BAR

 10

 100

 1000

2 4 6 8 10

I/
O

 A
cc

es
se

s

4D RTree
3D RAR

RIB
BAR

Fig. 35 Multiple query values

updating the structure will not greatly affect the performance. In fact, the performance in
the update scenario is superior because a better partition is achieved in the time dimension.

6.5 Discussion

We analyze each alternative method and explain why they are inferior than our method.
In order to build the 4D R- tree, an multi-attribute trajectory is decomposed into d trajec-
tories, each of which contains a single-value attribute. This enlarges the data set d times.
During the query processing, the attribute is approximately evaluated. Using Qa = (SIL-
VER, VW), we search the index to look for trajectories containing either SILVER or VW
because each trajectory contains only one attribute. However, among returned trajectories
only some contain both of them. Multi-attribute trajectories such as (SILVER, TOYOTA)
or (BLACK, VW) will also be included, increasing the number of processed objects. To
exactly determine the objects, we traverse the tree down until the leaf level and retrieve
tuples for accurate examination.

The method using 3D RAR is able to select R-tree nodes containing an individual
attribute value, but cannot determine trajectories containing several values from different
attributes. Given a set of values, trajectories containing one of them will be all included
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although some of them may not fulfill the condition. The AND predicate cannot be not
evaluated before leaf nodes are accessed, weakening the pruning ability.

RIB is limited in scope because it only achieves good performance when the attribute
predicate is selective, e.g., (i) |Qa | = d, or (ii) |Qa | = 1 and dom(A) is large. In other settings,
the performance significantly deteriorates. Furthermore, if traditional nearest neighbor
queries are processed, the efficiency deteriorates as the spatio-temporal proximity is not
preserved. Our method achieves stable performance and generalizes to queries on standard
trajectories.

7 Generality

The generality of our method includes three aspects: (i) packing standard trajectories,
(ii) managing attribute values, and (iii) supporting a range of queries on multi-attribute
trajectories and also queries on standard trajectories.

Packing The established method produces a compact data set. There is no information
loss and no extra storage cost. The procedure can be applied for other trajectory queries to
enhance the performance.
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BAR The system is able to flexibly build the traditional trajectory index or the hybrid
index, depending on whether standard trajectories or multi-attribute trajectories are pro-
cessed. BAR is not tightly integrated into the spatio-temporal index and therefore can be
combined with other traditional trajectory indexes, categorized into (i) R-tree based indexes,
e.g., TB-tree [37], MV3R-Tree [45], and (ii) grid based indexes, e.g., SETI [6]. The well-
established structures do not have to be modified, benefiting the system development.
Figure 39 reports BAR built on top of TB-tree and Grid index, following a similar proce-
dure to Section 3.3.1. We instantiate into the 3D R-tree due to the advantage of preserving
the spatio-temporal proximity and the efficiency of answering nearest neighbor queries, as
demonstrated in [21], and compare with other trajectory indexes as follows.

– TB-tree. The structure has the trajectory preservation property that only stores units
of the same trajectory within a leaf node, resulting in a large spatial extent of the leaf
nodes. The spatial proximity is not preserved because segments of different trajectories
that lie spatially close will be stored in different nodes. We cannot effectively prune
the search space by min and max distances, resulting in poor performance for nearest
neighbor queries. The STR-tree [37] introduces a parameter to balance between spatial
properties and trajectory preservation, but the main concern is to handle the spatial
domain and treating the temporal as a secondary issue.

– SETI. The space is divided into disjoint cells, each of which contains trajectory seg-
ments that are completely within the cell and has a temporal index (an R∗-tree) for
objects’ time intervals. The number of spatial partitions plays a crucial role in index
design, but setting an optimal value is not trivial, e.g., trajectories may be uniformly or
skewly distributed, making the performance unstable. The method focuses on the spa-
tial proximity and has the limitation that the boundaries of the spatial dimension remain
constant. The SEB-tree [41] is similar to SETI where the space is partitioned into zones,
but the difference is that only the zone information is stored in the database without
knowing the exact location.

– MV3R-tree. The index combines a multi-version R-tree (MVR-tree) and a small aux-
iliary 3D R-tree built on the leaf nodes of the MVR-tree. The former is to process
timestamp queries and the latter is to process long interval queries. Short interval
queries are processed by selecting the appropriate tree. We deal with interval queries
and thus the structure is essentially a 3D R-tree. The MR-tree [58] builds separate
R-trees for each timestamp and achieves good performance in the case of timestamp
queries. However, the performance is not efficient for time window (interval) queries
and there are many replicated node entries.

Fig. 39 Popularizing BAR
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Queries The following queries can be answered following our framework: (i) spatio-
temporal windows + attributes, e.g., “Did any RED BENZ pass the restricted area during
[t1, t2]?”; (ii) continuous distance queries + attributes, e.g., “Continuously report all TOY-
OTAs within 200 meters to the target?”; and (iii) spatio-temporal similarity + attributes,
e.g., “Did any SILVER VW follow the target?”. We search BAR to find the subtrees in the
spatio-temporal index fulfilling the attribute condition and then explore the spatio-temporal
index. If attributes are not considered, the algorithm directly searches the spatio-temporal
index without accessing BAR.

8 Related work

8.1 Querying trajectories

In the literature, tremendous efforts have been made on querying standard trajectories. Rep-
resentative works include nearest neighbors [18, 19], similarity search [8, 42] and pattern
discovery [27] [32]. In particular, continuous nearest neighbor queries are studied in [17,
21], but the result is different from CkNN MAT.

In the era of big data, a large amount of trajectory data is collected and used to sup-
port applications such as personalized route recommendation [11]. The paper [31] studies
retrieving distinct trajectories passing a user-specified spatio-temporal region over big tra-
jectory data, and estimates the answers with a guaranteed error bound. Scalable algorithms
for nearest neighbor joins are studied in [13]. The processed data, mainly retrieved from
GPS, is standard trajectories, i.e., within the scope of location and time. Although GPS
records contain a variety of attributes such as velocity, direction and acceleration, they are
location-related and can be inferred frommotion function. We enrich the data representation
to support attributes independent of locations and allow users to find k nearest neighbors
over time with certain attribute values, extending the query capability.

Emerging applications require extensive information about trajectories such as quality
and semantics [65]. Semantic trajectories are studied to discover meaningful knowledge
from locations [2, 59, 62]. A semantic enriched trajectory is typically defined to be a
sequence of timestamped places, where each place is represented by a location with a
semantic label. Interesting patterns can be properly defined and extracted. For example, a
so-called fine-grained sequential pattern reports trajectories that satisfy spatial compact-
ness, semantic consistency and temporal continuity simultaneously [61]. Consider actions
that users can take at particular places such as sport, dining and entertaining. Activity tra-
jectories are defined by associating geo-spatial points with activities. A similarity search
returns k trajectories whose semantics contain the query and have the shortest minimum
match distance [64]. Motivated by the fact that standard trajectories do not make much sense
for humans, a partition-and-summarization approach is proposed to automatically gener-
ate texts to highlight the significant semantic behavior [43]. A good survey of semantic
trajectories refers to [36].

Moving objects with transportation modes are investigated in [55, 57]. A trajectory over
diverse geographical spaces includes timestamped locations and a sequence of transporta-
tion modes such as Indoor→Walk →Car. Queries containing transportation modes can be
answered, e.g., “who arrived at the university by taxi”. A generic model is proposed to
capture a wide range of meanings derived from a standard trajectory, called symbolic trajec-
tory [23]. A systematic study of annotated trajectory databases is performed to represent
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a symbolic trajectory by a time-dependent label, which can be names of roads and speed
profile, for example.

There are fundamental differences between those works and multi-attribute trajectories.
First, we consider attributes that are location-independent and can not be discovered from
standard trajectories. This differs from attaching location labels in semantic trajectories.
Symbolic trajectories do not contain geo-locations, while multi-attribute trajectories do.
Second, different queries are evaluated. We incorporate attributes into the evaluation for
Boolean queries and search k nearest neighbors at each defined time. Previous queries deal
with spatial closeness and attributes similarity instead of time-dependent distances and exact
matches on attributes. Labels are sparsely defined in semantic trajectories because a few
locations may contain semantics. As a result, ranking queries are primarily dealt with rather
than continuous queries with attributes.

One more related work is heterogeneous k-nearest neighbor queries [44]. A moving
object is represented by a location-independent attribute and a set of coordinates. By defin-
ing a function that combines the costs of distances and the location-independent attribute,
the query returns objects having the k-th smallest value. Although the work considers the
location-independent attribute, there are three major differences in comparison with ours.
First, the data representation is limited in scope because each moving object is associated
with only one attribute. We consider multiple attributes to have a generic solution. Second,
they query objects based on a ranking function on distance and attribute, but we require
exact matches on attribute, leading to different results. Third, their distance function is not
time-dependent, while we deal with distances changing over time to support continuous
queries. The query in [63] continuously reports k nearest spatial points with keywords to a
moving object in a road network. The processed data is spatial points with keywords, but
we deal with moving objects.

8.2 Indexing and manipulating trajectories

In the last decade, an impressive number of access methods have been proposed to optimize
the processing of trajectory queries [6, 38, 39, 45, 48]. A survey of trajectory indexing and
retrieval is given in [29]. These indexes only handle the proximity on spatial and temporal
data, but do not achieve an optimal performance for CkNN MAT. One one hand, we cannot
use the index to select objects fulfilling the attribute condition because the spatio-temporal
indexes do not manage attributes. On the other hand, the criteria of minimum and maximum
distances cannot be used for pruning because objects with small distances may not contain
query attribute values. Exemplified by Fig. 40, employing the pruning heuristic of min and

Fig. 40 Min and max distances
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max distances, the node NA is pruned because objects in NA are further than NB to mq.
However, this produces false results because objects in NB do not fulfill the attribute condi-
tion. Spatio-temporal index structures are not aware of attribute values and therefore cannot
determine nodes containing query attribute values.

A grid index is established to organize activity trajectories in a hierarchical manner [64].
Activities are location-dependent and the index maintains the spatial and activity proximi-
ties. A similar structure is developed to incorporate both spatial and semantic information
for approximate keyword search [62]. The grid index is a spatial index that maintains loca-
tions with activities rather than continuous movements. They address ranking queries, but
we deal with continuous queries.

Several algorithms are proposed to minimize the total volume of trajectory approxima-
tions when given a user-specified number of splits [25]. Rasetic et al. provide an improved
solution that splits trajectories into a number of sub-trajectories and indexes them to min-
imize the number of expected disk I/Os with respect to an average size of spatio-temporal
range queries [39]. Calibrating trajectory data is studied in [42], the goal of which is to
transform heterogeneous trajectories to one with unified sampling strategies. The method
rewrites raw trajectories based on a reference set in order to remove the impact of the sam-
pling heterogeneity. Trajectories after calibrating are not the same as the original form due to
operations such as shifting, removing and inserting. The line of work on trajectory simplifi-
cation [33] [34, 54] aims to approximate a trajectory by a simplified one with fewer points.
The processing primitives are to retrieve less trajectories but in good quality. However, tra-
jectories are modified and not the same as before. We merge small pieces of movements
and approximate trajectories in a compact way without any information loss. The trajectory
segmentation serves the purpose of partitioning each trajectory into sub-trajectories for a
compact representation [62]. They evaluate spatial, time and semantic variances based on a
local trajectory and aim to find an optimal method that uses the minimum number of trajec-
tory segments such that the maximum decrease of feature value is less than a threshold. The
paper [12] optimizes the maintenance of continuous queries over standard trajectories.

Moving objects databases, as the representative of update-intensive applications, need to
handle frequent updates. A number of approaches have been proposed to improve the effi-
ciency of updating spatio-temporal indexes [5, 26, 40]. To support updating multi-attribute
trajectories, not only locations and time but also attribute values are addressed. Meanwhile,
low latency should be achieved to allow instantaneous queries.

8.3 Spatial keyword queries

Recently, spatial keyword queries (SKQ for short) have been extensively studied in the
literature [7, 30, 52]. The task is to support queries that take a geo-location and a set of
text descriptions called keywords as arguments and return objects that are close to the query
location and contain the keywords called Boolean kNN query [14], or objects with the
highest ranking scores measured by a combination of distances to the query location and the
text relevance to the keywords called Top-k NN query [10]. To efficiently answer the query,
a spatial index such as 2D R-tree and a text index structure are combined. For example, the
IR-tree [10] arguments each node of the R-tree with a pointer pointing to an inverted file that
contains a summary of the text content of the objects in the corresponding subtree. During
the query procedure, one uses the combined structure to estimate both the spatial distance
and the text relevancy and prune the objects that cannot contribute to the result.

Compared to SKQ, multi-attribute trajectories are in principle the combination of stan-
dard trajectories and attributes. Both problems extend the traditional spatial and moving

Geoinformatica (2018) 22:723–766 761



objects to enrich the data representation. However, there are some fundamental differences.
In the aspect of data representation, SKQ focuses on static geo-locations and location-
dependent text descriptions. We cope with moving objects and location-independent
attributes, leading to different queries. SKQ considers a static query location, while our
query is a moving object and returns the nearest object to the query at each query time, com-
plicating the evaluation. Furthermore, text descriptions and attributes will make different
tasks when designing the index structure. In SKQ, the index groups close objects in terms of
spatial distances and location-related text relevances. Attributes do not depend on particular
locations but are associated with objects. It is possible to attach attributes to timestamped
locations, but each piece of trajectories will have all attributes along with the trajectory,
resulting in an extremely large amount of redundant data. In fact, the key issue of boost-
ing the index is to know which objects contain particular attribute values and where they
are located in the spatio-temporal index. Therefore, a different criterion is used to build the
index. Last, there is no update in SQK, but we accommodate frequent updates.

9 Conclusions

We enrich the trajectory representation to form multi-attribute trajectories and propose a
new query. A hybrid index structure is designed and updating the index is also supported.We
make a systematic design such that the attribute structure can be combined with a range of
standard trajectory indexes. Efficient query algorithms are developed. An extensive experi-
mental evaluation is conducted on large datasets to demonstrate the performance advantage
of our approach over baseline methods. The future work is to consider similarity queries on
multi-attribute trajectories.

Acknowledgments We sincerely thank Fabio Valdés, Thomas Behr and Sara Betkas for their helpful
comments to improve the preliminary version. This work is supported by National Key Research and Devel-
opment Plan of China (2018YFB1003902) and the Fundamental Research Funds for the Central Universities
(NO. NS2017073).

Appendix

Unique attribute values by composite numbers Given a point (x, y), its Z-order value
is denoted by z-val(x, y) and the binary representation is z[2·m] : z[i] = x[i], z[i+1] = y[i],
i ∈ [0, m], x[m], y[m] are arrays of bits for binary representations x and y, respectively, and
m is the number of bits to represent the coordinates.

Lemma 6 Let a1 ∈ dom(Ad1 ) and a2 ∈ dom(Ad2 ) be attribute values from two different
domains, respectively. Then, we have z-val(d1, a1) �= z-val(d2, a2).

Proof Let z1[2 · m] and z2[2 · m] be binary representataions for z-val(d1, a1) and z-
val(d2, a2), respectively. Because of d1 �= d2, then arrays x1[m] and x2[m] are not equal.
After the interleaving, there exists an even bit i ∈ [0, 2 · m - 1] such that z1[i] �= z2[i]. As a
result, we have z1[2 · m] �= z2[2 · m]. The condition holds regardless of a1 and a2.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
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