
Geoinformatica (2017) 21:323–350
DOI 10.1007/s10707-016-0259-9

Implementing set operations over moving regions
using the component moving region model

Mark McKenney1 ·Rakeem Shelby1 ·Sheetal Bagga1

/ Published online: 29 April 2016
© Springer Science+Business Media New York 2016

Abstract Many natural phenomena are intuitively represented as spatiotemporal data
objects, or moving objects. For example, vehicles, rivers, hurricanes, low pressure systems,
areas of high density of foliage, etc align well with a geometric representation, and all
change position or shape over time. Moving object models exist that represent real world
objects as point, line, and region geometries that change continuously over time, leading
to research into spatiotemporal analysis functionality over these objects. Models of mov-
ing objects are ideal for representing data streams that record the motion of spatial data
over time. However, the implementation of operations to support spatiotemporal analysis
over moving objects, particularly over moving regions, has proven difficult. In this paper,
we develop a mechanism to support the implementation of the set operations of intersec-
tion, union, and difference between pairs of moving regions. The mechanism builds on the
Component Model of Moving Regions and the semantic specifications of its operations.
Specifically, we develop a generalized method of computing an intermediate data structure
from which the results of various operations are then derived. The mechanism utilizes well-
known 2D and 3D operational primitives and achieves O(n lg n) time complexity using
appropriate data structures.

Keywords Moving regions · Set operations · Implementation · Interval regions ·
Component moving regions · Spatiotemporal data

1 Introduction

Spatial data is ubiquitous. Most data contain contain some form of spatial component,
whether that be the address of a transaction, a political boundary indicating ownership of

� Mark McKenney
marmcke@siue.edu

1 Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville,
IL 62026, USA

Received: 15 January 2016 / Accepted: 18 April 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-016-0259-9&domain=pdf
mailto:marmcke@siue.edu

324 Geoinformatica (2017) 21:323–350

some item, or the proximity of a communication to a point of interest. The widespread
of adoption of mobile devices coupled with reliable and accurate global position systems
allowed a leap the nature and the quality of spatial data available. Instead of focusing
on purely spatial aspects of data, spatiotemporal data and its corresponding analysis are
increasingly important. Instead of analyzing the position of a taxi at the time of a transac-
tion, one now has the ability to generate accurate trajectories of the taxi both at transaction
times and in between them. Thus, spatiotemporal analysis has grown from instant anal-
ysis, in which spatial analysis focuses at particular instants in time or at data aggregated
and projected out of time, to trajectory analysis, in which spatiotemporal analysis naturally
incorporates the motion of data items over time. The result is a much richer form of analy-
sis for many applications. Furthermore, the idea of trajectory analysis is applicable to data
streams that record the position and extent of spatial data as it changes over time.

Trajectory analysis of points is conceptually intuitive. For example, a vehicle represented
as point that moves over time generates a trajectory. That trajectory can be represented in
a variety of ways, for example, as a function over time or as a line in three dimensional
space in which the first two dimensions are the spatial dimensions and the third dimension
represents time. In any case, the idea of representing a point’s trajectory as a line is natu-
ral. Things are less intuitive when one considers spatial data in the form of a region that
changes over time. For example, an area affected by drought may be represented as a region
on a map. As time progresses, the area may grow, shrink, or develop holes where rain falls
in the middle of the region. Again, this can be represented in a variety of ways, but these
representations become less intuitive; for example, we may say the region is represented as
a function over time, but without specific knowledge of the implementation model of the
region, this is quite a vague statement. We can say the region is represented as a volume
in three dimensional space but the complexity of the region may make cognitive visual-
ization, or actual visualization, rather tricky. For example, a region containing many holes
is tough to visualize, whereas a point forming a line in 3D is less difficult. The complex-
ity of trajectory analysis of regions carries over from the cognitive realm to the practical
realm: implementations of trajectory analysis of regions that move are rare and are difficult
to achieve.

Spatial data objects that change in shape and/or position over time are a type of spa-
tiotemporal data known as moving objects. Specifically, models exist that extend the
traditional spatial types of points, lines, and regions into the moving object realm, result-
ing in moving points, moving lines, and moving regions. Because these objects move and
change shape over time, they imply the existence of trajectories in time. Thus, trajectory
analysis opportunities exist for each of the types. From a practical perspective, trajectory
analysis of regions, especially complex regions has proven difficult. A complex region may
contain multiple, disconnected faces, each of which may contain holes; Italy, for example,
contains multiple faces representing the mainland and its islands, and hole that does not
belong to Italy where Vatican City sits. There is much work in the literature that explores the
mathematic foundations of moving regions, and some work that discusses discrete concepts
regarding them, but little work exploring techniques for effectively implementing operations
over them.

In this paper, we present implementation techniques to compute set operations over mov-
ing regions using the Component Moving Region (CMR) Model. The CMR Model is a
mathematical model of complex moving regions that was developed with the goal of allow-
ing straightforward derivation of implementation models. The abstract model itself provides
data types and semantic descriptions of operations. Translating the types into implementa-
tion models is relatively straightforward, requiring a discretization of region boundaries as

Geoinformatica (2017) 21:323–350 325

polygonal curves. The semantic descriptions of operations, however, leave much flexibility
in implementation schemes. One goal of the CMR Model is to allow for easier implemen-
tations of operations as opposed to existing moving region models. Effectively, existing
proposals for set operation implementations for moving regions are based on 3-dimensional
algorithms (space forming the first two dimensions, and time the third), resulting in rather
complex algorithms. In this paper, we present implementation techniques for moving region
operations that center largely around 2-dimensional algorithms in addition to requiring only
simple, and well known, algorithms over 3-dimensional triangles. Therefore, the contribu-
tions of this paper include: i) creating an algorithmic framework in which all set operations
are efficiently computed for CMR regions, ii) describing the specific mechanisms required
for implementation, and iii) discussing an implementation of the algorithm, and depicting
results from its execution.

The paper is structured as follows. Section 2 reviews related literature to the work pre-
sented in this paper. Section 3 reviews the pertinent concepts of the CMR region model upon
which this paper builds. The operational foundation for implementing set operations under
the CMR model is discussed in Section 4. In Section 5, the set operations for CMR regions
are developed. Mechanisms to build the geometric result of set operations are provided in
Section 6. An implementation of the proposed operation for intersecting CMR regions is
briefly discussed in Section 8. Finally, we draw some conclusions in Section 9.

2 Related work

This paper provides implementation techniques for operations over moving regions as
defined by the CMR model of moving regions [11]. The CMR model is a data model
defining types and operations over moving regions. Research into moving objects and the
databases that support them have their origins in spatial information management. Spatial
information management, and spatial databases, are built upon spatial data type systems.
Modeling of spatial types began with the development of the simple spatial objects: sim-
ple point, simple line, and simple region (Fig. 1). Simple points represent a single point in
space, simple lines are connected structures, and simple regions contain a single face and no
holes in the face. The simple spatial types suffered from inability to represent many aspects
of geographic reality, and could not ensure type closure under operations.

Definitions of the complex spatial types emerged as a solution to the problems associated
with the simple types. The complex spatial types consist of complex points, complex lines,
and complex regions (Fig. 2). A complex point contains many individual points, a complex
line represents possibly disconnected networks, and a complex region can contain multiple
faces, each containing zero or more holes. Formal definitions for complex types, based on
point set theory, are provided in [14].

To represent spatial data that changes in shape or position over time, spatiotemporal data
models were developed [2, 5, 8, 16, 18]. The term moving objects describes spatiotempo-
ral types corresponding to simple and complex spatial types that move or change shape

Fig. 1 Example of a simple
point (a), line (b) and region (c)

a b c

326 Geoinformatica (2017) 21:323–350

a b c

Fig. 2 Example of a complex point (a), line (b) and region (c)

over time. A data model, along with implementation techniques is presented in a series of
work that results in a implementation-oriented model of moving types known as the slice
model [5]. Essentially, moving objects are represented mathematically by associating com-
plex objects with time instants; thus, a moving region is a mapping from time instants to
instances of regions over a continuous time range. In terms of implementation, the slice
model introduces time slices such that the movement of a spatial object between two time
instants is represented as the motion of individual line segments defining the boundary of
a complex spatial object as they travel from a starting position to an ending position over
the time interval defined by the slice. In this manner, a moving object is composed of many
slices. The slice model defines a complete algebra of types and operations, but suffers from
two practical problems: i) data for the model is difficult to generate by hand and algorithms
to generate data from real world sources have severe limitations [12, 17], and ii) the algo-
rithms to implement operations over moving regions, in particular, are complex and difficult
to implement.

The CMR model was developed to address the practical limitations of the slice model.
The goals of the CMR include i) the ability model complex moving regions as components
defined as simple spatial objects, ii) to make data generation easier by generating motion
between simple components automatic, and iii) make operations easier to implement by
defining operations based on well known algorithms and techniques then composing those
to create operations. The first two goals have been addressed [11–13]. This paper addresses
the third goal. A description of the relevant definitions of the CMR model are included in
Section 3. An early version of this work appears in [10]

3 Data model: component moving regions

The complete definition of the CMRModel is presented in [11]. Here we provide a descrip-
tion of the relevant definitions. For the purposes of this paper, we frame the definitions in
terms of discrete structures; thus, cycles and lines are defined using polygonal curves. We
begin by defining the primitive structures and build up to moving regions under the CMR
model.

A simple region is a polygonal curve that defines a single, simple, minimal cycle in
2-dimensional space. A line, for the purposes of this paper, is a polygonal curve in 2-
dimensional space that is connected, acyclic, and may contain branches. This definition of
a line departs slightly from definitions of simple lines that do not allow branches. Finally, a
simple point is a single point in 2-dimensional space.

A triangle is 3-tuple of points in 3-dimensional space. As discussed previously, the CMR
model focuses on region representations at individual time instants; therefore, we require
that triangles contain a single edge that is planar in the x, y dimensions. Furthermore, the

Geoinformatica (2017) 21:323–350 327

end points of that edge are always the first two points listed in a triangle. A triangle, in this
sense, is meant to represent a straight line segment as it travels with constant velocity across
a time interval and contracts to, or expands from, a point over that interval. Thus:

Definition 1 A triangle, tri, is a 3-tuple of points such that:

tri = ((x1, y1, z1), (x2, y2, z2), (x3, y3, z3))|z1 == z2 ∧ z1! = z3

Structural regions are composed of the geometric primitives simple point, line, and sim-
ple region. Structural regions define geometric structures that conform to the definition of
complex regions, but represent them as a composition of the geometric primitives. Thus,
structural regions separate the structural representation of a complex region from the inter-
pretation of that structure. For example, a complex region representing a face containing a
hole will be represented as two separate geometric primitives in a structural region: a simple
region defining the face, and simple region defining the hole. The complex region implied
by the structural region is computed as the union of all faces minus the union of all holes.
Although this is a simplistic representation, we take advantage of it in order to more easily
represent moving regions.

We add one additional constraint to the definition of structural regions in addition to
those defined in [11]: we require the existince of a mapping, denoted the face-to-hole (F2H)
mapping, that indicates which holes affect a particular face. Thus, the interpretation of a
structural region is the union of all faces such that the holes associated with each face
(according to the F2H mapping) are removed from their respective faces. Let the notation
[α] indicate the set of all valid instances of the type α. A structural region is a set of faces,
a set of holes, a set of lines, a set of points, and a F2H mapping:

Definition 2 A structural region is a set of faces F , a set of holes H , a set of lines L, a set
of simple points P , and a face-to-hole mapping where:

F ∈ 2[simpleregions]

H ∈ 2[simpleregions]

L ∈ 2[lines]

P ∈ 2[points]

F2H : F → 2H

and the complex region r defined by the structural region s is:

r =
⋃

f ′∈F ′
f ′ where

F ′ = {f −
⋃

h∈F2H(f)

h|f ∈ F }

The points, lines, and regions making up a structural region are called components of
the structural region. For a structural region S, we use a dot notation to refer to the sets
containing the components and the mapping.; i.e., S.F is the set of faces and S.F2H(f) is
the set of holes mapped to by face f .

Structural regions are static in time, they contain only 2-dimensional structures and no
temporal information. In order to lift structural regions into the spatiotemporal realm, we

328 Geoinformatica (2017) 21:323–350

define component interval regions (CIRs) to describe the motion of a structural region across
a fixed time interval. Thus, a CIR contains two time instants: a source time and a destination
time. A structural region is then associated with each time interval, resulting in a source
region and a destination region. The source region defines the complex region as it exists
at the beginning of the time interval, and the destination region defines the complex region
as it exists at the end of the time interval. The CIR also contains a component mapping M

that associates a component in the source region with a component in the destination region.
This association indicates the configuration of that component at the beginning and end of
the time interval. CIRs do not explicitly store information to reflect the actual movement of
a component across a time interval, rather it relies on a motion function, such as the one in
[12, 13] to generate triangles, as defined previously, to represent the motion of components
over the time interval.

Definition 3 A component interval region consists of a source time, a source structural
region, a destination time, a destination structural region, and a mapping of structures from
the source structural region to the destination structural region:

ts ∈ R

td ∈ R

s ∈ [structural region]
d ∈ [structural region]

M : sF ∪ sH ∪ sL ∪ sP → 2dF ∪dH ∪dL∪dP

One important point to note about the CIR definition is that the mapping is intentionally
free of constraints. A geometric structure in the source region can map to multiple structures
in the destination region. Furthermore, a face in the source region can map to a hole in
the destination region, and vice versa. Points and lines typically map to faces and holes,
allowing faces and holes to come into (or fade out of) existence by growing from a point or
line structure.

The fact that the mapping in a CIR is unconstrained allows complex motion patterns
to be easily represented. For example, a hole that begins outside of a face, and traverses
the face over a time interval can be represented by simply creating cycles representing the
hole and face at either end of the time interval, and then using the mapping to indicate
the relevant motion. A direct consequence of this is that during the lifetime of a CIR, hole
structures may exist outside of a face or faces, faces may overlap with faces, and holes may
overlap with holes. Such situations necessitate the requirement for structural regions to be
interpreted as complex regions, since their raw representation violates the type constraints
of complex regions. We require a method to extract the structural region defined by a CIR
at any time instant. The extraction is straightforward: the motion function is applied to all
pairs of structures that exist in the CIR’s mapping to generate motion triangles across the
time interval. Because motion triangles use constant velocity, the line segment represented
by a motion triangle at any time instant is simply interpolated.

Definition 4 The extractSR function produces the structural region (SR) defined by a CIR
at a specific time instant:

extractSR : [component interval region] × R → [structural region]

Geoinformatica (2017) 21:323–350 329

4 Foundations for set operations

One driving design factor of the CMR Model is that operations should be able to be imple-
mented using well-known 2-dimensional and 3-dimensional operational primitives. The
strength of such a design lies in the fact that such algorithms are well studied, optimization
techniques for such algorithms are known, and many implementations of such algorithms
exist. This design goal was achieved in the semantic description of the intersection oper-
ation between two CIRs in [11]. In this section, we discuss a framework of operational
primitives upon which the intersection, union, and difference operations between pairs of
CIRs, will be implemented. The advantage of this approach is that a single, parameterized
framework provides the necessary functionality to compute all three operations.

We assume that all operations operate over a pair of aligned CIRs. Two CIRs are aligned
if they have identical source and destination times, and the topological relationship between
any pair of components from either of the CIRs do not change in the interior of the time
interval. This requirement does not diminish the generality of the operations since two CIRs
that are not aligned can be aligned given an extraction function as defined previously. To
align two CIRs, one simply uses the motion function to produce motion triangles, and then
computes the time instants at which any two motion triangles intersect; such instants are
where the boundary of one component intersects the boundary of another component (for
example, a face crossing into another face as they move). CIRs are then created using the
extractSR function to compute the source and destination structural regions for CIRs at
adjacent time instants.

The alignment process clearly uses a three-dimensional, triangle/triangle intersection
algorithm to discover the time instants when topological change occurs between compo-
nents of input CIRs. Once aligned, the computation of a set operation is achieved using only
two-dimensional operations that operate on the source and destination structural regions in a
pair of aligned CIRs. We will continue our explanation assuming that an intersection opera-
tion is being computed since both union and difference operations can be expresses in terms
of intersection (a fact we take advantage of in later sections).

Intuitively, the intersection of two complex regions consists of the area covered by both
input complex regions. Because structural regions use a set of faces to indicate the possible
area covered by the region, and a set of holes that remove some of that area, the intersection
between two structural regions must 1) find the area covered by faces of both regions, and
then 2) remove any of that area covered by a hole from either region. Item 1 is achieved by
finding the intersection of pairs of intersecting faces, one face from each respective input
region. Item 2 is achieved by finding the portions of any hole from either input structural
region that covers an intersection from item 1.

To extend the intersection of structural regions to CIRs, we simply make use of the
component mapping in a CIR. If two faces, one from each source region, intersect resulting
in a face x, we use the component mapping in the CIR from which they came to find their
corresponding faces in the destination region. The intersection, y, of those faces in the
destination region is then computed. In the result CIR, the component mapping is updated to
reflect the fact that x travels across the time interval as it morphs into y. Holes are handled
similarly: the intersection of two faces and a hole from the source will map the intersection
of the corresponding structures (with regards to the component mapping) in the destination
structural region. Figure 3 depicts an example: the CIR on the left is lightly shaded and the
CIR on the right is darkly shaded in Fig. 3a. The lighter CIR contains a hole. The darker
CIR has only a single face and overlaps the lighter CIR and its hole at both ends of the
interval. The dotted lines indicate the mapping. Figure 3b shows the intersecting faces and

330 Geoinformatica (2017) 21:323–350

ba

dc

Fig. 3 Two CIRs (a), one is lighter shaded the other is darker shaded. The intersection of faces (b). The
intersection of holes with intersecting faces (c). The result of the intersection (d)

their mapping. Figure 3c shows the parts of the holes that intersect intersecting faces, and
their mapping. The resulting structures are shown overlaid in Fig. 3d.

Using this procedure results in a set operation being performed using 3D triangle/triangle
intersection as the only three-dimensional operation to find times for alignment, followed
by two-dimensional extraction and intersection operations over the structural regions. The
framework is as follows:

– Discover time instants of topological change between the input regions.
– Align the input CIRs according to those time instants.
– Compute all non-empty intersections between pairs of faces from the respective

regions.
– Compute all non-empty intersections between a hole structure and a non-empty

intersection from the previous step.
– Maintain mappings to build a resulting CIR.

4.1 Operational framework

There are multiple ways to implement the framework presented above. Here, we discuss
computational time complexity considerations of one implementation scheme.

Under the framework for set operations, the first step is use a motion function to generate
motion triangles over the time intervals covered by two input CIRs. Motion functions exist
to achieve this in O(n lg n) time for input of n line segments. The second step is to find
intersections between motion triangles for alignment.

A naive approach to computing the intersections between two sets containing n triangles
requires O(n2) time, but index structures exist to lower this to O(n lg n) time (for example,
[7]).

The intersections between motion triangles correspond to instants at which the topolog-
ical relationships between components of the input CIRs change. The extraction function
is used to extract structural regions at each time instant. Those structural regions and time

Geoinformatica (2017) 21:323–350 331

instants are then grouped to form aligned CIRs. The component mapping from the original
CIRs are used to create the mappings for the aligned CIRs.

At this point in the algorithm, all pairs of faces (where a pair contains one face from each
input CIR) with a non-empty intersection must be computed. A naive computation tests all
pairs of faces in O(n2) time for n line segments defining those faces. Similarly, the faces
resulting from that step must be intersected with all holes, again resulting quadratic time if
implemented naively. Furthermore, the algorithm as described is specific to the intersection
operation, and must be modified to accommodate other set operations and topological rela-
tionship computations. It will be shown that the proposed framework is achievable using a
map overlay algorithm, which is a achievable in linearithimic time bounds, resulting in an
overall O(n lg n) time bound for the algorithm. In the following, we propose a generalized
method of computing structures that is generic in the sense that the same framework is used
to compute all set operations between CIRs.

4.2 A generic approach using map overlay

Given a collection of regions, a map overlay of those regions, for our purposes, overlays
all regions into the same scene and such the area covered by the input regions is preserved;
furthermore, each input region is assigned a label and a region in the overlay carries the
labels of all input regions that cover it [1, 3, 4, 6, 15]. For example, Fig. 4 depicts map

ba

c

Fig. 4 Two structural regions labeled as they would be in a spatial partition (a and b. The first region contains
two faces and one hole. The second region contains one face and one hole. c shows the spatial partition
constructed by overlaying a and b

332 Geoinformatica (2017) 21:323–350

overlays that show that an overlay is essentially a labeled partition of the embedding space.
More specifically, the model of spatial partitions [3] provides a type system for the concept
of a map overlay data type. Because spatial partitions carry labeling information pertaining
to the input used for its creation, it is possible to construct a spatial partition based on two
input structural regions such that the labeling in the resulting partition allows the selection
of relevant structures within the partition that pertain to the result of a desired operation. In
other words, a spatial partition created from the components in two input structural regions,
if labeled correctly, provides all necessary information to compute the intersection, union,
or difference of the input structural regions simply by examining the labels of the resulting
partition and extracting structures from the partition based on those labels. Thus, we require
a labeling scheme to support such a procedure.

This section discusses a framework for computing set operations over structural regions.
Extending the methods to apply to CIRs is trivial since CIRs are made up of structural
regions and a component mapping. The component mapping of a result of a set operation is
easy to compute based on the input CIRs to the set operation.

In order to construct an intersection, for example, of two structural regions, r and s, based
on a spatial partition constructed from both regions, we must be able to identify if an area
in the partition is covered by a face from r , a hole from r , a face from s, a hole from s, or
some combination of those. Therefore, we assign component identifiers to the components
of r and s as follows:

Definition 5 The scheme for assigning component identifiers to the structures in two struc-
tural regions, r and s, that will be used to compute a spatial partition for use in computing
set operations between r and s is as follows:

i. faces in r are assigned a negative, even integer
ii. holes in r are assigned a negative, odd integer
iii. faces in s are assigned a positive, even integer
iv. holes in s are assigned a positive, odd integer

Therefore, to construct a spatial partition from two input structural regions, we simply
take each structure from an input region and assign it a relevant component identifier. The
result is a set of simple regions, each with a corresponding component identifier. Computing
spatial partitions essentially requires the building of a map overlay, this can be done with a
plane sweep style algorithm, among other approaches, with time complexity O(n lg n + k)

for n input line segments with k intersections. Such a spatial partition is equivalent to com-
puting a map overlay which maintains the areal coverage of all input geometries. Because
the term map overlay has multiple definitions in the literature, we will refer to a spatial
partition built as described as a combination partition. Once a combination partition is com-
puted, it contains all information needed to compute a set operation between input structural
regions. Figure 4 depicts an example of two input structural regions with component with
component identifiers and their resulting combination partition.

5 Building the desired operation

Constructing the intersection of two structural regions encoded in a combination partition
is achieved through extracting relevant geometries from the combination partition and stor-
ing them in the appropriate set (i.e., the set of faces, holes, lines, or points) in a result

Geoinformatica (2017) 21:323–350 333

structural region. We must extract the relevant portions with two goals, in particular, in
mind:

1. The interpretation of the structural region resulting from a spatial operation over two
input structural regions must be equivalent to the result of the same operation over
the interpretation of the input regions, but must be represented in terms of simple
geometries and expressed in terms of CIRs.

2. Spatial operations over structural regions are meant to support spatial operations over
CIRs; thus, the result of a spatial operation over structural regions must contain the
appropriate geometries to satisfy a motion function in a CIR and must contain infor-
mation to construct a mapping of geometries from the resulting source region to the
resulting destination regions.

The two goals listed above have two direct consequences on the design of the spatial
operations over structural regions. First, the geometry of the result of a spatial operation
over two complex regions is obvious in a combination partition built from the regions. What
is less obvious is how to represent them in terms of simple geometries that form structural
regions. For example, the intersection of the complex regions in Fig. 4 is visible in the com-
bination partition as the portions of the input regions that overlap but that are not covered
by holes. Because structural regions represent hole and face geometries separately and as
simple geometries, we cannot build a structural region by simply extracting only portions
of the combination partition that correspond to overlapping faces since such a geometry
may be itself a complex region containing holes (a geometry in the face set of a structural
region must be a simple region). Thus, we must ensure that only simple geometries are
extracted. Consequently, if two faces from respective structural regions overlap in a com-
bination partition, we must extract the entire overlapping portions of the faces (in the case
of an intersection operation), regardless of the presence of holes, in order to ensure simple
geometries are extracted. Therefore, if we are computing an intersection using the combi-
nation partition in Fig. 4, one geometry will be extracted to represent the entire intersecting
portion of the simple regions defining face {2} and face {−2}, and one geometry will be
extracted to represent the entire intersecting portion of the simple regions defining face
{−4} and {2}. Separate hole geometries will be extracted to remove the portions of those
face intersections that are covered by holes in the input, rather than directly representing the
faces as containing holes.

Note that when extracting hole geometries to form the intersection of the structural
regions in Fig. 4, we have some choices. Face {2} and {−2} intersect in the simple region
covering all areas whose label’s contain the subset {−2, 2}, and hole geometries then inter-
sect that simple region and are labeled with a superset of {−2, 2}. The geometries with a
label that is a superset of {−2, 2} are labeled {−2, −3, 2}, {−2, 2, 3}, and {−2, −3, 2, 3}.
The question that arises is then: “What combination of these geometries must be stored in
the result structural region to satisfy the two goals listed above?”. Obviously, storing all
three of them satisfies goal 1 in this case, but goal 2 forces more care in this situation. The
label {−2, −3, 2, 3} is a superset of both of the other hole labels. Because holes are defined
by simple regions, it follows that the hole {−2, −3, 2, 3} is completely contained by both of
the other holes. It may be that we only need to keep the holes with labels {−2,−3, 2} and
{−2, 2, 3}, but it may also be the case that we need all three. We will clarify this point when
the details of the intersection operation are provided in the next section. At this point, it is
important to note that all relevant geometries can be identified in the combination partition.

With the goals of building a result structural region for a spatial operation in mind,
we must make some final remarks on expected implementation. The general approach

334 Geoinformatica (2017) 21:323–350

to building an operation is to examine the labels in a spatial partition constructed from
structural regions that are labeled with the scheme in Definition 5. We assume that the
components of structural regions are implemented as polygonal curves. Furthermore, the
labels associated with each region in the spatial partition are stored as integers associ-
ated with the line segments that define those polygonal curves. Each line segment consists
of 2 end points and two labels: LA contains the component identifiers of all compo-
nents in the input structural region whose interior lies immediately above (or to the left
in case of a vertical) of the segment, and LB contains the component identifiers of all
components in the input structural region whose interiors lie below (or to the right) of the
segment. Note that labels may contain multiple component identifiers; thus, LA and LB are
sets:

Definition 6 A line segment consists of two points and two labels:

(x1, y1), (x2, y2), LA, LB|x1, y1, x2, y2 ∈ R ∧ LA, LB ∈ 2Z

We use the notation lLA and lLB to refer to the labels of line segment l. A combination
partition is represented as a set of line segments for implementation purposes.

We develop the specification of set operations in two steps: i) identify the labels of struc-
tures we wish to extract from a combination partition, then ii) specify the method to extract
those structures. The first step is operation specific, and is specified independently for the
intersection, union, and difference operations. The second step is general, and is specified
at the end. In the following, we use the notation that structural regions R and S are used to
build a combination partition πRS to compute some operation, the result of which will be
structural region Q. Let RF be the set of labels of faces from r , RH be the set of labels of
holes from r , SF be the set of labels of faces from s, and SH be the set of labels of holes
from s. For example, If R is the spatial partition in Fig. 4a, then:

RF = {{−2}, {−4}}
RH = {{−3}}

For the remainder of this paper, the term label will always refer to a set of integers.

5.1 Intersection

Intuitively, the intersection of two regions consists of all the area that is covered by the
interiors of both input regions, and none of the area covered by exactly 1 of the input regions
or none of the input regions. Because structural regions represent holes and faces as separate
structures, we must identify the portions of face structures that must be in the result and
the portions of hole structures that must be in the result. Again, since faces and holes in
structural regions are simple objects, we handle them separately.

To build the structural region Q that is the intersection of S and R from πRS , we first
need to identify face structures for Q. Any area covered by a pair of faces, one face from
each respective region, must be added as a face structure to Q. We identify such areas based
on the labels of line segments in πRS . Let L be a label associated with a line segment k

in πRS . If the interior of two faces, one from S and one from R, lie on the side of k to
which L corresponds, then L will contain the component identifiers of both of those faces.
Thus, for any label L on line segment k, pairs of intersecting faces are discovered by finding
all pairs of component identifiers where one label is in the set RF and the other is in the
set SF .

Geoinformatica (2017) 21:323–350 335

Definition 7 FI (L) is the set of sets of component identifiers contained in a label L on a
line segment in combination partition πRS that identify faces that must be in the structural
region Q that results from computing the intersection of structural regions R and S.

Let L be a label on a line segment in πRS :

FI (L) = {{l1, l2}|l1, l2 ∈ L ∧ l1 ∈ RF ∧ l2 ∈ SF }

Because holes in a structural region are represented as simple regions enclosing exterior
space, the holes relevant to the intersection of R and S are only those that interact with the
intersection of two faces, one from each respective input region. Therefore, the label of a
hole structure relevant to the intersection of R and S in a label L on a line segment in πRS

contains a hole component identifier from either R or S and a label in an element of FI :

Definition 8 HI (L) is the set of sets of component identifers contained in a label L on a
line segment in combination partition πRS that identify holes that must be in the structural
region Q that results from computing the intersection of structural regions R and S.

Let L be a label on a line segment in πRS :

HI (L) = {{l1, l2, l3}|{l1, l2, l3} ∈ L ∧ {l1, l2} ⊆ FI (L) ∧ l3 ∈ RH ∪ SH

∧(l3 ∈ R.F2H(l1) ∨ l3 ∈ S.F2H(l2))}

For example, the labels of the structures corresponding to the intersection of the struc-
tural regions encoded in Fig. 4c are the face labels {−2, 2} and {−4, 2} and the hole labels
{−2, −3, 2} and {−2, 2, 3}. The final step is to create the F2H mapping of the result region.
Because holes are only applied to faces to which they are mapped in their F2H mapping,
the labels of the result region reflect the mappings from the input regions. Therefore, in the
result, a hole label lh identifies a hole structure in a face structure with label lf iff lf ⊆ lh
and the hole component identifier in lh is associated with either face identifier in the respec-
tive input F2H mapping . This follows directly from the fact that face and hole structures
are simple regions; thus, a label containing a hole ID in conjunction with a face ID indicates
a hole within that face. The face to hole mapping for the result of the intersection operation
used in our example is then: {−2, 2} → {{−2, −3, 2}, {−2, 2, 3}}; {−4, 2} → ∅.

5.2 Difference

The difference of two regions consists of all area covered by the interior of exactly 1 region.
We define difference as the non-symmetric difference operation. One is tempted to define
schemes for identifying labels of structures in a combination partition that are unique to the
difference operation; however, we cannot do this because structural regions must contain
simple geometries. The label identification scheme for the intersection operation is inclu-
sive, in the sense that it only identifies labels to put into the FI and HI set. The consequence
is that since no structures that go into the combination partition contain holes (they are all
defined as simple regions), any are covered by a single label will not have holes. The temp-
tation for difference is, for example, to collect face labels from a label L on a line segment
if that label contains a face component identifier from one input structural region, and does
not contain a face identifier from the other input. If a face from one input structural region
contains a face from the other input structural region, we will have identified a complex (as
opposed to a simple) geometry since it contains a hole. Complex schemes may be able to
handle this situation, but our contribution is to create a generic solution for all set operations

336 Geoinformatica (2017) 21:323–350

that does not rely on special cases. Thus, we use De Morgan’s laws to compute difference
and union operations using the definitions defined for intersection.

The difference between two sets, A and B, according to De Morgan’s laws, is equivalent
to the intersection of the first set and the complement of the second set:

A − B = A ∩ BC

where BC is the complement of B. Because structural regions utilize labels to indicate
faces and holes, computing the complement of a structural region S within a combination
partition is simply a matter of altering labels: faces are relabeled to reflect hole labels and
holes are relabeled to effect face labels. Complementing a structural region does require
that the entire exterior of the region being complemented become a face as well. The notion
of complementing the exterior seems to indicate a special case in that the exterior is treated
differently than face and hole portions of a structural region; however, the definition of
structural regions supports an implicit face covering the universe as well as an implicit
hole that covers the universe that applies only to the face covering the universe according
to the F2H mapping. We denote these structures the external face and external hole, and
assume they are present in all structural regions. Because the external hole is equivalent
to the external face, they have no practical effect for a structural region, but their presence
simplifies operations under complement.

Algorithm 1 lists the steps to compute the complement of structural region S encoded in a
combination partition πRS built from structural regions R and S. The algorithm proceeds by
examining each label for each line segment in combination partition πRS . If a label contains
face labels for S, they are all converted to hole labels, and mapping MF of face labels to
hole labels records the conversion (Lines 6-8). If a label contains hole labels from S, those
labels are converted to face labels and the mapping MH of hole labels to face labels records

Geoinformatica (2017) 21:323–350 337

the conversion (lines 9-11). The face to hole mapping for the complement is computed by
using S’s F2H mapping and the conversion mappings MF and MH in lines 12-14. Lines
15-18 add the external face and hole labels.

Because structural regions have a defined interpretation, the creation of a complement
of a structural region requires a complemented interpretation. Recall that the region repre-
sented by a structural region is defined as the union of all face structures minus the union of
all hole structures; in effect, faces impose positive space on an embedding space and holes
represent negative space which is removed from the positive space. The complement of this
definition implies that hole structures are positive space and face structures are negative
space; furthermore, instead of negative space removing area from positive space, positive
space adds relevant area to negative space under complement. The effect is that faces in a
complement are only relevant if they overlap a hole to which they map in the face to hole
mapping Mc

F→H , meaning that a face label under a complement will always be paired with
a mapped hole label if it is relevant to an operation. For example, Fig. 4b shows a struc-
tural region in a combination partition. Under traditional interpretation, the hole (negative
space) is removed from the face (positive space). Under the complement of the region, the
original face becomes a hole and the original hole becomes a face; clearly, the hole in the
complement contains the face complement such that if the hole area is removed from the
face area, an empty region is the result. Thus, the differing interpretation under complement
is required.

Figure 5 depicts an example in which the combination partition in Fig. 4 is shown after
labels have been altered to complement the region with positive labels. The label xf is
used for the external face under the complement and the label xh is used for the external
hole under complement. The external structures permeate the entire space, since all faces
and holes are required to be simple regions. Let R be the region with negative labels, and
S be the original region with positive labels. R − S = R ∩ SC . Thus, we simply com-
pute the intersection based on the labels in Fig. 5. There is one caveate when computing
the intersection with a complement: as discussed previously, a face in a complemented
region affects the result only if it overlaps a hole to which it maps in the face to hole

Fig. 5 The combination partition from Fig. 4 where region R is Fig. 4a, region S is Fig. 4b, and with labels
reflecting the complement of S. Under the complement, SF = {{6}, {xf }} and SH = {{7}, {xh}}

338 Geoinformatica (2017) 21:323–350

mapping. Thus, any face label required in the intersection formulas corresponding to a
face in the complement region is only applicable if the label contains a hole to which it
maps. With this one caveat, face labels in Fig. 5 with respect to the intersection defini-
tion are: {−2, xf , xh}, {−4, xf , xh}, {−2, 6, 7}, and the hole labels are: {−2, −3, xf , xh},
{−2, −3, 6, 7}, {−2, 7, xf , xh}, {−4, 7, xf , xh}. Once the labels are computed, they can be
converted back to their original labels so structures may be identified in the original com-
bination partition. To convert labels, one simply reverses the effects of Algorithm 1; the
external face and hole labels are ignored and the remaining complemented labels are un-
complemented. The result is the face labels {−2}, {−4}, {−2, 2, 3} and hole labels {−2, −3},
{−2, −3, 2, 3}, {−2, 2}, {−4, 2}. Figure 6 depicts the components identified by those labels.

The face to hole mapping for the result of the difference operation used in our
example is computed identically to the intersection operation, with the result:{−2} →
{{−2, −3}, {−2, −3, 2, 3}}; {−4} → {{−4, 2}}; {−2, 2, 3} → {{−2, −3, 2, 3}}. Thus, the
result of the R − S operation is shown in Fig. 6.

5.3 Union

As with the difference operator, the union may be represented in terms of intersection and
complement operations according to De Morgan’s laws. The union of two sets A and B is
equivalent to the following:

A ∪ B = (AC ∩ BC)C

There is only one additional complexity in the union computation: the final step is to
take the complement of the result of the intersection operation that identifies sets of labels
corresponding to structures in the combination partition. Those sets are FI and HI , and rep-
resent structures that are holes and faces, respectively. The complement algorithm applies

Fig. 6 The components of the combination partition identified by the labels collected during the difference
operation using the complemented region in Fig. 5. The labels are converted back to their non-complemented
state as they appear in Fig. 4. The final, shaded region depicts the interpretation of the result of the difference
operation (union of faces minus union of holes)

Geoinformatica (2017) 21:323–350 339

to the labels in the combination partition, but not the sets FI and HI as a whole, thus the
complement of the result of the intersection must also switch the sets FI and HI (i.e., faces
become holes and holes become faces in the complement.

For example, the complement of both input structural regions from Fig. 4 is shown in
Fig. 7. Taking the intersection, with the caveat that faces are only applicable if they exist
with a hole to which they are mapped (as with the difference operation) results in

FI = {{xf , xh, yf , yh}, {−8, −9, xf , xh}, {6, 7, yf , yh}, {8, −9, 6, 7}}
HI = {{xf , xh, yf , yh,−9}, {xf , xh, yf , yh, −11}, {xf , xh, yf , yh, 7},

{−8, −9, xf , xh, 7}, {6, 7, yf , yh, −9}}
We apply the complement algorithm to those labels and the combination partition, and

switch the FI and HI sets to verify the final result. We will assume for clarity that structure
identifiers will return to their original values:

HI = {{−3, −2}, {2, 3}, {−3, −2, 2, 3}}
FI = {{−2}, {−4}, {2}, {−3, −2, 2}{2, 3, −2}}

The face to hole mapping is constructed identically to the other operations. An image of
the final result is shown in Fig. 8.

6 Extracting the desired structures

Section 5.1 through Section 5.3 describe a mechanism to identify the structures in a combi-
nation partition that pertain to the result of an operation. The final step is to extract the faces,
holes, lines, and points that make up those structures in order to build the result structural
regions. Recall that combination partitions are defined by segments carrying labels. Each
label indicates the component identifiers of all components of the input structural region
whose interiors lie on the side of the line segment to which the label corresponds (i.e., above

Fig. 7 The combination partition from Fig. 4 with labels reflecting the complement of both regions. xf and
xh are the exterior face and hole labels for the region with positive labels, yf and yh are the exterior face and
hole labels for the region with negative labels

340 Geoinformatica (2017) 21:323–350

or below). The result of the procedures described in Section 5.1 through Section 5.3 is a set
of labels indicating structures in the combination partition that must be extracted in order
to create the structural region corresponding to the result of the desired operation. Because
all operations are defined in terms of the intersection operation, we are able to define the
procedures to extract structures from a combination partition that represent the result of a
set operation using Definitions 7 and 8. The following sections describe how to extract the
desired structures.

6.1 Extracting faces and holes

Extracting the faces and holes corresponding to the result of an operation over a combination
partition is straightforward. In order to extract the simple region corresponding to a label,
one must collect line segments from the combination partition that carry the desired label as
a subset of the LA set or LB set, but not both. This follows directly from the fact that a line
segment must separate the interior of a simple region from its exterior. A line segment with
the desired label as a subset of both LA and LB will lie in the interior of the desired simple
region. This procedure allows one to extract both face and hole structures. For example, the
result of the union operation in Section 5.3 is depicted in Fig. 8. One can verify the process
by looking at the line segments involved with the face label {−3, −2, 2}.

Algorithm 2 defines a procedure to extract the relevant simple regions from a combina-
tion partition that define the result of an operation. The algorithm takes a set of labels that
represent the desired simple regions to extract as input. The algorithm proceeds by visit-
ing each line segment in the combination partition; each line segment is checked to see if it
bounds a region with a desired label, and recorded in a hash table along with its appropriate
label for each region it bounds. One important note is that the extracted regions will not
have holes, since the desired labels are computed based on the intersection operation, but

Fig. 8 The components of the combination partition identified by the labels collected during the union
operation using the complemented regions as shown in Fig. 7. The labels in this figure are converted back to
their non-complemented state as they appear in Fig. 4. The final, shaded region depicts the interpretation of
the result of the union operation

Geoinformatica (2017) 21:323–350 341

a region corresponding to a label may have multiple faces. A final post-processing step is
required to identify the individual faces of each extracted region. For an input of n line seg-
ments and m labels of regions to extract, the time complexity is clearly O(nm) due to the
nested loop structure. However, m tends to be very small in practice, and the algorithm is
easily parallelizable in the case of larger m.

Figure 9 depicts an example scene. Algorithm 2 results in a hash table that maps the label
{−6, 2} to the set of 3 line segments defining the triangle surrounding the label {−6, 2}. The
previous example scenes show more complex interactions of faces and holes.

6.2 Extracting lines

It is possible that two faces from opposing structural regions meet along a line. In many
formulations of spatial set operations, such lines are ignored; however, in our application
we are using the results of these set operations to create interval regions so we must identify
such lines. Over a time interval, two simple regions may begin such that they meet along
a line, but do not have overlapping interiors. Over the course of the interval, they could
then move over each other such that they have overlapping interiors. The intersection of
two such interval regions will begin with a line from which the intersection emerges over

Fig. 9 A combination partition
where faces intersect at point
structures, line structures, and
face structures. The solid lined
geometry is one structural region
and the dotted line geometry is a
second structural region. Both
regions’ structures are labeled

342 Geoinformatica (2017) 21:323–350

the time interval. Again, since all operations are composed as intersection operations, we
only need to handle the identification of such lines under intersection. We denote these lines
intersection line segments.

The algorithm to find intersection line segments, shown in Algorithm 3, is similar in
structure to Algorithm 2. The algorithm takes a combination partition as input. Because each
set operation makes use of the intersection operation, we construct the algorithm around
computing the FI and HI sets of labels on line segments. Each line segment is examined
individually. For each line segment, the LA and LB labels are merged under a union oper-
ation into set X to reveal all labels interacting with the line segment (lines 2-3). If the line
segment is an intersection line segment between two simple regions, it will contain a label
L in the set FI (X) indicating an intersection of both of those regions (line 4). If the segment
truly separates those two regions, the label L will not exist in either LA or LB for that seg-
ment, since the interiors of the corresponding region lie respectively on one side of s (recall
the labels in FI (X) will all contain two component identifiers) (line 5). Intersection line
segments involving holes are computed similarly (lines 7-9), except that holes must interact
with a face. Any intersection line segments are added to the the hash table hs which maps
the face or hole label to the set of segments to which it corresponds. The time complexity is
identical to Algorithm 2 for the same reasoning.

Figure 9 includes a configuration where two faces meet along a line. The identification of
face labels on the set LA∪LB corresponding to the line where the area labeled 2 and the
area labeled {−4} meet will result in the label {2,−4} that resides in neither the LA or LB

set individually. Therefore, the hash table hl will map the label {2,−4} to that line segment.

6.3 Extracting points

Finally, the result of a set operation over two structural regions may result in a pair of faces
or a pair of holes intersecting at a point. Again, this represents the case when two simple
regions, representing either a pair of faces or holes, each from a respective input structural
regions, alter their topological configuration over a time interval from meeting at a point to
overlapping (or from overlapping to meeting at a point). We denote such points as intersec-
tion points. Discovering intersection points is more complex than discovering intersection
line segments because an intersection line segment may be identified by examining a sin-
gle segment. Because a combination partition does not contain line segments that intersect
within segment interiors, intersection points will always be line segment end points. The

Geoinformatica (2017) 21:323–350 343

algorithm to find intersection points is shown in Algorithm 4. The first step is to create a
mapping of segment end points to a label containing the union of all LA and LB labels of
all segments containing the point (lines 3-4). We use a hash table hp2L to implement the
mapping. We then iterate over every point. For each point p, we calculate the face labels in
the set FI (hp2L[p]) to find the possible faces that may intersect at that point (line 6). p is
then an intersection point only if p is not an endpoint in an intersection line for the same
face label and it is not an endpoint in a line segment in a face with the same label (lines
7-10). The same process is repeated for holes (lines 11-16), but again, a hole must interact
with a face (line 14).

Figure 9 depicts a scene where a face of one structural region meets the face of another
structural region at a point. The face with the label {−2} meets the face with the label {2}
at point p. The algorithm will first create the entry in the hp2L hash table to map p to the
labels of all segments that include p, which results in the label {−2, 2}. {−2, 2} forms a face
label under intersection, and p is not an endpoint of any line segment forming a face, hole,
or intersection line segment in the intersection of the two structural regions; therefore, it is
an intersection point.

7 Applying the operations to interval regions

The details of the algorithms presented up to this point deal with structural regions; the final
step in computing set operations over component moving regions is to connect the results
of operations over structural regions across a time interval to form an interval region. Recall
that the input to a set operation will be an interval region that is aligned, meaning that the

344 Geoinformatica (2017) 21:323–350

topological relationship between any two structures in the input interval regions will not
change except at the beginning and ending instant of the time interval. For example, Fig. 10
depicts a scene where a combination partitions have been created from two input CIRs.
The combination partition at the earlier time is identical to Fig. 9. In this section, we walk
through the building of a result CIR by computing the intersection of the CIRs in Fig. 10.

For the purposes of notation, we will refer to face and hole structures by their labeling
in Fig. 10. Let ps the point at which the faces with labels {−2} and {2} meet in the source
regions, and let s be the line segment where the faces with labels {−4} and {2} meet in the
source regions. Let pd be the point at which the faces {−6} and {2} meet in the destination
regions. Therefore, the first input CIR across the time interval 1 − 2 is:

ts = 1
td = 2
s = (F = {{2}}

H = ∅
L = ∅
P = ∅
F2H = ∅)

d = (F = {{2}}
H = ∅
L = ∅
P = ∅
F2H = ∅)

M = ({2} → {2})
The second input CIR is:

ts = 1
td = 2
s = (F = {{−2}, {−4}, {−6}}

H = ∅
L = ∅
P = ∅
F2H = ∅)

d = (F = {{−2}, {−4}, {−6}}
H = ∅
L = ∅
P = ∅
F2H = ∅)

M = ({−2} → {−2}), ({−4} → {−4})({−6} → {−6})
In this example, identical component identifiers are used across the time interval; how-

ever, this is not necessary since the mapping M associates the source and destination
structures across the interval. Extracting the structures for the result of an intersection oper-
ation results in the identification of ps , s, and the face with the label {−6, 2} in the source
region and and pd and the face with the label {−4, 2} in the destination region; Fig. 11
depicts those structures. The final step is to create the mapping M in the result CIR. This
step is where the fact that we have aligned the input CIRs such that no structures change their
respective topological relationships with each other during the interior of a time interval
becomes very useful. It follows from the fact that the input is aligned that if two structures
intersect at the earlier time instant in an interval, they will also intersect at the later time

Geoinformatica (2017) 21:323–350 345

Fig. 10 The combination
partitions formed by two CIRs,
one with a solid boundary and
one with a dotted boundary. In
this example, the input regions
contain only faces

instant, unless they are disjoint across the time interval. Therefore, if a structure with a label
indicating the intersection of two input structures must exist on both ends of the resulting
time interval, or that structure simply does not exist in the interior of the time interval. For
example, the line segment we have denoted s in Fig. 11 is identified as an intersection of
face {2} and face {−4}. A structure at the end of the interval also is an intersection of the
faces that those faces in the source region map to. Thus, the mapping M , is constructed sim-
ply by mapping structures to their associated structures across the time interval based on
the labelling scheme. In this case, the structures were identically labeled across the interval,
but that is not necessary since the association between structures is stored in the mapping.
Because the point ps does not map to anything on the other side of the time interval, it does
not exist within the interval. Therefore, the result CIR is:

ts = 1
td = 2
s = (F = {{−6, 2}}

H = ∅
L = {s}
P = ∅
F2H = ∅)

d = (F = {{−4, 2}}
H = ∅
L = ∅
P = {pd}
F2H = ∅)

M = ({−6, 2} → pd), (s → {−4, 2})

The interpolated movement of the resulting CIR is shown in Fig. 12.
The final step is to construct the mapping of structures across a time interval. The con-

struction of the mapping is trivial since the mappings from the input interval regions are
known and the structure identifiers used in labels in the combination partitions come from
the structure identifiers used in mappings of the input interval regions.

346 Geoinformatica (2017) 21:323–350

Fig. 11 The geometries
identified when computing the
intersection operation on the
input in Fig. 10

8 Implementation

We have implemented a prototype of the algorithms presented in this paper as a proof of
concept and included them in the the Pyspatiotemporalgeom library available at [9]. The
library currently implements the intersection algorithm for two CIRs. The intersection algo-
rithm between CIRs is chosen since the other set operations are based on the intersection
operation, and the complexity of the algorithm lies in handling CIRs. The library is a pure
python library and is written as reference implementation; as such, it is not optimized for
speed. Figure 13a depicts the source and destination structural regions of two CIRs: one
is red and the other is green. The red region does not move over the time interval, but the
green region moves and deforms as it travels. The triangles representing the motion of the
individual line segments are shown in Fig. 13b. Figure 13c depicts the structural regions at
the boundaries of the interval regions defining the intersection of the input. Note that the
intersection begins at a single point at the earliest time instant and grows into a region. A
simplistic example is chosen since even simple examples can result in output that is diffi-
cult to read clearly in a static image. Furthermore, the triangles indicating the motion of the
individual line segments in the result are omitted since their inclusion causes the image to
be so cluttered that its usefulness is limited.

Fig. 12 The result of the
intersection operation for the
input in Fig. 10. The movement
of geometries across the interval
is depicted

Geoinformatica (2017) 21:323–350 347

ba

c

Fig. 13 A red and green CIR used as input to an intersection operation (a), the same regions with the motion
of the lines drawn (b), the structural regions at the interval region boundaries of the result of the intersection
operation

9 Conclusion

In this paper, we have developed a mechanism to implement set operations between CIRs.
At each time interval, the algorithm takes O(n lg n + k) time for two CIRs with n line seg-
ments and k intersections among line segments to compute combination partitions. Once
combination partitions are known, the labels on line segments must be examined using a
variety of algorithms, all with time complexity O(nm) where n is the number of line seg-
ments in a combination partition and m is the number labels of structures that must be
extracted. In practice, in geographic data sets in particular, m is small. We have also imple-
mented the algorithms and shown their behavior on sample input. This work affirms the
claim of the CMR model of moving regions that operations over moving regions in the
model are relatively easy to implement and use well known algorithmic primitives with
known, and efficient, time complexities. This work paves the way for spatiotemporal analy-
sis systems that can fully make use of moving region data. Future work includes extending

348 Geoinformatica (2017) 21:323–350

the reference implementation to compute all the set operations and other operations
and predicates over CMR regions. High performance implementations of the algorithms
should be investigated, as well as a web-accessible interface to the algebra, data sets, and
tutorials.

References

1. Berry JK (1987) Fundamental operations in computer-assisted map analysis. Int J Geogr Inf Syst
1(2):119–136

2. Cotelo Lema JA, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving
objects databases. Comput J 46(6):680–712. doi:10.1093/comjnl/46.6.680. http://comjnl.oxfordjournals.
org/content/46/6/680.abstract

3. Erwig M, Schneider M (1997) Partition and conquer. In: Spatial information theory a theoretical basis
for GIS. Springer, pp 389–407

4. Erwig M, Schneider M (2000) Formalization of advanced map operations. In: 9th international
symposium on spatial data handling, vol 8, pp 3–17

5. Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving
objects databases. SIGMOD Rec 29(2):319–330. doi:10.1145/335191.335426

6. Frank AU (1987) Overlay processing in spatial information system. University of Maine
7. Gottschalk S, Lin MC, Manocha D (1996) Obbtree: A hierarchical structure for rapid interference detec-

tion. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques,
SIGGRAPH ’96. ACM, New York, pp 171–180. doi:10.1145/237170.237244.

8. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000)
A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42.
doi:10.1145/352958.352963

9. McKenney M Pyspatiotemporalgeom source code. https://bitbucket.org/marmcke/
pyspatiotemporalgeom/ (2015). Accessed: 2014-08-21

10. McKenney M, Shelby R, Bagg S (2015) Component moving region operations: Implementing set oper-
ations on region streams. In: Proceedings of the 6th ACM SIGSPATIAL international workshop on
geostreaming, IWGS ’15. ACM, New York

11. McKenney M, Viswanadham SC, Littman E (2014) The cmr model of moving regions. In: Proceedings
of the 5th ACM SIGSPATIAL international workshop on geostreaming, IWGS ’14. ACM, New York,
pp 62–71. doi:10.1145/2676552.2676564

12. McKenney M, Webb J (2010) Extracting moving regions from spatial data. In: Proceedings of the 18th
SIGSPATIAL international conference on advances in geographic information systems, GIS ’10. ACM,
New York, pp 438–441. doi:10.1145/1869790.1869856

13. Mckennney M, Frye R (2015) Generating moving regions from snapshots of complex regions. ACM
Trans Spatial Algoritm Syst 1(1):4:1–4:30. doi:10.1145/2774220

14. Schneider M, Behr T (2006) Topological relationships between complex spatial objects. ACM Trans.
Database Syst 31(1):39–81. doi:10.1145/1132863.1132865

15. Scholl M, Voisard A (1990) Thematic map modeling. In: Design and implementation of large spatial
databases. Springer, pp 167–190

16. Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: Pro-
ceedings of the 13th international conference on data engineering, ICDE ’97. IEEE Computer Society,
Washington, pp 422–432. http://dl.acm.org/citation.cfm?id=645482.653301

17. Tossebro E, Guting R (2001) Creating representations for continuously moving regions from observa-
tions. In: Jensen C, Schneider M, Seeger B, Tsotras V (eds) Advances in spatial and temporal databases,
lecture notes in computer science, vol 2121. Springer Berlin Heidelberg, pp 321–344

18. Worboys MF (1994) A unified model for spatial and temporal information. Comput J 37(1):26–34.
doi:10.1093/comjnl/37.1.26. http://comjnl.oxfordjournals.org/content/37/1/26.abstract

http://dx.doi.org/10.1093/comjnl/46.6.680
http://comjnl.oxfordjournals.org/content/46/6/680.abstract
http://comjnl.oxfordjournals.org/content/46/6/680.abstract
http://doi.acm.org/10.1145/335191.335426
http://doi.acm.org/10.1145/237170.237244
http://doi.acm.org/10.1145/352958.352963
https://bitbucket.org/marmcke/pyspatiotemporalgeom/
https://bitbucket.org/marmcke/pyspatiotemporalgeom/
http://doi.acm.org/10.1145/2676552.2676564
http://doi.acm.org/10.1145/1869790.1869856
http://doi.acm.org/10.1145/2774220
http://doi.acm.org/10.1145/1132863.1132865
http://dl.acm.org/citation.cfm?id=645482.653301
http://dx.doi.org/10.1093/comjnl/37.1.26
http://comjnl.oxfordjournals.org/content/37/1/26.abstract

Geoinformatica (2017) 21:323–350 349

Mark McKenney is an Assistant Professor at Southern University Edwardsville with interests in spatiotem-
poral databases and high performance computing. He earned his Ph.D. in Computer Engineering from the
University of Florida, and his MS and BS in Computer Science from Tulane University. He has received
awards for research and teaching.

Rakeem Shelby is a software engineer at Northrup Grumman. He graduated with his master degree in Com-
puter Science at Southern Illinois University Edwardsville. Before Coming to SIUE he attended Southeast
Missouri State University and studied mathematics and engineering physics where he received his bache-
lors of Science. He did his Masters research in defining operations for the component based moving region
model(CMR). He hopes to pursue his PhD in Computer Science.

350 Geoinformatica (2017) 21:323–350

Sheetal Bagga graduated from Southern Illinois University Edwardsville, USA in 2015. She has a back-
ground in Computer Engineering. She has experience working in areas related to data warehousing and
Business Intelligence. Her research interests lie in the areas of Spatial Database, location based ser-
vices, Geographic Information Science, Big Data, Cloud services and all Emerging Technologies in Data
Warehousing.

	Implementing set operations over moving regions using the component moving region model
	Abstract
	Introduction
	Related work
	Data model: component moving regions
	Foundations for set operations
	Operational framework
	A generic approach using map overlay

	Building the desired operation
	Intersection
	Difference
	Union

	Extracting the desired structures
	Extracting faces and holes
	Extracting lines
	Extracting points

	Applying the operations to interval regions
	Implementation
	Conclusion
	References

