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Abstract This article addresses the problem of preserving privacy of individuals who par-
ticipate in collaborative environmental sensing. We observe that in many applications of
societal importance, one is interested in constructing a map of the spatial distribution of
a given phenomenon (e.g., temperature, CO2 concentration, water polluting agents, etc.)
and mobile users can contribute with providing measurements data. However, contribut-
ing data may leak sensitive private details, as an adversary could infer the presence of a
person in a certain location at a given time. This, in turn, may reveal information about
other contexts (e.g., health, lifestyle choices), and may even impact an individual’s physical
safety. We introduce a technique for privacy-preserving detection of anomalous phenomena,
where the privacy of the individuals participating in collaborative environmental sensing
is protected according to the powerful semantic model of differential privacy. We propose
a differentially-private index structure to address the specific needs of anomalous phe-
nomenon detection and derive privacy preserving query strategies that judiciously allocate
the privacy budget to maintain high data accuracy. In addition, we construct an analytical
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model to characterize the sensed value inaccuracy introduced by the differentially-private
noise injection, derive error bounds, and perform a statistical analysis that allows us to
improve accuracy by using custom weights for measurements in each cell of the index
structure. Extensive experimental results show that the proposed approach achieves high
precision in identifying anomalies, and incurs low computational overhead.

Keywords Spatial crowdsourcing · Location protection · Differential privacy

1 Introduction

Environmental sensing using crowdsourcing is a promising direction due to the wide-spread
availability of mobile devices with positioning capabilities and a broad array of sensing
features, e.g., audio and video capture, temperature, velocity, acceleration, etc. In addition,
mobile devices can easily interface with external sensors and upload readings for many
other environmental parameters (e.g., CO2, water pollution levels, atmospheric pressure).
The growing trend towards crowdsourcing environmental sensing is beneficial for a wide
range of applications, such as pollution levels monitoring or emergency response. In such
settings, authorities can quickly and inexpensively acquire data about forest fires, environ-
mental accidents or dangerous weather events – and the mobile users are crucial entities for
generating relevant data.

One particular task that is relevant to many application domains is the detection of
anomalous phenomena. Such cases often require to determine a heatmap capturing the
distribution of a certain sensed parameter (e.g., temperature, CO2 level) over a geospatial
region of interest. Typically, when the value of the parameter of interest in a certain region
reaches a predefined threshold, an alarm needs to be triggered, signaling the occurrence of
an anomaly. An important issue is that the alarm should identify with good accuracy the
region where the dangerous event occurred, so that counter-measures can be activated and
deployed.

At the heart of the motivation for this work is the observation that there are important
privacy concerns related to crowdsourced sensing. Contributed data may reveal sensitive
private details about an individual’s health, lifestyle choices, and may even impact the
physical safety of a person. To protect against such disclosure, the state-of-the-art model
of differential privacy (DP) adds noise to data in a way that prevents an adversary from
learning whether the contribution of an individual is present in a dataset or not. Several DP-
compliant techniques for protecting location data have been proposed in [1–3]. However,
the applicability of the existing approaches is limited, in the sense that they only consider
simple, general-purpose count queries, and rely on simplifying assumptions that make them
unsuitable for our considered problem of anomalous phenomenon detection with spatial
awareness.

Consider an example scenario of a forest fire, where mobile users report air temperature
in various regions. To model the fire spread, one needs to plot the temperature distribution,
which depends on the values reported by individual users, and the users’ reported locations.
With existing techniques, one could partition the dataspace according to a regular grid and
split the available privacy budget between two aggregate query types, one counting user
locations in each grid cell, and the other summing reported values. Next, a temperature
heatmap is obtained by averaging the temperature for each cell. As demonstrated in our
experimental evaluation, this approach yields rather useless data, due to the high amount of
noise injected. This is the result of a more fundamental limitation of existing approaches
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that are designed only for general-purpose queries, and do not take into account correlations
that are specific to more complex data processing algorithms.

In this paper, we propose an accurate technique for privacy-preserving detection of
anomalous phenomena in crowdsourced sensing. We also adopt the powerful semantic
model of differential privacy, but we devise a tailored solution, specifically designed for
privacy-preserving heatmap construction. Our technique builds a flexible data indexing
structure that can provide query results at arbitrary levels of granularity. Furthermore, the
sanitization process fuses together distinct types of information (e.g., user count, place-
ment and reported value scale) to obtain an effective privacy-preserving data representation
that can help decide with high accuracy whether the sensed value in a certain geographi-
cal region exceeds the threshold or not. To the best of our knowledge, this is the first work
that addresses the problem of value heatmap construction within the differential privacy
framework. Our specific contributions are:

1. We introduce a hierarchical differentially-private structure for representing sensed data
collected by mobile users. The structure is customized to address the specific require-
ments of value heatmap construction, and accurately supports queries at variable levels
of granularity.

2. We examine the impact of structure parameters and privacy budget allocation on data
accuracy, and devise algorithms for parameter selection and tuning.

3. We derive an analytical model for characterization of errors resulting from noise injec-
tion in the heatmap construction process. Based on this model, we propose a flexible
mechanism that uses concentration inequalities to compute for each cell voting weights
that improve the accuracy of privately deciding whether an anomalous phenomenon
occurred or not. To the best of our knowledge, this is the first work that supports
fine-grained, cell-level weight assignment.

4. We perform an extensive experimental evaluation which shows that the proposed tech-
niques accurately detect anomalous phenomena, and clearly outperform existing
general-purpose sanitization methods that fare poorly when applied to the studied problem.

The paper is organized as follows: Section 2 provides background information on dif-
ferential privacy. In Section 3, we introduce the system model, and the metrics used to
characterize anomalous phenomenon detection accuracy. Section 4 presents the proposed
privacy-preserving data indexing structure and analytical models for characterizing query
accuracy. We introduce strategies for anomaly detection in Section 5. In Section 6, we
introduce a mechanism for determining flexible voting weights based on sensed value error
bounds for each cell of the index structure. We present the results of our extensive exper-
imental evaluation in Section 7. We survey related work in Section 8, and conclude with
directions for future work in Section 9.

2 Background

In this section, we introduce the basic concepts and notations used in building our proposed
solution for privacy-preserving detection of anomalous phenomena.

2.1 Differential privacy

Differential privacy (DP) [4, 5] addresses the limitation of syntactic privacy models (e.g.,
k-anonymity [6], �-diversity [7], t-closeness [8]) which are vulnerable against background
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knowledge attacks. DP is a semantic model which argues that one should minimize the risk
of disclosure that arises from an individual’s participation in a dataset.

Two datasets D and D′ are said to be siblings if they differ in a single record r , i.e.,
D′ = D ∪ {r} or D′ = D�{r}. An algorithm A is said to satisfy differential privacy with
parameter ε (called privacy budget) if the following condition is satisfied [4]:

Definition 1 (ε-indistinguishability) Consider algorithm A that produces output O and let
ε > 0 be an arbitrarily-small real constant. Algorithm A satisfies ε-indistinguishability if
for every pair of sibling datasets D,D′ it holds that

∣
∣
∣
∣
ln

Pr[A(D) = O]
Pr[A(D′) = O]

∣
∣
∣
∣
≤ ε (1)

In other words, an attacker is not able to learn, with significant probability, whether
output O was obtained by executing A on input D or D′. To date, two prominent tech-
niques have been proposed to achieve ε-indistinguishability [5, 9]: the Laplace mechanism
(and the closely related geometric mechanism for integer-valued data) and the exponential
mechanism. Both mechanisms are closely related to the concept of sensitivity:

Definition 2 (L1-sensitivity [5]) Given any two sibling datasets D, D′ and a set of real-
valued functions F = {f1, . . . , fm}, the L1-sensitivity of F is measured as �F =
max∀D,D′

m
∑

i=1

|fi(D) − fi(D′)|.

The Laplace mechanism is used to publish the results to a set of statistical queries. A
statistical query set Q = {Q1, . . . , Qm} is the equivalent of a set of real-valued functions,
hence the sensitivity definition immediately extends to such queries. According to [5], to
achieve DP with parameter ε it is sufficient to add to each query result random noise gener-
ated according to a Laplace distribution with mean �Q/ε. For COUNT queries that do not
overlap in the data domain (e.g., finding the counts of users enclosed in disjoint grid cells),
the sensitivity is 1.

An important property of differentially-private algorithms is sequential composabil-
ity [9]. Specifically, if two algorithms A1 and A2 executing in isolation on dataset D achieve
DP with privacy parameters ε1 and ε2 respectively, then executing both A1 and A2 on D in
sequence achieves DP with parameter (ε1+ε2). In contrast, parallel composability specifies
that executing A1 and A2 on disjoint partitions of the dataset achieves DP with parameter
max (ε1, ε2).

2.2 Private spatial decompositions (PSD)

The work in [1] introduced the concept of Private Spatial Decompositions (PSD) to release
spatial datasets in a DP-compliant manner. A PSD is a spatial index transformed according
to DP, where each index node is obtained by releasing a noisy count of the data points
enclosed within that node’s extent. Various index types such as grids, quadtrees or k-d trees
[10] can be used as a basis for PSD.

The accuracy of a given PSD is heavily influenced by the type of PSD structure and its
parameters (e.g., height, fan-out). With space-based partitioning PSD, the split position for
a node does not depend on data point locations. This category includes flat structures such
as grids, or hierarchical ones such as BSP-trees (Binary Space Partitioning) and quadtrees
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[10]. The privacy budget ε needs to be consumed only when counting the users in each index
node. Typically, all nodes at same index level have non-overlapping extents, which yields a
constant and low sensitivity of 1 per level (i.e., adding/removing a single location in the data
may affect at most one partition in a level). The budget ε is best distributed across levels
according to the geometric allocation [1], where leaf nodes receive more budget than higher
levels. The sequential composition theorem applies across nodes on the same root-to-leaf
path, whereas parallel composition applies to disjoint paths in the hierarchy. Space-based
PSD are simple to construct, but can become unbalanced.

Object-based structures such as k-d trees and R-trees [1] perform splits of nodes based
on the placement of data points. To ensure privacy, split decisions must also be done accord-
ing to DP, and significant budget may be used in the process. Typically, the exponential
mechanism [1] is used to assign a merit score to each candidate split point according to
some cost function (e.g., distance from median in case of k-d trees), and one value is ran-
domly picked based on its noisy score. The budget must be split between protecting node
counts and building the index structure. Object-based PSD are more balanced in theory, but
they are not very robust, in the sense that accuracy can decrease abruptly with only slight
changes of the PSD parameters, or for certain input dataset distributions.

The recent work in [2] compares tree-based methods with multi-level grids, and shows
that two-level grids tend to perform better than recursive partitioning counterparts. The
paper also proposes an Adaptive Grid (AG) approach, where the granularity of the second-
level grid is chosen based on the noisy counts obtained in the first-level (sequential
composition is applied). AG is a hybrid method which inherits the simplicity and robust-
ness of space-based PSD, but still uses a small amount of data-dependent information in
choosing the granularity for the second level.

All these methods assume general-purpose and homogeneous queries (i.e., find counts of
users in various regions of the dataspace) and, as we show later in this paper, are not suitable
for the problem of anomalous phenomenon detection. We compare against state-of-the-art
PSD techniques in our experimental evaluation (cf. Section 7).

3 System model and evaluation metrics

We consider a two-dimensional geographical region and a phenomenon characterized by a
scalar value (e.g., temperature, CO2 concentration) within domain [0,M]. A number of N

mobile users measure and report phenomenon values recorded at their location. If a regular
grid is super-imposed on top of the data domain, then the histogram obtained by averaging
the values reported within each grid cell provides a heatmap of the observed phenomenon.
Since our focus is on detecting anomalous phenomena, the actual value in each grid cell is
not important; instead, what we are concerned with is whether a cell value is above or below
a given threshold T , 0 < T < M .

Mobile users report sensed values to a trusted data collector, as illustrated in Fig. 1. The
collector sanitizes the set of reported values according to differential privacy with parameter
ε, and outputs as result a data structure representing a noisy index of the data domain (i.e.,
a PSD). This PSD is then released to data recipients (i.e., general public) for processing.
Based on the PSD, data recipients are able to answer queries with arbitrary granularity that
is suitable for their specific data uses. Furthermore, each data recipient has flexibility to
choose a different threshold value T in their analysis. In practice, the trusted collector role
can be fulfilled by cell phone companies, which already know the locations of mobile users,
and may be bound by contractual obligations to protect users’ location privacy. The collector



738 Geoinformatica (2017) 21:733–762

Fig. 1 System Model

may charge a small fee to run the sanitization process, or can perform this service free of
charge, and benefit from a tax break, e.g., for supporting environmental causes.

According to differential privacy, the goal of the protection mechanism is to hide whether
a certain individual contributed to the set of sensed values or not. To achieve protection,
noise is added to the values of individual value reports. Inherently, protection decreases data
accuracy.

To measure the accuracy of sanitization, we need to quantify the extent to which the
outcome for certain regions changes from above the threshold to below, or vice-versa. Given
an arbitrary-granularity regular grid, we define the following metrics:

φboth : number of grid cells above the threshold according to both actual and sanitized
readings

φeither : number of grid cells above the threshold according to either actual or sanitized
readings

φf lip : number of grid cells above the threshold in one dataset and below in the other
φall : total number of grid cells

It results immediately from the metric definitions that φeither = φf lip + φboth. Hence,
we can define two additional metrics with domain [0, 1] and ideal value of 1 (i.e., perfect
accuracy). FlipRatio (FR) quantifies the proportion of cells that change their outcome due
to sanitization:

FR = 1 − φf lip

φall

The Jaccard (J) metric, derived from the Jaccard similarity coefficient [4], measures the
dissimilarity between the real and sanitized datasets:

J = φboth

φeither

The FR and J metrics have the advantage of being less dependent on the grid granularity,
i.e., the φall values, so they maintain their relevance across a broad range of query granu-
larities. However, only the J metric captures the local impact of the sanitization method.
Interchanging the state of two random cells will not change the values of any other metrics
than J , so they are not sufficient to determine the accuracy of the heatmap. Therefore, in
the rest of the paper, we focus on the J metric. Formally, our problem statement can now
be specified as follows:
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Problem 1 Given N users moving within a two-dimensional space, a phenomenon charac-
terized by a scalar value with domain range [0, M], an anomaly threshold T , 0 < T < M

and privacy budget ε, determine an ε-differentially-private release such that the Jaccard
metric between the real and sanitized dataset is maximized.

4 PSD for anomalous phenomenon detection

Constructing an appropriate PSD is an essential step, since the accuracy of the entire solu-
tion depends on the structure properties. We observe that due to the specific requirements
of our problem, general-purpose PSDs such as the ones optimized for count queries ([1–3])
are not suitable.

The anomalous phenomenon detection may be performed with respect to a regular grid
of arbitrarily fine-grained granularity. On the other hand, creating a PSD that is too fine-
grained is not a suitable approach. According to the Laplace mechanism, each cell’s query
result is added with random noise of magnitude independent of the actual value. Therefore,
PSDs with small cells and PSDs that do not adapt to data density are not appropriate, as the
resulting inaccuracy is high. Instead, we construct a flexible structure, based on which the
threshold condition can be answered for arbitrary regular grids, as illustrated on the right
side of Fig. 1.

The PSD must keep track of two measures necessary to determine phenomena heatmaps:
sensor counts1 and phenomenon value sums, which together provide average values for
each cell. We denote the actual values for sensor count and value sum in a cell by n and
s, respectively (we use subscript indices to distinguish the n and s values across cells).
We denote the noisy counts and sums by n∗ and s∗. The sensitivity of n is 1, whereas the
sensitivity of s is M (adding a new sensor in a cell can increase n by 1 and s by M). Hence,
if n is answered using privacy budget εn and s is answered using privacy budget εs , the

variance of n∗ is 2
ε2
n

, whereas the variance of s∗ is 2M2

ε2
s

.

To simplify presentation, we introduce our PSD in incremental fashion: first, we out-
line the main concepts and parameters for a single-level regular grid. Next, we extend our
findings to a two-level structure, and then generalize to a multiple-level structure. Table 1
summarizes the notations used.

Single-level Grid Assume a regular grid of N0 × N0 cells spanning over a data domain
of size w × w. Similar to other work on PSD [2, 11], we assume that a negligible fraction
of the privacy budget is spent to estimate n∗

0, the total number of sensors, and s∗
0 , the sum

of all sensed values. Granularity N0 must be chosen to minimize the expected error over all
rectangular queries (since any query can be decomposed into non-overlapping rectangular
regions). The error has two sources:

– Laplace error within a single cell due to noise addition by the Laplace mechanism.
These errors are added for all cells covered by the query.

– Non-uniformity error caused by non-uniformity of sensor distribution within a grid cell.
These errors occur only for cells which are partially covered by the query rectangle. In
such a case, we output a value proportional to the fraction of the cell that overlaps the
query.

1In the rest of the paper, the terms mobile user and sensor are used interchangeably.
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Table 1 Symbols and notations used in the paper

Symbol Description

n, s Real count and sum of values of sensors in a cell

n∗, s∗ Noisy count and sum of values of sensors in a cell

n′, s′ Count and sum of values of sensors in a cell after weighted averaging

n, s Count and sum of values of sensors in a cell after mean consistency step

ε Privacy budget

εn, εs Privacy budget used for answering count and, respectively, sum queries in the cell

α Proportion of available privacy budget to use at current PSD level

β Proportion of privacy budget for the current level used for answering count queries

Nu Split factor for cell u

M Maximum value of a sensor’s scale

T Threshold for the anomalous heatmap

Nt Threshold for minimum (noisy) number of sensors in a cell

K Non-uniformity constant

Furthermore, errors occur for both sensor counts and sensed values. Since the thresh-
old T is expected to be proportional to scale M , we normalize the error for sensed values
to account for the skew introduced by M . The error expression subject to minimization
becomes the sum of all count errors plus 1

M
of the sum of all value sum errors.

Consider an arbitrary rectangle query of size rw2, r ∈ (0, 1). The query will cover

approximately rN2
0 cells. The total variance of the query result is

2rN2
0

ε2
n

for n and
2M2rN2

0
ε2
s

for s. Hence, the count error is expressed as
√

2r
N0
εn

, and the sum error as
√

2r
MN0
εs

. The

total Laplace error is
√

2rN0

(
1
εn

+ 1
εs

)

.

The query rectangle might partially cover some cells. The number of such cells is of
the order O(

√
rN0) (determined by the perimeter of the query rectangle). Hence, we can

assume that the number of points in partially covered cells is of the order O(
√

rN0
n∗

0
N2

0
) =

K
√

r
n∗

0
N0

, where K is a constant. Assuming uniform sensor density, the error for value sum

in partially covered cells is K
√

r
s∗
0

N0
. Hence, the non-uniformity error is K

√
r

N0

(

n∗
0 + s∗

0
M

)

.

Thus, we must minimize the expression:

√
2rN0

(
1

εn

+ 1

εs

)

+ K

√
r

N0

(

n∗
0 + s∗

0

M

)

(2)

According to the sequential composition property (Section 2), the available privacy budget
ε must be split between εn and εs . We capture this split with parameter β ∈ (0, 1), defined
as the fraction used by the count sanitization: εn = βε and εs = (1 − β)ε. Minimizing
Eq. (2) with respect to N0, we obtain the optimal single-level granularity

N0 =
√

ε × K√
2

× β(1 − β)

(

n∗
0 + s∗

0

M

)

(3)

Two-level Grid Starting with the optimal single-level N0 setting, we further divide each
cell according to its noisy n∗ and s∗. The privacy budget must be split between the two
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levels according to sequential composition. We model this split with parameter α ∈ (0, 1),
which quantifies the budget fraction allocated to the level 1 grid. Levels 1 and 2 receive
respectively budgets ε1 = αε and ε2 = (1 − α)ε. Each level budget is further divided
between counts and sums using parameter β ∈ (0, 1):

εn1 = βε1, εs1 = (1 − β)ε1, εn2 = βε2, εs2 = (1 − β)ε2 (4)

Since each level-1 cell is further divided, we define N0 as a fraction of the value in Eq. (3)
(later in this section, Eq. (11) shows how to choose η > 1):

N0 = 1

η

√

ε × K√
2

× β(1 − β)

(

n∗
0 + s∗

0

M

)

(5)

For each cell u in the first level we use budgets εn1 and εs1 to determine n∗
u1 and, respec-

tively, s∗
u1. Based on these values, we split cell u into N2

u cells. For each cell v ∈ child(u),
we use εn2 and εs2 to determine n∗

v2 and, respectively, s∗
v2 (the subscript indicates the level

of the grid where the value is computed).
Since the actual sensor count in a cell at level 1 is the same as the sum of the sensor counts

in all of its children at level 2 (and the same holds for the sums), we perform a constrained
inference procedure with the purpose of improving accuracy. Based on the values n∗

u1, s∗
u1,

n∗
v2, s∗

v2 we determine nu1, su1, nv2 and sv2 such that

nu1 =
∑

v∈child(u)

nv2

su1 =
∑

v∈child(u)

sv2

and ∀u, the variances of nu1 and su1 are minimized. Note that, since all input values are
already sanitized, no budget is consumed in the constrained inference step, and differential
privacy is still enforced.

We determine these values in two steps:

1. We determine the weighted average estimators n′
u1 and s′

u1 with minimal variance. We
average the values of n∗

u1 and
∑

v∈child(u) n∗
v2 to determine n′

u1 and the corresponding
ones for s′

u1. To do so, we are using the fact that the variance of the weighted average
of two random variables X and Y with variances V ar(X) and V ar(Y ) is minimized by
the value

V ar(Y )

V ar(X) + V ar(Y )
× X + V ar(X)

V ar(X) + V ar(Y )
× Y (6)

In our case, X is n′
u1 (s′

u1) and Y is
∑

v∈child(u)n
∗
v2 (respectively

∑

v∈child(u)s
∗
v2).

2. We update the values to ensure mean consistency according to:

nu1 = n′
u1, nv2 = n′

v2 + 1

N2
u

⎛

⎝nu1 −
∑

v∈child(u)

n′
v2

⎞

⎠ (7)

su1 = s′
u1, sv2 = s′

v2 + 1

N2
u

⎛

⎝su1 −
∑

v∈child(u)

s′
v2

⎞

⎠ (8)

The effects of the constrained inference so far concern only queries which partially cover
level-1 cells. Suppose that a query covers i×j sub-cells of cell u, where i, j ∈ {1, 2, . . . Nu}.
Then, the effect of the constrained inference is that min(i × j,N2

u − i × j) level-2 cells will



742 Geoinformatica (2017) 21:733–762

be used to answer the query. On average, the number of level-2 cells required to answer a
query is:

1

N2
u − 1

Nu∑

i=1

Nu∑

j=1

min(i × j,N2
u − i × j) ≈ N2

u

5
+ O(Nu)

Hence, the total variances are 2N2
u

5ε2
n2

and 2M2N2
u

5ε2
s2

, and the resulting total Laplace error is
√

10Nu

5

(
1

εn2
+ 1

εs2

)

.

For non-uniformity errors, assume r is the ratio between the area used to answer the
query and the total area of the cell. We know from the single-level case that the non-

uniformity errors are K
√

r
n∗

u

Nu
and K

√
r

s∗
u

Nu
. To eliminate the

√
r factor, we integrate over

its domain ((0, 0.5]) and compute the expected value of the total non-uniformity error. Since
∫ 0.5

0
√

rdr
∫ 0.5

0 dr
=

√
2

3 we get that the total non-uniformity error is
√

2K
3Nu

(

n∗
u + s∗

u

M

)

.

Thus, we must minimize the expression
√

10Nu

5

(
1

εn2
+ 1

εs2

)

+
√

2K

3Nu

(

n∗
u + s∗

u

M

)

and we obtain

Nu =
√√

5

3
εKβ(1 − β)(1 − α)

(

n∗
u + s∗

u

M

)

(9)

where we can approximate
√

10
3 by 1. This also provides a value for η (Eq. (5)), such that:

N0 =
√

ε × K√
2

× β(1 − β)α

(

n∗
0 + s∗

0

M

)

(10)

Nu =
√

ε × K√
2

× β(1 − β)(1 − α)

(

n∗
u + s∗

u

M

)

(11)

Generalization to Multiple Levels The analysis used for the case of two levels can be
readily extended to a multiple-level structure, where the privacy budget is split across levels
(keeping αε for the current level and dividing privacy budget between count and sum using
β, as before), and the granularity for each new level is determined based on the sanitized
data and variance analysis at the previous level. However, we must carefully decide when to
end the recursion, as having too many levels will decrease the budget per level, and conse-
quently decrease accuracy. Because of this, we implement two stopping mechanisms: first,
we introduce a maximum depth of the PSD, max depth, to prevent excessive reduction of
per-level privacy budget. Second, we introduce a threshold, Nt such that a cell u is divided
only if its estimated sensor count satisfies inequality n∗

u > Nt .
The number Nu of children nodes of u is given by:

Nu =
√

εu × K√
2

× β(1 − β)(1 − α)

(

n∗
u + s∗

u

M

)

(12)

We illustrate the proposed multiple-level PSD approach with a running example, in parallel
with the description of the pseudocode provided in Algorithm 1. The PSD is built in three
phases. First, the PSD structure is determined (i.e., the spatial extent of each index node),
by splitting cells according to Eq. (12), and noisy values are computed for sensor counts
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Fig. 2 Representation of PSD Construction, including weighted averaging and mean consistency

and value sums. This is the only step in which the real dataset of readings is accessed,
and hence the only step that consumes privacy budget. The recursive function buildPSD
(Algorithm 1) summarizes this process.

Figure 2 illustrates PSD construction with α = 0.2, β = 0.5 and ε = 1.6. The root node
will receive a budget of εn,root = 0.5 × 0.2 × 16 = 0.16 (lines 2-8 of algorithm 1). Line 9
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computes the real values for the count and sum of sensor values inside the cell (the sensor
counts for the running example are presented in Fig. 2d). Lines 10-11 add Laplace noise,
resulting in a value of n∗

root = 14. The split granularity for next level is determined as in
Eq. (12). Assume we obtain Nu = 4, larger than the threshold Nt = 2. The root is split into
four cells, and the procedure is recursively applied to each of them with ε1 = (1 − α)ε =
0.8 × 1.6 = 1.28.

The budget for level 1 is further split between the sum and count values, to obtain εn,1 =
0.128 (lines 2-8). Adding the corresponding Laplace noise to the real values of 2, 1, 2 and
3 (Fig. 2d) (lines 10-11), results in noisy counts 9, 2, 6 and, respectively, −2 (Fig. 2a).

The cells with values 9, 2 and 6 are further split, while the one with n∗
1 = −2 is not, due

to the value of Nt . In case no further splits are performed, the remaining budget is used by
running lines 13-20 of Algorithm 1, which compute new noisy estimates which are averaged
to determine n′ and, respectively, s′.

Since the remaining cells are at the maximal depth allowed by the method, the remaining
privacy budget of εn,2 = 0.512 is used to compute the remaining noisy values. The result
of the algorithm is shown in Fig. 2a.

The second phase of the index building method is weighted averaging. We average for
each internal node the two estimates and compute n′ and s′ according to Eq. (6). For each
node, we keep track of the variance of the noisy variables and the averaged values, since
they will be needed in the higher levels of the tree. The resulting tree at the end of this phase
is shown in Fig. 2b.

Finally, the last phase performs mean consistency, which ensures that the estimate from
one node is the same as the sum of the estimates from its children. We use Eq. (7)–(8) in a
top-down traversal of the tree, the result of which is shown in Fig. 2c.

5 PSD processing and heatmap construction

As illustrated in Fig. 1 (Section 3), after the PSD is finalized at the trusted collector, it is dis-
tributed to data recipients who process it according to their own granularity and threshold
requirements. The objective of the data recipient is to obtain a binary heatmap that cap-
tures areas with anomalous phenomena, i.e., regions of the geographical domain where the
measured values are above the recipient-specified threshold.

We assume that the recipient is interested in building a heatmap according to a
recipient resolution grid (rrg). Recall that our solution is designed to be flexible with
respect to recipient requirements, and each recipient may have its own rrg of arbitrary
granularity. In this section, we show how a recipient is able to accurately determine
a phenomenon heatmap given as input the PSD, the recipient-defined rrg and thresh-
old T . The objective of heatmap construction is to determine for each rrg cell a
binary outcome: positive if the value derived for the cell is above T , and negative
otherwise.

Figure 3 shows an example of rrg superimposed on the PSD index. The PSD has four
levels, out of which only three are shown (the root is split into four cells, and it is omitted
from the diagram due to space considerations). The bottom layer in the diagram represents
the rrg. The shaded cell in the rrg layer represents the cell for which we are currently
determining the outcome. In this example, we illustrated a high-resolution rrg, so most rrg

cells are completely enclosed within a PSD cell at each index level. However, in general,
there may be cases when a rrg cell overlaps with several PSD cells. We consider both cases
below.
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Fig. 3 Construction of Heatmap at the Data Recipient Site

Since the recipient has no other information other than the PSD, we assume that the count
and sum values inside a PSD cell are uniformly distributed over the cell’s extent. Hence, for
each rrg cell we compute n and s in proportion to the overlap between the rrg and PSD
cells, normalized by the PSD cell area. If one rrg cell overlaps two or more PSD cells, the
values for n and s are determined as the weighted sum of the values corresponding to each
PSD cell, where the weight is represented by the overlap amount.

Note that, even if the above procedure may result in values for n and s for each rrg

cell which are not too far apart from the actual values, there is another important source of
inaccuracy due to the fact that the outcome for an rrg cell is obtained by dividing the noisy
s and n values. The ratio can be significantly affected even if the noise is not very high.
Furthermore, even though the leaf cells of the PSD are likely to be closer in resolution to
the rrg grid, considering solely leaf nodes in the outcome evaluation may have undesirable
effects, due to the fact that the noise added to leaf nodes is more significant compared to
their actual values compared to PSD nodes that are higher in the hierarchy (i.e., relative
errors are higher closer to the leaf level).

In our solution, we account for these factors. Instead of naı̈vely dividing estimates for
n and s in each rrg grid cell (which may have low accuracy), we evaluate individually the
outcome based on information at each PSD level, and then combine the outcomes through
a voting process in order to determine the outcome for each individual rrg cell. Returning
to the example in Fig. 3, assume that threshold T = 80. We determine the outcome of the
gray cell at the rrg layer by using the outcomes for all the marked PSD cells on the three
levels shown (cells are marked using a small black square). Specifically, the Level 1 PSD
cell containing the shaded grid cell has n = 30 and s = 1050, resulting in a phenomenon
value ρ = s

n
= 35, below the threshold T = 80. Hence, the root cell’s vote would be

negative, meaning that with the information from that layer, the grayed grid cell does not
present an anomalous reading.

However, at Level 2 of the PSD, we have n = 20 and s = 1700, resulting in a value of
85, greater than the threshold. Hence, this layer will contribute a positive vote. Similarly, at
Level 3, n = 8 and s = 800 which also results in a positive vote.
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The resulting outcome for any rrg cell depends on the distribution of the votes it has
received. We could use the difference between positive and negative votes, but this will
report a biased result for grid cells overlapping multiple PSD cells at the same level. A better
solution is to use the ratio of positive votes to the total votes. In our example, the grayed cell
got two positive votes and a single negative one, hence it would be marked as anomalous.

An alternative approach is to use only the number of positive votes that have been
received. For instance, a rrg cell would receive a positive outcome if at least two PSD cells
vote positively. This approach has two advantages: first, it captures locality better than the
previous strategy. If the region where the phenomenon has an anomalous value is small,
majority voting would tend to flatten the heatmap at higher levels, and the sharp spike may
be missed. The two-vote strategy, however, may correctly identify the spike if both the leaf
level PSD and another level above vote positively. Second, the two-vote strategy may pre-
vent false alarms, caused by small PSD cells that may receive a high amount of random
noise. By having a second level confirm the reading, many of the false negatives are elim-
inated, as it is unlikely that two PSD cells at different levels that overlap each other both
receive very high noise due to the Laplace mechanism.

6 Fine-grained vote weighting at cell level

In the previous section, we investigated how accuracy of anomalous phenomenon detection
can be improved by taking into account information from multiple levels of the index struc-
ture. Specifically, we employed voting, whereby the reading of each PSD cell overlapping
a particular rrg cell at a distinct index level contributes equally when determining the out-
come for the rrg cell. However, despite improvements, this is a coarse-grained approach to
voting, since cells at different levels of the PSD may have different levels of noise-induced
errors, due to cell extent and varying density of readings inside the cell. In fact, there may
be significant error differences due to density variation even among distinct index cells in
the same level that overlap a given rrg cell.

In this section, we propose a flexible, fine-grained mechanism that assigns a voting
weight to each PSD cell based on a careful analysis of the error likelihood for each cell. We
employ an analytical statistical model to determine weight values, based on the expected
error induced by differentially-private noise. To the best of our knowledge, this is the first
work that supports individual weights for each particular cell in the PSD structure.

In summary, the proposed fine-grained vote weight computation approach works as fol-
lows: after the PSD is constructed, for each cell u we assign a weight wu. The specific value
wu for each cell is determined in two steps: first we compute the mean and variance of the
average phenomenon value ρu; second, we employ the use of concentration inequalities to
bound the probability that the vote given by cell u is inaccurate, and thus we derive the
formula for the weight wu.

In Section 6.1, we derive an analytical model for the mean and variance of noise density
in the proposed PSD. Based on this model, in Section 6.2, we compute the probability that
a specific cell passes the anomalous phenomenon threshold T . Finally, in Section 6.3 we
derive the formula for the voting weight that must be assigned to each cell.

6.1 Mean and variance of noisy density

Since the vote of a cell u is given by the value ρu = su
nu

we need to investigate the statistical
properties (mean and variance) of ρu, considered as a random variable.
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Consider the general case of determining the mean and variance of the ratio of two ran-
dom variables: X

Y
where we assume that Y has no mass at 0 to prevent division by 0 – to

achieve this, in the PSD consistency phase we set all negative noisy counts to 0 and we don’t
allow cells with a noisy count of 0 to vote. We emphasize that, removing such cells is not
a violation of privacy, since the decision is taken entirely based on noisy counts, which are
safe to disclose. This removal is a typical step of post-processing, commonly employed in
differentially private techniques.

Consider any function f (X, Y ) of two random variables X and Y . The Taylor expansion
around (E(X),E(Y )) is

f (X, Y ) ≈ f (E(X),E(Y ))

+f ′
X(E(X),E(Y ))(X − E(X)) + f ′

Y (E(X),E(Y ))(Y − E(Y ))

+1

2
{f ′′

XX(E(X),E(Y ))(X − E(X))2

+2f ′′
XY (E(X),E(Y ))(X − E(X))(Y − E(Y ))

+f ′′
YY (E(X),E(Y ))(Y − E(Y ))2}

Computing the expected value of f (X, Y ) we have:

E(f (X, Y )) ≈ f (E(X),E(Y ))

+1

2
{f ′′

XX(E(X),E(Y ))V ar(X) + 2f ′′
XY (E(X),E(Y ))Cov(X, Y )

+f ′′
YY (E(X),E(Y ))V ar(Y )}

Furthermore, by computing the derivatives for f (X, Y ) = X
Y

, we obtain:

E(
X

Y
) ≈ E(X)

E(Y )
− Cov(X, Y )

(E(Y ))2
+ E(X)V ar(Y )

(E(Y ))3

For the variance V ar(f (X, Y )) = E
[

(f (X, Y ) − E(f (X, Y )))2], we consider as an
approximation only the first order Taylor expansion, and we obtain:

E(f (X, Y )) ≈ f (E(X),E(Y ))

V ar(f (X, Y )) ≈ E
[

(f (X, Y ) − f (E(X),E(Y )))2
]

= E
[

(f ′
X(E(X),E(Y ))(X − E(X)) + f ′

Y (E(X),E(Y ))(Y − E(Y )))2
]

= f ′
X(E(X),E(Y ))V ar(X) + 2f ′

X(E(X),E(Y ))f ′
Y (E(X),

E(Y ))Cov(X, Y ) + f ′
Y (E(X),E(Y ))V ar(Y )

Next, we expand the expressions of the derivatives in the equation above, and we obtain:

V ar(
X

Y
) ≈

(
E(X)

E(Y )

)2 [
V ar(X)

(E(X))2
− 2

Cov(X, Y )

E(X)E(Y )
+ V ar(Y )

(E(Y ))2

]

Returning to our specific case, where X = su and Y = nu, and using the expectations
E(nu) = nu and E(su) = su, as well as the fact that random variables nu and su are
independent, we obtain:

E(ρu) = ρu

(

1 + V ar(nu)

n2
u

)

(13)

V ar(ρu) = ρ2
u

(
V ar(su)

s2
u

+ V ar(nu)

n2
u

)

(14)
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where the values su, nu and their respective variances are obtained from the PSD construc-
tion step. In order to estimate the value of the real phenomenon value, we will use the noisy
ρu, nu and su expressions to obtain the noisy estimates:

E∗(ρu) = ρu

(

1 + V ar(nu)

nu
2

)

(15)

V ar∗(ρu) = ρu
2
(

V ar(su)

su
2

+ V ar(nu)

nu
2

)

(16)

We also observe that the expected value of the noisy density is higher than the real density.
This fact will become important in the following section, when we estimate the probability
of passing the threshold T for a noisy sensed value.

6.2 Probability of passing threshold T

For each cell u, the value ρu is a sample of the random variable representing the real
phenomenon value ρ. However, due to addition of random noise according to differential
privacy, we might have cases where the sampled ρu is below the threshold T , even though
ρ > T . To correct this problem, we add custom weights for each cell during the voting pro-
cess. The weights are computed based on the probability of the vote corresponding to a cell
being wrong.

Formally, we consider the probability Pr{ρu ≥ T }. Since we have the mean and variance
of ρu given by Eqs. (13)–(14), we will use the Paley-Zygmund inequality [12]. For any
positive random variable Z,

Pr{Z ≥ αE(Z)} ≥ 1 − V ar(Z)

(1 − α)2(E(Z))2 + V ar(Z)

where α ∈ (0, 1) is a parameter to scale the threshold relative to the expected value.
To use this inequality in our case, after substituting ρ for X, we observe that T = T

E(ρ)
×

E(ρ) where the right-hand side has the same shape as the right-hand side in the inequality
inside the probability above. That is, we can use the Payley-Zygmund inequality for α =

T
E(ρ)

. Note, however, that we don’t know the true value of E(ρ), but we can use instead the
noisy version, E∗(ρ). Finally, note that the inequality is valid only for α ∈ (0, 1), hence the
noisy estimate must be above the threshold.

However, if the noisy mean is below the threshold T , since the noisy mean is always
above the real value (as given by Eq. (13)) we immediately get that the phenomenon value
is below the threshold. In this case, the cell will vote negatively with high confidence.

On the other hand, if the noisy mean is above the threshold T , we can apply the inequality
to obtain:

Pr{ρu ≥ T } ≥ 1 − V ar∗(ρu)

(1 − α)2(E∗(ρu))2 + V ar∗(ρu)
(17)

which is a lower bound on the probability that the phenomenon value is above the threshold
T . Hence, we will use this bound as the confidence level of the positive vote of the cell.

Replacing α, we obtain

Pr{ρu ≥ T } ≥ 1 − V ar∗(ρu)

(E∗(ρu) − T )2 + V ar∗(ρu)
(18)
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Fig. 4 Weight as function of
ratio ξ

6.3 Weighted voting

This section describes the method to compute the specific voting weight wu for each cell
u. After computing the values su, nu, V ar(su) and V ar(nu) from the PSD construction
phase, we determine noisy estimates for the mean and variance of the noisy density, using
Eqs. (15)–(16). Then, we determine if the threshold T is above E∗(ρu) and assign the weight
as follows:

wu =
{

0 T > E(ρu)

1 − V ar∗(ρu)

(E∗(ρu)−T )2+V ar∗(ρu)
otherwise

(19)

In order to understand the intuition behind the weights, we can analyse the positive case to
obtain the following equivalent formulation:

wu = 1 − 1

1 + (E∗(ρu)−T )2

V ar∗(ρu)

(20)

If we denote by ξ the second term of the denominator (i.e., ratio of the distance between the
mean and the threshold to the density variance) we obtain:

wu = 1 − 1

1 + ξ
(21)

where ξ ∈ [0, ∞). Hence, wu ∈ [0, 1), that is, no cell will vote with a weight above 1.
This asymptotic formulation allows us to express analytically the intuition behind the

weight formulation: if the distance between the noisy estimate of the expected value and
the threshold is large compared to the variance, then ξ → ∞ and the weight tends to 1.
This corresponds to the intuitive interpretation that if the distance is large, then the real
phenomenon value is far above the threshold. On the other hand, if the distance is small, due
to the addition of noise, the phenomenon value can be below the threshold T even though
the estimate provides a value above T . This uncertainty is captured by a weight wu which
is close to 0.

The plot of the weight wu as a function of ξ is shown in Fig. 4. As the value of ξ grows,
the weight asymptotically tends towards the 1 value. In the experimental evaluation of
Section 7, we measure empirically the accuracy gain brought by the proposed fine-grained
vote weight assignment mechanism.
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7 Experiments

We evaluate experimentally the proposed technique for privacy-preserving detection of
anomalous phenomena. We implemented a C prototype, and we ran our experiments on an
Intel Core i7-3770 3.4 GHz CPU machine with 8 GB of RAM running Linux OS. We first
provide a description of the experimental settings used in Section 7.1. Next, in Section 7.2,
we evaluate the accuracy of our technique in comparison with benchmarks. In Section 7.3,
we investigate the performance of our technique, including coarse-grained voting decisions,
when varying fundamental system parameters. Finally, in Section 7.4 we evaluate the effect
of the proposed fine-grained cell-level vote weighting mechanism.

7.1 Experimental settings

We evaluate our proposed approach on two datasets: a synthetic one and a real one. As syn-
thetic dataset, we consider a square two-dimensional location space with size 100×100, and
a phenomenon with range M = 100 and threshold T = 80. We consider between 10,000
and 50,000 mobile users (i.e., sensors), uniformly distributed over the location domain. The
average non-anomalous phenomenon value is 20, and to simulate an anomaly we generate
a Gaussian distribution of values with scale parameter 20, centered at a random focus point
within the location domain.

For the real dataset, we consider the crowd temperature2 dataset from Crawdad. This is
the Rome taxi dataset coupled with a simulated trace of temperature attached to each taxi
position. The details of the temperature distribution are selected from actual weather data
at the time the taxi trajectories were produced. For our scenario, we consider that the entire
dataset captures a single time snapshot of the phenomenon. Hence, we only considered the
latitude, longitude and temperature columns of the dataset. We construct a square bounding
box around the locations where the length of the square’s side is 2 latitude/longitude degrees.
Then, we run our algorithms on the projected data, assuming as threshold for anomaly a
temperature of 10 ◦C, which is approximately the median of the dataset. Furthermore, we
consider that the maximum sensor value is M = 25 ◦C, slightly larger than the maximum
value on the temperature column.

We consider two benchmark techniques for comparison. The first method, denoted as
Uniform Grid (U), considers a single-level fixed-granularity regular grid. The parameters of
the grid are chosen according to the calculations presented in the first part of Section 4. The
second method, Adaptive Grid (AG), implements the state-of-the-art technique for PSDs as
introduced in [2]. Specifically, it uses a two-level grid, where the first grid granularity is
chosen according to a fixed split as indicated in [2], whereas the second-level granularity is
determined based on the data density in the first level.

7.2 Comparison with competitor methods

We measure the accuracy in detecting anomalous phenomena for the proposed tree-based
technique (denoted as t) and the benchmarks U and AG when varying privacy budget ε.
In this experiment, we focus on the synthetic dataset. For fairness, we consider the 1-vote
decision variant, which is supported by all methods. Figure 5a shows that our technique (pre-
sented with two distinct depth settings) clearly outperforms both benchmarks with respect

2http://crawdad.org/queensu/crowd temperature/20151120/

http://crawdad.org/queensu/crowd_temperature/20151120/


Geoinformatica (2017) 21:733–762 751

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

J

ε

U
AG

t,d=3
t,d=4

 0  20  40  60  80
 0

 20

 40

 60

 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80
 0

 20

 40

 60

 80

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Fig. 5 Accuracy Evaluation in Comparison with U and AG Benchmarks

to the Jaccard metric. The U and AG method are only able to achieve values around 0.1
or less. Furthermore, they are not able to make proper use of the available privacy budget,
and sometimes accuracy decreases when ε increases. The reason for this behavior is that the
procedure for grid granularity estimation proposed in [2] has some built-in constants that
are only appropriate for specific datasets and query types. In our problem setting, the gran-
ularity of these choices increases when ε increases, and the noise injected offsets the useful
information in each cell.

To validate the superiority of the proposed technique beyond the J metric, Fig. 5b and c
provide visualization of the heatmap obtained for the U method and our technique, respec-
tively (the heatmap obtained for AG is similar to that of U ). The anomalous phenomenon in
the real data is shown using the circle area (i.e., points inside the circle are above the thresh-
old). The heatmap produced by the U method is dominated by noise, and indicates that there
are small regions with above-the-threshold values randomly scattered over the data domain.
In contrast, our technique accurately identifies a compact region that overlaps almost com-
pletely with the actual anomalous region. Furthermore, for the t technique we consider two
distinct maximum depth settings, d = 3 and d = 4. We observe that, although both variants
outperform the benchmarks, as the height of the structure increases, a potentially negative
effect occurs due to the fact that the privacy budget per level decreases. Hence, it is not
advisable to increase too much the PSD depth.

Both the UG and the AG method are unable to maintain data accuracy, and return virtu-
ally unusable data, without the ability to detect the occurrence of anomalous phenomena. In
the rest of the experiments, we no longer consider competitor methods, and we focus on the
effect of varying system parameters on the accuracy of the proposed technique. We also note
that our method incurs low performance overhead, similar to that of the U method (between
2 and 4 seconds to sanitize and process the entire dataset). The AG method requires slightly
longer, in the range of 15 − 20 seconds.

7.3 Effect of varying system parameters

We perform experiments to measure the accuracy of the proposed technique when varying
fundamental system parameters, such as budget split parameters α, β and sensor count N .
Figures 6, 7 and 8 show the results obtained for the synthetic dataset, whereas Fig. 9 focuses
on the real dataset used.

Figure 6 shows the accuracy of our method when varying α, the budget split fraction
across levels. Each graph illustrates several distinct combinations of budget ε and count-sum
budget split β. For smaller α values, a smaller fraction of the budget is kept for the current
level, with the rest being transferred for the children cells. Since the root node and the high
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Fig. 6 Impact of cross-level privacy budget split parameter α, d = 3

levels of the tree have large spans, a smaller budget does not have a significant effect on
accuracy, so it is best when a larger fraction is used in the lower-levels. For α = 0.2, the
proposed method reaches close to perfect J metric value.

We also illustrate the effect of the various decision variants based on coarse-grained
voting (fine-grained, cell-level weighted voting results are presented in Section 7.4). Com-
paring Fig. 6a and b, we can see that the accuracy increases slightly for the 2-vote scenario.
This confirms that the 2-vote approach is able to filter out cases where some large outlier
noise in one of the lower-level cells creates a false positive. The accuracy of the majority-
voting strategy from Fig. 6c is slightly better than the 1-vote approach, and virtually the
same as the 2-vote case. For the majority voting case, there is the effect of a potentially
high false negative rate. Even if some of the levels signal an alarm, it is possible that a large
amount of noise on several levels flips the outcome to “below the threshold”. Therefore,
there is no sensible gain compared to the 2-vote strategy.

Figure 7 shows the effect of varying parameter β, which decides the privacy budget split
between the counts and sums in the PSD. The results show that an equal split between counts
and sums yields good results. As long as the β split is not severely skewed, the parameter
does not significantly influence accuracy. However, when β is excessively low or high, one
of the sum or count components gets very little budget, which causes large errors. In fact,
this is one of the main reasons why competitor techniques fail to obtain good accuracy, as
they do not consider the correlation between sum and count errors.
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Fig. 7 Impact of “count vs sum” privacy budget split parameter β, d = 3

Finally, we consider the effect of varying number of sensors N . Figure 8 shows that
the accuracy of the method increases slightly with N . This is expected, as a higher data
density due to more reporting sensors benefits differential privacy, as the signal-to-noise
ratio increases. In this case, we also notice that the majority voting and 2-vote strategies
obtain virtually identical accuracy, which is better than the 1-vote case.

Next, we measure the effect of system parameters on the real dataset. Results are
summarized in Fig. 9. Similar to the synthetic dataset, we observe from Fig. 9a that a low-
to-moderate value of α obtains best results. The trend is also similarly decreasing, with the
exception of two data points at α = 0.3 when accuracy is slightly higher than at α = 0.2.
However, the difference is small. A slightly more interesting case occurs for the variable β

case, illustrated in Fig. 9b. In this case, the best results are obtained for lower values of β.
For this particular dataset, the range of temperatures is relatively tight, and the user distribu-
tion is not uniform. As a consequence, among the two sanitized measures of sum and count,
the sum is significantly less variable than the count. For that reason, allocating a slightly
larger budget to the count yields better accuracy. However, the difference between lower β

values and the equal split β = 0.5 case are not significant. One can safely set the β value to
0.5 and obtain good results.

Discussion Based on our experimental results on both synthetic and real datasets, we are
able to outline a strategy for the choice of parameters α and β. For the α value, which
controls the budget split across levels, it is advisable to always allocate more budget to the
lower levels. This is an intuitive find, since in any hierarchical structure it is expected that
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Fig. 8 Impact of number of mobile users N , β = 0.5, d = 3

the actual values are lower when descending in the tree, hence to preserve accuracy, it is
important to reduce the noise towards the leaf nodes. Of course, the value should not be too
small, so the higher levels also get a reasonable amount of budget. Our results show that a
low-to-moderate value of 0.2 − 0.25 should be appropriate for most cases.

With respect to the β parameter, one needs to take into account some characteristics
of the actual problem setting. Specifically, a pronounced skew in either the distribution of
sensed values, or in the distribution of user placement, can influence accuracy. If the two
distributions are expected to be equally skewed, then an equal split (β = 0.5) is appropriate.
Otherwise, a larger amount of budget should be allocated to the component (i.e., either count
or sum) with the more pronounced skew.

7.4 Evaluation of fine-grained cell-level vote weighting

In this section, we evaluate experimentally the behavior of the fine-grained cell-level voting
mechanism introduced in Section 6. Recall that the proposed technique derives the weight
for each cell based on the expected error given the density of readings in that cell. As
illustrated in Section 6.2, voting weights are assigned at each level in the PSD based on a
desired probability for the sensed value to exceed threshold T . The private heatmap of the
phenomenon is obtained by adding together all the wu values from applying Eq. (19) to all
cells u of the PSD which cover the current rrg cell. As a result, we obtain a value which is
higher when more cells of the PSD cover a rrg cell corresponding to an anomalous region.
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Fig. 9 Effect of α and β parameters on accuracy in Rome Taxi Dataset

Hence, we will reconstruct the heatmap by comparing
∑

∀u∈Gcrt

wu with a threshold, where

Gcrt is the set of all PSD cells covering the current rrg cell. This threshold, denoted in the
rest of the section as P , is an essential parameter of the weighted voting approach, and may
significantly influence accuracy.

First, we evaluate the accuracy of the weighting approach in comparison with the vot-
ing approaches without weights, namely: absolute 1-vote count decision (Av1), absolute
2-vote count decision (Av2) and majority decision, or relative 50%-vote (Rv50). For the
weighted approach, we consider three distinct values of parameter P : 0.25, 0.5 and 0.75.
Figure 10a shows the obtained accuracy when varying privacy budget ε for the synthetic
dataset. The weighted approach outperforms clearly the absolute and relative votes coun-
terparts (to improve readability, all weighted approaches are represented with full points,
whereas the non-weighted methods are represented with empty points). The superiority of
the weighted approach is more clear when the privacy budget is more scarce (for high values
of ε, all approaches obtain perfect accuracy). Figure 10b illustrates similar trends obtained
for the real Rome taxi dataset. The weighted voting techniques clearly outperform the non-
weighted approaches. In addition, the absolute values obtained for weighted voting accuracy
in the case of the real dataset are better, due to higher density of readings. For the remainder
of this section, we keep as benchmark only the Rv50 method, which performs best among
non-weighted approaches.

In Fig. 11, we measure the impact on accuracy of parameter α, i.e., the budget allo-
cation split across levels, for two different privacy settings: ε = 0.4 and ε = 0.6 (for
brevity, we only include synthetic dataset results). As observed earlier in Section 7.3 for
non-weighted approaches, an increase in α leads to a decrease in accuracy. However, the
weighted approaches always outperform Rv50 by a significant margin.

Next, we evaluate the impact on accuracy of parameter β, i.e., the budget allocation split
between count and sum values. As shown in Fig. 12, the balanced split where counts and
sums get equal privacy budgets performs best in this case as well, similar in trend to the
approaches that do not use weights. However, the weighted approaches outperform signifi-
cantly their non-weighted counterparts across the board. Another interesting observation is
that the weighted approaches are more robust to changes in the value of β, in particular for
the P = 0.5 setting. This shows that the weighted approach also has the benefit of adapting
better to changes in parameters.
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Fig. 10 Accuracy Evaluation of Weighted Voting Compared to Non-Weighted Approaches

Figure 13 illustrates the behavior of the weighted voting approach when varying number
of users N . The accuracy of the weighted approaches increases sharply with the user density,
and quickly reaches maximum accuracy J = 1.0 for N = 20, 000. In contrast, the non-
weighted approach needs a much higher density to obtain perfect accuracy.

In addition to number of users N , we also evaluate the effect of data space size, which
in combination with N influences the density of users per cell. Figure 14 shows the results,
with data space extent ranging from 100 × 100 to 1000 × 1000. For this experiment, we
fix N = 20, 000, α = 0.4 and β = 0.5. We observe that as the extent grows initially,
there is an increase in accuracy, due to the fact that the anomalous phenomenon is more
focused relative to the entire space extent. However, after the extent reaches a certain level,
the accuracy stabilizes. This is a favorable result for our method, as we are able to provide
stable accuracy for a relatively large range of data space extents. Furthermore, even for the
smallest setting 100×100, the absolute value for the accuracy metric is 0.88, which is quite
high.

Finally, we evaluate the behavior of the weighted voting mechanism (label W ) when
varying parameter P . Figure 15 shows the results for the synthetic dataset. We observe that
a moderate value of P (e.g., 0.3 − 0.7) is best for accuracy. Setting a P value that is too low
results in false negatives, where the noise is large enough that the sensed value can change
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from above threshold T to below T . Conversely, a P value that is too high tends to give
false positives. In the graph, we also represent the non-weighted approach (the relative 50%
vote) for two values of privacy budget ε (since the non-weighted approach does not depend
on P , there are two horizontal lines, one for each ε value). Note that, except for one single
setting of P that is excessive (0.9), the weighted approach always outperforms the non-
weighted voting method. Often, weighting can improve accuracy such that the counterpart
non-weighted method is outperformed even when the latter gets significantly more budget
(i.e., in the interval P = 0.3 − 0.7, the weighted approach with ε = 0.3 outperforms the
non-weighted method with ε = 0.5).

Figure 15b illustrates the results for the same experiment, but this time on the real dataset.
For this case, the accuracy obtained is even better, due again to the higher density of read-
ings. For most of the P value range, 100% accuracy is obtained. In addition, the accuracy
does not begin its downward slope even for the higher range of values considered. Instead,
the deterioration occurs only for higher P values, outside the considered interval. We con-
clude that the weighted approach performs very well on both synthetic and real datasets,
and it is robust to a wide range of parameter P value settings.
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Fig. 14 Impact of Data Space
Size (N = 20, 000, α = 0.4 and
β = 0.5)
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8 Related work

Collaborative sensing enables information extraction from a large number of wireless
devices, spanning from smart phones to motes in a WSN. We focus on personal devices
which are carried by users and may be used in sensing applications – from tracking to
shapes-detection – in settings in which there are no WSNs available [13, 14]. Such settings
occur in many real-life applications in which the deployment of a WSN is either not possi-
ble or the WSN approach is not sustainable. We note that collaborative sensing is, in some sense,
a broader paradigm than participatory sensing and opportunistic sensing, and when it
comes to issues related to privacy protection, it subsumes the ones from the latter two
paradigms in the risk of leaking personal/sensitive information [15]. While privacy-
preserving computation has its history in domains such as cryptography and data mining, the
existing methodologies cannot be straightforwardly mapped into the collaborative sensing
applications.

There are works that have addressed different aspects of the problem of detecting and
representing spatial features of a particular monitored phenomenon [16–18]. Spatial sum-
maries (e.g., isocontours [16]) may be constructed for energy-efficient querying in wireless
sensor networks. A natural trade-off in such settings is the precision of the aggregated
representation vs. the energy efficiency.

Location privacy has been studied extensively. Some techniques make use of crypto-
graphic protocols such as private information retrieval [19]. Another category of methods
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focuses on location cloaking, e.g., using spatial k-anonymity [20–23], where a user hides
among k other users. As discussed in Section 2, such techniques have serious security
drawbacks. Another protection model proposed in works such as [24, 25], aims to hide
exact user coordinates, and to prevent association with sensitive locations. In the PROBE
system [24] for instance, users define their own privacy profiles, by specifying maximum
thresholds of association with sensitive feature types.

The recently-proposed concept of geo-indistinguishability [26, 27] provides a mecha-
nism to randomly perturb locations, and quantifies the probability of an adversary to recover
the real location from a reported one. The concept is inspired from the powerful semantic
model of differential privacy (DP) [4], which in recent years became the de-facto standard
for privacy-preserving data publishing. However, while borrowing some of the syntactic
transformations of differential privacy, the work in [26, 27] does not also inherit the power-
ful protection semantics of DP, which only permits access to data through a statistical query
interface, and prevents an adversary from learning whether a particular data item is included
in a dataset or not.

Closest to our work are the PSD construction techniques in [1–3]. An approach based
on differentially-private grids for matching workers to tasks has been proposed in [28].
However, the focus there is on search around a single task location, whereas in our case,
we focus on the heatmap publication for the entire data space. Recently, a more flexible
private index structure has been proposed in [29]. However, as discussed in Section 4, all
these techniques are general-purpose, and our experimental evaluation shows that they are
not suitable for anomalous phenomenon detection.

Our current work is an extended version of the conference paper in [30]. As additional
contribution, we include an analytical model for characterization of value density error in
crowdsourced environmental sensing. Based on that, we propose a flexible, fine-grained
mechanism for weighted voting that provides accurate means of privately deciding whether
the sensed value is above the threshold or not. We also include evaluation on real datasets,
compared to [30] where only synthetic ones are considered.

9 Conclusions and future work

We proposed an accurate differentially-private technique for detection of anomalous
phenomena in crowdsourced environmental sensing. Our solution consists of a PSD
specifically-tailored to the requirements of phenomenon heatmap data, and strategies for
flexible processing of sanitized datasets with values collected from mobile users. Exper-
imental results show that the proposed technique is accurate, and clearly outperforms
existing state-of-the-art in private spatial decompositions. In the future, we plan to extend
our solution to continuous monitoring of phenomena, where multiple rounds of reporting
are performed. This scenario is more challenging, as an adversary may correlate readings
from multiple rounds to breach individual privacy.
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