
Geoinformatica (2017) 21:429–458
DOI 10.1007/s10707-016-0286-6

Index-supported pattern matching on tuples
of time-dependent values

Fabio Valdés1 ·Ralf Hartmut Güting1

Received: 15 April 2016 / Revised: 22 September 2016 / Accepted: 8 December 2016 /
Published online: 3 January 2017
© Springer Science+Business Media New York 2016

Abstract Lately, the amount of mobility data recorded by GPS-enabled (and other) devices
has increased drastically, entailing the necessity of efficient processing and analysis meth-
ods. In many cases, not only the geographic position, but also additional time-dependent
information are traced and/or generated, according to the purpose of the evaluation. For
example, in the field of animal behavior research, besides the position of the monitored
animal, biologists are interested in further data like the altitude or the temperature at every
measuring point. Other application domains comprise the names of streets, places of inter-
est, or transportation modes that can be recorded along with the geographic position of a
person. In this paper, we present in detail a framework for analyzing datasets with arbi-
trarily many time-dependent attributes. This can be considered as a major extension of our
previous work, a comprehensive framework for pattern matching on symbolic trajectories
with index support. For an efficient processing of different data types, a variable number of
indexes of four different types that correspond to the data types of the attributes are applied.
We demonstrate the expressiveness and efficiency of our approach by querying a real dataset
representing taxi trips in Rome and, particularly, with a broad series of experiments using
trajectories generated by BerlinMOD combined with geological raster data.

Keywords Pattern matching · Tuples of time-dependent values · Indexing · Finite
automaton

� Fabio Valdés
fabio.valdes@fernuni-hagen.de

Ralf Hartmut Güting
rhg@fernuni-hagen.de

1 Database Systems for New Applications, Fernuniversität in Hagen, 58084, Hagen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-016-0286-6&domain=pdf
http://orcid.org/0000-0003-4131-819X
mailto:fabio.valdes@fernuni-hagen.de
mailto:rhg@fernuni-hagen.de

430 Geoinformatica (2017) 21:429–458

1 Introduction

Since position recording devices like smart phones, tablets, automotive navigation systems,
or other GPS sensors are applied abundantly for economic, scientific, private, or other
purposes, an overwhelming amount of movement data is generated every day. As a con-
sequence, researchers strive to enhance methods for storing, administrating, and querying
such data. The sequence of timestamped geographic positions obtained from the device rep-
resents the movement of an entity, e.g., the trajectory of a person, a vehicle, or an animal,
during a certain period of time. More abstractly, the recorded data can be considered as a
continuous function from time into two-dimensional space, denoted as moving point [14].

A symbolic representation of the movement, in most cases shorter than the raw trajec-
tory and often derived from it, enables more convenient and more efficient querying [16].
However, for many applications, more time-dependent values than the mere movement
data are helpful or even necessary. For example, the observation of animals is definitely
more effective if not only their position but also additional data like the temperature or the
altitude are available. Besides research fields like animal behavior analysis, possible appli-
cation domains include economics (e.g., logistical optimization, customer behavior analysis,
targeted advertising) as well as urban planning, healthcare, private use, and criminal inves-
tigation. Each of the available data types is well-defined as an abstract function and has a
discrete representation that is available in the DBMS SECONDO.

Usually, a symbolic representation of a movement is given as a sequence of labels,
for example, street names, transportation modes, names of places of interest, districts, or
cells inside a cellular network, along with some temporal information and in chronological
order. Therefore, it seems natural to develop an expressive pattern language for querying
such trajectories that allows for regular expressions and employs a nondeterministic finite
automaton for the matching algorithm. However, if the user desires to define more complex
patterns including variables and conditions, more sophisticated techniques with possibly
high computation cost are required. In order to keep the pattern matching efficient, the use
of an index structure for all the labels in the trajectory collection is mandatory, so the cor-
responding matching algorithm does not have to scan all the trajectories. Starting from this
stage of development, we decided to extend our work in order to meet the requirements
described in the previous paragraph.

In this paper, we introduce a framework for analyzing sets of tuples having an arbitrary
number of time-dependent attributes of different data types. As the major contribution of
this paper, we developed and implemented a suitable pattern matching algorithm that filters
a set of tuples according to a user-specified pattern. The pattern language established in
[16] and revised in [36] has been further extended, so that the user can query all the time-
dependent attributes of the tuple collection at the same time. For an efficient processing, we
apply a flexible combination of well-known index structures. The combined index structure
comprises a variable number of heterogeneous indexes, corresponding to the number and
the data types of the time-dependent attributes, and is constructed efficiently from the tuple
collection.

In the first phase of the pattern matching algorithm, we prune the tuples for which the
multi-index does not yield any results related to certain components of the pattern. The
exact pattern matching is then performed on the reduced dataset. While executing the NFA
transition function generated from the pattern, information about the matching as well as
multi-index retrievals are held and updated inside specialized efficient data structures. Note
that without index support, every time-dependent value inside each tuple in general would
have to be scanned completely for a matching decision. The index-supported approach

Geoinformatica (2017) 21:429–458 431

detailed in this paper reduces the computation cost by one or even two orders of magni-
tude, for which one reason is the lower influence of the size of the time-dependent values
on the runtime. We apply the presented data structures and algorithms by means of a con-
tinuous example. For a comprehensive experimental evaluation, we created collections of
geographic trajectories having different properties with the help of the moving objects
databases benchmark BerlinMOD [10]. These trajectories were combined with geological
elevation data of Berlin from the U.S. Geological Survey.

In the subsequent list, we summarize the contributions of this paper:

– We provide a framework for analyzing sets of tuples that have any number of time-
dependent values.

– The corresponding pattern matching algorithm is fully implemented and available as a
module of the DBMS SECONDO.

– We detail an extension of the existing pattern language that was only suitable for
symbolic trajectories.

– We apply a flexible multi-index for all time-dependent attributes.
– We introduce sophisticated data structures for efficient processing.
– An application example based on a real dataset is presented.
– With the help of synthesized data, we compare our approach to a baseline algorithm

without index support.

The remainder of the paper is organized as follows: The subsequent section is dedicated
to related work. After Section 3 introduces time-dependent values as well as the correspond-
ing pattern language and gives an insight into the DBMS SECONDO, in Section 4 we discuss
the multi-index for sets of tuples of time-dependent values and further auxiliary data struc-
tures. Section 5 presents the algorithms that are applied during the preprocessing and the
pattern matching. An application example with a real dataset is detailed in Section 6. We
provide the experimental evaluation in Section 7, before Section 8 concludes the paper.

2 Related work

In the last 15 years, the research field of moving objects databases has been highly active
[15, 45]. A conceptual trajectory model, based on the key concepts of stop and move, is first
defined in [33], followed by generalized variants [2, 28, 42] of this model. However, since
they focus on the conceptual level, issues of data management remain unsolved. A compre-
hensive framework for the generalized representation of movement in a symbolic space is
introduced in [16]. It is fully integrated into the data model of [14], available for moving
objects database systems such as SECONDO [1, 13] or Hermes [29]. The framework is also
embedded into the SECONDO implementation of the model of [14]. It includes four data
types for different kinds of symbolic trajectories and an expressive and fully implemented
pattern matching language. Demonstrations applying a set of private trajectories of a person
and the Microsoft GeoLife dataset [21] are provided in [35] and [7], respectively. The most
recent demonstration [37] focuses on the analysis of animal movement with the help of the
approach detailed in this paper. Another publication [8] illustrates the application potential
of symbolic trajectories.

A symbolic trajectory corresponds to a sequence of strings (or sets of strings), so the use of
regular expressions for a pattern language and thus finite automata [19, 24] for pattern match-
ing algorithms on symbolic trajectories seems logical. In [22, 23], a pattern language for
trajectories defined in a discrete symbolic space and a pattern matching algorithm based on

432 Geoinformatica (2017) 21:429–458

a nondeterministic finite automaton (NFA) are presented. An object’s trajectory is defined
as a sequence of symbols denoting the successive zones the considered object visited. The
drawback of the proposed language is the lack of precise temporal specifications or con-
ditions on variables. The authors of [39, 40] provide an expressive pattern language for
geometric trajectories that allows variables and conditions. However, their approach is lim-
ited to symbolic trajectories containing names of areas inside a partitioned space. In [18], a
precursor to their work, more general geometries are considered, not just partitions of the
plane into regions. On the other hand, this approach focuses on range and nearest-neighbor
queries, does not introduce any symbolic representation, and does not allow for variables
or regular expressions. The model of [44] does not include time at all and otherwise is a
sequence of timestamped locations annotated with a semantic label, where timestamps are
instants of time, not time intervals. The detection of frequent sequential patterns (i.e., tem-
porally bounded transitions from one or more places to another group of places) from a
set of semantic trajectories is supported by [43], where similar places (regarding spatial,
semantic, and temporal aspects) are grouped together.

The application of index structures is appropriate for realizing efficient search queries
and pattern matching algorithms on trajectories. Hence, index structures for spatial trajec-
tories are explored in several publications, e.g., the 3D R-tree [38], the TB-tree [30], or the
TMN-tree [5]. The authors of [26] give an overview of indexes for spatio-temporal data of
several categories. An index structure for discovering similar multidimensional trajectories
is detailed in [41]. In [36], a twofold index structure for symbolic trajectories and a new
matching algorithm are presented, extending the framework established in [16] and allow-
ing efficient pattern matching queries whose runtime does not depend on the trajectories’
length anymore. The authors of [20] introduce an index for spatial trajectories with addi-
tional labels. Their approach is efficient and includes a suitable query language which is
rather limited as it does not allow regular expressions, conditions, or the specification of
time intervals.

To the best of our knowledge, by now there is no publication on a pattern matching
algorithm for collections of tuples of arbitrarily many time-dependent attributes of different
data types supported by a multi-index which is realized as a flexible combination of classic
index structures. All existing index structures for spatial or symbolic trajectories are limited
and cannot process several attributes of different data types.

3 Preliminaries

In this section, we give an introduction to symbolic trajectories and, more generally, to time-
dependent data types in abstract and discrete representation, reviewing some of the results
of [16]. After an overview of the DBMS SECONDO, we mention basic notations, and we
describe the extensions that the new pattern language offers. Finally, a pattern is defined
which we use as a continuous example for illustrating the employed data structures and
algorithms.

3.1 Symbolic trajectories and pattern matching

First, we provide a short example for a symbolic trajectory, describing the sequence of
streets that a person has passed during her/his trip through Beverly Hills, California:

Geoinformatica (2017) 21:429–458 433

[2015-12-16-19:09:09 2015-12-16-19:11:58) Wilshire Blvd
[2015-12-16-19:11:58 2015-12-16-20:01:22) Santa Monica Blvd
[2015-12-16-20:01:27 2015-12-16-20:07:41) Rodeo Dr
[2015-12-16-20:07:41 2015-12-16-22:49:09) Sunset Blvd

It consists of four so-called units, each of which is a pair of a time interval and a label.
The brackets and parentheses indicate whether or not a time interval is leftclosed and/or
rightclosed. Note that the time intervals have to be disjoint but not necessarily continuous.
In the database system SECONDO, its data type is moving(label), or mlabel, for short. An
object of the data type mlabel represents a time-dependent label, i.e., a character string that
changes its values over time.

Database systems with support for this or similar data types offer many possibilities for
querying such a symbolic trajectory, e.g., in SECONDO operations like passes or atinstant
can be applied to find out whether or not certain predicates are fulfilled. However, for more
complex requests, a corresponding query is often hardly expressible and/or inefficiently
executed. Therefore, we developed a highly expressive but rather simple pattern language
and an algorithm that determines whether a symbolic trajectory M is matched by a pattern
p. Such a pattern consists of pattern atoms that can match either a sequence of units of M or
precisely one unit u, if the given specifications in that atom a match u. The latter “match”
means – in the basic version – that the time interval t (u) of u is completely covered by the
temporal period t (a) specified in a, i.e., t (u) ⊂ t (a), and that every label in u also occurs
in a, that is, l(u) ⊂ l(a). Other set relations than ’subset’ can be chosen, the alternatives are
’disjoint’, ’superset’, ’equal’, and ’intersect’. The order of the atoms in p has to correspond
to the order of matched units in M . For example, the pattern

X (wednesday "Wilshire Blvd") Y [* ("Sunset Blvd")]
// get duration(X.time) < get duration(Y.time)

matches the abovementioned trajectory, since the latter starts at Wilshire Blvd on a Wednes-
day, ends at Sunset Blvd without further temporal constraint, and has arbitrarily many units
between them (the * represents a wildcard). The condition after the double slash compares
the temporal durations of the unit bound toX and the unit sequence bound to Y , respectively.
It is fulfilled, since the person spent less time on Wilshere Blvd than during the remaining
trajectory. The square brackets indicate that Y is associated to all atoms between them. The
atom in parentheses can match exactly one trajectory unit. Such an atom consists of two
or more (the precise number depends on the applied dataset) so-called atom values. Any
number of conditions may be specified (separated by commas), and every operator of the
underlying database system can be used; note that get duration is not a part of the pattern
language, but a SECONDO operator. This pattern language for querying a set of symbolic
trajectories is detailed in [16] and slightly enhanced in [36].

3.2 Representing time-dependent data types

In this section, we give an introduction to abstract and discrete representations of time-
dependent data types, reproducing some of the statements of [16] that are based on a
comprehensive framework for representing and querying moving objects in databases [11,
12, 14].

434 Geoinformatica (2017) 21:429–458

The general idea is to provide a collection of abstract data types to describe moving
objects and the operations applicable to them. For example, movingpoint (or mpoint, for
short) is a data type to represent a time-dependent location in the Euclidean plane, line
is a spatial data type describing a continuous curve in the plane, and mreal is a type to
represent time-dependent real values. The operation trajectory maps a moving point to
a line value and the distance operation, applied to two mpoint values, returns their time-
dependent distance as an mreal.

These and many more data types and operations are embedded into the data model of
a DBMS as follows. The data types can be used as attribute types. Hence, we may have a
relation describing car trips with the schema

Vehicles (Id: int, Trip: mpoint).

The operations can be used in queries. For example, one can find pairs of vehicles that
have been closer to each other than 100 meters by the query

SELECT v1.Id, v2.Id,
FROM Vehicles as v1, Vehicles as v2
WHERE minimum(distance(v1.Trip, v2.Trip)) < 0.1

which uses a further operation minimum that maps an mreal to a real.
Formally, a system of types and operations is a (many-sorted) algebra. It consists of a

signature which provides sorts and operations, defining for each operation the argument
sorts and the result sort. A signature defines a set of terms. To define the semantics, one
needs to assign carrier sets to the sorts and functions to the operations that are mappings on
the respective carrier sets. The signature together with carrier sets and functions defines the
algebra.

In the framework discussed, data types are built from some basic types and type con-
structors. The type system is itself described by a signature. In this signature, the sorts are
so-called kinds and the operations are type constructors. The terms of the signature are
exactly the available types of the type system. For example, consider a signature

int, real, bool: → BASE
array: BASE → ARRAY

It has the kinds BASE and ARRAY and the type constructors int, real, bool, and
array. The types defined are the terms of the signature, namely, int, real, bool, array(int),
array(real), and array(bool). Note that the basic types are just type constructors without
arguments.

The type system defined in [14] for moving objects is shown in Table 1.

Table 1 Type system defined in
[14] Type Constructor Signature

int, real, string, bool → BASE

point, points, line, region → SPATIAL

instant → TIME

moving, intime BASE ∪ SPATIAL → TEMPORAL

range BASE ∪ TIME → RANGE

Geoinformatica (2017) 21:429–458 435

We first explain the type system informally. It has some basic standard types and some
spatial data types. The type instant represents the continuous domain of time. The type
constructor moving provides for a given static type a corresponding time dependent type.
The intime constructor yields for a static type α a type whose values are pairs of an instant
and a value of type α. The range constructor provides for a given type another type whose
values are finite sets of disjoint intervals over the domain of α.

To provide formally the semantics of the data types, one needs to define their domains, or
carrier sets. An important distinction introduced in [11, 12, 14] is that between an abstract
model and a discrete model. In an abstract model, the domain may be defined in terms of
infinite sets. Such a model is conceptually simple, but it is not directly implementable. In
contrast, in a discrete model, the possible values of a data type must be defined in terms of
finite representations. These can be mapped to data structures in the implementation.

For example, a region data type can be defined in an abstract model as a regular closed
subset of the Euclidean plane, whereas in a discrete model it would be defined as a collection
of disjoint polygons each of which may have polygonal holes.

The reference [14] defines an abstract model of data types and operations for moving
objects whereas [12] provides a corresponding discrete model.

Some notations used in defining semantics of types are Aα and Dα to denote the carrier
set of the type α in the abstract and discrete model, respectively. When a carrier set Aα

contains an undefined value ⊥, then the notation Āα refers to the carrier set without the
undefined value, i.e., Āα = Aα \ {⊥}. With these notations, the carrier set of the moving type
constructor is defined as follows.1

Definition 1 Given a data type α to which type constructor moving is applicable, the carrier
set of the type moving(α) is

Amoving(α) := {f | f : Ainstant → Āα is a partial function}

Note that the abstract model disregards completely the issue of how such functions can be
represented. A function f : Ainstant → Aα is simply an infinite set of pairs from Ainstant ×
Aα .

The discrete model of [12] provides finite representations for all the types of the abstract
model. For types moving(α) the so-called sliced representation is introduced. That means,
to represent a function of time, the time domain is cut into disjoint time intervals (slices)
such that within each slice the development can be represented by some simple function of
time. “Simple” actually means finitely representable. In other words, the function for a slice
can be described by a few parameters rather than an infinite set of pairs. Figure 1 illustrates
the sliced representation for a moving(real) and a moving(point).

The representation of a single slice, consisting of the time interval and the function
description, is called a unit.

For the given data types, a comprehensive set of operations is defined. Most of them are
generic and applicable to many of the available data types. Two examples are

deftime: moving(α) → periods
atinstant: moving(α) × instant → intime(α)

1The definition in [14] has an additional condition requesting that such a function has only a finite number
of continuous components, omitted here.

436 Geoinformatica (2017) 21:429–458

Fig. 1 Sliced representations for moving(real) and moving(point)

Here the type periods is just an abbreviation of range(instant). Hence the operation def-
time returns the set of time intervals during which a moving object is defined. These two
example operations are generic because they range over the types generated by the type
constructor moving.

Finally, lifting is introduced as a mechanism to make static and related time-dependent
operations consistent. Lifting means that for a given static operation each of the arguments
may become time-dependent (i.e., replacing in the signature type α by moving(α)) which
makes the result time-dependent as well. Furthermore, the semantics of the lifted operation
is derived using the semantics of the static operation for every instant of time. Hence by
lifting we also have an operation inside: moving(point) ×region → moving(bool).

See [14] for further details and the complete definition of types and operations.

3.3 The DBMS SECONDO

This section provides a brief introduction to the DBMS SECONDO, reviewing some of the
results of [13].

SECONDO is a prototype DBMS developed at University of Hagen since about 1995. It
runs on Linux and MacOS X platforms and is freely available open source software [32].
The main design goals were a clean extensible architecture and support for spatial and
spatio-temporal applications.

The architecture of SECONDO is depicted in Fig. 2. It consists of three major compo-
nents: the kernel, the optimizer, and the GUI. The kernel does not implement a fixed data
model but is open for the implementation of a wide variety of DBMS data models. The
kernel is extensible by algebra modules. To be precise, the entire implementation of a par-
ticular data model is done within algebra modules. Such a module encapsulates everything

Fig. 2 SECONDO components (left), architecture of kernel system (right) [13]

Geoinformatica (2017) 21:429–458 437

needed to implement a DBMS data model, hence there are algebras in SECONDO for basic
data types, for relations and tuples including operations such as hashjoin, for B-trees and R-
trees with their access operations, for spatial and spatio-temporal data types, and many more.
There are also algebras beyond the scope of a relational model such as for nested relations,
networks, or parallel processing.

The SECONDO kernel is an engine to evaluate terms over the existing objects and oper-
ations. For example, it evaluates the expressions

query Trains feed filter[day of(inst(initial(.Trip))) = 9]
filter[length(trajectory(.Trip)) > 2000.0]

count

where Trains is a relation containing trajectories represented in an attribute Trip of the type
mpoint. The syntax for operations can be freely chosen, often it is convenient to use postfix
notation for query processing operations. For example, the first argument to the filter oper-
ation is Trains feed. Stream processing is built into the engine. The commands and
queries processed directly by the kernel are called the executable language. The kernel is
written in C++ and uses BerkeleyDB as the underlying storage manager.

The optimizer is not as independent from the data model as the kernel. It assumes an
object-relational model and supports an SQL-like language. It maps SQL to the executable
language shown above. The optimizer is extensible by registering types and operations of
the executable level, by translation rules and cost functions. It allows for extension by new
index types, providing concepts to distinguish between logical and physical indexes (a phys-
ical index is a particular index structure available in the kernel, a logical index is a strategy
to use it which may be complex). The optimizer determines predicate selectivities by a sam-
pling strategy which is the only feasible way to support predicates with arbitrary data type
operations. The optimizer is written in Prolog.

The GUI allows the user to send commands and queries to a kernel and visualize the
results. It supports both the executable level language and the SQL level. In the latter case
it interacts with the optimizer to obtain a plan (executable query) which it then sends to
the kernel. The GUI is extensible by so-called viewers that can offer their own methods to
display data types. One of the available viewers (the so-called Hoese-Viewer) allows for a
sophisticated representation of spatial data and for animation of spatio-temporal data types.
This viewer is itself extensible to support further data types. The GUI is written in Java.

3.4 Basic notations

Each of the tuples in a collection/relation is assumed to have a unique identifier that we
need for indexing the contents of the respective attributes. Since we later use a tuple id for
a fast access to a certain array slot, and since the tuple ids are not necessarily consecutive
in general, we first map them onto a set {1, . . . , n} for the whole computation (the tuple id
0 does not exist; the value 0 is used otherwise). The result of the main algorithm is a list
containing the tuple ids of the successfully matched tuples, so we have to map them back
to the original tuple ids. In the remainder of this paper, we refer to a tuple id as if they were
in consecutive order, beginning with 1. In contrast to tuple ids, the components of a pattern
and of the time-dependent attributes start at position 0.

438 Geoinformatica (2017) 21:429–458

3.5 Pattern language extension

While our previous work only allows for querying sets of symbolic trajectories, in this
paper we focus on tuples of numerous time-depending attributes. Similar to the data types
mlabel (one label per unit) and mlabels (arbitrarily many labels per unit), the remaining
time-dependent values are realized as sequences of time intervals with an information that
belongs to a certain domain. In other words, they can be considered as functions from time
into a specific range of values. The time-dependent data types especially supported by our
framework are listed in Table 2. Note that a unit of an mpoint or mregion represents the
linear movement of an entity. Curved paths can be approximated by a sufficient number of
short units. For more theoretical background, consider [16] (for the data types mlabel and
mlabels) and, particularly, [14].

Previously, a pattern atom was limited to contain temporal information as well as a set of
labels. We extended this concept so that constraints can be defined for every time-dependent
attribute (having one of the data types from Table 2). Since the length and number of the
units is in general different for the time-dependent attributes of a tuple, the user has to
determine a so-called main attribute that is essential for the matching. Let m be the number
of time-dependent attributes from the tuple description. Hence, analogously to the primary
pattern language, every pattern atom a consists of m + 1 components a0, . . . , am, where a0
refers to the temporal data of the main attribute and a1, . . . , am apply to the time-dependent
attributes in the same order as they occur in the tuple description. For example, if a0 equals
june at the beginning of the pattern, the main attribute has to start in June for a match,
whereas it means no constraint for the remaining attributes that may start earlier. As before,
the use of an underscore means that the attribute at the corresponding position is uncon-
strained. In Table 3 we detail how the components of a pattern atom may be specified for
every time-dependent data type.

Note that the spatial data types are point, points, line, region, and rect, while int and
real are considered as numeric types. In the interval representation, a and b are the left and
right limits (real values), and lc and rc indicate whether the interval is leftclosed and/or
rightclosed.

Regarding the use of conditions, the previous version was limited to certain information
of the respective part of the symbolic trajectory, e.g., the start time, or the set of labels,
that could be combined with SECONDO operators. In the pattern defined in Section 3.1, the
terms X.time and Y.time refer to the time periods of the sequence of units bound to X and

Table 2 Supported
time-dependent data types Data type Value domain for each time interval

mlabel label; a character string of arbitrary length

mlabels labels; a set of arbitrarily many labels

mpoint a linear movement from one point to another

mregion a region’s linear movement

mbool a boolean value

mint an integer value

mreal a quadratic function of reals, or its square root

mstring string; a string of at most 48 characters

Geoinformatica (2017) 21:429–458 439

Table 3 Pattern atom
specification options Data type Specification alternatives

mlabel (s), mstring name of a DB object of label (s) type

character string

mpoint, mregion name of a DB object of a spatial type

mbool name of a DB object of boolean type

boolean value

mint, mreal name of a DB object of a numeric type

integer or real value

interval of the form 〈a b lc rc〉

Y , respectively (data type periods). We extended this concept, so the user may address any
of the attributes of the tuple with a term of the form var.attrname, in combination with
any operator of the SECONDO database system. The binding of variables to sequences of
units now refers to units of the main attribute. For example, if Y is bound to [1, 3] as in the
mentioned example, and assuming another attribute A with a different fragmentation into
units, to evaluate the term Y.A we retrieve the time period of the main attribute correspond-
ing to the units [1, 3] and restrict A to this period. As described in our previous work, we
distinguish between easy and complex conditions. While the former refer to only one unit
and can be evaluated immediately during the matching process (e.g., day of(X.end) =
16), the latter involve a sequence of units and/or more than one variable and can therefore
be verified only at the end of the matching, which holds for the condition from Section 3.1.
The other rules of the pattern language remain unchanged and can be obtained from [16]
and [36].

3.6 The continuous example

In the following, we define a set of two tuples that will serve as a continuous example
throughout this paper. Note that the data set is very small for the sake of brevity. Let t be
a tuple (id 1) whose first attribute is the symbolic trajectory from Section 3.1. The second
attribute of t is an mpoint representing the movement of the person, at the same time of
day as the first attribute, i.e., from 19:09:09 until 22:49:09, but with a new unit for every
second. Hence, it has not only 4, but 220∗60 = 13,200 units. In addition, there is an mint
attribute containing the speed limit of the respective street and therefore having 4 units
(value 35 for Wilshire Blvd, 30 for Santa Monica Blvd, 25 for Rodeo Dr, and 30 for Sunset
Blvd). We denote the three attributes as Street, Trip, and SpeedLimit. Let t ′ be another tuple
(id 2) that is equal to t except for the time intervals that are all postponed by one month,
i.e., the identical movement occurs on January 16, 2016, between 19:09:09 and 22:49:09.
We decide to determine Street as main attribute. Finally, let both tuples have an attribute
for the person’s Name (“John” for t and “Jane” for t ′) which is not indexed since it is not
time-dependent. In addition, let p0 be the following pattern:

X [[("Camden Dr") | (beverlyhills 35)]

* (2015 "Sunset Blvd" <25.0 30.0 t t>)]
// sometimes(speed(X.Trip, wgs1984) > X.SpeedLimit)

440 Geoinformatica (2017) 21:429–458

First, note that p0 consists of 4 atoms: two in the alternative that is limited by the inner
brackets, one wildcard atom and another atom. The outer brackets indicate that the range
of the variable X is the whole pattern. Note that beverlyhills is a database object of
type region representing the borders of Beverly Hills, and wgs1984 is a geoid used for
computations with geographic coordinates. Semantically, p0 finds all tuples where the trip
starts either at Camden Dr or at any street in Beverly Hills with a speed limit of 35 mph.
The trip has to end in 2015 at a segment of Sunset Blvd with a speed limit between 25 and
30 mph, and according to the condition, the velocity must exceed the respective limit at least
once. In other words, the pattern finds speeders with a certain movement profile. The speed
operator converts an mpoint into an mreal, the comparison with an mint yields an mbool,
and sometimes is true if and only if the mbool is true in at least one unit.

4 Data structures

The purpose of this section is, first of all, to detail the components of the new index structure
for tuples of time-dependent values. In addition, we present auxiliary data structures for the
storage of index results and for the course of the exact matching.

4.1 The multi-index

The multi-index is created by the SECONDO operator bulkloadtupleindex, taking a
database relation and an attribute name, where the type must be time-dependent (cf.
Table 2). When the operator is executed, the time-dependent attributes of the relation are
processed one after another. We assume that the tuples have m+c attributes, of which m are
time-dependent and c are constant ones. Before the operator starts to process the relation, a
new index has to be created for each of the m relevant attributes. The type of the new index
depends on the data type of the attribute as shown in Table 4.

Every created index is stored in an array, and a mapping that indicates the corresponding
index for each attribute, and vice versa, is set up, before the tuples can be processed. For
each of the time-dependent attributes, a temporary vector is created, and for each unit of the
attribute, the respective value and the exact position (i.e., the tuple identifier and the position
of the unit) are appended to the vector.

If the attribute type is mlabel or mstring, the label/string from each unit is considered.
For an mlabels attribute, all labels from a unit are inserted. Now we focus on an attribute
having the type mpoint. From the linear movement inside each unit, we derive the bounding
box (i.e., the smallest rectangle completely covering the movement trajectory whose lateral
lines are parallel to the coordinate axes) and add it to the vector for the attribute. In case

Table 4 Time-dependent
attributes and corresponding
index types

Time-dependent data type Appropriate index type

mlabel, mlabels, mstring trie (inverted file) [9]

mpoint, mregion 2-dimensional R-tree [17]

mreal, main attribute’s time intervals 1-dimensional R-tree

mint B+-tree [3, 6]

Geoinformatica (2017) 21:429–458 441

of an mreal attribute, for each unit the minimum and maximum value of the continuous
real function are computed. We insert the corresponding interval of real numbers into the
respective vector. The units of an mint have constant integer values that can be held in the
vector. For the main attribute, also the time interval is inserted for each unit (in a separate
vector). More precisely, the limits of a time interval (data type instant) are transformed into
real numbers.

When an attribute is completely processed, the vector is sorted by the value, e.g., by
alphabetical order of the labels for an mlabel, or by x- and y-coordinates for an mpoint.
Subsequently, all values from the vector are inserted into the appropriate tree, as listed in
Table 4. For each of the different index types, this operation is efficient due to the correct
order of the inserted values. Finally, after all time-dependent attributes are processed as
described, the multi-index is stored as a persistent database object, having the data type
tupleindex.

Nowwe demonstrate how the information from our continuous example from Section 3.6
is inserted into a new multi-index. First, four indexes are created: a trie for the attribute
Street, a 2-dimensional R-tree for the geographic position, a B+-tree for the speed limit, and
a 1-dimensional R-tree for the temporal information of the first attribute. Then the attribute
Street from tuple t is processed. More precisely, the four street names are inserted into a
vector, along with the position of the label, e.g., the pair (1,2) for Rodeo Dr, meaning tuple
id 1, unit position 2. We also process the Street attribute from the second tuple, appending
the values and positions of the four units (for example, (“Sunset Blvd”, 2, 3)) to the vector.
Then the vector is sorted by the label (and then by tuple id and by unit position), i.e., its first
entry is then (“Rodeo Dr”, 1, 2) and its last one is (“Wilshere Blvd”, 2, 0). After that, we
iterate over the vector and insert all values into the empty trie.

Since Street is the main attribute, the eight time intervals are stored in a vector (after
the conversion into intervals of real numbers) and afterwards inserted into the prepared 1-
dimensional R-tree. This procedure is more expensive for the attribute Trip for which 26,400
units have to be processed. Their bounding boxes are sorted by x- and y-coordinates and
finally stored in the 2-dimensional R-tree. The eight values of the SpeedLimit attribute are
inserted into the B+-tree.

4.2 A container for index results

One possibility of working with an index (or a multi-index, in our case) is to access it
every time when it is required. However, as we use an NFA with possible repetitions for the
pattern matching algorithm, it is likely that the index is often queried with the same contents,
yielding large amounts of repeated results. In addition, in the course of the algorithm, more
and more tuples do not have to be considered anymore, due to a successful or unsuccessful
matching decision. Hence, an increasing number of results from the multi-index are useless
and would cause unnecessary computation cost.

For these reasons, we developed a data structure where all index results are stored, so
the multi-index has to be queried only once per atom value. Everytime an atom a is con-
sidered for the first time, we store the results for every tuple that is active (what exactly
this means is detailed later) in a slot of an array R. Each slot id of R contains the set of
unit positions found in the multi-index for the tuple id id . In addition, there are two inte-
ger values pred and succ pointing to the previous and successive tuple id that is active
and has index results for the contents of this atom. Note that 0 is not a valid tuple id,

442 Geoinformatica (2017) 21:429–458

so we use the slot R[0] to indicate the first active position R[0].succ. For every consid-
ered atom a (no matter whether this occurs during the preprocessing or during the exact
matching), the array R is computed once and stored into another array indexResult at the
position indexResult[a]. This structure allows us to insert, retrieve and deactivate con-
tents in constant runtime. Moreover, an iteration over all components with the help of the
pred and succ pointers comprises only the relevant (active) ones. If a tuple id i is deac-
tivated during the computation, we have to ensure that an iteration over one of the arrays
indexResult[a] ignores the slot indexResult[a][id]. Hence, for each atom a, we set the
reference indexResult[a][indexResult[a][id].pred].succ of the predecessor of id to its
successor indexResult[a][id].succ, and vice versa.

Now we explain how the values are written into the slots. Consider an atom a of the form
(a0 a1 . . . am). Remember that a0 represents constraints for the temporal component of the
main attribute, while a1, . . . , am refer to the time-dependent attributes (in the same order as
in the tuple description). We loop over all specifications ai , i = 0, . . . , m. For each ai , the
index results, i.e., a set of pairs of tuple id and unit position, are collected. These unit posi-
tions are subsequently transformed into periods values with the help of the corresponding
time-depending attribute. In constrast to [36] it is necessary to use temporal information for
the index results, since the miscellaneous time-dependent attributes may have different tem-
poral distributions, as in our continuous example. As an advantage, instead of numerous unit
positions, only one periods value is required per tuple. Hence, an index result I (ai) for ai

has the form {(t1, p1), . . . , (tk, pk)} where k is the number of tuples having an index result
for ai . Then we compute the intersection I (a) = ⋂m

i=0 I (ai) that also has the mentioned
form, since periods values are stable with respect to set operations. The result I (a) repre-
sents all time periods in which the constraints inside a are fulfilled. Next, we detail how the
sets I (ai) are determined. In general, a specification ai has the form r{ai1, . . . , ail} where l

is the number of components and r is the specified set relation (either omitted for the stan-
dard case or superset, intersect, disjoint, equal)2. For each aij , the index results I (aij) are
retrieved. According to the set relation, these are either intersected or united (and inverted,
if disjoint is chosen), yielding the intermediate result I (ai). Finally, the set I (a) of index
results is transformed into the form {(t1, U1), . . . , (tk, Uk)}, where Ui is the set of units of
the main attribute during which the specifications from a hold for the tuple ti .

4.3 A Structure for the exact matching

In order to efficiently file and access the data required for the matching process, we cre-
ated the IndexMatchInfo data structure, which we call IMI from now on. An IMI instance
contains an integer next (for the position of the unit inside the main attribute that is sup-
posed to be matched in the following step), a boolean named range (indicating whether
the last considered atom for this IMI instance was a wildcard; if it is true, next or any of
its successors may be matched by an atom in the subsequent step; otherwise, next is the
only possible match), a mapping binding from a string to a pair of integers (representing
the current binding of variables to a sequence of units of the main attribute in case of a
pattern with conditions), and a string prevV ar (representing the variable considered in the
previous update for this IMI instance)3.

2The concept of user-defined set relations was introduced in our previous work, please refer to [36] for details.
3Note that in the implementation, variables are represented as integer values for the sake of efficiency. For a
better understanding, we chose to use strings in this paper.

Geoinformatica (2017) 21:429–458 443

The set of IMI instances for one tuple is stored in an array slot whose number represents
the tuple id. Again, we apply two references pred and succ for a fast access to every active
slot. Since each of these arrays of IMI sets depends on the current NFA state, they are held
in an array indexMatching, or iM , for short, where the positon represents the NFA state.
In the subsequent section, we give a visual example for this structure (Fig. 4).

5 Algorithms

In this section, we introduce the algorithms that are applied to determine the results of the
index-supported pattern matching for a pattern p and a set T of tuples with time-dependent
values. The suitable SECONDO operator tmatches expects a multi-index, a relation, an
attribute name (for the main attribute), and a pattern as input parameters. Its output is the
stream of tuples that successfully match the pattern. The matching process is divided into
two main steps: First, the tuple collection is filtered according to the index results, before
the exact matching is performed on the remaining candidates. At the end of the section, we
consider computation cost issues.

5.1 Preprocessing

The purpose of this step is to reduce the number of tuples that have to be processed in the
main phase.

5.1.1 Crucial transitions

As described in Section 6.1 of [16], a pattern is converted into an NFA, where the trigger
of a transition represents an atom. We denote the source and target state and the triggering
atom of a transition tr by tr.source, tr.target , and tr.trigger , respectively. Moreover, δ(s)
is defined as the set of transitions outgoing from a state s.

In order to apply the multi-index for the preprocessing, we first identify the transitions
that are mandatory for the automaton to arrive at any of its final states, denoted as crucial
transitions. The multi-index is queried with the contents of the atoms corresponding to the
crucial transitions, and only the tuples whose ids occur in the index results for all crucial
transitions/atoms are passed to the exact matching phase. Please refer to [36], Section 4.1.1,
for details concerning the determination of the crucial transitions of a pattern. In simple
terms, the crucial atoms of a pattern are the non-wildcard atoms that are not located in the
branch of a logical alternative.

The NFA corresponding to the pattern p0 is depicted in Fig. 3. Only atom 3 is crucial.
This can easily be derived from the illustration, since the other transitions are either involved
in a logical alternative (0 or 1) or in a loop induced by a wildcard (2).

5.1.2 Filtering the set of tuples

Subsequently, we iterate over the set of crucial atoms and apply the indexes. That is, for
each non-empty crucial atom a, the array indexResult[a] is filled according to Section 4.2.

Fig. 3 The NFA computed from
p0

444 Geoinformatica (2017) 21:429–458

Table 5 Index result for the
continuous example slot / tuple id 0 1 2

pred 0 0 −
succ 1 0 −
units ∅ {3} ∅

At the same time, we update an array active of booleans indicating which tuples are active.
For example, if a tuple has index results for a but not for another crucial atom a′, the tuple
id is removed from the structure indexResult , and the value active[id] remains false. The
slot active[id] is set to true only if there are index results for every crucial atom. In this
phase, false positives cannot be avoided, since no exact matching is performed. However,
this method ensures that in the main phase, only tuples whose id occurs in the index results
for the crucial pattern atoms are processed, so it remarkably reduces the dataset.

In this step, we only have to consider the final atom of p0. For the year 2015, the 1-
dimensional R-tree yields the result set {(1, 0), (1, 1), (1, 2), (1, 3)}. The search for Sunset
Blvd in the corresponding trie produces the results {(1, 3), (2, 3)} (i.e., tuple id 1, unit 3,
and tuple id 2, unit 3), and the B+-tree returns {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}
when it is queried with the specified real interval. After the transformation into time periods
(which could be omitted in this case, but not in general), their intersection, and the back-
wards transformation into unit positions, we store the unit 3 into the slot indexResult[3][1].
Also the pred and succ members are set, e.g., indexResult[3][0].succ equals 1, but
indexResult[3][1].succ points to 0, indicating that there is no further active tuple. Finally,
active[1] is set to true.

The array indexResult[3] containing the index results induced by the only crucial atom
of p0 is listed in Table 5.

Note that due to the pred and succ variable structure, inactive slots like for the tuple id
2 in the above table are never accessed anymore.

5.2 Exact matching

As stated before, our main challenge was to extend the index-supported pattern matching
from accepting only symbolic trajectories to a framework for tuples of several time-
dependent values of different data types. Since regular expressions are allowed in the
pattern, the number of different paths from the initial NFA state to one of the final states is
not limited to the number of final states but may be infinite. Moreover, if the pattern contains
conditions, the bindings of variables to unit positions have to be stored, and the underlying
database system is used for evaluating the corresponding queries.

The matching of a pattern p with a set T of tuples requires a parallel traversal of a path
from the start state to a final state of the NFA for p and of the sequence of units of every
time-dependent attribute tij of every tuple ti , i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. Without loss
of generality, let ti1 be the main attribute of every tuple ti . However, this traversal is not
unique, since the NFA may offer arbitrarily many paths, depending on the pattern and the
matching success. Hence, during the process, we always hold the set of active NFA states
and have read (conceptually, not physically) an initial subsequence si1 of the units of each
main attribute ti1. This sequence can be transferred to all other attributes with the help of

Geoinformatica (2017) 21:429–458 445

the corresponding time period. Such a state of scanning ti1 is exactly represented by an IMI
instance, which expresses si1 in terms of the next unit that is to be matched. If the preceding
NFA transition was triggered by a wildcard atom, the next unit information is only a lower
bound (range = true in this case).

For each tuple, several ways of matching p may exist. Therefore, at any NFA state, for
each tuple possibly many IMI objects have to be maintained, each of them representing one
possible matching path. Initially, the only active NFA state is 0, and for every tuple ti that is
active after the preprocessing, si1 is empty, so the unit to be matched in the next step is 0.

5.2.1 Initialization

For every tuple ti that passes the preprocessing, an instance of the structure IMI is created
and inserted into the array slot iM[0][i]. Remember that in the two-dimensional structure,
the first position refers to the NFA state, which is 0 at the beginning. The IMI members are
initialized as follows: next is set to 0, range equals false, binding remains empty, as well
as the string prevV ar (since there is no matching history yet). In case that only wildcard
transitions are available at the beginning (e.g., if the pattern starts with a *), range is set to
true.

Simultaneously, for each tuple, the global integer value numActive (number of active
tuples; initially set to 0) is incremented. This variable is essential for the later matching,
since it is decremented for each deactivated tuple, and the algorithm ends as soon as it equals
0. There is also an initially empty list res, where the matching tuple ids will be inserted.
The initial state of the structure iM for the continuous example is depicted in Fig. 4. The
variable numActive is set to 1.

5.2.2 Traversing the NFA

At the beginning of Algorithm 1, the set of active NFA states is initialized with the ini-
tial state 0. Note that for the NFA states as well as for the iM structure, two versions are
required; the older ones (iM and S, respectively) are read-only, while new values are stored
in the new versions (iM ′ and S′, respectively). At the start of the while loop (lines 5-8), the
old versions are replaced by the new ones, and the new versions are cleared. The algorithm
collects all available transitions outgoing from any currently active state and stores them in
the variable δS (line 9). If the set of possible transitions is empty, the computation is aborted
and the current result list is returned, since no further matches can be obtained without

Fig. 4 The initial state of the data structure iM

446 Geoinformatica (2017) 21:429–458

transitions. Otherwise, a loop over the available transitions is performed, as long as there
are still tuples that have not been completely processed.

In contrast to approaches without index support, the time-dependent values are not
scanned in a linear way. Instead, Algorithm 1 iterates over the automaton and applies its
transitions if the corresponding index results fit the previously saved matching information
from iM . The framework of the algorithm is similar to the concept described in [36],
however, the inner function atomMatch is completely new.

For each active state s ∈ S, Algorithm 1 tries to apply every existing transition from
all transitions δ(s) that originate from the state s and whose target state is inactive (for p0,
there are two transitions available at the state 0). In detail, a transition tr ∈ δ(s) can be
executed if and only if the corresponding pattern atom tr.trigger matches at least one of
the IMI instances inside iM[s]. This is verified in the function atomMatch that is invoked
in line 14. The algorithm stops as soon as there are no active tuples anymore, returning the
list with the ids of the successfully matched tuples. If atomMatch returns true, the target
state of the transition tr is inserted into the new set S′ of active states.

The purpose of the data structure presented in Section 4.3 is to provide all necessary
information for each of the possible matching paths. Specifically due to regular expressions
that allow steps backwards in the NFA, it is mandatory to enable multiple IMI instances for
every NFA state and every active tuple. The structure is crucial for the matching decision
in the following way: The tuple t with id id matches the pattern p while a final state s is
active if and only if there exists a newly created IMI object which is finished, i.e., whose
range value is true or where next equals |ti1|, the number of units of the main attribute of
t ; in other words, where the main attribute is conceptually completely traversed. Finally, we
call an instance exhausted if next equals |ti1| during a non-final state, meaning that a match
(based on this IMI) is not possible anymore. When the exact matching process deactivates
a tuple id id , we set active[id] to false and apply the strategy detailed in Section 4.2.

Geoinformatica (2017) 21:429–458 447

In this paragraph, we assume that the considered pattern does not have complex condi-
tions; the other case is detailed in Section 5.2.3. Now we examine the atomMatch function,
see Algorithm 2. Note that it is invoked with (references to) the pattern p and the arguments
iM and iM ′, i.e., the old and the new version of the structure holding the IMI instances.
The old version is used for verifying the matching, and the newly created IMI instances
(in the positive case) are inserted into the new version, iM ′. The transition parameter tr is
important for the access to the correct IMI instances as well as the pattern atom (tr.source

and tr.trigger). The number numActive of active tuples and the list res are passed for

448 Geoinformatica (2017) 21:429–458

manipulation. Inside the algorithm, we distinguish between three types of triggering pattern
atoms:

An atom with contents. For example, any atom of p0 except the wildcard atom *. If the
index result for p0 has not been determined yet, this must be done now (line 4). We iterate
over the array indexResult[tr.trigger], skipping the inactive tuple ids with the help of the
succ member in each slot. For each resulting position (tuple id id and unit u) that is found, it
is verified whether there exists a suitable IMI instance in the slot iM[tr.source][id] (line 8).
Remember that an IMI instance is suitable if its next member equals u (in case range is
false) or next ≤ u holds. If there is no suitable instance, we continue with the next index
result. Otherwise, and if the attributes at the respective positions are matched by the atom
specifications and the easy conditions for the atom are fulfilled (if existing), we create a
new IMI instance with next = u + 1 and range = false (since the current atom is not a
wildcard), see line 10.

Note that a positive index result does not necessarily produce a match in any case. For
example, for an mpoint attribute, the multi-index yields all unit positions where the bound-
ing box of the movement intersects some specification from an atom, possibly a region
object. However, the linear movement itself, without the rectangular box, may have no inter-
section with the region at all. Such expensive verifications have to be performed for each
atom with contents, hence for efficiency reasons, we store the respective results in a separate
structure for later access, in order to avoid repeated verifications.

An empty atom. That is, () or (...). Accessing indexResult is useless, and we
have to loop over the array iM[tr.source], considering all active tuple ids with all existing
IMI instances. For each of these instances imi, if the corresponding easy conditions hold, a
new instance having next = imi.next + 1 and range = imi.range is created (line 17).

A wildcard atom. That is, + or *. Again, we cannot access the index results, and all
IMI instances from the active tuples inside iM[tr.source] have to be considered. For each
existing instance imi, a new one with next = imi.next + 1 and range = true is generated,
see line 23.

In any of the three cases, after the creation of a new IMI instance, we have to determine
whether it is finished or exhausted. The former means that the tuple with id id matches the
pattern, so we deactivate the tuple id (i.e., it is removed from the structures described in the
Sections 4.2 and 4.3, and the variable numActive is decremented) and append it to the list
res. The finished IMI instance is ignored. An exhausted IMI object is also neglected. If none
of these two states holds, the new instance is inserted into the set iM ′[tr.target][id]. Hence,
we deduce that Algorithm 1 terminates after no more than max{|ti1| | 1 ≤ i ≤ n} iterations
of the while loop, where |ti1| equals the number of units of ti1. However, this worst-case
bound only has a theoretical meaning and is realized in very exceptional cases. For the
sake of efficiency, the iteration in line 12 of Algorithm 1 is conducted in reverse order, that
is, starting with the highest available target state. Causing an earlier decrementation of the
value numActive, this technique increases the probability of a faster matching decision.

Regarding our example, the first invocation of atomMatch for tr = (0, 1, 1) (meaning
the current state 0, atom 1, transition target state 1) queries the indexes with the specifica-
tions from atom 1. The index query for atom 1 returns the position (1, 0) (remember that the
tuple with id 2 was deactivated), matching the IMI instance in iM[0][1].imis, where next

Geoinformatica (2017) 21:429–458 449

is 0. Hence, we create a new instance with next = 1 and range = false and insert it into
iM ′[1][1].imis. The state 1 is active now, so the transition (0, 0, 1) pointing to the same
state is not considered, and a new iteration of the while loop is started. First, we try to apply
the transition (1, 3, 2), but since we obtain only the position (1, 3) from indexResult[3],
there is no match with the IMI instance having next = 1 and range = false. In contrast,
the transition (1, 2, 1) related to the wildcard atom is successful, and a new IMI object with
next = 1, range = true is inserted into iM[1][1].imis. State 1 is still the only active state,
and another while loop run begins. The atomMatch function is invoked with the transi-
tion (1, 3, 2) again. This time, the retrieved position (1, 3) matches the IMI instance (since
range equals true), and we arrive at the final state 2. Since next equals the 4, the number
of units of the main attribute, the new IMI instance is finished, so we have a match. Hence,
the tuple id 1 is appended to res, numActive is decremented to 0, active[1] is set to false,
and res is returned.

5.2.3 Condition processing

If the pattern entails conditions, the current binding of variables has to be kept in each
instance of the class IMI. The attribute binding is required for the evaluation of the con-
ditions in SECONDO (see Section 6.3.3 of [16] for details), while prevV ar keeps track
of the binding variable that was changed most recently, in order to extend the binding
correctly. Everytime a new IMI instance is created (except for the initialization step), the
attribute binding is copied from the source instance and then updated, depending on the
variable curV ar of the current atom and on prevV ar . We consider the following two
(non-exclusive) cases:

– If curV ar and prevV ar have the same non-empty value, the binding of prevV ar is
extended until next − 1, which is the last unit that was matched.

– Now assume curV ar �= prevV ar . Unless prevV ar is empty, we extend the binding
of prevV ar to next − 2 (one unit before the most recently matched one). Moreover, if
curV ar exists (meaning no contradiction to the previous case), the mapping position
binding(curV ar) is assigned the pair (next − 1, next − 1).

In any case, the attribute prevV ar in the new IMI object is assigned the variable of the
current pattern atom. If the IMI object is finished and belongs to a final state (i.e., a match
in the version without conditions), the current binding is passed to the condition evaluation.
If it fulfills each of the conditions, the IMI instance and the tuple id are processed like in the
condition-free version. Otherwise, the IMI object is ignored. For the evaluation, from the
binding of variables to intervals of units of the main attribute, we first compute a binding of
variables to time intervals. These are required for verifying the conditions that refer to other
time-dependent attributes.

The first IMI instance created in the continuous example gets the binding X → [0, 0],
while prevV ar is set to X. For the IMI instance emerging from the wildcard transition, the
binding remains unchanged. Subsequently, the transition (1, 3, 2) causes the creation of an
IMI instance with next = 4, so the binding of X is extended to [0, 3], since the considered
variable is the same as before. Having arrived at a final state with a finished IMI instance,
we proceed to the condition evaluation. Assuming that John’s highspeed at Rodeo Dr was
actually 45 mph, the evaluation yields true. Hence, the tuple id 1 is appended to res, and
numActive is decremented to 0, so the algorithm terminates.

450 Geoinformatica (2017) 21:429–458

5.3 Runtime considerations

Due to the initialization cost for the arrays active, indexResult , iM , and iM ′, the total
computation cost for preparing the pattern matching algorithm is certainly linear in the
number of tuples and in the number of pattern atoms. The former could theoretically be
avoided by using flexible structures instead of fixed-size ones, but the smaller initializa-
tion cost would be overcompensated by numerous memory allocations, particularly if the
indexes return results for many different tuples. As mentioned before, the maximal num-
ber of units of the main attribute is the worst case limit for the number of outer iterations
in Algorithm 1. However, instead of more iterations, in most cases the effect of more units
in the time-dependent values is that the indexes yield more results that have to be collected
and processed. Other influences on the runtime are the selectivity of the pattern, the num-
ber, and complexity of conditions (easy or complex, number of applied variables, runtimes
of involved operators) as well as the number of time-dependent values in the tuples (and in
the pattern). In any case, a certain knowledge about the queried data is helpful to achieve
convenient runtimes.

The computation cost for creating the multi-index is in O(uT log uT), where uT is the
total number of units in the tuple collection, due to the required sorting of the temporary
vectors, as discussed in Section 4.1. The fact that for huge tuple collections, the vector(s)
can possibly not be sorted in the main memory but only on the hard disk may slow down
the procedure remarkably.

6 Application example

This section is dedicated to the analysis of a real dataset, in order to demonstrate the
expressiveness of our pattern language. The applied dataset contains the mobility traces of
320 taxis in Rome, whose GPS coordinates have been collected for over 30 days [4]. We
imported these data into the DBMS SECONDO and obtained 10,278 tuples each of which
contains a driver id and an attribute Trip of the data type mpoint, representing the geometric
trajectory of a driver during one shift, usually having a duration of about 8 hours.

For the geometric trips, we first computed a speed profile and stored it as a new
attribute Speed (type mreal). Next, we derived the corresponding road names from the
OpenStreetMap [27] data of Rome by map matching [25, 31]. In other words, the geomet-
ric movement data was matched onto the road network generated from the OpenStreetMap
data, resulting in a new attribute Roadname of the type mlabel containing the sequence of
names of the traversed roads for each of the trips. Note that compared to the raw move-
ment data, the space consumption of this representation is only 14 %. Finally, with the help
of elevation raster data from the Shuttle Radar Topography Mission of the U.S. Geologi-
cal Survey [34], we created altitude profiles for each of the trips as an mint attribute named
Altitude. Hence, the complete relation for our analysis has the schema

Trip mpoint, Roadname mlabel, Speed mreal, Altitude mint.
As a whole, the relation contains 42.4 million units. The multi-index for all these data

was successfully created after approximately 7 minutes.
We now search for all trips that match the following pattern:

X * ("Via Giuseppe Zanardelli") Y *
(2014-02-07-22∼2014-02-07 "Lungotevere dei Sangallo")
Z *

Geoinformatica (2017) 21:429–458 451

Fig. 5 The trajectories of the matching trips around the Colosseum are depicted on the map. The complete
query with the pattern is shown in the top left area. The bottom left window shows the sequence of road
names for one of the trajectories

// maximum(Z.Altitude) > 100, Y.Trip passes fontanaditrevi,
sometimes(Z.Speed > 30.0)

A trip matches it if it passed the street Lungotevere dei Sangallo between 10 pm and
midnight on February 7, 2014, after having traversed Via Giuseppe Zanardelli and if the
highest altitude experienced after Via Giuseppe Zanardelli exceeded 100 meters, the Trevi
Fountain4 was passed between the two street traversals, and the speed was higher than
67 mph5 at least once after Via Giuseppe Zanardelli.

The pattern is matched by seven tuples from the relation, being computed in 0.31 seconds
by our implemented approach. A small section of the taxi trajectories around the Colosseum
is depicted in Fig. 5, which is a screenshot taken from the SECONDO GUI. Note that the
same problem can be solved in 33 seconds without index support.

7 Experimental evaluation

In this section, we first present the evaluation of our proposed model by means of a dataset
based upon the BerlinMOD [10] data generator as well as geological data and several
patterns. As a baseline for comparison, we apply the pattern matching algorithm with-
out index support. All experiments were carried out on an AMD Phenom II X6 3.3 GHz

4The database object fontanaditrevi is a small rectangle around the Trevi Fountain.
5SECONDO considers the speed of an object in meters per second; 30 m/sec approximately equal 67 mph.

452 Geoinformatica (2017) 21:429–458

processor with 8 GBytes of main memory, running openSUSE 13.2. From this environ-
ment, SECONDO was assigned one processor core and half of the available memory. All
runtimes were determined by executing the respective query (operator tmatches) five times
and taking the median of the last four values, so the duration of the initial loading from the
hard disk was ignored. The second subsection compares our work to the approach recently
presented in [20].

7.1 Dataset generation and properties

In order to provide a comprehensive evaluation of our work, we had to create a represen-
tatively large and scalable dataset. Therefore, we chose to apply the BerlinMOD generator
with a scale factor of 1.0, yielding approximately 145,000 non-stationary raw trajectories (a
relation with an mpoint attribute in SECONDO). In another attribute (type mlabel), we added
the street name corresponding to the movement with the help of a relation containing the
streets of Berlin and a suitable R-tree. Note that the nearest street was determined for every
unit of the mpoint. However, as consecutive units with the same label are merged into one
unit (with an extended time interval), the symbolic representation is very efficient; in this
case, the number of units for the Street attribute is reduced by more than 96 % compared to
the geometric data. For the third attribute, we first obtained elevation data for Berlin in raster
format from the Shuttle Radar Topography Mission of the U.S. Geological Survey [34].
Since SECONDO supports raster data, the data import was straightforward. We combined
the imported elevation data with the geographic trajectories, resulting in a time-dependent
integer value for each of the latter. Hence, the relation for our experiments has the attributes

Pos mpoint, Street mlabel, Altitude mint.
The geographic trajectories have 56 million units, and with the two remaining attributes,

the total number of units in our dataset amounts to 81 million. Hence, the average number
of units per tuple is 557. The size of the complete dataset is 17.4 GBytes.

For this evaluation, we created subrelations of the main relation having different numbers
of tuples and different numbers of units per tuple. The runtimes for the creation of the
corresponding multi-indexes range from one minute for 25.000 tuples to ten minutes for
125.000 tuples.

We applied the following patterns for the evaluation:

p1 = ("Buckower Damm" <44.0 46.0 t t>) *

p2 = * ("Am Tierpark") *
X [(potsdamerplatz) | (12∼24 brandenburgertor)] *
// sometimes(X.Altitude > 40)

p3 = X * (2007-06-04∼2007-06-13 "Leibnizstr.") Y *
// maximum(X.Altitude) <= maximum(Y.Altitude)

The pattern p1 finds all tuples starting at the street “Buckower Damm” with an alti-
tude between 44 and 46 meters. For the second pattern, we defined two rectangles
potsdamerplatz and brandenburgertor for the respective places of interest in
Berlin. Hence, the pattern p2 matches the tuples that, after visiting the street “Am Tier-
park”, pass either Potsdamer Platz or Brandenburger Tor, the latter only between noon and
midnight, while the altitude has to exceed 40 meters at least once in both cases. Finally, the
third pattern finds the tuples passing Leibnizstr. between June 4 and June 13, 2007, where
the maximum altitude experienced before Leibnizstr. does not exceed the maximum altitude
afterwards. Note that p2 has an easy condition and p3 has a complex condition.

Geoinformatica (2017) 21:429–458 453

Table 6 Selectivities and runtimes for a growing trajectory collection

Selectivity / Runtime (sec.) / Runtime, baseline (sec.)

tuples p1 p2 p3

25,000 0.11 % 0.336 3.732 0.11 % 0.228 34.66 0.23 % 0.735 18.14

50,000 0.08 % 0.67 7.313 0.07 % 0.408 66.67 0.27 % 1.485 36.39

75,000 0.12 % 1.008 10.092 0.05 % 1.009 111.88 0.24 % 2.244 54.09

100,000 0.12 % 1.338 15.462 0.12 % 1.453 150.51 0.21 % 3.069 74.41

125,000 0.12 % 1.669 19.321 0.08 % 1.733 187.88 0.24 % 3.921 93.42

7.2 Evaluation results

The experiments focus on the effects of an increasing number of queried tuples as well as of
a growing trajectory size. The corresponding selectivities and the resulting query runtimes
are listed in Tables 6 and 7, respectively.

7.2.1 Growing tuple collection sizes

For the first series of experiments, we created five subrelations having between 25,000 and
125,000 tuples that were chosen randomly from the original relation. The number of units
per tuple is approximately the same for each dataset. The graphs related to the runtimes of
the tmatches operator executions with and without index support are depicted in Fig. 6.

As expected, the diagram shows that the computation cost for the index-supported
approach is linear in the number of tuples. This is inevitable due to the initialization cost
for the arrays indexResult , iM , etc., even for patterns with a small selectivity. Also for the
version without index support, the runtime is linear. We observe that the index-supported
approach outperforms the baseline technique by one or two orders of magnitude, depending
on the applied pattern.

The pattern p1 has no condition, thus no bindings have to be kept and no SECONDO

queries need to be evaluated. However, there are up to 2.32 million index results for the
interval of altitudes, so that the initialization is expensive for the index-supported version.
In contrast, the crucial atom of p2 causes only up to 3,000 index results, but the subsequent
effort is much higher. For the third pattern, we have as much as 46,000 index occurrences
for the crucial atom, with the consequence that almost half of the tuples have to be consid-
ered for the exact matching algorithm. In addition, p3 contains a complex condition, so its
runtime is above the two others.

Table 7 Selectivities and runtimes for different trajectory sizes

avg. Selectivity / Runtime (sec.) / Runtime, baseline (sec.)

units p1 p2 p3

200 0.08 % 0.182 2.918 0.07 % 0.121 26.448 0.23 % 0.353 14.375

400 0.13 % 0.339 2.919 0.16 % 0.233 31.555 0.13 % 0.573 16.177

600 0.12 % 0.425 2.813 0.08 % 0.195 35.986 0.52 % 0.781 17.662

800 0.06 % 0.5 2.81 0.23 % 0.345 39.251 0.2 % 0.938 20.912

1000 0.12 % 0.561 2.878 0.39 % 0.451 42.72 0.14 % 1.038 21.697

454 Geoinformatica (2017) 21:429–458

Fig. 6 Runtimes related to a growing number of tuples; index-supported (left) vs. non-index-supported
(right)

Regarding the baseline version without index support, we first observe that the runtimes
are between one and two orders of magnitude above the presented approach. The pattern
p1 perfectly suits the non-index-supported approach, since the linear scan ends after the
first unit in case of a mismatch, which happens for approximately 99.9 % of the tuples. In
contrast, for the other two patterns, more units have to be scanned. The geometric specifi-
cations inside p2 require a spatial operation, i.e., a check whether a segment of a geometric
trajectory is enclosed by a rectangle, for a high number of units, thus p2 causes the highest
computation cost.

7.2.2 Different trajectory sizes

For the second part of the evaluation, we derived five further subrelations. This time, each
of these has a constant number of 20,000 tuples, while the average number of units uavg

per tuple ranges from 200 to 1,000. The resulting runtime graphs for the index-supported
approach as well as for the baseline version without index support are depicted in Fig. 7.

We immediately observe that the computation cost for the index-supported method is –
apparently, in a sublinear way – related to uavg , although there is no algorithmic reason
for this connection. This is because in general, the number of index results increases with
a higher number of units per tuple. In addition, there are more different ways of matching

Fig. 7 Runtimes related to different trajectory sizes; index-supported (left) vs. non-index-supported (right)

Geoinformatica (2017) 21:429–458 455

a tuple if a value has more occurrences in it, which is more likely for a higher number of
units. Note that this does not necessarily result in a higher selectivity. As a whole, the result
is similar to the left part of Fig. 6.

For the baseline version, first it is obvious that the runtime for processing p1 is constant,
since the computation in most cases ends after processing the first unit. The graphs for
p2 and p3 have a linear curve (considered from uavg = 200). Again, the index-supported
approach outperforms the baseline algorithm by 1-2 orders of magnitude.

7.3 Comparison with another approach

As stated in the related work section, there is no similar approach that can be directly com-
pared to the methods proposed in this paper. We decided to focus on [20] where the authors
present a sophisticated index structure (IRWI) and a suitable algorithm for efficiently match-
ing spatio-textual trajectories. We analyzed one of the queries applied for experiments,
kindly provided to us by the authors, translated it into our pattern language, and executed
the query on a relation of 10,000 BerlinMOD trajectories, including geometric as well as
symbolic data (street names), with a space consumption of 750 MBytes. The pattern query
comprises four pattern atoms, each having five labels and a large rectangle, alternating with
five wildcards, and has a selectivity of 0.1 %. The execution time of 5 seconds is clearly
outperformed by the IRWI index [20] consuming only 0.15 seconds.

However, in contrast to our approach, IRWI is specialized for this case and can only
handle spatio-textual trajectories. The query language supported by IRWI is limited as the
user can only specify a sequence of triples of the form (instant, label set, region) that can
match trajectory units occurring in the same order. Further details such as time intervals or
spatial objects of other types (e.g., lines or point sets) are not supported, the same holds for
regular expression structures, wildcards, or conditions. The approach presented in this paper
is able to process any combination of time-dependent attributes, hence it is not customized
for a certain case and all results from the multi-index have to be collected once, at least for
each crucial atom. Regarding the applied query, the bottleneck is the specification of the
four large rectangles (with an area of several square kilometers), forcing the multi-index
to consider millions of trajectory units that pass through them. Omitting them reduces the
computation time to 0.16 seconds.

Finally, the construction time of the IRWI index for this dataset amounts to 2.7 hours,
according to [20]. The multi-index proposed in this paper is built after 18 seconds.

8 Conclusion and future work

Our previous work [16] introduced a comprehensive framework for a general representation
of movement in a symbolic space, including an expressive pattern language for symbolic
trajectories and a pattern matching algorithm. Subsequently, we proposed a more efficient
version of the algorithm based on an index for symbolic trajectories [36].

In this paper, we have presented a new framework for an efficient pattern matching
algorithm on tuples of numerous time-dependent values. The framework has been fully
implemented in SECONDO. As a major extension of our abovementioned work, we have
provided an enhanced pattern language according to the new functionality as well as a data
structure consisting of heterogeneous indexes whose number and types depend on the attrib-
utes in the set of tuples. With the new language, it is possible to define a pattern for matching
not only a set of trajectories but collections of complete tuples of time-dependent values.

456 Geoinformatica (2017) 21:429–458

The corresponding pattern matching algorithm exploits the multi-index and avoids a linear
scan of the attributes. Besides detailing the involved data structures and algorithms, we have
also provided an application example with a real dataset and a comprehensive experimental
evaluation of our approach, including a comparison with a baseline algorithm without index
support.

Future research will create and analyze different distance functions for symbolic trajec-
tories and/or other time-dependent attributes, in order to find similarities and clusters inside
movement data. In addition to that, we will consider privacy issues, that is, to what extent a
geographic trajectory can be restored from a symbolic one, depending on the type of labels
(e.g., street names, activities, transportation modes).

References

1. de Almeida VT, Güting RH, Behr T (2006) Querying moving objects in Secondo. In: MDM, pp 47–51
2. Andrienko GL, Andrienko NV, Heurich M (2011) An event-based conceptual model for context-aware

movement analysis. Int J Geogr Inf Sci 25(9):1347–1370
3. Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indices. Acta Inf 1:173–

189
4. Bracciale L, Bonola M, Loreti P, Bianchi G, Amici R, Rabuffi A (2014). CRAWDAD dataset roma/taxi

(v. 2014-07-17). Downloaded from http://crawdad.org/roma/taxi/20140717
5. Chang JW, Song MS, Um JH (2010) Tmn-tree: New trajectory index structure for moving objects in

spatial networks. In: CIT, pp 1633–1638
6. Comer D (1979) Ubiquitous B-Tree. ACM Comput Surv 11(2):121–137
7. Damiani ML, Issa H, Güting RH, Valdés F (2014) Hybrid queries over symbolic and spatial trajectories:

A usage scenario. In: MDM, pp 341–344
8. Damiani ML, Issa H, Güting RH, Valdés F (2015) Symbolic trajectories and application challenges.

SIGSPATIAL Special 7(1):51–58
9. De La Briandais R (1959) File searching using variable length keys. IRE-AIEE-ACM (Western):295–298

10. Düntgen C, Behr T, Güting RH (2009) BerlinMOD: a benchmark for moving object databases. VLDB J
18(6):1335–1368

11. Erwig M, Güting RH, Schneider M, Vazirgiannis M (1999) Spatio-temporal data types: an approach to
modeling and querying moving objects in databases. GeoInformatica 3(3):269–296

12. Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving
objects databases. In: ACM SIGMOD, pp 319–330

13. Güting RH, Behr T, Düntgen C (2010) Secondo: a platform for moving objects database research and
for publishing and integrating research implementations. IEEE Data Eng Bull 33(2):56–63

14. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A
foundation for representing and querying moving objects. ACM TODS 25(1):1–42

15. Güting RH, Schneider M (2005) Moving objects databases morgan kaufmann
16. Güting RH, Valdés F, Damiani ML (2015) Symbolic trajectories. ACM TSAS 1(2):7:1–7:51
17. Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp 47–57
18. Hadjieleftheriou M, Kollios G, Bakalov P, Tsotras VJ (2005) Complex spatio-temporal pattern queries.

In: PVLDB, pp 877–888
19. Hopcroft JE, Motwani R, Ullman JD (2001) Introduction to automata theory, languages, and computation

- (2. ed.). Addison-wesley series in computer science Addison-Wesley-Longman
20. Issa H, Damiani ML (2016) Efficient access to temporally overlaying spatial and textual trajectories. In:

IEEE MDM, pp 262–271
21. (2016). Microsoft: http://research.microsoft.com/en-us/projects/geolife/
22. du Mouza C, Rigaux P (2004) Multi-scale classification of moving objects trajectories. In: Proceedings

on SSDBM, pp 307–316
23. du Mouza C, Rigaux P (2005) Mobility patterns. GeoInformatica 9(4):297–319
24. Navarro G, Raffinot M (2002) Flexible pattern matching in strings - practical on-line search algorithms

for texts and biological sequences, Cambridge University Press
25. Newson P, Krumm J (2009) Hidden markov map matching through noise and sparseness. In: ACM

SIGSPATIAL. ACM, pp 336–343

http://crawdad.org/roma/taxi/20140717
http://research.microsoft.com/en-us/projects/geolife/

Geoinformatica (2017) 21:429–458 457

26. Nguyen-Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003 - 2010).
IEEE Data Eng Bull 33(2):46–55

27. (2016). OpenStreetMap: http://www.openstreetmap.org
28. Parent C, Spaccapietra S, Renso C, Andrienko GL, Andrienko NV, Bogorny V, Damiani ML, Gkoulalas-

Divanis A, de Macêdo JAF, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and
analysis. ACM Comput Surv 45(4):42

29. Pelekis N, Theodoridis Y (2014) Mobility data management and exploration springer
30. Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving object

trajectories. In: VLDB, pp 395–406
31. Quddus MA, Ochieng WY, Noland RB (2007) Current map-matching algorithms for transport appli-

cations: State-of-the art and future research directions. Transportation Research Part C: Emerging
Technologies 15(5):312–328

32. (2016). Secondo website: http://dna.fernuni-hagen.de/Secondo.html
33. Spaccapietra S, Parent C, Damiani ML, de Macêdo JAF, Porto F, Vangenot C (2008) A conceptual view

on trajectories. Data Knowl Eng 65(1):126–146
34. (2016). U.S. Geological Survey: http://srtm.usgs.gov/
35. Valdés F, Damiani ML, Güting RH (2013) Symbolic trajectories in Secondo: Pattern matching and

rewriting. In: DASFAA, pp 450–453
36. Valdés F, Güting RH (2014) Index-supported pattern matching on symbolic trajectories. In: ACM

SIGSPATIAL, pp 53–62
37. Valdés F, Güting RH, Ossi F (2016) Efficient trajectory analysis for several time-dependent attributes:

A case study for roe deer. In: IEEE MDM, pp 337–340
38. Vazirgiannis M, Theodoridis Y, Sellis TK (1998) Spatio-temporal composition and indexing for large

multimedia applications. Multimedia Syst 6(4):284–298
39. Vieira MR, Bakalov P, Tsotras VJ (2010) Querying trajectories using flexible patterns. In: Proceedings

of the EDBT, pp 406–417
40. Vieira MR, Bakalov P, Tsotras VJ (2011) Flextrack: a system for querying flexible patterns in trajectory

databases. In: SSTD, pp 475–480
41. VlachosM, Gunopulos D, Kollios G (2002) Discovering similar multidimensional trajectories. In: ICDE,

pp 673–684
42. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: Mobility data

computation and annotation. ACM TIST 4(3):49
43. Zhang C, Han J, Shou L, Lu J, La Porta TF (2014) Splitter: Mining fine-grained sequential patterns in

semantic trajectories. PVLDB 7(9):769–780
44. Zheng K, Shang S, Yuan NJ, Yang Y (2013) Towards efficient search for activity trajectories. In: ICDE,

pp 230–241
45. Zheng Y, Zhou X (eds) (2011) Computing with Spatial Trajectories. Springer

Fabio Valdés is a Ph.D. student at University of Hagen, Germany. He received his Diploma in mathematics
from the University of Dortmund in 2011 and subsequently became a research assistant in the group Database
Systems for new Applications at the University of Hagen. His major research interests include symbolic
trajectories and pattern matching with index support.

http://www.openstreetmap.org
http://dna.fernuni-hagen.de/Secondo.html
http://srtm.usgs.gov/

458 Geoinformatica (2017) 21:429–458

Ralf Hartmut Güting has been a full professor in Computer Science at the University of Hagen, Germany,
since 1989. He received his Diploma and Dr. rer. nat. degrees from the University of Dortmund in 1980 and
1983, respectively, and became a professor at that university in 1987. From 1981 until 1984 his main research
area was Computational Geometry. After a one-year stay at the IBM Almaden Research Center in 1985,
extensible and spatial database sys- tems became his major research interests; more recently, also spatio-
temporal or moving objects databases. He is a Senior Associate Editor of the ACM Transactions on Spatial
Algorithms and Systems and an Editor of GeoInfor- matica. He has previously served as an Associate Editor
of the ACM Trans- actions on Database Systems and as an Editor of the VLDB Journal. He is a member
of the SSTD Endowment, the organization overseeing the confer- ence series ”Symposium on Spatial and
Temporal Databases”, and currently its chair. He has published two German text books on data structures
and al- gorithms and on compilers, respectively, and an English text book on moving objects databases, as
well as around one hundred journal and conference arti- cles. His group has built prototypes of extensible
and spatio-temporal database systems, the Gral system and the SECONDO system.

	Index-supported pattern matching on tuples of time-dependent values
	Abstract
	Introduction
	Related work
	Preliminaries
	Symbolic trajectories and pattern matching
	Representing time-dependent data types
	The DBMS Secondo
	Basic notations
	Pattern language extension
	The continuous example

	Data structures
	The multi-index
	A container for index results
	A Structure for the exact matching

	Algorithms
	Preprocessing
	Crucial transitions
	Filtering the set of tuples

	Exact matching
	Initialization
	Traversing the NFA
	An atom with contents.
	An empty atom.
	A wildcard atom.

	Condition processing

	Runtime considerations

	Application example
	Experimental evaluation
	Dataset generation and properties
	Evaluation results
	Growing tuple collection sizes
	Different trajectory sizes

	Comparison with another approach

	Conclusion and future work
	References

