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Abstract We present a system for online monitoring of maritime activity over streaming
positions from numerous vessels sailing at sea. The system employs an online tracking
module for detecting important changes in the evolving trajectory of each vessel across time,
and thus can incrementally retain concise, yet reliable summaries of its recent movement. In
addition, thanks to its complex event recognition module, this system can also offer instant
notification to marine authorities regarding emergency situations, such as suspicious moves
in protected zones, or package picking at open sea. Not only did our extensive tests validate
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the performance, efficiency, and robustness of the system against scalable volumes of real-
world and synthetically enlarged datasets, but its deployment against online feeds from
vessels has also confirmed its capabilities for effective, real-time maritime surveillance.

Keywords AIS - Event recognition - Geostreaming - Moving objects - Trajectorys

1 Introduction

Maritime surveillance systems have been attracting considerable attention for economic as
well as environmental reasons [18, 39, 40]. For instance, accidents at sea may cause ecolog-
ical disasters (e.g., oil spill) and shipping companies may be fined to pay billions of dollars.
In the past decade, monitoring vessel activity has emerged as a precious tool for prevent-
ing such risks, thanks to the Automatic Identification System (AIS)'. By integrating a VHF
transceiver with positioning and navigational devices (e.g., GPS, gyrocompass), AIS can
be used to track vessels at sea in real-time through data exchange with other ships nearby,
coastal stations, or even satellites. The initial purpose of AIS was to prevent collisions; yet,
the amount and precision of the collected data and its real-time availability can be used by
a broader spectrum of maritime monitoring applications. International regulations require
AIS to be aboard cargo ships of at least 300 gross tonnage, as well as all passenger ships,
regardless of size. Considering that AIS data is continuously emitted from over 580,000
vessels worldwide?, maritime surveillance systems certainly demand capabilities of highly
scalable, continuous, spatiotemporal processing over transient data streams.

To address this requirement, we have been developing a maritime surveillance system
that consists of two main components. A trajectory detection component accepts a posi-
tional stream of AIS messages and tracks major changes along each vessel’s movement.
Given that vessels normally follow planned routes (except for accidents, storms, etc.), this
process can instantly identify “critical points” along each trajectory, such as a stop, a turn,
or slow motion. Therefore, we may discard redundant locations along a “normal” course,
and approximately reconstruct each vessel’s trajectory from such a synopsis consisting of
critical points only. But, apart from archiving or displaying it on maps, this derived stream
of critical points is mostly useful in recognizing complex maritime phenomena that involve
interaction among vessels or spatiotemporal relationships between vessels and geographical
areas of interest. This is handled by our complex event recognition component, which can
efficiently detect suspicious or potentially dangerous situations, such as fast approaching
vessels or package picking at open sea, and accordingly issue alert notifications to marine
authorities. In this system, we have set the following major objectives:

—  Timeliness. Event detection must be carried out in real-time. Critical points concerning
trajectories of vessels and alerts regarding suspicious maritime situations must be issued
within seconds in order to enable immediate action if necessary.

—  Compression. We wish to extract trajectory synopses per vessel from the incoming AIS
positions retaining salient movement features only. This online data reduction can yield
huge space savings (empirically, up to 98 % compared with the raw data), but it is also
advantageous for effective complex event recognition.

Thttp://www.imo.org/OurWork/Safety/Navigation/Pages/AlS .aspx
https://www.vesselfinder.com
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—  Quality. Such compressed representations should be reliable enough in reconstructing
trajectories with very small deviations (i.e., tolerable approximation error) from original
traces, also coping with inherent imperfections in AIS streams.

—  Scalability. The system must be able to manage frequently updated, streaming AIS posi-
tions from large fleets of vessels moving over a large area. Not only do we verify that
a centralized system can handle scalable volumes of incoming data at varying arrival
rates, but we also demonstrate that both components are parallelizable, thus offering
even higher gains in efficiency.

Several platforms and monitoring applications have been proposed for managing and
analyzing data streams. For instance, the system in [11] focuses on recency-probing pat-
tern queries against both live and archived streams. The UpStream platform [29] offers low
latency response to continuous queries over massively updated data, but it lacks support
for the specific demands of trajectory detection. Besides, automating ingestion of stream-
ing data feeds from various sources into a data warehouse is also important [17], but does
not pay attention to complex event recognition. Our particular interest is on geostreaming
data [21] from sailing vessels acquired continuously over time, which must be processed
on-the-fly in order to recognize important phenomena regarding their movement and their
interaction with the maritime environment. In [37] an approach for anomaly detection and
classification of vessel interactions is presented. Patterns of interest are expressed as left-
to-right Hidden Markov Models and classified using Support Vector Machines, also taking
into account contextual information via first-order logic rules. However, this work focuses
more on predictive accuracy rather than real-time performance in a streaming scenario. To
the best of our knowledge, no streaming framework has been specifically tailored for mar-
itime surveillance over fluctuating, noisy, intermittent, geostreaming AIS messages from
large fleets, as the one we present in this work.

This paper is an extended and revised version of previous works presented in [2, 33], and
developed in the context of the AMINESS project>. It now offers heuristics for coping with
noisy situations, improved algorithms for better capturing important events related to vessel
mobility and interaction, as well as a more thorough empirical validation. In particular, our
contributions are:

—  We introduce single-pass heuristics to drastically reduce noisy AIS positions, much to
the benefit of the resulting trajectory synopses (in size and quality).

—  We provide a detailed account of online spatiotemporal filters that can detect important
changes in each vessel’s mobility and also incrementally maintain succinct, reliable
representations of their evolving trajectories.

—  We analyze in depth several rules and conditions for efficiently recognizing complex
maritime events, which may also involve topological relationships between vessels and
geographical zones of interest.

—  We empirically validate our methodology in terms of performance and quality of results
against a large AIS dataset of real vessel traces. Moreover, we extensively investigate
the robustness, efficiency, and timeliness of the system against scalable volumes of syn-
thetically enlarged datasets, as well as its capacity to recognize complex events related
to sensitive environmental zones.

— Finally, we outline a deployment of the system in a real-world scenario, against
streaming AIS data feeds that are being collected across the Aegean Sea.

3http://www.aminess.eu/
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The remainder of the paper is organized as follows. In Section 2, we present the architec-
ture of the proposed maritime surveillance system. Sections 3 and 4 respectively present the
two main components for online trajectory detection and complex event recognition, respec-
tively. Experimental results are reported in Section 5. In Section 6, we discuss a deployment
of this system against real-time AIS data. Finally, in Section 7 we summarize our approach
and outline directions for future work.

2 System architecture

Next, we outline the processing flow of the proposed maritime surveillance system. As illus-
trated in Fig. 1, this system consumes a geospatial stream of AIS tracking messages from
vessels, it continuously detects important features that characterize their movement and rec-
ognizes complex events such as suspicious vessel activity. Table 1 presents the types of
events that can be monitored by the proposed system. This list covers important events that

Table 1 Taxonomy of monitored events over moving vessels at sea

Pause
Instantaneous | Speed change
Turn
Trajectory Movement Events (ME)
Gap
. Stop
Long — lasting )
Slow motion

Smooth turn

. Illegal s hipping
Single — vessel
Fast ap proach
Instantaneous Dual — vessel Package picking

Complex Maritime Events (CE) Area — based Suspicious area

Single — vessel | Suspicious vessel delay
Long — lasting

Dual — vessel Vessel rendezvous
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characterize vessel movement according to domain experts (our partners in the AMINESS
project).

In order to meet the real-time requirements of the geostreaming paradigm [21], this
online process necessitates the use of a sliding window [23, 34]. Typically, such a window
abstracts the time period of interest by focusing only on phenomena that occurred in a recent
range w (e.g., positions received during past 10 minutes). This window slides forward to
keep in pace with newly arrived stream tuples, so it gets refreshed at a specific slide step
every § units (e.g., each minute). For instance, an aggregate query could report at every
minute the distance traveled by a ship over the past 10 minutes. Typically, 8 < w, hence suc-
cessive window instantiations may share positional tuples over their partially overlapping
ranges across time.

As input, we consider particular AIS messages (specifically, of types 1, 2, 3, 18, or
19 according to AIS regulations) and extract position updates. Each message specifies the
MMSI (Maritime Mobile Service Identity) of the reporting vessel. For a given MMSI, each
of its successive positional samples p consists of geographical coordinates (Lon, Lat)
observed at discrete, totally ordered timestamps 7 (e.g., at the granularity of seconds). With-
out loss of generality, we abstract vessels as 2-dimensional point entities moving across
time, because our primary concern is to capture their motion features. By monitoring the
timestamped locations from a large fleet of N vessels, the system must deal with a posi-
tional stream of tuples (MMSI, Lon, Lat, t). A Data Scanner decodes each AIS message,
identifies those four attributes (the rest are ignored in our analysis), and cleans them from
distortions caused during transmission (e.g., discard corrupt messages with bad checksum).
This constitutes an append-only data stream, as no deletions or updates are allowed to
already received locations.

But it is the sequential nature of each vessel’s trace that mostly matters for capturing
movement patterns en route (e.g., a slow turn), as well as spatiotemporal interactions (e.g.,
ships traveling together). Such a trajectory is approximated as an evolving sequence of suc-
cessive point samples that locate this vessel at distinct timestamps (e.g., every few seconds).
Our system accounts for stream imperfections, i.e., the noise inherent in vessel positions
due to sea drift, delayed arrival of messages, or discrepancies in GPS signals. Indeed, prior
to any processing, all incoming AIS positions are filtered through the Noise Reduction mod-
ule by applying heuristics against a velocity vector maintained per vessel*. Afterwards, the
Mobility Tracker module accepts clean data and checks when and how velocity changes
with time. Working entirely in main memory and without any index support, it can detect
two kinds of trajectory movement events (ME) as shown in Table 1:

— Instantaneous trajectory events involve individual time points per route, by simply
checking potentially important changes with respect to the previously reported location
(e.g., a sharp change in heading).

—  Long-lasting trajectory events are deduced after examining a sequence of instantaneous
events over a longer (yet bounded) time period in order to identify evolving motion
changes. For example, a few consecutive changes in heading may be very small if each
is examined in isolation from the rest, but cumulatively they could signify a notable
change in the overall direction.

4Typically for trajectories [7], linear interpolation is applied between each pair of successive measurements
(pi, i) and (pi+1, Ti+1). For simplicity, we assume that this also holds in the case of vessels. With the
exception of intermittent signals, their course between any two consecutive positions practically evolves in a
very small area, which can be locally approximated with a Euclidean plane using Haversine distances.
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At each window slide, those events are compiled by a Compressor and a sequence of
“critical” points (such as a stop) are emitted, which are much fewer compared to the origi-
nally relayed positions. Accordingly, the current vessel motion can be characterized in real
time with particular annotations (e.g., stop, turn). Once new trajectory events are detected
per vessel upon each window slide, the annotated critical points can be readily emitted and
visualized on maps through a Trajectory Exporter, e.g., as KML polylines (for trajectories)
and placemarks (for vessel locations).

Not surprisingly, detecting trajectory events from positional streams essentially performs
a kind of path simplification. In the literature, some strategies like [7, 25, 27] specify an
error tolerance for the resulting approximation. The memory footprint occupied by the com-
pressed trajectory may also be a constraint in a single-pass evaluation [35]. Mainly focusing
on savings in communication cost, dead-reckoning policies like [41] may be employed on
board of the moving objects to relay positional updates only upon significant deviation from
the course already known to a centralized server. However, this does not hold for AIS data,
as maritime control centers wish to locate ships as frequently as possible. Most importantly,
a major advantage of our proposed scheme is that it annotates the simplified representa-
tions according to particular trajectory events (turn, stop, etc.), thus adding rich semantic
information all along each compressed trace.

Moreover, the derived critical points are propagated to the Complex Event Recognition
module, which combines this event stream with static geographical data, such as protected
areas. The objective of this process is to detect potentially suspicious or dangerous situa-
tions, such as illegal shipping and vessel rendezvous, as detailed in Table 1. This list contains
a subset of events that could be of interest; for a more complete list, see [10, 24]. We have
chosen to implement only those that were deemed most important, after communicating
with the domain experts of the AMINESS project. As with the trajectory movement events,
complex events are also categorized either as instantaneous or long-lasting (durative).
Moreover, complex events can be also classified according to the following criteria:

—  Single-vessel events keep track of a single vessel only (e.g., illegal shipping).

—  Dual-vessel events must take into account all possible combinations of two vessels
when we need to detect some form of interaction between them.

— Area-based events, like suspicious area, do not aim to report the specific vessels
involved, but only the geographic region in which such an activity takes place.

All recognized complex events are eventually pushed in real-time to the marine authori-
ties for decision-making.

3 Detecting trajectory events

As illustrated in Fig. 1, the system accepts fresh AIS messages from ships and extracts
positional tuples (MMSI, Lon, Lat, t). With the possible exception of local manoeuvres
near ports, marine regulations, or harsh weather conditions, vessels are normally expected to
follow almost straight, predictable routes. In terms of vessel mobility, what matters most is
to detect when and how the general course has changed, e.g., identify a stop, a turn, or slow
motion. Such instantaneous and long-lasting trajectory movement events (ME) can indicate
“critical points” along the trace of each vessel and thus offer a concise, yet quite reliable
representation of its course.

In order to identify significant motion changes, we employ an instantaneous velocity
Vector U pow Over the two most recent positions reported by each vessel MMSI. In addition,
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we maintain a mean velocity v,, per ship over its previous m positions (m is a small integer)
so as to abstract its short-term course. With our heuristics, it turns out that a large portion of
the raw positional reports can be suppressed with minimal loss in accuracy, as they hardly
contribute any additional knowledge.

In this Section, we first present simple, yet quite effective filters as a means of eliminating
noise inherent in the streaming AIS data. Next, we describe how the sequence of vessel
positions can be processed online in order to detect trajectory movement events and thus
maintain a lightweight synopsis of each vessel’s course.

3.1 Online noise reduction

Despite its high value in maritime surveillance, AIS data is not error-free. In fact, there
are several sources of error that render a portion of this data noisy and inadequate for
monitoring. First, no precise timestamp value is present in AIS messages relayed by the
transponders on board; instead, they only report a lag value (in seconds) from the previously
transmitted message. Obviously, this value cannot be used for establishing a temporal order,
since positional updates from a single vessel may come from a series of base stations (those
within range of its antenna along the route).

Therefore, a transaction timestamp marking the arrival of each AIS message at a station
has to be used instead. Inevitably, transmission delays may frequently occur between the
original message and its arrival. Successive positional messages from a single vessel may
often arrive intermingled at a distorted order. Figure 2a illustrates such out-of-sequence mes-
sages, where numbers signify timestamp values since the beginning of this trajectory. Had
those positions been retained according to their order of arrival, the vessel would occasion-
ally appear in a state of sudden agility, moving back and forth very rapidly at a quite unusual
speed. To make matters worse, AIS networks do not have synchronized clocks. Hence, if a
vessel is within range of two stations, then a broadcasted message may be received by each
one and possibly assigned with a different transaction timestamp. It may also happen that
the same timestamp is assigned to different locations (maybe of considerable distance) of
the same vessel. Therefore, duplicate or contradicting positions of a vessel may be present
in the collected data. Noise might not always be caused by technical issues or the inherent
errors and discrepancies in the GPS positions. It may be also due to deliberate, suspicious
actions, e.g., switching off the transponder or emitting “spoofed” coordinates in order to
avoid surveillance in a sensitive area. To the extent possible, such intermittent or falsified
positions should be detected and cleared.
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Fig. 2 Noise-related situations along a vessel’s course
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Coping with noisy situations over AIS data is particularly challenging and has attracted
significant research interest. As argued in [31], noise reduction should not be confused
with anomaly detection, because data must be cleaned in advance, before performing any
analysis. In that particular work, the well-known DBSCAN clustering algorithm [15] was
used to identify outlier positions, which could then be removed from the dataset. With
respect to time delays, an adaptive filtering strategy was suggested in [28], which employed
Kalman filters and Monte-Carlo simulations to sequentially detect such delays and proba-
bilistically rearrange a “correct” timestamp order. Besides, a stochastic method can be used
to cope with position spoofing [19] by exploiting auxiliary data from radars or compar-
ing it with previously tracked information. A common characteristic of all such methods
is that they work in offline fashion employing expensive, iterative filters over archived
AIS datasets.

In contrast, in this work we wish to apply online, single-pass filters over the incoming
stream of AIS positions. Besides, given that trajectory compression is one of our principal
objectives, we can afford to lose garbled, out-of-sequence positions and not consider cor-
recting their timestamps. After all, except for cases of malicious activity, a fresh noise-free
location will be soon received from a vessel, effectively compensating for the removal of
any erroneous preceding one(s). In order to effectively and efficiently eliminate noise in
timestamped AIS positions, we resort to applying a series of simple heuristics that examine
the instantaneous velocity vector U oy of each vessel as computed by its two most recent
observations. A noisy situation is identified if at least one of the following conditions apply:

—  Off-course positions incur an abrupt change both in speed and heading of velocity
U now-. Such an outlier can be easily detected since it signifies an abnormal, yet only
temporary, deviation from the known course as abstracted by mean velocity U of the
ship over its previous m positions. Figure 2b illustrates such a case with a vessel that is
unexpectedly located far away from its anticipated route.

—  When vessels are on the move, they normally take their turns very smoothly (especially
larger ships), so a series of AIS locations are transmitted, each marking a small change
in heading as in Fig. 3f. However, if the latest position update indicates that a vessel
has suddenly made a very abrupt turn (e.g., over 60°) with respect to its known course
(even though its speed may not be altered significantly), then this message should better
be ignored altogether. Note that in case of adverse weather conditions (e.g., a storm) a
vessel’s route may appear as a ‘zig-zag’ polyline with a series of such abrupt turns as
shown in Fig. 2c. Dropping those consecutive points as noise is not typically correct;
yet, in terms of data reduction this is quite desirable, as the vessel does not make any
intentional turn and generally follows its planned course.

— When a vessel appears to accelerate too much, i.e., at a rate that it is not usual for a
ship, this is another indication of noise. This is typical for out-of-sequence messages
with twisted timestamps, as the three red spots in Fig. 2a. Each of these three locations
is along the course of the ship, but due to their late arrival to the base station, the vessel
is seen as suddenly retracting backwards. The location at timestamp ¢ = 438 seconds
is 270 meters back from the position at t = 433 seconds, resulting in a speed of 105
knots, quite unrealistic for any vessel.

— If an identical location from the same vessel has been already recorded before, then this
might be a sign of error. Note that even if a vessel remains anchored, its successive GPS
measurements usually differ by a few meters. In that case, instantaneous velocity T now
is infinitesimal, but not exactly zero. Instead, coincidental coordinates in succession
should be deemed as almost certain duplicates, possibly concerning position reports
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that arrived at slightly different times at more than one AIS stations within range of the
vessel’s antenna.

— A similar problem occurs with conflicts in timestamping, when the same timestamp is
assigned to two distinct messages from a given vessel, even though they may be prob-
ably reporting different coordinates. In this case, instantaneous velocity U 0, cannot
be computed, signifying that these messages are contradictory (if not violating previous
rules, we arbitrarily retain the latest one).

As we experimentally verified (cf. Section 5), as much as 20 % of the raw AIS positions
may be qualifying as noise, falling in one of the aforementioned cases. Most importantly,
accepting noisy positions would drastically distort the resulting trajectory synopsis, as the
red dashed line in Fig. 2b illustrates. Even worse, noise may affect proper detection of move-
ment events, as we will discuss next. Hence, although based in empirical heuristics, such
noise reduction has proven certainly beneficial in terms of performance without sacrificing
accuracy in the resulting approximation.

3.2 Online tracking of moving vessels
Once potentially noisy positions are cleared, the mobility tracker can promptly deduce

instantaneous events by examining the trace of each vessel alone. In particular:

i) Pause indicates that a vessel is temporarily halted, once its instantaneous speed v,y
is below a suitable threshold v,,;;. For example, if v,,,, is currently less than v, = 1
knot, then the ship seems idle. For the vessel shown in Fig. 3a, the red bullets indicate
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Fig. 3 Instantaneous and long-lasting trajectory events
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several pause events; apparently, the ship is anchored at the port and such small
displacements may be due to GPS errors or sea drift.

ii) Speed change occurs once current vy, deviates by more than «% from the previously
observed speed vj,ey. Given a threshold «, the formula |M| > 100 indicates
whether the vessel has just decelerated or accelerated. This normally happens when
approaching to or departing from a port, as depicted in Fig. 3b.

iii) 7Turn is spotted when heading in U ., has just changed by more than a given angle
AOG; e.g., if there is a difference of > 15 from the previous direction.

No critical point gets immediately issued upon detection of any such simple events. An
instantaneous pause or turn may be haphazard only; these are not meaningful out of context,
because a series of such events may signify that the ship is stopped for some time. To avoid
iteratively probing these locations later, we simply attach a bitmap to each stream tuple,
using one bit for each particular instantaneous event. Note that multiple bits may be set at
each location; e.g., the vessel may have just taken a sudden turn and also changed its speed
above the respective thresholds, hence two distinct bits must be set to 1.

By buffering these instantaneous events within the window, we then can detect spa-
tiotemporal phenomena of some duration. Examination of such long-lasting trajectory
events is carried out in the following order. Note that if a certain long-lasting event has just
been detected at a location, then checking if it also qualifies for another event is skipped
altogether.

1. Gap in reporting is examined first. This event is spotted when a vessel has not emitted
a message for a time period AT, e.g., over the past 10 minutes. This may occur when
the vessel sails in an area with no AIS receiving station nearby, or because the transmis-
sion power of its transponder allows broadcasting in a shorter range. Then, its course is
unknown during this period, as it occurs between the two red bullets in Fig. 3c. Report-
ing that contact was lost is important not only for online monitoring, but also for safety
reasons, €.g., a suspicious move near maritime boundaries, or a potential intrusion of a
tanker into a marine park. A pair of critical points signify when contact was lost (gap-
Start annotates the previously reported location) and when it was restored (gapEnd for
current location).

2. Checking for a long-term stop is only fired if the vessel is noticed to move (Vo >
Umin) just after a pause. If current location is preceded by at least m consecutive instan-
taneous pause or turn events in the buffer, and they are all within a predefined radius r
(e.g., 250 meters), then a long-term stop is identified. In Fig. 3d, the red points inside
the circle succeed one another and indicate such immobility, so they are collectively
approximated by a single critical point (their centroid) annotated as stopped with their
total duration.

3. Slow motion means that a vessel consistently moves at very low speed (< vp,i,) over
its m most recent messages, as in Fig. 3e. If those buffered positions have not already
qualified as a long-term stop by the previous rule (because they did not fall inside
a small circle), then they probably succeed each other slowly along a path. The first
and the last of these positions are both reported as critical, respectively annotated as
lowSpeedStart and lowSpeedEnd.

4. Smooth turns are examined last. Due to their large size and maritime regulations, vessels
normally report a series of locations when they change course. By checking whether the
cumulative change in heading over buffered previous positions exceeds a given angle
A6, a series of such critical turning points may be emitted, as illustrated with the red
points in Fig. 3f.
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Thus, critical points are emitted from each detected long-lasting trajectory event, and this
relies heavily on efficient noise reduction (cf. Section 3.1). For instance, an outlier breaking
the subsequence of instantaneous pause events could prevent characterization of a long-term
stop, and instead yield two successive such stops very close to each other. Moreover, in case
that no long-lasting trajectory event was identified at this location, we check its associated
bitmap with these additional rules:

5. If the bit for ‘turn’ is set, we check whether the current heading in TV now also deviates
more than Af from mean velocity _v)m of the vessel. If true, we emit a critical furning
point. Note that this could possibly affect only raw AIS locations that are not qualified
as erroneous. In fact, noisy positions as those in Fig. 2c have already been discarded by
the Noise Reduction module.

6. Ifthe bit for ‘speed change’ is set (Fig. 3b) and current speed vy, also deviates by more
than «% from the mean speed v, of this vessel, then a critical point must be emitted
and annotated as speedChange. It signifies that this instantaneous event was not caused
by fluctuations in the measured speed due to delayed messages, but that such change in
speed is probably valid.

Clearly, this detection process can only lead to a single annotation for each critical point.
For instance, if a vessel disappeared for long and is suddenly found anchored somewhere,
this event will be spotted either as a gap or a stop, but not both. We have deliberately chosen
such a ‘crisp’ classification allowing a single characterization per detected point, as our
goal is to achieve a concise trajectory representation, by dropping superfluous locations. In
future work, we plan to introduce a fuzzy, probabilistic scheme of multiple annotations per
critical point at diverse confidence margins.

Each critical point is issued along with a velocity vector (comprising instantaneous speed
and heading), as an indicator of the short-term course of that particular vessel. This mea-
surement may be useful for further analysis, e.g., in order to identify complex maritime
events as explained in Section 4.

The example trajectory in Fig. 4 illustrates the data compression gains achieved when
retaining critical points only. Obviously, such filtering greatly depends on proper choice of
parameter values, which is a trade-off between reduction efficiency and approximation accu-
racy. For a suitable calibration of these parameters, apart from consulting maritime domain
experts (our partners in the AMINESS project), we have also conducted several exploratory
tests on randomly chosen vessels from AIS data in the Aegean Sea. For instance, setting
AO = 5? instead of A@ = 15° may even double the amount of critical points, because
more raw AIS locations would qualify as turning points due to sea drift and discrepancies in
GPS signals. Since our analysis is mostly geared towards data reduction, for our empirical
study (Section 5.1) we have chosen an aggressive parametrization (values listed in bold in
Table 4), which yields quite tolerable accuracy. With more relaxed parameter values, addi-
tional movement events can be detected, capturing slighter changes along each trajectory.

The complexity for detecting instantaneous events and communication gaps is O (1) per
incoming positional tuple, since only the two latest locations are examined per vessel. The
cost for the remaining long-lasting events is O (b), where b is the number of buffered posi-
tions that need inspection by each such rule. This may involve just a few points in case of
smooth turns, but b may be higher (sometimes, a few hundred) if a series of positions qualify
for a stop or slow motion. However, we stress that checks for stop of slow motion are fired
rather infrequently, only once a vessel starts moving after a certain period of idleness. Thus,
the overall cost is more than affordable and detection is near real-time, as we empirically
verify in Section 5.1.
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Fig. 4 Critical points identified along a vessel trajectory (raw AIS positions are shown as blue dots)

By taking advantage of those online annotations at critical points along trajectories,
lightweight, succinct synopses can be retained per vessel over the recent past. Then, the
compressor module simply evicts point locations that have not been detected as critical.
Instead of resorting to a costly simplification algorithm, we opt to reconstruct vessel traces
approximately from already available critical points. Such summarization depends on the
annotation of detected trajectory events (stop, turn, gap, etc.), so as to refresh each tra-
jectory accordingly. This main-memory process affects trajectory portions currently within
the sliding window. Of course, resulting synopses may be also archived via the Trajectory
Exporter module for offline use as files (e.g., KML, CSV) or in a database by incremen-
tally emitting “delta” batches of critical points as they get identified at each slide of the
window.

The aforementioned rules for detecting trajectory events are suitably defined in the
mobility tracker, which allows fast, in-memory maintenance of movement features. Note
that additional events can be detected by simply enhancing the mobility tracker with extra
conditions. In future work, we plan to complement this methodology so as to capture more
features, such as traveled distance from a given origin (e.g., a port). Nonetheless, even with
this set of filters, we can figure out the mutability in each trajectory and distinctly charac-
terize its course across time. Most importantly, these spatiotemporal features can serve as a
basis to recognize more complex maritime events, as we discuss next.

4 Complex event recognition
The trajectory detection module compresses a vessel position stream to a stream of critical

events, including the instantaneous events gapStart and gapEnd, indicating communication
gaps, lowSpeedStart, lowSpeedEnd, speedChange and turn, and the durative event stopped.
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Each such event is accompanied by the coordinates and velocity (speed and heading) of the
corresponding vessel. This data stream, hereafter Movement Event (ME) stream, is transmit-
ted to the complex event (CE) recognition module, which combines it with the locations of
ports and protected areas, in order to recognize potentially suspicious or dangerous maritime
situations, for the benefit of marine authorities.

The CE recognition module is based on the ‘Event Calculus for Run-Time reasoning’
(RTEC) [4]. The Event Calculus [22] is a logic programming action language. RTEC has a
formal, declarative semantics—CE patterns in RTEC are (locally) stratified logic programs
[36]. In contrast, almost all complex event processing languages, including [1, 6, 26], and
several data stream processing languages, such as ESL [5] that extends CQL [3], lack a rig-
orous, formal semantics [9]. Reliance on informal semantics constitutes a serious limitation
for maritime monitoring, where validation and traceability of the effects of events are cru-
cial. Moreover, the semantics of event query languages and production rule languages often
have an algebraic and less declarative flavor [14, 32]. In the following sections we present
RTEC and illustrate its use for maritime monitoring.

4.1 Event calculus for run-time reasoning

RTEC has a linear temporal model including integer time-points. Following Prolog’s con-
vention, variables start with an upper-case letter, while predicates and constants start with a
lower-case letter. For a fluent F—a property that is allowed to have different values at differ-
ent points in time—the term F' = V denotes that fluent F has value V. holdsFor(F =V, I)
denotes that [ is the list of the maximal intervals for which F = V holds continuously.
holdsAt(F = V, T) represents that fluent F has value V at some time-point 7. holdsAt and
holdsFor are defined in such a way that, for any fluent F', holdsAt(F = V, T) if and only if
T belongs to one of the maximal intervals of I for which holdsFor(F = V, I).

An event description in RTEC includes rules that define the event instances with the
use of the happensAt predicate, the effects of events with the use of the initiatedAt and
terminatedAt predicates, and the fluent values with the use of the holdsAt and holdsFor
predicates, as well as other, possibly atemporal, constraints. Table 2 presents a fragment of
the predicates available to the event description developer.

Fluents in RTEC are of two kinds: simple and statically determined. For a simple fluent
F, F =V holds at a particular time-point T if F' = V has been initiated by an event that
has occurred at some time-point earlier than 7, and has not been terminated at some other
time-point in the meantime. This is an implementation of the law of inertia. To compute the

Table 2 RTEC Predicates

Predicate Meaning

HOLDSAT(F =V, T) The value of fluent F is V at time T

HOLDSFOR(F =V, 1) I is the list of the maximal intervals for which F' = V holds continuously
HAPPENSAT(E, T) Event E occurs at time T

INITIATEDAT(F =V, T) At time T a period of time for which F = V is initiated
TERMINATEDAT(F =V, T) At time T a period of time for which F = V is terminated
INTERSECTALL(L, I) 1 is the list of maximal intervals produced by the intersection of

the lists of maximal intervals of list L
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intervals I for which F = V, i.e. holdsFor(F = V, I'), we find all time-points 7, at which
F =V is initiated, and then, for each T, we compute the first time-point Ty after T, at
which F = V is terminated. As an example, consider the formulation below:

initiatedAt(gap(Vessel) = true, T) <
happensAt(gapStart(Vessel), T),
holdsAt(coord(Vessel) = (Lon, Lat), T),
notnearPorts(Lon, Lat)

terminatedAt(gap(Vessel) = true, T) <«
happensAt(gapEnd(Vessel), T)

)]

gap(Vessel) is a Boolean simple fluent denoting a communication gap for some
Vessel, i.e. the Vessel stops transmitting AIS messages. In some cases, the absence
of AIS messages is suspicious and thus we need to record it. gapStart(Vessel) and
gapEnd(Vessel) are instantaneous MEs indicating, respectively, the time-points in which
a Vessel stops and resumes sending AIS messages. coord is a fluent reporting the coor-
dinates of a vessel. Like MEs, this type of information is provided by the trajectory
detection module. nearPorts(Lon, Lat) is an atemporal predicate that becomes true when
the point (Lon, Lat) is close to a port. ‘not’ is negation-by-failure [8]. Rule-set (1) states that
gap(Vessel) = true is initiated if the trajectory detection module reports a gapStart ME for
the Vessel, and the Vessel is far from the ports of the area under surveillance. Furthermore,
gap(Vessel) = true is terminated when the Vessel resumes communications. Given rule-set
(1), RTEC computes the list of maximal intervals during which gap(Vessel) = true holds
continuously.

4.2 Spatial indexing

CE recognition for maritime surveillance requires various types of spatial operation [16,
24]. For instance, we need to determine whether a point—a vessel’s location—Ilies inside a
polygon indicating an area of interest, such as a protected area, or whether it is near another
point, such as a port. Moreover, we need to detect the vessels that are in close proximity
(heading towards each other). In our approach to CE recognition, the availability of the
full power of logic programming is one of the main attractions of employing RTEC as the
temporal formalism. It allows CE patterns to include not only temporal constraints but also
(complex) atemporal constraints. Recall e.g. the use of the atemporal predicate nearPorts in
the specification of communication gap in rule-set (1). This is in contrast to various state-
of-the-art CE recognition approaches, such as [9, 12, 23, 42], which support very limited
atemporal reasoning, thus being unsuitable for maritime monitoring.

For efficient spatial reasoning, we adopt a grid partitioning scheme which divides the
surveillance area into equally sized cells (see Fig. 5). Each area of interest and port is
assigned only to those cells with which it overlaps. This assignment is performed off-line
and provided as background knowledge to RTEC. The use of a grid enables us to quickly
determine, through a simple calculation on the coordinates, the cell inside which a vessel is
located. The task of determining each vessel’s cell is performed before each CE recognition
query. This way, we can efficiently compute the number of vessels in close proximity and
check whether a vessel is inside an area of interest, by performing calculations (e.g. using
the ray crossings algorithm [30] for determining whether a point lies inside a polygon) only
for those vessels/areas in the same or adjacent cells.
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Fig. 5 Grid partitioning: different polygon types indicate different types of (overlapping) area of interest

4.3 Specifying complex maritime events

Given the critical ME stream produced by the trajectory detection module, and a set of
protected areas, RTEC recognizes a set of CEs for the benefit of maritime authorities. The
choice of CEs and their patterns were specified in collaboration with the domain experts of
the AMINESS project. Below we present a fragment of our CE patterns. The complete list
may be found in [2].

Suspicious vessel delay Some vessels, such as those passing through protected areas
in order to minimize trip length and fuel consumption, switch off their transmitters and
stop sending position signals. But sailing through a protected area is not the only rea-
son for switching off an AIS transmitter. To investigate the behavior of vessels during a
communication gap, we formulated the CE below:

holdsFor(suspiciousDelay(Vessel) = true, I) <
holdsFor(gap(Vessel) = true, Iyqp), 2
extendedDelays(Vessel, lgqp, I)

Recall that I in holdsFor(F = V, I) is the list of the maximal intervals for which F = V
holds continuously (see Table 2). Iy, in holdsFor(gap(Vessel) = true, Igqp), therefore, is
the list of maximal intervals during which a Vessel stops transmitting AIS signals while
at open sea (see rule-set (1) for the gap fluent). extendedDelays(Vessel, I', I) selects the
maximal intervals I of the list I’ for which the highest possible speed of the Vessel is below
a threshold. We estimate the highest possible speed of a vessel in a simplified way: we
assume that the vessel moved along a straight line from the point of gapStart to that of
gapEnd. Under this assumption, its speed cannot have been greater than the one determined
by dividing this shortest path by the time spent to travel it. Rule (2) thus states that a very
low vessel speed combined with a communication gap occurring at open sea is to be treated
as a suspicious delay.
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The suspiciousDelay fluent is defined by a domain-specific holdsFor rule. We call fluents
defined by such rules statically determined. For some fluents, it is much more concise to use
domain-specific holdsFor rules defining the value of a fluent in terms of the values of other
fluents, as opposed to the traditional style of Event Calculus representation, i.e. identifying
the various conditions under which the fluent is initiated and terminated so that maximal
intervals can then be computed using the domain-independent holdsFor.

Vessel rendezvous ‘Suspicious delay’ allows us to define additional types of suspicious
activity; consider the rule below:

holdsFor(possibleRendezvous(Vessel;, Vessely) = true, I) <
holdsFor(in(Vessel;, Cell) = true, I),
holdsFor(in(Vessel,, Cell) = true, 1),
holdsFor(suspiciousDelay(Vessel;) = true, I3),
holdsFor(suspiciousDelay(Vessely) = true, lj),
intersectall([1;, I, I3, 14], I)

3)

in(Vessel, Cell) is a statically determined fluent indicating the Cell of the grid in which
the Vessel is located. The value of this fluent is calculated according to the reported ves-
sel coordinates and is set prior to each CE recognition query, as described in Section 4.2.
intersectall is a built-in RTEC predicate which calculates the intersection of a list of lists of
maximal intervals (see Table 2). According to rule (3), if two vessels simultaneously exhibit
a suspiciousDelay and are located in the same area, then this could indicate that they had
arranged for a rendezvous. Note that, since we do not have information about the vessels’
locations during communication gaps, the above rule cannot capture the precise place and
time of the rendezvous, if any.

Figure 6 illustrates the definition of possibleRendezvous. During the rendezvous, there
would be no in(Vessel, Cell) fluents available. These fluents would become available only
when a vessel re-appears, i.e. at the end of a communication gap. To detect instances of
possibleRendezvous, we make the assumption that a Vessel remains in the same Cell for an
interval extending 60 seconds before and after the timestamp of the reported vessel coor-
dinates (see Fig. 6). Therefore, the intersection of the two in and the two suspiciousDelay
intervals is not necessarily empty. We reserve for future work a more refined specification
of this CE.

Maritime activities form hierarchies, in the sense that the formulation of one activity is
also used to define other, higher-level activities. For example, vessel rendezvous is speci-
fied in terms of suspicious vessel delay. In contrast to many state-of-the-art CE recognition

suspiciousDelay(Vessel ;)
in(Vessel,, Cell) T;- 60 T, + 60
suspiciousDelay(Vessel,)
in(Vessel,, Cell) T5- 60 T,+ 60
possibleRendezvous(Vessel,;, Vessel,) >
T, T Time=

Fig. 6 Example of vessel rendezvous. Vessel; re-appears at time 77 while Vessel, re-appears at time 7>. The
interval of possibleRendezvous is the intersection of the intervals displayed above it
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systems, such as Esper’ and SASE®, RTEC can naturally express hierarchical knowledge
by means of well-structured specifications.

Fast approach Another dangerous situation may arise when a vessel is rapidly mov-
ing towards some other vessel(s). Such a behavior could indicate a vessel pursuit or even
imminent collision. Consider the formalization below:

happensAt(fastApproach(Vessel), T) <
happensAt(speedChange(Vessel), T),
holdsAt(velocity(Vessel) = Speed, T),
Speed > 20 knots, “4)
holdsAt(coord(Vessel) = (Lon, Lat), T),
notnearPorts(Lon, Lat),
holdsAt(headingToVessels(Vessel) = true, T)

fastApproach(Vessel) and speedChange(Vessel) are instantaneous CE and ME respectively.
velocity is a fluent indicating the speed of a vessel. This information, as well as a vessel’s
heading, is provided by the trajectory detection module and accompanies every detected
ME. headingToVessels(Vessel) is a fluent that becomes true whenever a Vessel’s direction
of movement is towards at least one nearby vessel. According to rule (4), a ‘fast approach’
is recognized when a Vessel changes its speed at open sea, the new speed is above 20 knots,
and there is at least one other nearby vessel towards which it is heading. The value of 20
knots was chosen by domain experts.

Package picking Another possible interaction between two vessels is when one of them
drops a package at some area and another vessel appears later in order to pick it up. One
way of formulating this type of interaction is the following:

happensAt(possiblePicking(Vessel;, Vesselz), Tpick) <
happensAt(end(stopped(Vessel;) = true), Tgryp),
holdsAt(in(Vessel;) = Cell, Tyrpp),
happensAt(start(stopped(Vessel) = true), Tpicx),
holdsAt(in(Vesselz) = Cell, Tpicx),
Tpick - Tdmp <1 hour,
holdsAt(coord(Vessel;) = (Lony, Laty), Tyrp),
holdsAt(coord(Vessely) = (Lony, Latz), Tpick),
distance((Lony, Lat;), (Lony, Laty), Dist),
Dist < 0.5 km

&)

stopped(Vessel) is a Boolean simple fluent indicating that a Vessel has stopped at open sea.
The definition of this fluent is based on the information provided by the trajectory detection
module, which reports the list of maximal intervals during which a vessel has stopped. From
this list, we keep only those intervals where the vessel is not in any port. start(FF = V)
(respectively end(F = V)) is a built-in RTEC event taking place at the starting (ending)
point of each maximal interval for which fluent F has value V continuously. For instance,
start(stopped(Vessel) = true) takes place at the starting point of each maximal interval for
which the Vessel has stopped at at open sea. Rule (5) describes a scenario where a vessel

Shttp://www.espertech.com/esper/
Shttp://sase.cs.umass.edu/
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had stopped at some area and started moving at time 7y, then, after no more than an hour,
another vessel arrived and stopped at the same area, and the Haversine distance between
the two stop locations, as calculated by the distance predicate, was no more than half a
kilometer.

4.4 Recognizing complex maritime events

Listing 1 shows the pseudo-code of the main loop of RTEC. CE recognition is performed
by means of continuous query processing, and concerns the computation of the maximal
intervals of simple fluents (e.g. gap as defined by rule-set (1)) and statically determined
fluents (such as possibleRendezvous defined by rule (3)), as well as the time-points in which
events occur (e.g. fastApproach as defined by rule (4)). At each query time Q;, the MEs
that fall within a specified sliding window w are taken into consideration. All MEs that took
place before or at Q; —w are discarded/‘forgotten’ (see line 1 of Listing 1). At Q;, the CE
intervals computed by RTEC are those that can be derived from MEs that occurred in the
interval (Q;—w, Q;], as recorded at time Q;. When the range w is longer than the slide step
B, it is possible that an ME occurs in the interval (Q; —w, Q;_1] but arrives at RTEC only
after Q;_1; its effects are taken into account at query time Q;.

Listing 1 rtec(Q;, w)

Input: k: Depth of CE hierarchy; SimpleFluents,: set of simple fluents of level n;
SDFluents,: set of statically determined fluents of level n; Events,: set of events of level n
1: forget(Q;i—w)

2: spatialProcessing(Q;—w)

3: forn < I; n <k; nt+t+ do

4: for all SDF € SDFluents, do

5: recognizeSDFluent(SDF, Q;—w)

6: end for

7: for all SF' € SimpleFluents, do

8: recognizeSimpleFluent (SF, Q;—w)
9: end for

10: for all Ev € Events,, do
11: recognizeEvent (Ev, Q;—w)

12: end for

13: end for

Listing 2 recognizeSDFluent(SDF, Q;,—w)

1: indexOf(SDF, Index)

2. retract(sdFList(Index, SDF, OldI, OldPE))

3: amalgamate(OIdPE, OldI, OldList)

4: if Start, End : [Start, End) € OldList A End>Q;—w A Start<Q;—o then
5: PE: = [(Start, Qi—w+1)]

6: else

7: PE: =]

8: end if

9:

holdsFor(SDF, I)
assert(sdFList(Index, SDF, I, PE))

_
e
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After ‘forgetting’” MEs, RTEC determines the cell inside which a vessel is located (see
line 2 of Listing 1 and Section 4.2). Then, RTEC computes and stores the intervals of each
CE of interest. RTEC restricts attention to hierarchical CE patterns, those where it is possi-
ble to define a function level that maps all fluents and all events to the non-negative integers
as follows. Events and statically determined fluents of level O are those whose happensAt
and holdsFor definitions do not depend on any other events or fluents. These are the input
MEs. There are no simple fluents in level 0. Events and simple fluents of level n are defined
in terms of at least one event or fluent of level n—1 and a possibly empty set of events and
fluents from levels lower than n—1. Statically determined fluents of level n are defined in
terms of at least one fluent of level n—1 and a possibly empty set of fluents from levels
lower than n—1.

RTEC adopts a caching technique where the fluents and events of the CE hierarchy are
processed in a bottom-up manner; this way, the intervals (resp. time-points) of the fluents
(events) that are required for the processing of a fluent (event) of level n will simply be
fetched from the cache without the need for re-computation. This technique is illustrated
in the outer for-loop of Listing 1 (see lines 3—13) where fluent (event) processing starts at
level 1 of the CE hierarchy and proceeds towards the top (k) level. The fluents (events) of
the same level may be processed in any order. For illustration purposes, in Listing 1 the
following order is adopted: statically determined fluents (lines 4-6), simple fluents (lines
7-9) and events (lines 10-12).

Listing 2 shows the pseudo-code of recogniseSDFluent, the procedure for computing
and storing the intervals of statically determined fluents. First, RTEC determines the index
of the given fluent SDF. The index is set by the user and allows for the fast retrieval of
stored intervals for a given fluent even in the presence of very large numbers of fluents.
Then, RTEC retrieves from the sdFList predicate the maximal intervals of SDF computed
at the previous query time Q;_; and checks if there is such an interval that overlaps Q; —w
(lines 2-8). OldI represents the intervals of SDF computed at Q;_1. These intervals are
temporally sorted and start in (Q;_1—w, Q;—1]. OldPE stores the interval, if any, ending
at Q;,_1—o. RTEC amalgamates OIldPE with the intervals in OldI, producing OldList (line
3). If there is an interval [Start, End) in OldList that overlaps Q; —w, then the sub-interval
[Start, Qi—w+1) is retained. See PE in Listing 2. All SDF intervals in OldList after Q; —w
are discarded.

Subsequently, RTEC evaluates holdsFor rules to compute the SDF intervals from MEs
recorded as occurring in (Q;—w, Q;] (line 9). The computed list of intervals I of SDF,
along with PE, are stored in sdFList (line 10), replacing the intervals computed at Q;_;.
When the user queries the maximal intervals of a fluent, RTEC amalgamates PE with the
intervals in /.

Details about simple fluent and event processing, as well as a complexity analysis of
RTEC, may be found at [4].

5 Empirical evaluation
Our maritime surveillance system has a modular design with loosely coupled compo-

nents. The mobility tracker for online trajectory detection’ is developed in GNU C++
and runs entirely on main memory for efficiently coping with volatile, asynchronously

7Source code is publicly available at http://www.dblab.ece.ntua.gr/~kpatro/tools/streamAlIS/.
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Table 3 Experimental settings

Parameter Value

Vessel count N 6,425; 128,000; 1,280,000

Window range 10min; 1h; 2h; 6h; 9h; 24h

Window slide 8 1min; Smin; 10min; 15min;
20min; 30min; 1h; 90min; 2h; 4h

Position stream rate p (positions/sec) original; 1K; 2K; 5K; 10K

Protected areas 3,966 polygons with 78,418 edges

updated, streaming locations. RTEC?, the complex event (CE) recognition component, is
implemented in Prolog®.

We conducted experiments against a real AIS dataset containing 23GB of AIS messages
spanning from 1 June 2009 to 31 August 2009 for N = 6,425 vessels in the Aegean, the
Ionian, and part of the Mediterranean Sea. Not all vessels were actually on the move at all
times, since a considerable part (chiefly cargo ships) were just passing by, and thus tracked
for a limited period (days or even hours). But most vessels were frequently sailing, e.g.,
passenger ships or ferries to the islands. When decoded and cleaned from corrupt messages,
the dataset yielded 168,240,595 raw timestamped positions'©.

We simulated a streaming behavior by consuming this positional data little by little,
i.e., reading small chunks periodically according to window specifications. We examine
sliding windows with varying ranges o and slide steps f based on timestamps from the
original AIS messages. Thus, we replay this stream and the window keeps in pace with the
reported timestamps and not the actual time of each simulation. The arrival rate of positions
is fluctuating throughout this 3-month period and varies widely among vessels; none of
them reports at a fixed frequency, whereas there are ships inactive for large intervals. If
we only consider the activity period of each vessel (i.e., when it actually relays positions,
either moving or not), then it reports every two minutes on average, which translates into a
mean arrival rate p ~50 positions/sec from the entire fleet. For consistency with the real-
world scenario, we consume the original stream “as is” in some simulations, even though
this is a very low rate for a streaming application. We performed additional experiments
at artificially increased rates so as to stress test our system and verify its efficiency and
robustness. For the CE recognition component, artificially enlarged datasets include 1,2M
vessels and 3,2B MEs. The simulation settings are listed in Table 3, whereas the calibrated
settings for online mobility tracking are given in Table 4; default values are shown in bold.

In addition to this centralized approach, we have also examined the case of parallelizing
the monitoring process for advanced efficiency against scalable data volumes. As a proof-
of-concept, due to the different tasks of the two components, we employed different data
partitioning schemes. First, concerning the trajectory detection component, the mobility
tracker updates and maintains each trajectory in isolation from the rest. This process has
been parallelized by using a varying number of concurrent POSIX threads in C++: each one

8 https://github.com/aartikis/RTEC.

9The patterns of the complex maritime events are available at http://users.iit.demokritos.gr/~a.artikis/
aminess.tar.gz.

10This anonymized dataset (for privacy, each original MMSI has been replaced by a sequence number) is
publicly available at http://chorochronos.datastories.org/?q=content/imis-3months
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Table 4 Mobility tracking parameters

Parameter Value

Minimum speed v,,;, for asserting movement 1 knot (=1.852 km/h)
Maximum rate « of speed change between successive locations 25%

Minimum gap period AT (minutes) 5;10; 15; 30 ; 60

Turn threshold A6 (degrees) 29,39, 5%, 10%; 15°; 20°
Radius r to determine long-term stops 250 meters

Minimal number m of inspected positions 10

is responsible to monitor a distinct subset of vessels. The resulting synopses get merged into
a single derived stream of critical points (MEs) that is subsequently consumed by RTEC.
With respect to the complex event recognition component, we employed multiple processors
on which RTEC operated in parallel. We divided the grid covering the surveillance area
into multiple sub-grids (groups of adjacent cells) whose number was equal to that of the
processors used in parallel. Each processor was responsible for the areas and ports located
in, and the vessels passing through its assigned sub-grid. We used three distributed settings:
performing CE recognition on two, four and twelve processors. We made an attempt to
evenly distribute the load of MEs among the different processors, by exhaustively searching
for the best configuration. The different sub-grids had to be compact rectangles without
dispersed cells. As a result, we did not take into account solutions with sub-grids of arbitrary
shapes and the load distribution was thus not the best possible. Note that this partitioning is
an off-line process and takes place only once.

Next, we report indicative results from these experiments. The trajectory event detection
component operated on a server running Debian Linux “Wheezy” 7.5 amd64 with 48GB of
RAM and two Intel Xeon X5675 processors at 3.07GHz. The CE recognition component
RTEC operated on a computer with Intel Xeon CPU E5-2630 v2@2.60GHz x 12 processors
and 256GB RAM, running Ubuntu Linux 14.04 and SWI Prolog 7.2.1.

5.1 Assessment of trajectory detection
5.1.1 Timeliness of online mobility tracking

First, we examine performance of online detection concerning trajectory movement events
using simulations at the original arrival rate. These experiments have been performed
employing window specifications with varying ranges w and slide steps 8, and we measure
the total time it takes to update a window with a fresh batch of raw AIS locations, evict
expired ones, detect trajectory events, and report critical points. Then, we calculate aver-
ages of these time values over the total count of window instantiations, hence obtaining the
per slide cost for window maintenance and identification of any trajectory events therein.
Figure 7 plots this average execution cost per window for monitoring the entire fleet.

From Fig. 7a it turns out that our mobility tracker provides results instantly for smaller
w up to 2 hours. In the worst case, it takes less than 150ms to track down any critical points
per incoming batch of raw positional tuples. Quite expectedly, the cost grows linearly with
an increasing slide 8, as the window slides forward less often and thus each batch contains
more input locations (illustrated with bars in this plot) directly proportional to the sliding

step B.
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Fig. 7 Online mobility tracking cost per window slide

For larger windows with range  up to 24 hours shown in Fig. 7b, the cost is greater.
Increased by almost an order of magnitude compared to the execution times in Fig. 7a, the
cost still remains linear with the size of wider sliding steps. Again, this is due to the larger
amount of accumulated raw locations per batch (depicted with the bar plots). For the larger
window tested (w = 24 hours and = 4 hours), critical points can be reported in less than
2 seconds per batch, even though the mobility tracker has to validate almost 30,000 fresh
raw positions each time. This clearly testifies the robustness and timeliness of the online
tracking process.

We should also stress that these execution costs are drastically reduced compared to our
previous performance study in [33]. Apart from better memory management in the imple-
mentation of the method, this improvement should be also attributed to the extra module
for noise reduction. Since each position qualified as noise is filtered out without further
processing, this incurs no more checks against the rest of the positions reported per vessel.
Moreover, it reduces the size of the trajectory synopsis (i.e., critical points retained out of
the raw positions per vessel), since such erroneous deviations from the known course are
suppressed. Figure 8 plots the average amount of critical points retained per window state
for several window ranges w. It is no wonder that the number of critical points in win-
dow are proportional to its range, as this is actually the memory footprint of the maintained
trajectory synopses. Space consumption is provably lightweight, since the trajectories of
all vessels within the latest @ = 24 hours can be approximately reconstructed from the
almost 52,000 critical point locations maintained (on average) in the respective window
state.

5.1.2 Scalability under varying arrival rates

Admittedly, such swift processing of raw positions is largely due to the low arrival rate
of the original AIS stream (on average p ~50 positions/sec). Hence, for a more stringent
assessment of the online mobility tracking module, we performed some extra simulations,
by admitting bigger chunks of data for processing at considerably increased arrival rates up
to p =10,000 positions/sec. Then, given the fleet size N, every ship appears as reporting
almost twice per second; although quite improbable in practice, this makes sense as a stress
test for scalability.
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As timeliness is also an objective, the window for the simulations in Fig. 9 was set with
range w = 10 minutes and slide § = 1 minute. We first discuss performance when employ-
ing a single thread to tackle the entire trajectory detection process. Observe that critical
points are still issued promptly for p = 1, 000 positions/sec, but the latency grows with
increasing rates. Note that this cost includes reporting time for the resulting critical points
(i.e., after detection), and this adds a significant overhead at higher arrival rates, as greater
chunks of AIS updates inevitably generate more critical points. In the worst case tested with
p = 10, 000 positions/sec, the online mobility tracker accepts 600,000 fresh raw positions

15 — ‘
—A—1 thread ©=10min
—©&—2threads  B=1min
5 threads
10 —7 11 threads 1
—%— 23 threads

Online tracking time (sec)

p (K positions/sec)

Fig. 9 Trajectory detection at various stream rates
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every minute; yet, it can output results in less than 13 seconds, well before the next window
slide.

The fact that the mobility tracker updates and maintains each trajectory in isolation from
the rest, offers great opportunities for more advanced scalability. For the trajectory detection
process, we also employed a varying number of concurrent threads, each one monitoring a
distinct subset of vessels. Each thread consumes a substream of the incoming raw positions
that correspond to the particular vessels it has been assigned to monitor. For simplicity, this
subdivision is based on simple hashing over the M M ST identifier of the vessel, such that
its positions are always propagated to the same thread to establish consistency in trajectory
maintenance. The system load may not be evenly balanced among the threads and cannot
account to fluctuations in the arrival rate, but still the burden of processing can be shared
and thus boost performance. In this case, the overall tracking cost per window is considered
the maximum of costs incurred among the concurrent threads in order to emit results. Obvi-
ously, this cost differs depending on the size of the incoming batch consumed by a thread
in each window instantiation. Figure 9 plots the average tracking cost per window slide
when multiple threads are used (due to hashing, a prime number of threads was specified).
There are significant savings even when employing two threads only; the original stream is
halved into two substreams, but the cost drops by almost two thirds as each thread exploits
better the available system resources. With more threads the cost still drops, although at a
lower pace due to the overhead from context switching and contention for system resources.
Overall, even this simplified approach confirms that the trajectory detection process is capa-
ble of handling scalable volumes of streaming vessel positions and has great potential for
parallelization and advanced load balancing, as we plan to study in future work.

5.1.3 Compression efficiency

In this experiment, we examine the efficiency of our prototype in keeping only major
trajectory characteristics as critical points and discard the rest. In order to measure the
compression ratio accomplished by online trajectory tracking, we compared the amount of
discarded points against the originally relayed locations per vessel. A compression ratio
close to 1 signifies stronger data reduction, as the vast majority of original locations are
dropped. The red line plot in Fig. 10 depicts measurements of this ratio with varying tol-
erance angles for detecting changes in heading. With a lower A#, even slight deviations
in vessel direction can be spotted, and thus extra critical points get reported. Bar charts in
Fig. 10 illustrate the amount of critical points in each class (gap, low speed, speed change,
stop, turn) retained from the entire dataset. Clearly, every further increase in threshold A6
suppresses more and more turning points and only marginally affects the share of other
classes, incurring extra reduction in the total amount of emitted critical points. Hence,
relaxing this parameter value leads to a more intense compression. Most importantly, com-
pression ratio always remains above 92 %, and with a more relaxed A6 it reaches as much
as 98 %. In this latter case, only 2 % of the original locations survive as critical, mostly
by eliminating local manoeuvres of little impact on vessel’s course. Eliminating noise also
plays an important role in data reduction, as erroneous deviations are dropped and no points
need be retained.

A similar pattern regarding reduction efficiency can be observed in Fig. 11 with respect to
varying periods AT for detecting gaps in communication. Not surprisingly, it is the amount
of critical points marking those gap periods that gets reduced with increasing thresholds
AT. This time, reduction ratio is never below 96%, even though many more points are
required to keep track that contact was lost even for 5 minutes. In a streaming context,
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such high compression ratios may lead to reduced system load in subsequent stages of the
analysis, without sacrificing quality, as discussed next.

5.1.4 Approximation error

Preserving only critical points incurs a lossy approximation in trajectory representations. To
assess the quality of those compressed trajectories, we estimated their deviation from the
original ones (i.e., without discarding any raw positions except for those qualified as noise).
Deviation can be computed from the pairwise distance between synchronized locations
from the original and the compressed trajectory. If an original AIS point p; at time ¢#; has
been evicted as non-critical, then its corresponding time-aligned p; in the compressed trace
can be estimated using linear interpolation along the path that connects the two critical
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points before and after #;. For each vessel that has reported M raw positions, we estimated
the root mean square error (RMSE) between the original and synchronized sequences of its
locations as:

M
1

— , 2

RMSE = |-+~ E (H(pi, p})

i=1

which returns one RMSE estimate (in meters) per vessel trajectory and employs Haversine
distance H between geographic coordinates. Figure 12 illustrates the number of vessel tra-
jectories for certain intervals of these RMSE estimates. For example, RMSE is between 10
and 25 meters for trajectories of 3093 vessels (almost half of the fleet), whereas RMSE
less than 10 meters occurs for another 1428 vessels. In contrast, only 3 vessels were found
with RMSE above 100 meters. Although parametrization of the mobility tracker is com-
mon for all vessels, this result proves that it can offer a correct (or at least fairly trustful)
approximation in almost all cases.

Figure 13 plots the average and maximum RMSE over the entire fleet for several values of
turn threshold A8, which is used to recognize significant changes in heading. As discussed
in Section 3.2, the degree of trajectory approximation is mostly sensitive to parameter Af
compared to the rest in Table 4 and this is reflected on the plot. Both error estimates esca-
late as this angle tolerance gets more relaxed. In the worst case for A§ = 207, average
RMSE is only 22 meters and the maximum RMSE ever observed is 133 meters, which are
negligible compared to the much larger size of open-sea vessels, and also considering the
discrepancies inherent in GPS positioning and AIS transmissions. In practice, a moderate
threshold of 10° or 15° may be adequate for balancing compression efficiency without los-
ing important details in vessel mobility. Therefore, the suggested method can provide quite
acceptable accuracy and can capture most, if not all, critical changes along each vessel’s
course.
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Fig. 12 Breakdown of RMSE for A6 = 15°
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5.1.5 Quality of synopses

As raw AIS locations pass through the trajectory detection module in successive window
instantiations, they get characterized according to their significance on vessel mobility. Fig-
ure 14 illustrates a breakdown of the resulting classifications after the input stream was
exhausted and all critical points were detected for the entire 3-month period. More than half
of the relayed raw positions indicate a “normal” course, i.e., a vessel moves according to its
known velocity vector with a steady speed and heading. Thus, apart from notifying on the
current position of each vessel, such points practically do not alter its trajectory and can be
safely discarded without any further consideration. In addition, almost one out of five orig-
inal positions is classified as noise for reasons explained in Section 3.1. It must be stressed
that the vast majority of such points are not really “off-course” positions from the report-
ing vessel, but they actually fall along its route. However, due to their delayed arrival, these
locations falsely indicate the vessel as moving back and forth in an agitating manner with
no obvious reason, hence they should be purged altogether.

But it is the remaining vessel locations, after eliminating redundancy and noise, which
get actually classified as critical points and can be used in trajectory summarization. As
Fig. 14 testifies, there are relatively very few cases (about 0.1 % of the raw data) in which

speed change: 0.1%

normal: 51.3%
noise: 19.3%

/
turn: 1.5%
stopped: 27% gap: 0.8%

Fig. 14 Classified raw locations of all vessels
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vessels either move at low speed or they change their speed considerably. This is to be
expected, since vessels usually follow their planned course and they typically manoeuvre
when arriving to or departing from ports. Gaps in communication account for about 0.8 %
of the raw data. Although we observed that this phenomenon is rather frequent in practice,
we note that at most two points are used to delimit this period and thus indicate the loss of
contact with the respective vessel. Locations indicating turns are very important and must
be certainly considered in trajectory representation. In fact, these points are roughly 1.5 %
of the total, since only significant deviations (over 15°) from the known course qualify for
a turn, even though possibly emitting a series of such critical points in case of smooth turns
as depicted in Fig. 3b. Finally, about 27 % of the raw positions are emitted when vessels are
idle, most usually when anchored in a port. As discussed in Section 3, instead of keeping
all these points, we collect successive “pause” events occurring within a small distance and
merge them into a collective “stop” event located at their centroid. This incurs huge savings
in the resulting synopses, leading into much more concise trajectory representations that
can be highly usable in subsequent query processing and offline analytics.

This dramatic effect on summarization is much more evident in Fig. 15, which plots
a breakdown of the accumulated critical points after processing the entire dataset. The
resulting trajectories mainly consist of turning points between stops with some occasional
changes in speed, but rather frequent communication gaps. Indeed, 60 % of critical points
are turning points, which are only 1.5 % of the original AIS locations (Fig. 14). Points
indicating gap periods are almost 32 % of the critical points, testifying the frequent loss of
contact with vessels on the move. In contrast, long-term stops comprise a meagre 4.5 %
in the resulting trajectory synopses, since locations that belong to the same stop event are
compressed into a single centroid that suffices to designate that the vessel is idle during this
period. Apart from redundant “normal” points and eliminating the inherent noise, condens-
ing these stops really adds much to the reduction efficacy of the trajectory detection module,
offering a valuable semantic interpretation of the motion features.

As an offline, post-processing step, we have reconstructed trajectories from the entire
sequence of critical points accumulated per vessel. In effect, the long motion history of a
ship can be broken up into shorter “trips” between identified stop points, which usually
indicate anchorage at ports. Table 5 lists representative statistics from these approximate
trajectories, and offers insight on a possible offline usage of the results from trajectory
summarization. It turns out that a typical trip spanning several hours over a long distance
(more than 131km) can be approximated with 48 points only; once more, this confirms
the strong reduction effect of the method. Note that almost 5 % of the detected critical

turn: 60%
gap: 32%

low speed: < 0.1%" / speed change: 3.5%
stopped: 4.5%

Fig. 15 Characterization of critical points
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Table 5 Statistics from post-processing of compressed trajectories

Critical points in reconstructed trips 3,895,112
Critical points in open-ended trips 196,131
Average trips per vessel 20
Average number of critical points per trip 48
Average travel time per trip 07:24:48
Average traveled distance per trip 131.513km

points belong to “open-ended” trips, as certain vessels were only spotted while traversing
the Aegean without anchoring there.

5.2 Assessment of complex event recognition

The trajectory detection module compresses a vessel position stream to a stream of criti-
cal movement events (ME)s. Each such event is represented by predicates expressing the
activity of the vessel, its coordinates and its velocity (see Section 4). This way, the ME
stream given to RTEC includes 15,884,253 predicates spanning over the 3-month period.
In addition to this stream, RTEC makes use of real data consisting of protected areas, such
as NATURA areas, represented as polygons, and ports, represented as points, across the
Greek seas. The dataset has 3,966 protected areas with a total of 78,418 edges, and 64 ports.
The size of the grid is 720x900 km?. Given this combination of event stream and static
geographical information, RTEC recognizes the following CEs: illegal shipping, suspicious
vessel delay, vessel rendezvous, suspicious areas, vessel pursuit, and package picking (see
Table 1).

5.2.1 Grid partitioning

Figure 16 shows the results from a first set of experiments in which we attempted
to determine the optimal grid granularity/cell size. Starting with a grid having
5%5 = 25 cells (with a cell size of 138 x 170 km?), we increased the number of cells along
each dimension, up to 90x90 = 8,100 cells (each cell being 9x 11 km? wide). Figure 16a
shows the average CE recognition times in CPU seconds for each different grid. Both the
window w and the slide § are set to 1 hour. The worst grid configuration (90x90) is almost
two times slower than the best (10x10), but in all cases the average time is within the
same order of magnitude, and less than 3 seconds. Figure 16b shows the average num-
ber of recognized CEs for each different grid as a stack plot. The number of recognized
CEs shows a decreasing trend initially, with a tendency to stabilize after grid configura-
tion 30x30. The reason for the difference in the number of detected CEs lies in the way
the respective patterns are defined. Most of the CE patterns are grid-independent. There-
fore, the number of recognized CEs remains stable across all grid configurations. On the
other hand, possibleRendezvous, as defined by rule (3), depends on the size of the grid cells.
Recall that the place of vessel rendezvous cannot be determined precisely, since vessels
stop transmitting AIS signals during the time of the meeting. Therefore, we can only define
possibleRendezvous in terms of the cells in which the vessels in question stopped (respec-
tively resumed) transmitting AIS signals. As a result, when the size of the cells increases,
more possibleRendezvous CEs are being recognized. For this reason, instead of choosing
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Fig. 16 CE recognition for different grid cell sizes

the 10x 10 grid for the remaining experiments, we opted for the 30x30 one, which has
comparable time performance and a stable number of detected CEs.

5.2.2 Timeliness of complex event recognition

Next, we proceed with a more thorough analysis of the performance of RTEC. Figure 17
shows the results of experiments under various window sizes and distributed configurations.
First, we used a single processor to perform CE recognition for all 6,425 vessels, 3,966 areas
and 64 ports. We subsequently employed multiple processors in three different settings, with
two, four and twelve processors.

Figure 17a shows the average CE recognition times, including the time taken for spatial
indexing (see Section 4.2). The slide $ is 1 hour while the window w ranges from 1 hour
to 24 hours. Figure 17b shows the average number of MEs for each setting. In the case of a
single processor, the window ranges from 7,200 MEs (1 hour) to 175,000 MEs (24 hours).
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Fig. 17 CE recognition under varying window sizes and distributed configurations
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In the distributed settings—two, four and twelve processors for CE recognition— the input
ME:s are forwarded to the appropriate processor according to vessel location. For instance,
when twelve processors are used in parallel, each one of them processes ~700 MEs for the
1 hour window, and 17,000 MEs for the 24 hour window. Figure 17c shows the average
number of CEs for each setting. This number also depends on the window size. In the case
of a single processor, e.g., for 1 hour windows approximately 150 CEs are recognized,
while for 24 hour windows RTEC recognizes around 2,900 CEs. We do not show memory
consumption figures because memory usage is negligible and stable.

Figure 17a shows that we can achieve a significant performance gain by running RTEC
in parallel. As the window size increases, the gain becomes more pronounced. Furthermore,
Figure 17a shows that RTEC supports real-time CE recognition. E.g. for a window of 6
hours, RTEC recognizes all CEs in 14 sec when a single processor is used, and in 0.4 sec
when twelve processors are used in parallel.

5.2.3 Scalability of complex event recognition

Since RTEC can comfortably handle the initial dataset, we tested its performance with arti-
ficially enlarged datasets in order to determine its limits in terms of scalability. We created
enlarged data streams by inserting extra critical MEs to the real dataset. For each vessel, we
replicated its trajectories by a specified number of times (increase factor). The replicated
trajectories were assigned to new vessels which do not exist in the original dataset, thus
adding more vessels as well. An increase factor X implies that we have exactly X times
as many critical MEs and X times as many vessels, compared to the original dataset of
~16,000,000 MEs and ~6,500 vessels. We varied the increase factor from 20, producing
datasets of ~128,000 vessels and 320,000,000 MEs, to 200, creating data of ~1,280,000
vessels and 3,200,000,000 MEs. To the best of our knowledge, this is the most comprehen-
sive evaluation of CE recognition techniques in the maritime domain. Compared to e.g. [40],
our surveillance area, number of vessels and data volume are substantially larger. Moreover,
CE recognition needs to consider (a large number of) protected areas.

Figure 18 displays the experimental results. Twelve processors are used in parallel, the
slide B is set to 1 min, and the window sizes w are 60 min (1 hour) and 10 min. We set two
‘response limits’ to 10 sec and 60 sec—we stopped performing tests once the response limit
of 60 sec was exceeded.

Figure 18a shows the average CE recognition times while Fig. 18b the average memory
usage. As expected, a smaller window produces both lower recognition times and lower
memory usage. Figures 18c and d display respectively the average number of MEs and CEs.
We also show how RTEC performs with respect to the two response limits of 10 and 60 sec.
Assume, for instance, that we want to guarantee that RTEC responds within 60 sec. In this
case, for a window of 60 min, RTEC can handle data streams that are ~70 times larger
(~450,000 vessels) than the original one (see Fig. 18a). This means that a window may
include up to approximately 400,000 MEs, while recognizing around 105,000 CEs (see the
60 sec response limit markers on the 60 min window lines in Figs. 18c and d respectively).
Memory consumption is 4,9 GB (see the 60 sec response limit marker on the 60 min window
line in Fig. 18b). Similarly, for a window of 10 min, RTEC is guaranteed to respond within
60 sec even in data streams that are 160 times larger than the original (*1,000,000 vessels).

Comparing the 60 min window/80 increase factor setting against the 10 min win-
dow/200 increase factor setting, we see that the latter has fewer MEs and CEs (see the
right-most marks of the window lines in Figs. 18c and d). However, both the CE recog-
nition times and memory usage are higher (see the right-most marks of the window lines

@ Springer



420 Geoinformatica (2017) 21:389-427

120 @@ window=10 min |
49 window=60 min |
g |

105| > Response Limit=10 sec
<< Response Limit=60 sec | 12.0
20 | @
| Qs
g 8
0 | ® 90
e | (%)
v =1
E 60 > 75
= o
g 5
< £
2
<

|

a5 |
30 |
|

|

15 !
M - |

60

0020 40

80 120 160 200 001" 20 a0 80 120 160 200
Increase factor Increase factor
() Average CE recognition times. (b) Average memory usage.
5407
> Response Li
lqqr Li
480 | esponse Ll 140/
5 420 f B 120
[~ 4 =
& &
360
3 3 100
ol -
s s
300 z
< < 80
& 240 i
= (G
- “ 60
(o] o
4 180 ) /. #
o ‘ D a0
Z 120 z
o0l 20
0" 20 a0 60 80 120 160 200 0120 40 60 80 120 160 200
Increase factor Increase factor
(c) Average number of MEs. (d) Average number of CEs.
0.45:
—1200
0.40, B
‘ 5
[ 1050
0.35 3
| o
0.30, £ 900
w Y £
= | =
S v 750
Jo.25 8
= &
Lo.20 211600
o | £
S |
0.15| 0 450
[ o
| o
0.10 4 300
| o
>
0.05 Z 150
0.00; 35 40 60 80 120 160 200 0“"20 40 60 80 120 160 200
Increase factor Increase factor
(e) CEs/MEs Ratio. (f) Average number of internal list instances.
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in Figs. 18a and 18b). One reason for this behavior is that the complexity of the recogni-
tion task is higher in the 10 min window/200 increase factor setting. A simple measure of
complexity in CE recognition is the ratio of CEs to MEs. This ratio is depicted in Fig. 18e.

As a further step towards understanding RTEC’s behavior, we investigated how it stores
some of its internal structures. During CE recognition, RTEC maintains several lists of time
intervals for different types of event and fluent. In Fig. 18f, we plot the average number
of instances of these lists. The results show that these lists are mostly responsible for the
increased recognition times and memory usage, as the increase factor grows. More specifi-
cally, the lists concerning possibleRendezvous and possiblePicking event (see rules (3) and
(5) respectively), require that all combinations of vessels within some area are checked.
Therefore, when the number of vessels increases, as is the case with replicated trajectories,
the number of possible combinations is increased by the square of the number of vessels,
hence the parabolic lines in Fig. 18f. On the other hand, a window increase does not result
in many more vessels being considered. Many of the added MEs may refer to extra mes-
sages transmitted by the same vessel over the longer duration of a larger window. Note that
this is a different kind of complexity than the one reflected in the ratio of CEs to MEs. In
the case where we have more combinations to check, this does not necessarily imply that
proportionally more CEs will be recognized, since their definitions might not be satisfied.
RTEC has to check all possible combinations though, thus incurring a higher latency and
memory consumption.

6 System deployment

In order to verify its operational capabilities, we have set up our system to monitor /ive AIS
feeds from vessels across the Aegean Sea. Fresh positions are periodically fetched from a
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Fig. 19 Monitoring real-time AIS positions and vessel trajectories in the Aegean
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database (maintained by the University of the Aegean) that receives any transmitted AIS
messages. Each retrieved record only includes vessel identification, geographic position,
and a timestamp. Currently, fresh input is fetched every hour (the sliding step B of the
window employed in this instance), although a different period may be chosen. Typically,
we observed that up to 40,000 fresh records can be fetched per hour, which is a rather
moderate amount of geostreaming data compared with the arrival rates simulated in our
empirical validation (cf. Section 5).

Once each batch of fresh data arrives, it is being consumed by the online mobility tracker
in order to identify any critical points in each vessel’s course. The resulting points with
their annotations (turn, stop, etc.) are then archived into a PostgreSQL database. But the
Trajectory Exporter module also converts them into KML files for map visualization in a
web application, as illustrated in Fig. 19. Critical points may be exported upon detection,
but in order to avoid duplication of data across the modules, we opt to export them once
they get evicted from the sliding window (currently set to a range of w =6 hours). Hence,
exported results currently have a lag of 6 hours from the current time, but this is only a
configuration parameter.

This deployment against real-time AIS messages collected across the Aegean has been
activated since April 2015. This confirms that our system can integrate with a precious
source of online data, offering to marine experts and authorities the means to instantly
locate, recognize, and correlate events from real-time vessel traces.

7 Summary & future work

In this paper, we introduced a system that monitors activity of thousands of vessels and can
instantly recognize events with a potentially serious impact on the environment and on safe
navigation at sea. The system can sustain streaming messages from vessels and can filter
out noise and redundant positions along their course. Hence, it can retain only succinct
synopses of vessel trajectories, drastically reducing the original path into few critical points
that convey major motion features. As empirically validated, with a proper parametrization
our suggested trajectory summarization may incur a compression ratio of almost 98 %,
with tolerable error in the resulting approximation. Moreover, trajectory detection is highly
scalable and can be easily parallelized in order to sustain very high arrival rates in the input
stream. Furthermore, this reduced information may be readily analyzed online for Complex
Event (CE) recognition. Equipped with efficient pattern matching algorithms, this module
correlates critical trajectory positions with static geographical data, and detects suspicious
or dangerous situations, such as illegal shipping, suspicious vessel delay, vessel rendezvous,
suspicious area, vessel pursuit and package picking. We showed that the CE recognition
module performs in real-time using real data as well as synthetically enlarged datasets that
include up to 1,28M vessels and 3,2B critical positions.

We plan further extensions and improvements in the existing implementation. First, since
trajectory detection may be sensitive to parameters, we intend to study advanced meth-
ods for adaptive, auto-calibrated parameterization depending on the size, the type, and the
motion patterns of vessels. Also, creating CE patterns manually is painstaking and error-
prone. To facilitate the process of CE pattern construction, we plan to employ a recent
framework for incremental structure learning that takes advantage of Big Data in order
to construct Event Calculus programs [20]. Besides, maritime surveillance exhibits vari-
ous types of uncertainty [39]. AIS messages are often corrupt, with incorrect or missing
fields. Furthermore, maritime CE patterns do not account for all possible situations. To deal
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with these issues, we have been developing an Event Calculus dialect for Markov Logic
Networks [38]. This way, we can use weight learning techniques [13] for estimating the
confidence values of CE patterns, and subsequently perform probabilistic inference. Mar-
itime surveillance may also benefit from combining multiple data sources. For example,
the use of heterogeneous data sources, as in [40], can help in constructing more refined CE
patterns. We aim to increase our data sources in order to improve monitoring quality and
possibly recognize additional events. Last, but not least, it would be challenging to apply
ideas from our methodology against other sources of big geostreaming mobility data, e.g.,
traces of aircrafts or vehicles. Although the particular definitions of events may differ, as
well as their configurations, we expect that our methodology may still be valid.
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