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Abstract To facilitate (k)-Nearest Neighbor queries, the concept of Voronoi decomposition
is widely used. In this work, we propose solutions to extend the concept of Voronoi-cells to
uncertain data. Due to data uncertainty, the location, the shape and the extent of a Voronoi
cell are random variables. To facilitate reliable query processing despite the presence of
uncertainty, we employ the concept of possible-Voronoi cells and introduce the novel con-
cept of guaranteed-Voronoi cells: The possible-Voronoi cell of an object U consists of all
points in space that have a non-zero probability of having U as their nearest-neighbor; and
the guaranteed-Voronoi cell, which consists of all points in space which must have U as their
nearest-neighbor. Since exact computation of both types of Voronoi cells is computationally
hard, we propose approximate solutions. Therefore, we employ hierarchical access meth-
ods for both data and object space. Our proposed algorithm descends both index structures
simultaneously, constantly trying to prune branches in both trees by employing the concept
of spatial domination. To support (k)-Nearest Neighbor queries having k > 1, this work fur-
ther pioneers solutions towards the computation of higher-order possible and higher-order
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guaranteed Voronoi cells, which consist of all points in space which may (respectively must)
have U as one of their k-nearest neighbors. For this purpose, we develop three algorithms
to explore our index structures and show that the approach that descends both index struc-
tures in parallel yields the fastest query processing times. Our experiments show that we
are able to approximate uncertain Voronoi cells of any order much more effectively than
the state-of-the-art while improving run-time performance. Since our approach is the first
to compute guaranteed-Voronoi cells and higher order (possible and guaranteed) Voronoi
cells, we extend the existing state-of-the-art solutions to these concepts, in order to allow a
fair experimental evaluation.

Keywords Uncertain data · kNN query · Nearest neighbor query · Voronoi cells · Voronoi
decomposition

1 Introduction

The extensive use of social media, s.a. smartphones, and social networks produce a huge
flood of geo-spatial and geo-spatio-temporal data. This data allows to assess information
about the current positions of mobile entities, such as friends in social networks, unoccupied
cabs in a taxi or ride-sharing application, or the current position of users in augmented
reality games. However, our ability to unearth valuable knowledge from large sets of spatial
and spatio-temporal data is often impaired by the quality of the data.

– Data may be imprecise, due to measurement errors, for instance in applications using
sensor measurements such as location-based services.

– Data records can be obsolete. For example, ties of friendship bind and break over
time, without necessarily reflecting such changes in a social network; in location-based
services, users may update their location infrequently, due to bad connectivity or to
preserve battery.

– Data can be obtained from unreliable sources, such as crowd-sourcing applications,
where data is obtained from individual users, which may incur inaccurate or plain
wrong data, deliberately or due to human error.

– To prevent privacy threats and to protect user anonymity, users often consent to relay
just a cloaked indication of their whereabouts [1] abstracted as an uncertainty region
enclosing (but apparently not centered at) their current position.

Simply ignoring these notions of imprecise, obsolete, unreliable and cloaked data, thus
pretending that the data is accurate, current, reliable and correct is a common source of
false decision making. The research challenge in handling uncertainty in spatial and spatio-
temporal data is to obtain reliable results despite the presence of uncertainty. In this work,
we revisit the problem of reliably answering nearest-neighbor queries in uncertain data. The
problem of finding the closest uncertain object, which has applications such as ride-sharing,
has gained much attention in recent years [2–5]. Following a common approach in uncer-
tain data management, these approaches assume that uncertain objects are represented by
rectangular or circular uncertainty regions, which are guaranteed to enclose the true (but
unknown) position of the respective spatial objects. Following the approach of [6], we carry
the concept of Voronoi cells to uncertain data. The idea of [6] is to approximate the possi-
ble Voronoi cell V∃(O) of an object O, which is defined as the space where a query point
q can possibly have O as its nearest neighbor, i.e., there exists such a possible world. We
leverage this work by defining the notion of the guaranteed Voronoi cell V∀(O), which we
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define as the space for which we can guarantee, that any query point q in that space must
have the uncertain object O as their nearest neighbor in any possible world. Applications
for possible Voronoi cells include geo-location-based services, such as ride-sharing: In a
ride sharing application like Uber and Lyft, we have customers and drivers. A customer can
request a ride, and the closest drivers will be asked to accept this ride. From the perspective
of a driver that is looking for a customer, the goal is to strategically position themselves in
a way such that the area having this rider as one of their nearest-drivers is maximized. In
this application, the possible Voronoi cell (guaranteed Voronoi cell) of an individual driver
d covers the space of a city where customers may possibly (must certainly) have c as their
nearest driver. Our solutions allow an individual driver to see these regions, and further-
more allow him to query nearby locations to maximize his influence by moving to locations
having large Voronoi cells.

In such an application, as we see in taxi-GPS data sets such as the T-drive dataset [7,
8], the GPS position c(t) of a cab c at a time t may be highly obsolete, due to infrequent
GPS updates. Models to infer the uncertainty region of a mobile object on a road network
given past observations have been given in the literature [9]. Furthermore, our approach is
the first one to allow an efficient and effective approximation of a higher-order possible or
guaranteed Voronoi cell. The k’th-order possible (guaranteed) Voronoi cell of an uncertain
object O is defined as the subset of space where a query object q in that space may possible
(must certainly) have O as one of it’s k-nearest neighbors. Our concept of k’th-order possi-
ble (guaranteed) Voronoi cells, allows to leverage geoinformation systems that require the
computation of k-nearest neighbors by allowing to efficiently find guaranteed and possible
k-nearest neighbors in the presence of uncertain data. For example, applications to notify
your k-nearest-friends based on obsolete and thus uncertain location data, will benefit from
our approach by allowing to assess which of your friends are guaranteed to be in the result
set, which of them are candidates, and which cannot be your nearest neighbors.

To illustrate our notion of uncertain Voronoi cells, consider Fig. 1, where rectangles
correspond to the uncertainty regions of objects. For a query object Q, the large shaded
region in Fig. 1a depicts the subspace V∃

1 (Q) for which it holds that any point p ∈ V∃
1 (Q)

may possibly have object Q as its nearest neighbor. We define this region as the possible
Voronoi cell of Q. In addition, Fig. 1a further shows the region V∀

1 (Q), containing all the
points in space for which we can guarantee that any such point p ∈ V∀

1 (Q) must have Q as

Fig. 1 Uncertain Voronoi cells
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their nearest-neighbor, regardless of the exact position of Q, and regardless of the positions
of all other uncertain objects. The latter region is called the guaranteed Voronoi cell of Q.

Additionally, Fig. 1b depicts the uncertain Voronoi cells of order three for the same object
Q. More specifically, the large shaded region denoted by V∃

3 (Q) corresponds to all points in
space such that for any such point p ∈ V∃

3 (Q) there must no more than two database objects
which are certainly closer to p than to Q. In order words, but equivalently, point p may
possibly have the uncertain object Q as one of its 3-nearest-neighbors, that is, there exists
a possible world of object locations such that Q is a 3-nearest-neighbors of p. Analogously
to these concepts, the region V∀

3 (Q) contains all points p such that there must be less than
two uncertain database objects closer to p than Q, thus guaranteeing that p has Q as one of
its 3-nearest-neighbors.

Finding the regions V∃
k (Q) and V∀

k (Q) for an arbitrary value of k is the goal of this
paper. This is not a trivial task: The shape of these regions is a non-convex region which
is bounded by hyperbolic curves. As explained in [3, 6, 10], an exact construction of V(A)

requires exponential time. For this reason, an approximate technique for deriving the possi-
ble Voronoi cell V∃

1 (Q) was given in [6]. We propose a new solution for this problem, which
extends the existing solution of [6] by the following aspects:

– Unlike previous solutions, our approach offers full index support, indexing the object
space using an R∗-tree [11] and indexing the data space using a kd-trie [12].

– Rather than approximating the Voronoi cell V∃
1 (Q) by a single rectangle ([6]), we use

a set of kd-trie partitions, which allows much higher approximation quality. This gain
in approximation quality not only improves query times, as our experiments show, but
can also be used to gain a detailed visual exploration of possible Voronoi cells.

– In contrast to previous solutions presented in [13], we extend our solution to addition-
ally compute the guaranteed Voronoi cell V∀

1 (Q), a problem which has not been studied
in previous literature.

– Another novel extension, we extend our algorithm to find possible Voronoi cells V∃
k (Q)

and guaranteed Voronoi cells V∀
k (Q) of higher order, i.e., for values of k greater than

one. This problem has not been studied before either.
– Our experiments further show that our provided index support for both data and space

enables the scaling of uncertain Voronoi cell computation to large databases.

2 Related work

The problem of answering nearest neighbor queries on uncertain data generally involves
two steps: A filter approach and a refinement step. In the filter step, a (possibly small) set of objects
is returned that contains all objects having a non-zero probability of being the result object.
In the refinement step, the exact probability of each candidate object is computed. The
refinement step is the main research topic of [14–16], showing how to compute exact proba-
bilities of an object to be the nearest neighbor of a query object, given the probability density
functions of objects. In contrast, other existing work focuses on the filter step, applying
spatial filter steps in order to identify object that are guaranteed to have a zero probability
to be the result object [5, 6, 17]. In all of these works, (reverse-) nearest neighbor queries
on uncertain data are supported by evaluating spatial domination at query time, in order to
identify objects that must (not) be part of the query result. Thus, these lazy approaches, have
in common that the main computation is performed at query time. In this work, we propose
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an eager approach: for each database object U , we precompute their possible-Voronoi cell
(and their guaranteed-Voronoi cell), i.e., the regions in space which may (and must) have
U as one of their k-nearest neighbor. Given these regions, we can reduce a kNN query on
uncertain data to a simply polygon intersection test, vastly reducing query times.

In this work, we focus on the filter step, i.e., the step of finding objects having a non-zero
probability to be the nearest neighbor of an object using Voronoi-cells.

The idea of using Voronoi diagrams to answer nearest neighbor (NN) queries over points
has been widely studied [18]. In this context, Voronoi diagrams have been used to support
nearest neighbor queries in geo-spatial applications [19], location-based services [20, 21],
in spatial data streams [22] and in distributed spatial environments [23] as well as in spatial
network environments [24]. To support nearest neighbor queries on uncertain data, initial
approaches have been presented in [2, 14]. However, in these work, only the database objects
are assumed to be uncertain, whereas the query object is assumed to be a point. In [3] a
solution to compute possible Voronoi-cells for the case of circular uncertainty regions has
been presented. This exact approach has exponential construction and storage cost. Due
to this computational drawback, an approximate solution was presented in [6]. The aim
of this approach is to approximate the true (but unknown) possible Voronoi-cell V(O) of
an uncertain object O using two rectangle: A single conservative rectangle h(O) which is
guaranteed to completely contain V(O), and a single progressive rectangle l(O) which is
guaranteed to be completely contained by V(O). These two approximation rectangles are
obtained by iteratively expanding the progressive rectangle l(O), and iteratively shrinking
the conservative rectangle h(O). However, considering examples such as shown in Fig. 1,
it is evident that such approximations may be rather inaccurate. Thus, h(O) may cover a
large body of space not belonging to V(O), while l(O) may miss a large body of V(O),
even in the case where h(O) is the smallest conservative bounding rectangle and l(O) is
the largest progressive bounded rectangle.1 Furthermore, an approach for nearest neighbor
search on moving uncertain objects has been presented in [4]. A problem common to [3] and
[4] is that their solutions are customized for 2D data, making extensive use of intersection
and rotation operations of 2D hyperbolic curves. Our approach, as well as the approach of
[6] is applicable to arbitrary dimensionality. In comparison to [6], the main contribution of
this work is that we can accurately approximate an arbitrarily shaped possible Voronoi-cell,
rather than using a single rectangular approximation only. This allows to answer nearest-
neighbor queries more efficiently, since less candidates have to be checked, and it allows to
more precisely illustrate the Voronoi-region of an uncertain object. Finally, a first solution to
compute the first-order possible Voronoi cell V∃

1 (U) has been presented in [13]. This work
extends the solution of [13] to the concept of guaranteed-Voronoi cells V∀

1 (U). Further, this
work extends both concepts V∃

1 (U) and V∀
1 (U) to higher-order Voronoi cells V∃

k (U) and
V∀

k (U), thus allowing to employ these concepts for k > 1-nearest neighbor queries. These
novel concepts and notions will be formally defined in the following section.

3 Problem definition

Figure 2a shows how the possible Voronoi cell V∃
1 (Q) of an uncertain object Q is defined.

For each of the anonymous database objects of Fig. 2, each shaded region corresponds to the

1The later case can not be guaranteed by the approach of [6] due to the numeric nature of their approach.
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Fig. 2 Spatially dominated regions of objects surrounding Q

pruning region SO(Q), i.e., the smallest region such that for any p ∈ SO(Q), the corresponding
object O must be closer to p than Q. Formally,

Definition 1 (Nearest Neighbor Pruning Region) Let D = {O1, ..., ON } be an uncertain
database where each object Oi ∈ D is represented by a rectangular uncertainty region in
Rd . Let dist (., .) denote any Lp norm.2 For any A, B ∈ D, we define the nearest neighbor
pruning region where any point must be closer to A than to B as follows:

SA(B) := {q ∈ Rd : maxDist(q,A) < minDist(q, B)},
where maxDist(q,A) and minDist(q, B) denote the maximum and minimum distance
between a point q and a rectangle A or B, respectively, as defined in [25].

Figure 2a shows four nearest neighbor pruning regions SO1(Q), ..., SO4(Q) as shaded
regions. Any region implies, the the respective object O1 must be closer to this region than
Q. Using Definition 1, we can now define the possible Voronoi cell V∃

1 (Q) of an object Q

as the space that does not intersect any nearest neighbor pruning region SO(Q) of a database
object O. Formally:

Definition 2 (Possible Voronoi Cell) Let Q ∈ D be an uncertain object. Then the possible
Voronoi cell V∃

1 (Q) is defined as

V∃
1 (Q) = Rd \

⋃

O∈D\{Q}
SO(Q).

In Fig. 2, the white (i.e., non-shaded) region corresponds to the Voronoi cell V∃
1 (Q).

Figure 2b depicts shades regions corresponding to the four nearest neighbor pruning regions
SQ(O1), ..., SQ(O4) as shaded regions. Again following Definition 1, any such region SQ(O)

corresponds to the region that is guaranteed to be closer to Q than to O. This observation
allows us to define the guaranteed Voronoi cell V∀

1 (Q) as the space intersection of all these
regions.

2We use Euclidean distance in all examples and illustrations, but any Lp norm can be applied.
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Definition 3 (Guaranteed Voronoi Cell) Let Q ∈ D be an uncertain object. Then the
guaranteed Voronoi cell V∀

1 (Q) is defined as

V∀
1 (Q) =

⋂

O∈D\{Q}
SQ(O).

The challenge of this work is to accurately approximate both uncertain Voronoi regions
V∀

1 (Q) and V∃
1 (Q) efficiently.

4 Spatial domination on rectangles revisited

The concept of spatial domination and efficient techniques to verify it were introduced in [26].
Spatial domination describes the spatial relation of three rectangles to each other. Since the spatial
domination can also be utilized for the computation of uncertain Voronoi cells, we briefly
want to review the concept. Notations used throughout this paper are explained in Table 1.

Definition 4 (Spatial Domination) Let A, B,R ⊆ Rd be rectangles in a d-dimensional space
and dist () be a distance function defined on that space. The rectangle A dominates B w.r.t.
R iff for all points r ∈ R it holds that every point a ∈ A is closer to r than any point b ∈ B, i.e.

Dom(A, B, R) ⇔ ∀r ∈ R, ∀a ∈ A,∀b ∈ B : dist (a, r) < dist (b, r)

Informally speaking, Dom(A, B, R) is thus true if A is “certainly” closer to R than B. In
addition the concept of partial spatial domination was introduced.

Definition 5 (Partial Spatial Domination) Let A, B,R ⊆ Rd be rectangles in a d-
dimensional space and dist () be a distance function defined on that space. The rectangle A

Table 1 Table of notations

Notation Meaning Notation Meaning

D Uncertain Object Database O,Q,U ∈ D uncertain objects

ID Hierarchical Data Index IS Hierarchical Space Index

G d-dimensional grid gi ∈ G Rectangular Grid Cell

V∃
k (U) k-th order possible Voronoi cell of U

V∀
k (U) k-th order guaranteed Voronoi cell of U

SA(B) ⊆ Rd The region where object A dominates object B

Dom(A,B,R) Predicate that is true iff rectangle R is fully contained SA(B).

Can be evaluated efficiently [26].

PDom(A,B,R) Predicate that is true iff rectangle R intersects SA(B).

Can be evaluated efficiently [26].

h ⊆ Rd Rectangular Space Index Entry obtained from IS :

Partition of Space for which we want to decide if it belongs to V(U)

e ⊆ Rd Rectangular Data Index Entry obtained from ID :

Spatial approximation of a set of data objects if e is non-leaf entry,

Uncertainty region of a single data object if e is a leaf entry.
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dominates B partially w.r.t. R , denoted by PDom(A, B, R) if A dominates B for some, but
not all r ∈ R, i.e.

PDom(A, B, R) ⇔ (∃r ∈ R : ∀a ∈ A, ∀b ∈ B : dist (a, r) < dist (b, r))∧
(∃r ∈ R : (∃a ∈ A, ∃b ∈ B : dist (a, r) ≤ dist (b, r))∧
(∃a ∈ A, ∃b ∈ B : dist (a, r) ≥ dist (b, r))).

In [5] it was shown that spatial domination can be utilized when the rectangles conser-
vatively approximate uncertain objects. In this case Dom(A, B, R) means P(“R is closer
to A than to B”) = 1 and PDom(A, B, R) means 0 ≤ P(“R is closer to A than to B”)
≤ 1. Using the Dom()- and the PDom()-function it is thus possible to decide the location
of a rectangle w.r.t. the uncertain bisector of two uncertain objects. The uncertain bisec-
tor between two uncertain objects A and B (conservatively approximated by rectangles)
defines three spaces: In SA(B) = {s ∈ S : Dom(A, B, {s})} all objects are certainly closer
to A than to B, in SB(A) = {s ∈ S : Dom(B,A, {s})} object are certainly closer to B

than to A and in the space in between no certain decision can be made. This relation is
shown in Fig. 3. We are thus able to decide where the rectangle R is located w.r.t. the bisec-
tor SB(A) and SA(B) of A and B respectively by performing the Dom() and the PDom()
function [26]. The following six cases are defined using a function DomCase(A,B,R) as
follows.

Definition 6 (Domination Cases) Let A and B be rectangles. For any rectangle R, one of
the following cases holds:

Case 1: R is fully contained in SA(B) iff Dom(A, B, R);
Case 2: R intersects SA(B) but not SB(A) iff PDom(A, B, R) ∧ ¬PDom(B, A, R);
Case 3: R intersects neither SA(B) nor SB(A) iff ¬Dom(A, B, R)∧¬PDom(A, B, R)∧

¬PDom(B, A, R)¬Dom(B, A, R);
Case 4: R intersects S(B) but not S(A) iff ¬PDom(A, B, R) ∧ PDom(B, A, R);
Case 5: R is fully contained in S(B) iff Dom(B, A, R);
Case 6: R intersects both S(A) and S(B) iff PDom(A, B, R) ∧ PDom(B, A, R);

Figure 3 depicts all possible cases. Here, each rectangle Ri corresponds to Case i in
Definition 6. Note that the materialization of the pruning regions SA(B) and SB(A) is a
hard problem [6]. Nevertheless, the function DomCase(A,B,R) allows to efficiently decide

Fig. 3 Domination relation

A
B

R5

R4
R3

R2

R1

R6SA(B)

SB(A)
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between the six possible domination cases defined above. In the next section we will show
how to use these relations in order to compute uncertain Voronoi cells.

5 Possible and guaranteed Voronoi cell approximation

5.1 Naive solution

Computing uncertain Voronoi cells is a daunting task for two reasons: First, it is challenging
to find the objects in the database that have an effect on its shape. Second, the representation
of the cell is hard since it consists of many linear and parabolic parts that grow exponentially
with the dimensionality. This section will present four algorithms that apply the concept
of spatial domination to efficiently approximate the possible-Voronoi cell V∃

k (U) and the
guaranteed-Voronoi cell V∀

k (U) of an object U as tight as possible. The first, naive, algo-
rithm divides the space into equi-distant grid cells and labels the cells according to their
membership to the possible-Voronoi cell. The second algorithm, additionally uses an R*-
tree to index the data objects to avoid exploration of irrelevant objects. The third algorithm
uses a kd-trie to index the grid cells, in order to identify large regions of space for which
their relation to V∃

k (U) and V∀
k (U) can be decided without exploring smaller subregions.

The fourth algorithm uses both a kd-trie to index the space and an R-tree to index the data.
For the later algorithm, the main challenge is to smartly descend both hierarchical index
structures in parallel, to minimize the computational overhead.

A straightforward way of computing V∃
k (U) and V∀

k (U) is to apply an equi-distant d-
dimensional grid to partition the data space. For each cell g we decide weather it belongs to
V∃

k (U), to V∀
k (U), or to neither.

Algorithm The algorithm takes as input the target object U , an uncertain database D and
a grid G covering the space of D. We iterate over all grid cells g ∈ G and in order to decide
whether g is part of the UV cell of U . Therefore, domination against all objects O ∈ D \ U

has to be checked. All possible cases of domination of a grid-cell g are depicted in Fig. 4. We
can decide the following cases for each grid cell g: (i) g is completely outside of V∃

k (U) or
(ii) g is a boarder cell intersecting the edge of V∃

k (U), or (iii) g is completely inside V∃
k (U)

but completely outside V∀
k (U), or (iv) g is a boarder cell touching the edge of V∀

k (U), or

Fig. 4 Cases of domination of a
grid cell

U
e

g1

g4

g5

g6

g2

g3
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(v) g is completely inside V∀
k (U). To make this decision, we can exploit the six cases of

Definition 6. In the following, the operator ∃kO ∈ DB : ϕ denotes that the predicate ϕ

holds for at least k objects in D. Formally, our first algorithm proceeds as follows:

i) If ∃kO ∈ D \ U : Dom(O, U, g) then g is neither part of V∃
k (U) nor V∀

k (U), since
at least k database object dominate g. This domination corresponds to Case 5 of
Definition 6 and cell g5 in Fig. 4.

ii) Otherwise, if ∃kO ∈ D : PDom(O, U, g) then at least a small part of g must be part
of V∃

k (U). This case corresponds to the cases of cells g4 and g6 in Fig. 4, i.e., Case 4
or Case 6 of Definition 6.

iii) Otherwise we can conclude that g is completely contained in V∃
k (U). Since for all but

at most k − 1 database objects, it holds that g corresponds to one of the remaining
cases Case 1, Case 2 and Case 3 of cells g1, g2 or g3, respectively, as shown in Fig. 4.
If ∃kO ∈ D : ¬PDOM(U, O, g), i.e., if there exist k objects that are not dominated
by g, then g is completely outside of V∃

k (U). The case PDOM(U, O, g) corresponds
to Case 1, Case 2 and Case 6 of Definition 6 and cell g5 in Fig. 4.

iv) Otherwise, we can guarantee that g intersects V∀
k (U). If ∃kO ∈ D :

¬DOM(U, O, g), then k objects may have a chance to dominate g, such that g cannot
be fully contained in V∀

k (U). The case DOM(U, O, g) corresponds solely to Case 1
in Definition 6.

v) Otherwise, we can conclude that DOM(U, O, g) holds for all but k − 1 database
objects, such that any point in g is guaranteed to have U as its k-nearest neighbor.
Thus g must be completely contained in V∀

k (U).

The set of all grid cells satisfying v) define a lower bound of V∀
k (U), and the grid cells

satisfying iv) or v) define an upper bound of V∀
k (U). Analogously, all grids cells satisfying

iii-v) define a lower bound of V∃
k (U) and all grid cells satisfying ii-v) define an upper bound

of V∃
k (U).

For a small database of uncertain objects an exemplary result of this approach is depicted
in Fig. 5. The object U for which the possible and guaranteed Voronoi cells are computed
is highlighted in yellow. Furthermore, a space grid is shown, where (i) unfilled space cells
are guaranteed to be outside of V∃

k (U) (and thus outside of V∀
k (U)), (ii) black cells are

guaranteed to be on the border of V∃
k (U), (iii) blue cells are guaranteed to be inside V∃

k (U),
but outside of V∀

k (U), (iv) grey cells are on the boarder of V∀
k (U), and green cells are located

inside V∀
k (U). In particular, Fig. 5a shows only the possible Voronoi cell V∃

1 (U), for the
computation of which previous solutions have been presented [6, 13] in the literature. In
addition, Fig. 5 illustrates the new concepts presents in this work:

– the novel concept of a guaranteed Voronoi-cell V∀
1 (U), which is additionally shown in

Fig. 5b, denoting the space for which any point is guaranteed to have uncertain object
U as its nearest neighbor,

– the novel concept of a higher order possible-Voronoi cell V∃
k>1(U), depicted in Fig. 5c.

Here, the 10th order possible-Voronoi cell V∃
10(U) is shown. Thus, any space cell high-

lighted in blue in Fig. 5c has a non-zero probability to have the yellow object U as
one of its ten nearest neighbors. Note that, for illustration purpose, only a small part of
the database is shown in Fig. 5c and some of the objects responsible for the shape of
V∃

10(U) are not shown,
– and the combination of both new concepts, which creates the notion of a higher-order

guaranteed Voronoi cell V∀
k>1(U), which is illustrated in Fig. 5d.
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Fig. 5 Uncertain Voronoi cells

The naive solution presented in this section allows to compute all of the above solutions,
i.e., the possible Voronoi cell V∃

k and the guaranteed Voronoi cell V∀
k . However, this solution

requires to individually consider each space cell of a space grid, paired with each database
object, to compute the respective domination cases. Clearly, the resulting complexity, linear
in the number of space cells and linear in the number of database objects, is inapplicable
to large data sets. The next sections improve this computational complexity by employing
index structures for both the object space and the data objects. In Section 6, we employ an
aggregate R-tree to index uncertain objects. In particular, we show how we can use a higher
level R-tree entry e for the computation of V∃

k and V∀
k without having to refine e. Then, in

Section 7, we proceed to employ a quad-tree to index the space grid. We show how we can
decide, for non-leaf entry h of this quad-tree, how to decide if h must (not) part of V∃

k and
V∀

k . Finally, our main contribution is given in Section 8, where we propose an algorithm
to compute Voronoi-cells V∃

k and V∀
k using both the aforementioned index structures. The
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main challenge solved in the following sections is to find heuristics to descent both index
structures, for space and data, in parallel, in order to minimize the number of domination
checks incurred by the algorithm.

6 Indexing D

Obviously, checking an object U against all uncertain objects O ∈ D is very expensive.
Instead, we can use an MBR based index structure ID (such as an R*-Tree) to organize the
objects hierarchically.

Algorithm The algorithm takes as input the target object U , ID and a grid covering the
space of ID. For each grid cell g the algorithm traverses the entries e of ID in a best first
manner [27] according to MinDist (e, U). Note that the entry e can be a single uncertain
object (i.e., a leaf-entry) or an intermediate node that conservatively approximates multiple
uncertain objects. Since we assume that our data index uses rectangular approximations, we
can then apply Definition 6 to decide which index entries have to be accessed. For refer-
ence, the following cases are shown in Fig. 4. Keep in mind that in this case, the entries e

are data index entries, which may be intermediate entries representing multiple data objects.
Intuitively, by refining a data entry e into its children entries, the uncertainty of the dom-
ination regions of these children become smaller. Therefore, the dominated regions SU(e)

and Se(U) (c.f. Figs. 3 and 4) grow larger, and the white region for which no decision can
be made grows larger. Consequently, refining an entry e may cause the case of some other
space cells to change. Recall that for each cell, we need to decide for one of the five follow-
ing cases: (i) definitely outside of V∃

k (U), (ii) on the border of V∃
k (U), (iii) inside V∃

k (U)

but outside of V∀
k (U), (iv) on the border of V∀

k (U) or (v) completely inside V∀
k (U). As

an example, these cases are color-coded by the colors white, black, blue, grey and green,
respectively in Fig. 6.

Case 1: Dom(U, e, g1): e and none of its children can exclude g1 from either UV-cell
V∃

k (U) nor V∀
k (U). Thus refinement of e cannot yield any new information.

Case 2: PDom(U, e, g2): If e is not a leaf entry, then for some (or even all) of the child
nodes e′ of e the predicate Dom(U, e′, g1) might hold, thus possibly reducing
Case 2 to Case 1 for some child nodes of e.

Case 3: ¬PDom(U, e, g3) ∧ ¬PDom(e, U, g3): As long as e is not a leaf entry (an
object), there might exist a child of e which excludes g3 from V∀

k (U) (Case 5), or
for which g3 is guaranteed to be closer to U (Case 2).

Case 4: PDom(e, U, g4): In this case, if e is not a leaf entry, then for some (or even all)
of the child nodes e′ of e the predicate Dom(e′, U, g1) might hold, thus possibly
reducing Case 4 to Case 5 for some child nodes of e.

Case 5: Dom(e,U, g5): U is dominated by e and thus by all the children of e. Entry e

will no longer be refined, and the number of Case 5 objects is increased by the
number of children of e.

Case 6: PDom(U, e, g6) ∧ PDom(e, U, g6): In this case, parts of g are dominated by e,
for some parts e dominates g, and for some parts no decision can be made. In this
case, entry e does no longer need to be refined, any children of e must yield the
same case.

Clearly, using the data index ID allows to avoid a large fraction of dominance checks:
for a large page regions e that is located far distance from object U , we can already decide
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Fig. 6 Refined page regions of ID for a small example database

on a high directory level that e and all its children can not influence the shape of V∃
k (U) and

V∀
k (U). To illustrate the effect of employing the data index ID, a small sample database

is given in Fig. 6. In addition to the Voronoi-cells V∃
1 (U) and V∀

1 (U), Fig. 6 also shows
to what degree the employed data index ID has been refined. Solid rectangle correspond
to fully refined uncertain objects. Unfilled rectangles correspond to intermediate R-tree
index entries. Clearly, the number of fully refined uncertain objects decreases drastically,
thus decreasing the overall number of domination checks that need to be computed, and
thus decreasing the overall run-time. Our experimental evaluation in Section 9 will give
a quantitative analysis of the run-time improvement gained by employing the data index
ID.

Still, the problem remains that each space cell has to be checked individually. Intuitively,
it should be possibly to identify for large regions located far away from U , that these can-
not be part of V∃

k (U) and V∀
k (U). Furthermore, it might be possible to decide for large

regions close to (and possibly overlap with) U , that they must be part of V∀
k (U). And finally,

there might be large regions for which we might be able to decide that they must be part
of V∃

1 (U) but not of V∀
1 (U). In the next section, Section 7 we introduce a space index,

which hierarchically structures space cells, allowing us to decide whether a large space
region is completely outside of V∃

k (U), completely inside V∃
k (U) but completely outside

V∀
k (U), or completely inside V∀

k (U). Finally, Section 8 will combine both index structures
for data and for space, by showing heuristics to traverse both index structures in an efficient
way.
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7 Indexing S

Instead of indexing the data objects, we show how to index the space grid cells in this
section. We propose to use a tree based index structure (denoted as IS to organize the data
space (e.g. Quadtree, kd-trie). For each entry h ∈ IS it can be checked if it is part of the
UV cell of U .

Algorithm The algorithm takes as input the target object U , IS , maxdepth and a list of
all data objects O ∈ D. The entries h ∈ IS are traversed in a depth-first manner. For each
entry h we check all O ∈ D to decide if the traversal has to go deeper (to the children of h)
or its subtree can be discarded for further processing. The parameter maxdepth defines the
maximum depth that IS is traversed. Thus the larger maxdepth, the finer the granularity of
the UV-cell approximation.

We can again distinguish the same cases as in Section 5.1:

i) If ∃kO ∈ D \ U : Dom(O, U, h) then h is neither part of V∃
k (U) nor V∀

k (U), since at
least k database object dominate h. Thus h no longer needs to be refined (and can be
colored in white in Fig. 7).

ii) Otherwise, if ∃kO ∈ D : PDom(O, U, h) then at least a small part of h must be part
of V∃

k (U). If h is a directory entry (i.e., an entry having a depth less than maxdepth),
then h is refined. Otherwise, h is a leaf entry (i.e., a space entry of depth maxdepth
and is is colored black in Fig. 7).

Fig. 7 Refined page regions of IS for V∃
1 (U) and V∀

1 (U)
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iii) Otherwise, if ∃kO¬DOM(U, O, h), then there exists at least k objects that might
dominate O with respect to h, such that h cannot be part of V∀

k (U). In this case, h can
be colored in blue regardless of whether h is a directory of leaf node.

iv) Otherwise, if ∃kO ∈ D : ¬DOM(U, O, h), then k objects may have a chance to
dominate h, such that h cannot be fully contained in V∀

k (U). If h is a directory entry,
then h is refined. If h is a leaf entry, then h is colored in grey in Fig. 7.

v) Otherwise, we can conclude that DOM(U, O, h) holds for all but k − 1 database
objects, such that any point in h is guaranteed to have U as its k-nearest neighbor.
Thus h must be completely contained in V∀

k (U), regardless of whether h is a directory
of leaf entry, so h is colored green in Fig. 7.

Again, to show the effect of employing the space index IS , a small sample database is
given in Fig. 7 where V∃

1 (U) and V∀
1 (U) are computed. Here, no data index ID is used,

thus all uncertain objects are shown as solid rectangles. It can be observed in Fig. 7 that,
using the algorithm above, very large space entries of IS can be identified as being outside
of V∃

5 (U), illustrated by large white rectangles. In this example, the whole quadrant of the
south-east database can be pruned. Are more detailed view on V∃

10(U) and V∀
10(U) is given

in Fig. 8 for k = 10. Some larger entries of IS can be identified as completely contained
in V∀

10(U), represented by the green rectangles of varying size. Finally, some space entries
of IS are guaranteed to be outside of V∀

10(U) but inside of V∃
5 (U), which correspond to the

blue rectangles.
Yet, by employing exclusively the space index IS without using the data index ID, dom-

inance checks are required for every single uncertain database object. In the next section, we
present our approach towards employing both index structures ID (indexing the uncertain
objects) and IS (indexing space) at the same time. For this purpose, we need to find heuris-
tics for a good trade-off between refining data entries of ID and refining space entries of
IS . Especially, we have to expect such hybrid algorithm to refine more data entries than the
algorithm shown in Section 6, and to refine more space entries than the algorithm presented
in this section. The reason is that the previous algorithms, which use only one index, assume
that all the respective other data type is completely refined, thus all information is available.
When both index structures are traversed however, then, at any time, only partial knowledge
is known about both the data index and space index. Thus, it is possible that a space entry is
refined which, while at a later stage of the algorithm, where more data entries are refined, it
turns out that this refinement was unnecessary. Yet, we will show that our hybrid algorithm,

Fig. 8 Close view on the refined
page regions of IS for V∃

10(U)

and V∀
10(U)
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presented in the following Section 8 is capable of reducing both the number of refined data
entries, and the number of refined space entries significantly.

8 Indexing D and S

It seems apparent to combine the ideas of Section 6 and Section 7 and utilize both index
structures (ID and IS ) to boost the performance. The non trivial task is the definition of a
traversal order to minimize necessary operations.

Prelude Our approach is basically a depth-first traversal of IS . Additionally we define
ASD to be the active set of entries of the index D. Each entry h ∈ IS has its own active set
and passes it on to its children (always removing irrelevant entries e ∈ ASD). ASD contains
all entries of D which have already been seen and not yet resolved during the traversal of the
algorithm. For each entry h ∈ IS we first try to identify one of the two following properties
(cf Fig. 9):
∑

e∈ASD :Dom(e,U,h) weight (e) ≥ k. In the case Dom(e,U, h), all objects in data entry
e are guaranteed to dominate U . Thus, we can increase a counter countblack :=∑

e∈ASD :Dom(e,U,h) weight (e), which corresponds to the number of objects dominating
U , by the weight of e. If countblack reaches k, then h must not part of the possible UV
cell V∃

k of U , and thus is colored unfilled in our visualization such as shown in Fig. 7. If
countblack < k, then h is colored black, but might be assigned a different color later in
the algorithm.∑
e∈ASD :Dom(U,e,h) weight (e) > |D| − k. In the case Dom(e,U, h), no object in data
entry e can possibly dominate U . If this is guaranteed to hold for at least |D| − k + 1
objects, then at most k − 1 database objects can possibly dominate h, and thus h must be
part of the guaranteed Voronoi cell V∀

k and is colored green in our visualization. Our algo-
rithm uses a counter countgreen to count the weight of entries e for which Dom(U, e, h)

does not hold. As long as countgreen < k, the space cell h must be colored in green in
Fig. 7.

If neither of the above cases hold, then we check if
∑

e∈ASD :PDom(e,U,h) weight (e) < k

and
∑

e∈ASD :PDom(U,e,h) weight (e) ≤ |D| − k. If both conditions hold, then space

region U must be inside V∃
k and must not be inside V∀

k . This corresponds to the case

Fig. 9 Cases of domination for a
data index entry e
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where h is colored in blue in Fig. 7. Our algorithm uses the counters countgreen and
countgrayorblue to check this case.

If neither of the above two cases hold, then no final decision can be made for space region
U , and either the current entry h or an entry e ∈ ASD has to be resolved. Here we propose
the following heuristics:

Case 2: PDom(U, e, h) ⇒ resolve e or h depending on which one covers more space.
Intuition: uncertain area becomes small if both constructing objects are small

Case 3 ¬PDom(U, e, h) ∧ ¬PDom(e, U, h) ⇒ resolve e.
Intuition: Resolving h can not yield any new information, since any child of h must also
yield Case 3.

Case 4 PDom(e, U, h) ⇒ resolve h if we find another data entry for which Case 4 holds
(for this space entry h). Otherwise resolve e or h depending on which one covers more
space. If e is a leaf entry only resolve h.
Intuition: If more than one data entry constructs Case 4, chances are good that large
portions of h can be decided.

Case 6 PDom(U, e, h) ∧ PDom(e, U, h) ⇒ resolve h. (cf Fig. 9, case 6)
Intuition: Resolving e can not yield any new information

Clearly, at one point there may be multiple data entries in the activate set of a space node h,
which may yield different cases. It may be smart to prioritize the refinement of some data
entries. In a nutshell, a data entry should be chosen which maximizes the chance that we
can guarantee that h is not part of V(U). We propose to choose an entry e according to the
following priority schema:

1. directory entries are prioritized over leaf entries.
2. prioritize cases in order 5, 4, 6, 3, 2, 1.
3. prioritize entries according to mindist to query

For ease of presentation of our algorithm, we define the function maxprio(U ∈ D, h ∈
IS , E ⊆ ID) which maps an uncertain object U , a space region h and a set of data
index entries E to the object which has the highest priority corresponding to the heuristics
above.

Algorithm 1 Takes as parameters the object U for which the UV-cell is to be computed; the
database D indexed by an R∗-tree ID; and the Quadtree/KD-trie IS indexing the space. The
idea of Algorithm 1 is to build an initial active set ASD that is reasonable for all space par-
titions hi ∈ IS to come during query processing. For this we perform a window-query-like
operation. windowQuery*(U,ID) basically performs a window query on ID, but discards
entries e ∈ D that fall in the window (since these entries cannot help to decide the borders
of V(U)). The result are now all entries e ∈ ID that have been seen during the window-
query but have not been resolved. This set is then used as an initial active set(denoted as
ASD) in the recursive Algorithm 2 which is initiated by Algorithm 1.
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Algorithm 2 This algorithm requires the uncertain object U for which the UV-cell is
being computed, one region of the result space h(initially the root of the kd-tree), the
active set ASD containing a set of ID-entries, and the parameter k. The algorithm works as
follows:

– The main loop (line 3) iterates over the active set until either the space region has been
flagged or there are no more ID-entries to consider.

– In another loop (lines 4 – 18), the algorithm tests whether the current active set suffices
for flagging the space region. To achieve this, a set of counter variables is defined:

• countgreen checks for entries that include parts of the result space in their outer cell
(domCase > 1). The space can only be part of V∀

k (U) if this counter is below k.
• countgray tracks border regions around the inner cell that cannot be further

expanded because the spatial index is at its maximum depth (isLeaf(h) is true).
All domCases greater than 2 qualify to increase this counter.

• countgrayorblue keeps track of undecided cases (domCase = 3) that need to
be further explored before flagging.
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• countblue counts entries that include parts of the result space in their inner cell
(domCase > 3). The space can only be part of V∃

k (U) if this counter is below k.
• countblack tracks border regions around the outer cell that cannot be further

expanded because the spatial index is at its maximum depth (isLeaf(h) is true).
Only domCase 5 increments this counter.

If an entry qualifies to increment a counter, the entry’s weight is added. If entry is a
leaf, i.e., is not an index page, the weight is one. Otherwise, weight is the number of
all leaf entries included in this entry. Consideration of ID-entries is interrupted if more
than k dominating cases (domCase = 5) have been found (lines 16 – 18). For further
exploration, the entry with highest priority is determined in line 7.

– Once every entry has been checked, the algorithm tests if the space region can be
assigned a flag based on the counters in lines 19 – 30. Once a flag has been assigned,
the recursion branch ends.

– If no flag could be assigned, the algorithm decides which index will be refined next –
emax (data split) or h (space split). The dicision is made based on whether once of the
indices is already fully refined (isLeaf() is true), which of the two pages has the larger
perimeter (p(emax) < / > p(h)), and the domCase of emax , namely:

Case 4: there is a chance that refining h may allow child entries of h to be pruned, and
refining emax may allow child entries of emax to prune all of h. Therefore, we
refine both entries in this case.

Case 6: refining e cannot possibly allow us to prune h. However, refining h may allow us
to either prune children of h or to return children of h as true hits. Thus we refine h.

Case 3: no children of h can possibly be pruned.3 Thus we split emax , which may
allow h to be pruned.

Case 2: we refine h.

– Finally, space index entries h which must be completely contained in V(U) are identi-
fied as entries having only Cases 1-3 in their active set. Computation breaks if this is
the case. After splitting the objects according to the rules above. We recursively restart
the algorithm with the new objects.

Figure 10 illustrates in which manner the algorithm resolves entries of ID and IS . The
figures shows all pages and objects of ID which have been seen during the computation of
the possible Voronoi-cell V(U) of the green objects U . Refined data objects are represented
by filled red rectangles and refined directory nodes are represented by unfilled red rectan-
gles. Furthermore, refined entries of IS are shown as (i) unfilled black rectangles if they are
guaranteed to be fully outside of V(U), (ii) as black rectangles if on the border of V(U),
and (iii) as blue rectangles if completely inside V(U). We can observe that in areas far away
from the UV cell, IS is resolved coarse whereas at the border of the cell it is resolved at
very fine granularity. The entries of ID are also only resolved around the UV cell. Note that
although the number of resolved objects seems large, most of the objects are only needed
for a small fraction of the computations, especially on coarser levels of IS . Finally, note
that a nice side effect of this computation is that we obtain a tight superset of the (uncertain-
) Delaunay neighbors of U . This can be achieved by memorizing the objects O for which
Case 4 or Cast 6 (see Definition 6) holds.

3recall that if eDmax corresponds to case 3, then there exists no R∗-entry such that case 4 holds.
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Fig. 10 Example of refinement

8.1 Discussion: dynamic data

In many applications for uncertain Voronoi regions, such as the ride-sharing application pre-
sented in Section 1, data changes continuously. In such an application drivers update their
location frequently, thus changing their uncertainty region. And even if a driver does not
update its location, its uncertainty region grows. Clearly, maintaining and updating the data
index ID using a traditional R∗-tree of drivers uncertainty regions in not viable in such a
case. However, we do not aim at updating Voronoi-cells each time the database changes.
Rather, we aim to compute the Voronoi-cells at a single snapshot point-in-time. For this pur-
pose, we propose to simply build a new data index ID (using a bulk-load strategy) for each
query. In our experiments, we use an R-Tree and show that the time required for this bulk
load is neglectable. But it should be noted, that we use the data index ID solely for the pur-
pose of grouping data objects for pruning. Thus, we keep the type of data structure abstract,
only assuming that ID uses rectangular approximation of groups of uncertainty regions, in
order for the techniques of Section 4 to be applicable. Yet, we want to note that solutions
to index continuously moving objects have been proposed, with and without uncertainty
[28–30]. If available, such index structures, if maintained over a changing moving object
database, can be used as directly as data index ID without having to bulk-load a new index.
We also note that the space index IS is never materialized, and only use to prune search
space. There is no need to update this tree.
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8.2 Discussion: spherical regions

In many applications, such as applications using GPS uncertainty, a more realistic modelling
of the uncertain location of an object is to employ spherical uncertainty regions, commonly
used to bound (at some given level of significance) a gaussian distribution. In the case of
a spherical approximation of the uncertainty region of an object, the spatial domination
scheme revisited in Section 4 can no be directly applied. Yet, an equivalent spatial domi-
nation technique has been presented concurrently and independently in [31] and [32]. For
three points a, b, and c bound by spherical regions A, B, and C, respectively, this techniques
allow to decide if a is guaranteed to be closer (farther) from b than c. Applying this tech-
nique for our Voronoi-cell computation, we can simply approximate each spherical region
by a minimum bounding square. Then, whenever our algorithm applies the decision crite-
rion of Section 4 to three leaf rectangles of the R-tree, we apply the techniques of [31, 32]
to check for spherical domination.

9 Experiments

Our experimental evaluation investigates algorithm behaviour w.r.t. maximum kd-trie depth,
database size, uncertainty, and data dimension. To assess the uncertainty in our synthetic
data, we define a parameter extent to control the size of the uncertain objects (i.e., the
object’s MBR) and corresponds to the maximum extent of an object in one dimension.
Experiments use synthetically generated datasets as well as an excerpt from the T-Drive taxi-
cab trajectory dataset [7, 8] where we added synthetic uncertainty to each GPS signal of a
taxi cab. We implemented all approaches in the ELKI framework [33], which also provided
an R-tree implementation.

The data space is always normalized to [0,1] in each dimension. For our synthetic data,
objects are uniformly distributed over space with a randomly assigned side length between
0 and maximum extent. Most examples previously used in this work use synthetic data
generated this way, including Figs. 5a–d, 6, 7, 8 and 10.

Data points from the real world dataset were sampled as a single snapshot of the world,
on the afternoon of February 2nd, 2008. Therefore, one data point corresponds to the posi-
tion of one taxicab within the city of Beijing, China. After removing some outliers, this
dataset contains 890 separate entities. To suit our application of location obfuscation, sam-
ple locations were randomized using a Gaussian distribution based on this object’s location.
A single sample from this distribution is then set as center of the object’s new MBR, with
its extent set to 6σ of this object’s Gaussian (3σ to each direction). On said city scale, an
extent of 0.01 would equal an area of 100m side length.

Table 2 Default settings

Parameter default value Notation Algorithm

Dimension 2 DI Data Index traversal (Section 6)

db size 1000 SI Space Index traversal (Section 7)

Extent 0.01 DSI Data & Space Index traversal (Section 8)

Tree depth 14 SR Single Rectangle (Implementation of [6])
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Table 2 denotes input parameters and their default settings, as well as an explanation of
our algorithm notation. If not otherwise specified, the following experiments use the speci-
fied default values. Our evaluation focusing on approximation quality use DSI exemplarily
for all algorithms from Sections 6–8, since these algorithms do not differ in the resulting
approximation quality, but in efficiency only. Naturally, our real world dataset T-Drive has
inherent values that override parameters, namely dimension and size of database. The stan-
dard depth of 14 refers to a maximum of 14 splits in our index structure, corresponding to
16384(= 214) individual grid cells. Applied to a city scale of 10 by 10 kilometers, each grid
cell side would measure some 78 meters. As the proposed approach is later scaled up to a
depth of 22, grid cells correspond to an area of only 4.8 by 4.8 meters, which on a city scale
is extremely precise.

9.1 State of the art competitor

As a competitor solution to validate our computation of uncertain first-order Voronoi-cells,
in terms of run-time and effectiveness, is the approach of [6]. This approach approximates
the possible Voronoi-cell of an uncertain object by a single rectangular region. However,
this approach is only applicable to approximate the possible first-order Voronoi cells V∃

1 (U)

of an uncertain object U . To the best of our knowledge, our solution is the first to com-
pute higher-order Voronoi cells for uncertain data, and the first to compute a guaranteed
Voronoi cell. In order to allow a fair experimental evaluation, we extend the solution of [6]
to approximate higher-order possible Voronoi cells as described in the following.

In a nutshell, the approach of [6] computes a progressive and a conservative rectangular
approximation of V∃

1 (U). An initial conservative approximation is obtained by bounding the
whole data space by a single rectangle. This approximation trivially covers V∃

1 (U). Then,
this rectangle is split recursively, where split dimensions and locations are chosen heuris-
tically. Whenever a split is performed, the concept of spatial domination (c.f. Section 3) is
applied to see if any of the new residual regions obtained from the split completely con-
tains V∃

1 (U). If not, the split if rejected and a new split dimension and location are chosen
heuristically. If one residual split region does contain V∃

1 (U), then the algorithm recursively
continues with that region. After each split, only at most one region can completely contain
V∃

1 (U). The algorithm terminates when the gain by further splitting the current approxima-
tion of V∃

1 (U) drops below a specified threshold. A progressive approximation of V∃
1 (U)

is obtained by choosing the boundaries of U itself as an initial approximation. This initial
approximation is progressive, as any point inside U is guaranteed to have a chance U as
a nearest neighbor, as U might be located at the exactly same location. Then, the progres-
sive approximation is again expanded iteratively, using the concept of spatial domination
to check whether a new approximation is completely contained within V∃

1 (U). Note that
for each of the spatial domination checks, each database object has to be tested for spatial
domination, since no index structures are employed.

To apply this solution for higher-order Voronoi cells, we adapt the spatial domination
check of [6] as follows: given the current conservative approximation C, rather than finding
a single database object O such that Dom(O,U, C), i.e., such that O is guaranteed to
dominate U with respect to C, we now continue the domination checks until k such objects
are found. Analogously, for the current progressive approximation P , we now find k objects
O such that PDom(O, U, P ) holds, that is, we find k objects which are might possibly
dominate U , rather than just attempting to find one such object, as done by the algorithm
proposed in [6]. In the following experimental evaluation, the resulting adapted algorithm of
[6], which computes a single rectangular progressive approximation and a single rectangular
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conservative approximation, will be used as our competitor approach. This approach will be
denoted as Single Rectangle (SR).

9.2 Approximation quality

Our first evaluation explores how well the generated bounds approximate a cell. Therefore,
we set the tree depth for our implementation to various levels between 5 and 22, correspond-
ing to the number of splits. Evidently, smaller grid cells can more closely follow the outline
of a UV-cell.

Figure 11 visualizes how upper and lower bounds converge with larger tree depth. The
dark blue line refers to the upper bound of DSI , the orange line to its lower bound, each rep-
resented by the total volume of their cells. The hatched space in between the two lines refers
to the range in which the true cell volume must be located. As a point of reference, upper
and lower bounds from the Single Rectangle (SR) approach have also been denoted in the
same graphic, with the area shaded in grey corresponding to the approximation error. Since
SR does not use an index, its results remain unchanged for all settings of the maximum tree
depth.

Performance was tested on different datasets. Figure 11a represents average results for
runs on synthetic data, while Fig. 11b contains the results for our real world dataset. While
overall performance is fairly comparable, DSI provides a usable lower bound remarkably
early, with as little as 8 tree splits necessary to outperform SR. We can see that for a suf-
ficiently tree depth between 18 and 22, the lower- and upper-bound approximation of the
inner-Voronoi cell V∀

k (U) and the outer-Voronoi cell V∃
k (U) approach each other. Conse-

quently, the approximation error converges to zero, thus indicating that our approach is able

Fig. 11 Approximation quality for DSI and SR
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to near-optimally approximate V∀
k (U) and V∃

k (U). We further observe that for larger values
of k, the space covered by the possible Voronoi-cell V∃

k (U) and the guaranteed Voronoi-cell
V∀

k (U) seem to approach each other. The reason is that all cells grow radially in k. Thus, the
space covered by both cells V∀

k (U) and V∃
k (U) cover space quadratic in the diameter of each

cell. Yet, the space covered by the set-difference V∃
k (U) \ V∀

k (U) forms the shape of a ring,
the surface of which grows only linear in it’s diameter. Thus, we observe that indeed both
cells V∀

k (U) and V∃
k (U) increase for larger k, but they relative size approaches each other

for large values of k. Finally, our competitor approach SR shows fairly similar behaviour
on both datasets, with results looking even more similar than they are due to logarithmic
scale. We argue that the large approximation error of SR makes it a bad choice for reliable
decision making. The following subsection will answer the question if the SR approach can
redeem itself in terms of run-time.

9.3 Algorithmic runtime

Runtime experiments were conducted by varying database size and dimensionality, between
our three different traversal approaches compared to SR as well as for DSI alone to cover
larger ranges of database size (other approaches have been excluded for large database sizes
due to their excessive run-time performance).

In Fig. 12, run times to calculate one UV -cell are denoted over different database sizes.
Figure 12a contains results for the approach Data and Space Index Traversal (DSI) in three
different configurations of kdtrie-depth, and SR. As is to be expected, DSI has higher run-
times for higher depth of its spatial index, since border regions will be explored further and
require more domination checks. However, runtime increases only very lightly for greater

Fig. 12 A runtime comparison for our DSI and the SR-approach over different sizes of DB
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database sizes. This is because the combined approach of data and space index allows for
early pruning of large portions of the database. SR starts off at a considerable speed, but
since it features pairwise comparisons without the use of an index, it does not scale well for
higher numbers ob database objects. For comparison, LOAD depicts the necessary runtime
to bulk-load the R-tree of DSI . Bulk-load time takes roughly one order of magnitude less
than the actual query, which we consider negligible.

As query performance generally deteriorates for larger datasets, further scaling experi-
ments were conducted using DSI only. Figure 12b shows the results of database populations
from 10K to 15 Million objects. To avoid gross overlapping of objects, object extent has
been lowered to 0.001 for these runs. The left axis again refers to the average time to per-
form one UV-cell calculation, which corresponds to the blue data line. We observe a slightly
superlinear scaling, confirming our theoretical observations that (i) adding more objects
leads to linearly more intersections with Voronoi cells, which are at least as big as U , and
(ii) a linear increase in object count causes logarithmic tree index growth. This results in a
combined log-linear growth in runtime.

The right scale denotes average page views during cell calculation, with the orange line
referring to pages of the data index, and the green line for pages of the space index. Note
that data index exploration roughly follows runtime development, while the space index is
used less for larger databases. This is easily explained by a constant tree depth, resulting
in a constant resolution of space. With a higher database population, the likelihood of all
relevant objects being enclosed in a small space increases.

In addition, we also scale the parameter k in Fig. 12c. Since the competitor approach SR

is applicable not applicable to the case of having k > 1, this competitor is omitted for this
experiment. We observe that the run-time increases sub-linear (note the logarithmic run-
time scale) in k. This is explained by the fact that the main bottleneck of our algorithm is
the traversal of the space-index IS to leaf-level, which is performed around the border of
the Voronoi-cells. Thus, we expect our algorithm to scale linear in the extend of the Voronoi
cells. As we increase k, we expect the area of the Voronoi cell to increase linear in k, thus
yielding a sub-linear increase in extent.

9.4 Effect of data dimensions

Although the simple case of a two-dimensional world is most intuitive for most applications
mentioned before, all approaches can manage high-dimensional datasets as well. The main
limitation here is keeping the approximation error low in all dimensions at once, as well as
balancing computational complexity.

Figure 13 displays performance for different kdtrie-depths of our DSI approach (depths
10, 15 and 20) as well as SR for multi-dimensional datasets. As runtime and memory usage
of SR do not scale well for more than five data dimensions, experiments excluded this
approach for higher dimensionalities than 5. An evaluation of runtime as shown in Fig. 13a
shows constant increase for all approaches. The relative steepness of increase is due to the
growing inefficiency of pruning methods in high dimensions, which deteriorates searches
toward a linear scan, which itself has quadratic complexity. As expected, runtime of DSI

increases with a higher kdtrie-depth, since border regions in the spatial index will cause
repeated domination checks.

Approximation quality for higher dimensions is shown in Fig. 13b. As mentioned before,
fitting a bound to a more and more complex object leaves much room for approximation
error. Therefore, volumes of upper and lower bounds diverge more for higher dimensions.
Displayed here are bounds for SR up to dimension 5 (grey) and two different settings of
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Fig. 13 A comparison for increasing data dimensions

our DSI approach, once with a depth of 14 (blue) and a depth of 20 (orange). As expected,
a higher depth allows for more tree splits per dimension and thus a better approximation.

9.5 Effect of uncertainty extent

Finally, we evaluate the effect of the uncertainty, on both run-time and approximation qual-
ity. Clearly, the extent of uncertainty is highly application specific. In an application such
as ride-sharing, this uncertainty depends on the GPS-quality as well as on the frequency of
GPS updates of drivers. To evaluate this parameter, we increase the bounding boxing extent

of uncertain objects in Fig. 14 for our DSI approach (depths 10, 15 and 20) as well as SR.
Before we take a closer look at the results, recall what a higher uncertainty regions means:
The data set becomes more fuzzy and uncertainty regions of objects overlap more. As a
consequence, the guaranteed Voronoi cell V∀

k (U) of an object U shrinks. The reason is that
due to uncertainty, less regions in space can be uniquely identified as having U as their k-
nearest neighbor. At the same time, the possible Voronoi cell V∃

k (U) of an object U grows,
as more regions in space might possibly have U as their nearest neighbor.

First, Fig. 14a, shows that the single rectangle approach SR exhibits are nearly constant
run-time. The reason is that the main challenge of this approach is to fit a rectangle on
the unknown Voronoi-cell. Initially, this approach starts by using the full space as a first
approximation. This rectangle is iteratively halved to fit the unknown Voronoi cell. Thus,
by having a larger Voronoi cell, less halving-steps are required, thus even yielding a slight
performance gain for larger Voronoi cells. In contrast, the run-time of our DSI approach
increases. The reason is that the extent of the possible Voronoi cell increases, and thus, more

Fig. 14 Effect of maximum uncertainty extent
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cells of the space index IS become “borderline” and need to refined to the maximum depth
of the kd-trie IS . But Fig. 14a also shows that, in a case where the uncertainty regions are
large, a smaller value of tree depth can be used to offset the additional run-time. In addition,
Fig. 14b evaluates the approximation quality for larger uncertainty regions. We see that the
constant run-time of the SR approach also incurs an extremely low approximation quality
for larger uncertainty regions. We see that the lower- and upper-bound of the V∃

1 Voronoi
cell using the SR approach becomes extremely loose. In this case, the corresponding upper-
bound doubles the space of the actual cell, whereas the lower-bound cell is extremely small.
Note that the SR approach is not able to compute the V∀

1 cell. In contrast, we see that using
our DSI approach, the uncertain Voronoi cell of an object can still be approximated very
accurately, even for large uncertainty regions. For the possible Voronoi cell V∃

1 , the margin
of error remains low, for our default setting of a tree depth of 14. We also see that the
average size of guaranteed Voronoi cells V∀

1 approaches zero here, as in most cases, there is
not space that is guaranteed to have the query object as its nearest neighbor.

10 Conclusions

In this work, we proposed an index-supported approach to approximate the shape of
Voronoi-cells to support nearest neighbor queries on uncertain data. In an uncertain database
the attribute values of objects are random variables. Consequently, the location, size and
shape of the Voronoi-cell of an object U is a random variable, too. Therefore, we proposed
to approximate, progressively and conservatively, the space which is guaranteed to be part
of the Voronoi-cell of U , denoted as the guaranteed Voronoi-cell V∀

k . In addition, we also
approximate the space which has a non-zero probability to be part of the Voronoi-cell of U ,
which we call the possible-Voronoi cell V∃

k . We show how our solutions can be extended to
k’th-order Voronoi cells, i.e., the space which is guaranteed to (may possibly) have U as one
of their k-nearest neighbors. Our approach uses an R∗-tree as a hierarchical access method
to efficiently find the set of uncertain objects that influence the possible Voronoi-cell of an
uncertain object U , i.e., the set of Delauny-neighbors of U . In addition, we propose to use a
kd-trie as a hierarchical access method to identify regions of space which must (not) be part
of a Voronoi-cell. Compared to the state-of-the-art of computing uncertain Voronoi-cells,
our approach allows for much higher approximation quality, since our result approximation
consists of a set of rectangular kd-trie nodes, rather than a single bounding rectangle.

Our solution focuses on computing the Voronoi cell of a single query object only, as
desirable in a ride-sharing application where a driver tries to locally optimize his own influ-
ence on customers. Yet, other applications may have a broader view, such as a classic
taxi-application, where a central server organizes drivers and matches customers to them.
In such an application, it may be useful to compute the Voronoi-cells of all taxi’s, and direct
drivers in a way such that Voronoi cells becomes balanced, thus minimizing worst-case wait-
times of customers, and creating a fair environment for drivers. While our solution can be
simply iterated over each object, an interesting future direction is to perform such compu-
tation with less redundancy, thus reusing domination checks for one query object that have
been made for another.

Another future direction, is to compute, for an object U , the region having U as a k-
nearest neighbor with a probability of at least τ ∈ [0, 1]. For this problem, the V∀

k Voronoi
cell can be seen as the special case where τ = 1, and the V∃

k Voronoi cell can be seen as the
special case where τ approaches zero. Without making any assumption on the distribution
of the uncertain objects, this is a #P -hard problem, as arbitrary probabilistic distributions
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and stochastic dependencies need to be considered [34]. Yet, if independence is assumed
between objects, and objects are assumed to follow a discrete uncertainty model, then a
computation of contour lines is a possible direction for future work.
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