
Geoinformatica (2016) 20:801–828
DOI 10.1007/s10707-016-0255-0

Mining spatiotemporal co-occurrence patterns
in non-relational databases

Berkay Aydin1 ·Vijay Akkineni1 ·Rafal Angryk1

Received: 15 December 2014 / Revised: 29 November 2015 /
Accepted: 29 March 2016 / Published online: 13 April 2016
© Springer Science+Business Media New York 2016

Abstract Spatiotemporal co-occurrence patterns (STCOPs) represent the subsets of feature
types whose instances are frequently co-occurring both in space and time. Spatiotempo-
ral co-occurrences reflect the spatiotemporal overlap relationships among two or more
spatiotemporal instances both in spatial and temporal dimensions. STCOPs can be poten-
tially used to predict and understand the generation and evolution of different types of
interacting phenomena in various scientific fields such as astronomy, meteorology, biol-
ogy, geosciences. Meaningful and statistically significant data analysis for these scientific
fields requires processing sufficiently large datasets. Due to the computationally expensive
nature of spatiotemporal operations required for mining spatiotemporal co-occurrences, it
is increasingly difficult to identify spatiotemporal co-occurrences and discover STCOPs in
centralized system settings. As a solution, we developed a cloud-based distributed mining
system for discovering STCOPs. Our system uses Accumulo, a column-oriented non-
relational database management system as its backbone. In order to efficiently mine the
STCOPs, we propose three data models for managing trajectory-based spatiotemporal data
in Accumulo. We introduce an in-memory join-index structure and a join algorithm for
effectively performing spatiotemporal join operations on spatiotemporal trajectories in non-
relational databases. Lastly, with the experiments with artificial and real life datasets, we
evaluate the performance of the proposed models for STCOP mining.

Keywords Spatiotemporal Pattern mining · Non-relational databases

� Berkay Aydin
baydin2@cs.gsu.edu

Vijay Akkineni
vakkineni1@cs.gsu.edu

Rafal Angryk
rangryk@cs.gsu.edu

1 Department of Computer Science, Georgia State University, 25 Park Place, Suite 700, Atlanta,
GA 30303, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10707-016-0255-0-x&domain=pdf
mailto:baydin2@cs.gsu.edu
mailto:vakkineni1@cs.gsu.edu
mailto:rangryk@cs.gsu.edu

802 Geoinformatica (2016) 20:801–828

1 Introduction

Discovering interesting, but implicit spatiotemporal patterns from datasets is important
for many scientific domains such as astronomy, ecology, meteorology, public health, agri-
cultural sciences [15]. The ever-growing nature of data being generated and collected
from various scientific sources makes the data-driven knowledge discovery process very
challenging to the researchers in these fields. The spatiotemporal co-occurrence patterns
(STCOPs) can be used for modeling various scientific phenomena (e.g., tornadoes, prop-
agation of epidemics, clouds). The patterns can be utilized for performing large-scale
verification of current knowledge, as well as the prediction of unknown spatiotemporal rela-
tionships among different types of feature (i.e. event) types (e.g., prediction the spread of
epidemics [20], verification of hurricane landfall precipitation models [14], discovery of the
patterns in wildlife migration [16], prediction of blastocyst formation [31]). One important
application area for our applied research is solar physics. Spatiotemporal co-occurrences
frequently transpire among solar events such as active regions and sunspots. Identifying
STCOPs appearing on the surface of the Sun can help us better understand the relation-
ships among solar event types and lead to better modeling and forecasting of crucial events
such as solar flares and coronal mass ejections. These solar events can affect the radia-
tion in space; they can impact the safety of space and air travel, and even damage power
grids [21].

Spatiotemporal co-occurrence is a specific kind of generic movement patterns, which
represents the relationships among the objects that frequently coincide both in space and
time [4]. The mixed-drove spatiotemporal co-occurrence patterns represent spatiotemporal
feature types whose (point-based) instances are located in spatial and temporal prox-
imity [12]. Spatiotemporal co-occurrence patterns from evolving regions is interested in
the discovery of the subsets of feature types whose (region-based) instances overlap in
both space and time [25]. While various kinds of spatiotemporal co-occurrence patterns
exist in the literature (See Section 3 for more information), we are specifically inter-
ested in the spatiotemporal co-occurrences of moving instances with continuously evolving
polygon-based representations [25]. In the context of this paper, we will use spatiotemporal
co-occurrence pattern (STCOP) for referring to the spatiotemporal co-occurrence pat-
terns discovered from datasets with evolving region-based representations, unless otherwise
stated.

1.1 Motivation

In recent years, we have introduced new algorithms and novel techniques for the discov-
ery of spatiotemporal co-occurrence patterns. The spatiotemporal co-occurrence pattern
mining is introduced in [25], and a brute-force Apriori-based solution is presented. In
[24], the STCOP mining algorithm is improved using a filter-and-refine approach, where
insignificant co-occurrences are efficiently eliminated using a filter that utilizes OMAX sig-
nificance measure. In addition to that, two spatiotemporal trajectory indexing techniques
are employed for faster data retrieval in the spatiotemporal co-occurrence pattern mining
process to further improve the efficiency of the process [7, 8]. The recent research work
on STCOP mining presents an efficient mining schemata for conventional single machine
systems [7, 24].

Big spatiotemporal data poses an enormous set of challenges regarding analytics, data
processing, capacity, and validation [2]. As pointed out in [30], with the rate at which spa-
tiotemporal data is being generated, it is necessary to develop efficient distributed systems

Geoinformatica (2016) 20:801–828 803

and analytical infrastructure. The applicability of current spatiotemporal co-occurrence min-
ing systems to many real life datasets is very limited, and can further be improved using
distributed settings. There are two major challenges of the centralized solutions specifi-
cally related to STCOP mining: (1) massive data transfers are required when accessing or
updating the data, and (2) expensive geometric calculations are necessary when perform-
ing topological spatiotemporal operations. To overcome these issues, we present a scalable
solution for mining spatiotemporal co-occurrence patterns in a distributed environment.
Accumulo,1 a non-relational and distributed database management system, is used for stor-
age and retrieval of spatiotemporal data. One particular challenge we have encountered
is the spatiotemporal data modeling in non-relational databases. Key-value stores (primar-
ily used in non-relational databases) provide potentially advantageous schema-free storage;
however, they lack the functionality of object-relational database management systems.

1.2 Scope

In this work, we have developed a distributed spatiotemporal co-occurrence pattern min-
ing system. Conceptually, the implemented STCOP mining algorithm is similar to the
state-of-art STCOP-miner algorithm presented in [8, 24]. The system uses a non-relational
distributed database system as its backend. To integrate the STCOP-miner algorithm into
a non-relational database ecosystem, we have designed spatiotemporal data models to be
used in column-oriented databases. We also introduce data access and update algorithms
along with an in-memory join-index structure that can handle big spatiotemporal data. The
spatiotemporal data models are designed to exploit the distributed data storage and retrieval
mechanisms of non-relational databases. On the other hand, data access and update algo-
rithms with the indexing structure provide necessary spatiotemporal querying functionality
for mining STCOPs in non-relational database systems.

Readers should note that the scope of this paper is limited to discovering spatiotem-
poral co-occurrence patterns from instances with evolving polygon-based representations,
and other co-occurrence pattern mining algorithms are not considered. The STCOP min-
ing algorithm uses a spatiotemporal join operation for identifying the co-occurrences. The
join operation is a part of the Apriori-based candidate generation procedure. The frequent
pattern growth-based or join-less approaches are not considered in the scope of this work.

1.3 Outline

The rest of this paper is organized as follows. In Section 2, to familiarize the reader with the
terminology, the basic concepts related to Accumulo database are demonstrated. Moreover,
we present the system architecture and discuss the applicability of the distributed min-
ing schema to spatiotemporal data mining. In Section 3, previous work on different types
of spatiotemporal co-occurrence patterns are discussed. In Section 4, the preliminary con-
cepts for spatiotemporal co-occurrence pattern mining are demonstrated, and the STCOP
mining algorithm is presented. In Section 5, we describe our methodology for discovery
of STCOPs in distributed settings and introduce the spatiotemporal data models for non-
relational databases. Moreover, we provide the algorithmic details of our distributed system.
We demonstrate our experimental results in Section 6. In Section 7, we present future work
and conclude the paper.

1The Apache Accumulo - https://accumulo.apache.org/

https://accumulo.apache.org/

804 Geoinformatica (2016) 20:801–828

Tablet Server

Tablet

Load Balanced/Assignment

Storage/Replication

Tablet Server

Tablet

Tablet Server

Tablet

Zoo Keeper (Follower)

Zoo Keeper (Follower)

Zoo Keeper (Leader)

Authority

Delegation

Configuration

Services/

Distributed

Synchronization

Master

Application

Read/Write

HDFS

Data

Node

Data

Node

Data

Node

Fig. 1 Architectural overview of Accumulo

2 Non-relational databases for mining spatiotemporal data

Accumulo was inspired by Google’s BigTable data storage system [13]. BigTable is a com-
pressed, high performance and proprietary data storage system primarily built on Google
File System (GFS) [17], Chubby Lock Service [9], and Log-structured merge-tree [23].
BigTable’s architecture has been adopted by many popular non-relational databases such
as HBase,2 Cassandra,3 and Accumulo. Accumulo provides high levels of consistency with
scales to thousands of nodes and petabytes of data, and processes data in near real-time. We
will briefly present the architecture behind our choice of Accumulo, and the suitability of
its architecture for spatiotemporal data mining.

2.1 Architecture

Accumulo is a sparse, distributed, sorted and multi-dimensional key-value storage system
that depends on Apache Hadoop Distributed File System (HDFS) for data storage and
Apache Zookeeper for configuration [9, 27]. HDFS is designed to store very large files,
with streaming data access running on a cluster of commodity hardware. It provides high
throughput access to application data, and is pertinent for very large datasets. HDFS pro-
vides the clients with a single file system view to hide the underlying collection of data
blocks spread across multiple data nodes.

The key components of the Accumulo architecture, shown in Fig. 1, are master, tablet
servers, garbage collector, logger and monitor. The main function of master is to monitor the
cluster for the status of tablet servers, assign tablets (partition of tables) to tablet servers, and

2HBase– http://hbase.apache.org/
3Cassandra– ‘http://cassandra.apache.org/

http://hbase.apache.org/
http://cassandra.apache.org/

Geoinformatica (2016) 20:801–828 805

perform load balancing. Tablet server component is responsible for handling all the reads
and writes for the tables. In a typical deployment, one tablet server is colocated with one
HDFS data node. Tablet server is registered with Accumulo’s software by obtaining a lock
from Zookeeper, and failures and recovery processes are handled by the master. Another
task assigned to tablet servers is handling minor and major compactions. Minor compaction
is the process of flushing the data stored in memory to sorted files stored on disk. Major
compaction is merging these sorted files into a bigger file. Additional components (not
shown in the Fig. 1) include: (1) garbage collector that deletes obsolete files from the file
system, (2) monitor that is used for monitoring the key metrics of system resources used by
Accumulo, (3) logger used for tracing the system events.

2.2 Applicability to spatiotemporal data mining

Some of the features of Accumulo, such as table partitioning, load balancing, and hori-
zontal scalability, provide necessary tools for efficiently performing data mining tasks on
spatiotemporal datasets. In this part of our discussion, we will briefly point to the impor-
tant features of Accumulo to provide insight into the necessity of a distributed schema for
spatiotemporal data mining from very large datasets.

The key strength of the data representations provided in Accumulo is the ability to store
sparse multidimensional data. One practical feature of Accumulo database is automatic
table partitioning, where tables are split after crossing a pre-configured row count threshold.
Using this feature, tables can be stored across multiple tablet servers evenly, and the sys-
tem can provide parallelized data access. Load balancing, provided by Accumulo, evenly
spreads the workload of tablets to tablet servers, and ensures that tablet servers are not
overloaded. Load balancing is important when implementing a distributed system for scal-
ability purposes (e.g., avoiding hotspots in spatiotemporal data analysis by distributing the
workload). Furthermore, horizontal scalability (also known as scaling out, i.e. adding more
nodes to the system for increasing the workload capacity) can be achieved using Accumulo.
In contrast to traditional object-relational databases used for spatiotemporal data in central-
ized settings, the scaling is cheaper in the means of economic cost [5]. Note that traditional
databases should be scaled vertically (scaling up), meaning it is required to increase the
system resources such as memory and CPU. Another noteworthy functionality of Accu-
mulo database is the server side iterators. The main function of the iterators is concurrent
traversal over the data with optional filtering or transformation. Server side iterators can
offload some of the computations to the tablet servers, and lead to significant performance
increases.

3 Related work on spatiotemporal co-occurrence patterns

Spatiotemporal co-occurrence pattern mining is conceptually similar to classical frequent
pattern mining from transactional databases. However, the implicit spatial and temporal
semantics (specifically spatial and temporal overlap) are required to be identified, and the
identification of these relationships dramatically increase the complexity of the STCOP
mining algorithms. In spatiotemporal frequent pattern mining, the underlying spatiotem-
poral semantic relationships are the main subjects of discovery. One of these relationships
is the co-occurrence relationship, and it is originated from the significance of closeness in
spatial and temporal domains, by asserting objects located in space and time proximity are
more related than the others [28].

806 Geoinformatica (2016) 20:801–828

One pioneering advancement in spatial data mining is the discovery of spatial colo-
cation patterns [29]. The spatial closeness of the objects is introduced as the colocation
relationship. Given a set of boolean spatial features, spatial colocation mining aims to dis-
cover the subsets of features whose instances are frequently colocated together. As a matter
of course, it is often very hard to observe point-based spatial objects sharing the same
locations. Therefore, a neighborhood relationship (based on user specified thresholds) is
used for defining the colocations. The colocation mining algorithm uses an Apriori-based
approach [3], which requires a spatial join algorithm while generating and pruning the can-
didate patterns. Partial-join and join-less approach for mining colocations were presented
in [32, 33].

While colocation refers to the purely spatial closeness of objects, the term co-occurrence
is more frequently used for spatiotemporal closeness. Mixed-drove spatiotemporal co-
occur-rence patterns (MDCOP) are introduced in [12]. MDCOPs represent the subsets of
spatiotemporal feature types whose point-based instances are frequently occurring in spatial
and temporal proximity. MDCOP-mining algorithms presented in [12] can be interpreted
as a temporal extension of spatial colocation mining algorithms to spatiotemporal context.
The proposed MDCOP-Miner algorithms follow a similar Apriori-based approach. Fol-
lowing mixed-drove spatiotemporal co-occurrence patterns, sustained emerging (SECOP)
[12], partial (PACOP) [10], and periodical (PECOP) [11] spatiotemporal co-occurrence
patterns are introduced. Fundamentally, emerging, partial, and periodical co-occurrence
relationships are quite similar to MDCOPs. They include additional constraints, and require
new interest measures tuned for these constraints. SECOPs represent the subsets of fea-
ture types whose instances are increasingly colocated in space and time. PACOPs are
concerned with the discovery of spatiotemporal co-occurrences that are partially present
in the database. PECOPs represent the subsets of feature types that are periodically
co-occurring.

Spread patterns of spatiotemporal co-occurrences over zones (SPCOZ) are introduced in
[26]. SPCOZs represent the subsets of feature types whose instances are spreading and co-
occurring over particular zones. The main purpose of the mining SPCOZs is discovering
spreading structures that co-occur together both in space and time (meaning correlations
among the spreading structures are mined instead of trajectories). Another instance of
spatiotemporal co-occurrence pattern mining is composite spatiotemporal co-occurrence
(COSTCOP) [34]; where a new composite prevalence measure (using spatial and temporal
dimensions together) is developed, and a pruning technique is developed for improving the
performance of the mining algorithm.

Aforementioned spatiotemporal co-occurrence or colocation models were originally
designed for instances with point-based geometric representations. As point-based instances
exhibit nearly imperceptible spatial and temporal overlap relationships among each
other, the spatial and temporal neighborhoods are to be defined for characterizing co-
occur-rences or colocations. However, in spatiotemporal co-occurrence pattern mining from
evolving region instances (defined over polygon data type), it is highly likely to observe
spatial and temporal coincidences (namely spatiotemporal overlap relationships). Mining
spatiotemporal co-occurrence patterns from datasets with evolving regions was introduced
in [25]. The spatiotemporal instances, which are represented by polygons evolving over
time, are treated as three-dimensional continuous objects. For deciding whether an overlap
among these three-dimensional structures form a significant co-occurrence, a spatiotem-
poral version of Jaccard significance measure is used. Similar to the other co-occurrence

Geoinformatica (2016) 20:801–828 807

patterns, an Apriori-based algorithm (including a spatiotemporal join over spatial and tem-
poral overlap predicates) is used. In [24], a novel filter-and-refine strategy for pruning
the instances in the spatiotemporal join phase using OMAX measure is proposed. This
algorithm is further improved in [8] by utilizing trajectory-based spatiotemporal indexing
techniques.

One of the most remarkable observations about the past research work in co-occurrence
pattern mining is considerably small datasets being used for testing the algorithms. Another
observation we have made is the rapid increase in the runtime when using relatively larger
datasets. Given these observations, one can apprehend that such data analyses tasks, when
conducted on massive real life datasets, could greatly benefit from adapting an environ-
ment containing distributed storage and computational resources. In our work, we have
used a cloud-based distributed database setting for storing and querying data. We have
used a slightly modified version of STCOP mining algorithm [8] in non-relational database
settings. The details of the algorithms will be presented in Section 4 and Section 5.

4 Preliminary concepts on spatiotemporal co-occurrence pattern mining

As mentioned earlier, we utilize the spatiotemporal co-occurrence pattern mining algorithm
introduced in [8, 24], which mines the evolving region data established upon an Apriori-
based algorithm that effectively prunes the candidates using a filter-and-refine strategy.
Given a set of spatiotemporal feature types and spatiotemporal instances associated with
these feature types, a spatiotemporal co-occurrence pattern is a subset of all features, whose
instances frequently overlap both in temporal and spatial dimensions. Following parts of
this section include the basic definitions, significance measures and the general algorithm
for STCOP mining algorithm.

4.1 Definitions

Definition 1 A spatiotemporal instance, denoted as Inst , is a spatiotemporal object rep-
resented as a two-dimensional region continuously evolving over time. Each instance is
identified with a unique identifier, denoted as InstanceId, and has a feature type associated
with it. Instances have start and end times corresponding to birth and death times of the
objects. For each valid timestamp, instances can have exactly one polygon-based geomet-
ric representation. The set of all instances is denoted by I, and the set of all instances of a
particular feature type (fi) is denoted as Ifi

.

Definition 2 A feature type (or event type) is a non-spatiotemporal attribute of an instance
that signifies the sort (or class) of the instance. A feature type is denoted as fi , and the set
of all features is denoted by F = {f1, f2, . . . , fm}.

Definition 3 A spatiotemporal co-occurrence pattern (referred to as pattern in this
paper) is a subset of all feature types, whose instances frequently co-occur in both space
and time. A pattern is denoted as P , where P = {fi1 , . . . , fik } and P ⊂ F. The number of
feature types in a pattern will be referred as the cardinality of the pattern. A k-cardinality
pattern refers to a k-subset of all feature types, F. The minimum cardinality of the pattern is
2 (k ≥ 2).

808 Geoinformatica (2016) 20:801–828

Definition 4 Given a k-cardinality pattern P = {fi1 , . . . , fik }, a pattern instance (denoted
by PInst) of P is a unique incident of a spatiotemporal co-occurrence (namely, spatial
and temporal overlap) among the instances of the all feature types in P . Similar to the
instances, pattern instances have start and end times. The start time of a pattern instance
corresponds to the minimum start time of the participating (co-occurring) instances. The
end time of a pattern instance corresponds to the maximum end time of the participating
instances. For each timestamp between the start and end time (lifetime), a pattern instance
has two kinds of spatiotemporal representation. The first representation is designated for
spatiotemporal intersection showing the overlapping regions over time for the participating
instances while the second one is for spatiotemporal union demonstrating the union of all
regions over the lifetime of the pattern instance. In Fig. 2, we illustrate two overlapping
spatiotemporal instances (Insti and Instj) and the pattern instance (PInstk) generated
from these instances. The start time of PInstk is t1, and the end time is t10. The intersection
geometries of the PInstk are valid between the interval (t3, t4) while the union geometries
of PInstk are valid between the interval (t1, t10).

4.2 Measures

We utilize two types of interestingness measures in our algorithm. The first one is the co-
occurrence coefficient (cce), which is used for assessing the strength of the spatiotemporal
overlap in a pattern instance. The second one is the prevalence measure (p), and it is used
for evaluating the prevalence of a pattern.

2D Space

Time

Insti

Instj

t1 t2 t3 t4 t5 t6 t7 t8 t10t9

2D Space

Time

t1

Time

Intersection

Geometries

Union

Geometries

PInstk

t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

2D Space

Fig. 2 The creation of a pattern instance (PInstk) from two spatiotemporal instances (Insti and Instj). On
the left, the spatiotemporal instances are illustrated. On the right, the intersection (top) and union (bottom)
geometries of the pattern instance are demonstrated

Geoinformatica (2016) 20:801–828 809

4.2.1 Significance measures

The spatiotemporal co-occurrence coefficient is used for determining the strength of an
overlap (both in space and time) relationship. To assess the strength of spatiotemporal
overlap, we utilize the commonly used Jaccard (J) measure as co-occurrence coefficient.
Additionally, the computationally cheaper OMAX measure is utilized for filtering.

The J measure for a pattern instance is calculated as the ratio of spatiotemporal intersec-
tion volume to the spatiotemporal union volume. Given a k-cardinality pattern P, and the
pattern instance, PInst , and let {Inst1, . . . , Instk} be the participating instances of PInst .
Then, the J measure is calculated as follows:

J = V (Inst1 ∩ . . . ∩ Instk)

V (Inst1 ∪ . . . ∪ Instk)
(1)

V is the spatiotemporal volume function. The spatiotemporal instances and pattern instances
are three-dimensional objects in two spatial and one temporal dimensions. The spatiotem-
poral intersection operation is represented with ∩, and the spatiotemporal union operation
is represented with ∪.

On the other hand, the OMAX measure for a pattern instance is calculated as the
ratio of spatiotemporal intersection volume to the maximum volume of all the participat-
ing instances. Following the notation used for the J measure (in Eq. 1), OMAX measure is
calculated as,

OMAX = V (Inst1 ∩ . . . ∩ Instk)

Max(V (Inst1), . . . , V (Instk))
(2)

where Max function returns the largest participating instance volume. The OMAX measure
contains J measure. In other words, maximum volume of participating instances is less than
or equal to the union volume of all participating instances (Max(V (Inst1), . . . , V (Instk) ≤
V (Inst1 ∪ . . . ∪ Instk)). Therefore, for any pattern instance, the OMAX value is always
greater than or equal to the J value. Due to the containment property, given a specific cce

threshold, for each pattern instance (PInst) passing Jaccard (J) filter, it is guaranteed that
it also passes OMAX filter (OMAX(PInst) ≥ J (P Inst)). Proof of this property can be
found in [24].

4.2.2 Prevalance measure

In STCOP mining, for assessing the interestingness of a pattern, the participation index is
used. The participation index signifies the prevalence of a pattern [18]. For a k-cardinality
spatiotemporal co-occurrence pattern, the participation index (denoted as pi(P)) is defined
as follows:

pi(P) = Mink
i pr(P, fi) (3)

where P = {fi1 , . . . , fik } and fi ∈ F. Let |Pfi
| denote the number of unique instances of

feature type fi participating in the pattern instances of P , and |Ifi
| is the total number of

instances of feature type fi ; then, the participation ratio of a feature type fi in the pattern P

is,

pr(P, fi) = |Pfi
|

|Ifi
| (4)

810 Geoinformatica (2016) 20:801–828

Prevalent spatiotemporal co-occurrence patterns are characterized by a co-occurrence
coefficient threshold (cceth) for determining the significant pattern instances of the pattern,
and prevalence measure threshold (pth) for assessing the interestingness of the pattern. For
a prevalent pattern, the co-occurrence coefficient for all of its pattern instances must be
greater than or equal to cceth and the participation index for the pattern must be greater than
or equal to pth.

4.3 STCOP-miner algorithm

The pseudocode of the STCOP mining algorithm can be seen in Algorithm 1. The algorithm
follows greedy Apriori iterations to discover the patterns (See Lines 5 to 10 in Algorithm 1).
The input of the algorithm is a dataset containing instances of different feature types. The
spatiotemporal instances have evolving polygon-based representations. The result returned
by the algorithm is a list of prevalent spatiotemporal co-occurrence patterns.

The initialization step of the algorithm creates the database, and reads the dataset from
input files (See Line 1 in Algorithm 1). The variable k, which is the index representing the
size of the patterns is set to 1 (See Line 2 in Algorithm 1). Two-dimensional list of pat-
terns, FP , represents the prevalent patterns. The index of the list represents the cardinality.
In other words, FP [k] points to a list of k-cardinality patterns. For the conciseness and cor-
rectness of the algorithm, we store feature types in the first index of FP (See Line 4 in
Algorithm 1). While the set of feature types may be a necessary output for some application
areas, our actual prevalent STCOP set is the difference FP − FP [1].

After the initialization steps, the algorithm follows the Apriori-based steps, where firstly
candidate patterns are generated, and later pruned. The candidate patterns are generated
using GENERATECANDIDATEPATTERNS procedure, and stored in CP , which is a list of
patterns (See Line 6 of Algorithm 1). The prevalent k-cardinality patterns found in the
previous iteration (FP [k]) is self-joined (FP [k] × FP [k]), and (k + 1)-cardinality can-
didates which have infrequent subpatterns are removed from CP . Using the candidate
patterns (CP), the candidate pattern instances are generated in the procedure GENER-
ATEPATTERNINSTANCES. (See Line 7 of 1). GENERATEPATTERNINSTANCES procedure
initially identifies the significant pattern instances, and eliminates the infrequent candidate
patterns.

Geoinformatica (2016) 20:801–828 811

In Algorithm 2, the pseudocode of candidate pattern instance generation procedure
(GENERATEPATTERNINSTANCES) is demonstrated. The pattern instances are generated
and pruned for each candidate pattern (See Lines 2 to 21 in Algorithm 2). For each candi-
date pattern (P , let the cardinality of P be k), firstly, two (k −1)-cardinality subpatterns are
determined, and the pattern instances of those two subpatterns are joined with a spatiotem-
poral overlap predicate and candidate patterns instances are generated and stored in CPInst

list. (See Lines 3 and 4 in Algorithm 2). It is important to note that the subpatterns of any
generated candidate pattern (P) must be prevalent; therefore, their pattern instances are
stored in the database. The spatiotemporal join operation is handled in ST JOIN procedure.
For each candidate pattern in CPInst , initially, the OMAX value is computed, then if it
cannot pass the co-occurrence coefficient threshold (cceth), the pattern instance is removed
from CPInst (See Lines 5 to 10 in Algorithm 2). After filtering the pattern instances with
the OMAX measure, the participation index is calculated for the candidate pattern (See
Line 11 in Algorithm 2). Note that some of the candidate pattern instances may already be
removed. Then, if the candidate pattern cannot pass the given participation index threshold

812 Geoinformatica (2016) 20:801–828

(pith), the candidate pattern is removed from the candidate pattern list (CP) (See Lines 12
to 15 in Algorithm 2). If it can pass, the J value is calculated for filtered pattern instances.
Similar to the OMAX filtering, the J values are calculated for remaining candidate pat-
tern instances and the insignificant ones are removed from the list. When calculating the J

values, we only calculate union volumes, as intersection volumes are already calculated in
OMAX filtering steps. Using the remaining candidate pattern instances, the participation
index is calculated (See Lines 16 to 21 in Algo. 2), and if the candidate cannot pass the par-
ticipation index threshold, it is removed from the list (See Lines 23 to 25 in Alg. 2); else,
the significant candidate pattern instances are written back to the database (See Line 26 in
Alg. 2).

It is important to note that the most vital part of this procedure is the spatiotemporal
join operation based on the spatiotemporal overlap predicate (See Line 4 of Algorithm 2 –
ST JOIN(L1, L2,Overlap)). We will explain different implementations of the join pro-
cedure in Section 5, and for the integrity of our research, we use a generic nested loop based
join algorithm for every data model. See Algorithm 3 for a detailed view. The spatiotempo-
ral search procedure (SEARCH-ST-OVERLAP) in the generic join algorithm differs for each
data model. These search algorithms can be found in Section 5.

5 Modeling spatiotemporal co-occurrences in non-relational databases

The data in Accumulo is represented as simple key-value pairs. However, Accumulo pro-
vides moderately richer data modeling opportunities compared to simple key-value stores
[1]. The key field in Accumulo is comprised of a row identifier, column identifier, and
timestamp. Column identifier has three values: column family, column qualifier and column
visibility (See Fig. 3). In our data models, we only used row identifier, column family and
column qualifier for identifying the values. Column visibility and timestamp values are not
used.

Fig. 3 The elements of a key-value pair in Accumulo

Geoinformatica (2016) 20:801–828 813

In the following parts of this section, the data models for storing spatiotemporal instances
are presented. All the data models use the generic join algorithm presented in Algorithm 3.
The spatiotemporal search procedure is different for each data model. The search algorithms
of the data models are presented in their respective sections.

5.1 Classical data model

The first data model we have designed is the classical data model (CDM) where each row
stores one spatiotemporal instance or pattern instance. This data model mimics the models
used in relational database settings. In Fig. 4, we demonstrate the hierarchical decompo-
sition of a row (which stores an instance (a) or a pattern instance (b)) in CDM. The row
identifiers (Row Id) are the instance identifiers (or pattern instance identifiers). Column
family points to feature types and column qualifiers show timestamps. Value field repre-
sents the polygon of an instance in each timestamp. In addition to those, for more efficient
spatial and temporal filtering when accessing the instances, metadata fields are generated.
Metadata fields store temporal and spatial boundaries of instances and pattern instances.
Temporal boundaries are the start and end time of instances or pattern instances. Spatial
boundaries are the minimum bounding rectangle of the union of instance geometries or
the minimum bounding rectangle of the union of pattern instance’s intersection geometries.
In CDM, one instance is stored in a row comprised of multiple columns. Each column in
the row is uniquely identified by the timestamp value. The columns point to a particular
polygon representing the spatial extension of the instance at a valid timestamp. For pattern
instances, the timestamps (in column qualifiers) are divided into two groups: intersection
and union geometries. Intersection timestamps point to the intersection geometries of the
pattern instances while union timestamps point to the union geometries.

The algorithm of spatiotemporal overlap search procedure for an instance, which is
stored using the classical data model, is presented in Algorithm 4. The input parameters
for the procedure are the query instance object (QInst), and the table name, L, where the
search (or scan) will be performed. In the initialization part, the minimum bounding rectan-
gle (MBR), start time, and end time of query instance are fetched from the database. Also,
a server-side scan iterator, which is used for scanning the entire table (from 0 to ∞ for row
identifiers) is also initialized. (See Line 5 in Algorithm 4 - GETITERATOR.) Then, for each
instance (Inst), which is returned by the iterator (I terL), temporal filter and spatial filter
are applied using the metadata fields. If the lifetimes (start and end times) of QInst and
Inst overlap, and their MBRs intersect, then the actual polygon representations of those two
instances are checked. If the actual polygons also overlap (both spatially and temporally),

a b

Fig. 4 The hierarchical decomposition of key-value pairs as an instance (a) and a pattern instance (b) in
classical data model (CDM)

814 Geoinformatica (2016) 20:801–828

then Inst is added to the result set (SResults). See Lines 7 to 17 in Algorithm 4. After the
entire table, L, is scanned, the procedure returns the result set, SResults.

5.2 Spatiotemporal data model

As mentioned earlier, the data in Accumulo is sorted based upon the row identifiers; how-
ever, the column identifiers do not carry such a property. With spatiotemporal data model,
we intend to make use of the ordered nature of row identifiers. In spatiotemporal data model
(STDM), we followed a three-dimensional space-driven partitioning strategy. The parti-
tioning space consists of two spatial dimensions (denoted by x and y) and one temporal
dimension (denoted by t), and it is divided into non-overlapping three-dimensional cells.
The instances are considered as three-dimensional trajectories spanning through these cells.
To divide the partitioning space into cells, three user-defined step-size parameters are used.
Each parameter indicates the step size of their respective dimensions, and denoted by �x,
�y, and �t . Our space partitioning algorithm can be seen in Algorithm 5. In a nutshell, the
partitioning algorithm iteratively determines the time partition (See Line 4 of Algorithm 5)
and space partitions (See Lines 5 to 17 of Algorithm 5) of each polygon at a valid timestamp.

a b

Fig. 5 The hierarchical decomposition of key-value pairs as an instance (a) and a pattern instance (b) in
spatiotemporal data model (STDM)

Geoinformatica (2016) 20:801–828 815

In STDM, the row identifier is the spatiotemporal partition cell identifier, while the
column qualifier shows the instance (or pattern instance) identifier. The hierarchical decom-
position of instances and pattern instances in STDM is shown in Fig. 5. For pattern
instances, the partition cells are calculated for only intersection geometries. The entire list
of timestamp–polygon pairs are serialized and stored in the value field. By setting row iden-
tifier as the spatiotemporal partition cell, we aim to retrieve possibly co-occurring instances
more efficiently by exploiting the order enforced by Accumulo. For the instances (or pattern
instances) which span through more than one partition cells, a duplication strategy is used.
Namely, the instances may be inserted to database more than once. The rows can store more
than one instance (or pattern instance) in STDM. Each column (identified by the instance
or pattern instance identifier) of a row points to a different instance or pattern instance.

816 Geoinformatica (2016) 20:801–828

The algorithm of spatiotemporal overlap search procedure for STDM can be seen in
Algorithm 6. The algorithm takes a query instance (denoted as QInst) and a table name
as its parameter. The initialization step of the search algorithm (See Line 1 in Algorithm 6)
plays an important role when evaluating the runtime efficiency of this procedure. As all the
instances are written to the database, an initial querying of the database is unavoidable when
performing this particular search algorithm. After the initialization step, the procedure pri-
marily determines the spatiotemporal partition cells (denoted as PartitionCells) of query
instance (QInst) (See Line 3 in Algorithm 6). The server-side scan iterators for searching
the database are prepared using the cell identifiers (denoted as cellId) in PartitionCells

set (See Line 5 in Algorithm 6). Note that these iterators search for only one row, which
is specified by their partition identifier; namely cellId . For each instance returned by the
iterators, the spatiotemporal overlap predicate is checked, and if they overlap, the instance
is added to the result set (SResults). See Lines 7 to 14 in Algorithm 6. After iterating over
all partition cells, the procedure returns the result set, SResults.

5.3 Indexed spatiotemporal data model

Indexed spatiotemporal data model (ISTDM) is an extension to the spatiotemporal data
model. ISTDM employs an in-memory join-index structure, which stores the partition
cells of each instance (or pattern instance). For mapping the partition cells to instances,
an inverted index structure [22] is used. Traditionally, the inverted index is used for text
retrieval where each index entry (a word) points to the documents where the queried word
occurs. The index entries for our case are the locations (identified by partition cell iden-
tifiers) of instances or pattern instances. For each feature type (or pattern), an inverted
index is created, while their instances are getting written to the database. An example
scenario is demonstrated in Fig. 6. For a particular feature type (fi), the instances are
Ifi

= {Inst1, Inst2, Inst3, Inst4, Inst5}. Spatiotemporal partition cells are denoted by
ST Partitioni . Instances can be part of multiple partition cells. For example, Inst4 is
only in ST Partition1, while Inst3 spans through ST Partition1, ST Partition5, and
ST Partition6. The row identifiers used for storing instances in the database are the par-
tition cell identifiers. On the other hand, in the inverted index, the row key is the instance
identifier, and each instance identifier is mapped to the partition cell identifiers.

ISTDM and STDM use the same hierarchical decomposition of key-value pairs for
instances and pattern instances. However, the spatiotemporal overlap search procedure is
slightly modified for faster access. Algorithm 7 shows the search procedure for the indexed
spatiotemporal data model. The main difference is in the initialization section. The STDM

Fig. 6 Example: The creation of inverted index structure for a particular feature type

Geoinformatica (2016) 20:801–828 817

search algorithm (Algorithm 6) performs a brute-force search to locate the query instance in
the database in the initialization step. However, IFSTDM search algorithm uses our inverted
index structure to determine the partition cells, and use it to fetch QInst and the possibly
co-occurring instances in table L. Also, PartitionCells set is not calculated, as we fetch
this information from the index. Therefore, ISTDM eliminates initial brute-force search and
the determination of partition cells for the query instance.

6 Experimental evaluation

For analyzing our data models and the search algorithms designed for these models, we
developed a distributed cloud-based STCOP mining system and experimented with it using
different datasets and database settings. Our primary intent in these experiments is to
observe the effect of data models and using a distributed database setting to the runtime
performance of our STCOP mining system. In the following parts of this section, the experi-
mental settings with the datasets will be described, the implementation details of our system
will be demonstrated, and the results and analysis of our experiments will be given.

6.1 Experimental settings

We used six artificial and five real life datasets in our experiments. The artificial datasets are
created using spatiotemporal dataset generator, ERMO-DG [6]. Two of the real life datasets
are the solar event datasets, and the remaining three are the basketball datasets. All of our
datasets are publicly available in our website.4

The six artificial datasets are named as A, B, C, D, E, and F. The average lifetime of the
instances is 12.5 (minimum = 10, maximum = 15), and it is kept the same for all datasets
for the ease of analysis. The noise ratio used in all datasets are 4.0. The smallest artificial
dataset (dataset A) has 16,799 polygons (containing 113,720 point references in total), while

4http://grid.cs.gsu.edu/∼baydin2/proj/nonrelstcop.html

http://grid.cs.gsu.edu/~baydin2/proj/nonrelstcop.html

818 Geoinformatica (2016) 20:801–828

Table 1 Datasets used in our experiments and their basic properties

Domain of Dataset Number of Total number Total number of

dataset name feature types of polygons vertices in polygons

Artificial A 9 16,799 113,720

Artificial B 9 33,538 214,106

Artificial C 9 70,131 468,124

Artificial D 9 140,238 963,575

Artificial E 9 280,949 1,883,763

Artificial F 9 562,439 3,391,507

Solar Event 3Mo 6 480,136 21,711,503

Solar Event 6Mo 6 922,323 47,445,474

Basketball ATL1 7 440,527 19,889,980

Basketball ATL2 7 486,086 21,939,703

Basketball ATL3 7 505,001 22,798,527

the largest one (dataset F) has more than 562,439 polygons (containing 3,391,559 point
references in total). All artificial datasets have nine artificially created feature types.

For solar event datasets, the geometric representations of solar event instances are
downloaded using the Web API of Heliophysics Event Knowledgebase,5 and tracked and
interpolated using the algorithm described in [19]. The solar datasets contain the instances
of six different solar event types that are Active Regions, Coronal Holes, Emerging Flux,
Filaments, Sigmoids, and Sunspots. The three-month solar event dataset (denoted as 3Mo)
contains solar event instances between ’01/07/2013’ to ’30/09/2013’. The six-month solar
event dataset (denoted as 6Mo) contains solar event instances between ’01/01/2013’ to
’30/06/2013’.

The basketball datasets are obtained from the NBA’s official statistics page.6 We scraped
the data for three games of Atlanta Hawks in 2014-2015 season, which are following: (1)
’Atlanta Hawks – Toronto Raptors’ in ’29/10/2014’ (denoted as ATL1), (2) ’Atlanta Hawks
– Los Angeles Clippers’ in ’05/01/2015’ (denoted as ATL2), (3) ’Washington Wizards –
Atlanta Hawks’ in ’04/02/2015’ (denoted as ATL3). The raw data from NBA contains the
point locations of the basketball and ten players on the court for a particular period (a spe-
cific play) of a game. The specified point locations of the players are buffered to create
polygons. We categorized the players based on their teams (Atlanta Hawks (Atl) or the
opponent (Opp)), and the positions of players (i.e., center (C), forward (F), guard (G)).
Therefore, including the basketball, we have seven feature types that are Ball, Atl-C, Atl-F,
Atl-G, Opp-C, Opp-F, and Opp-G.

The properties of artificial and real life datasets can be seen in Table 1. The total number
of points (vertices) in the polygons can be seen in the last column.

One goal of our experiments is to observe the effect of horizontal scaling (scaling out) in
our system. In order to see the effects of scaling out, we conducted our experiments using
one, three and six tablet servers hosting the database. As data nodes are colocated with tablet
servers, the term tablet server is used instead of data nodes. The experiments using one tablet

5Heliophysics Event Registry - https://www.lmsal.com/hek/api.html
6NBA.com/Stats - http://stats.nba.com/

https://www.lmsal.com/hek/api.html
http://stats.nba.com/

Geoinformatica (2016) 20:801–828 819

Table 2 The system settings for experiments using three (3TS) and six (6TS) tablet servers

3TS-nodes Assigned roles 6TS-nodes Assigned roles

Node 1 NameNode Node 1 NameNode

Node 2 ZooKeeper Leader Node 2 ZooKeeper Leader

Node 3 Secondary NameNode Node 3 Secondary NameNode

Node 4 Accumulo Master Node 4 Accumulo Master

Node 5,6,7 Tablet Server and Data Node Node 5,6,7,8,9,10,11 Tablet Server and Data Node

server is included for exhibiting an experimental environment showing very similar charac-
teristics to traditional database settings. We ran the three and six tablet server experiments
on Amazon Web Services cloud computing platform.7 Because of the economic constraints,
we ran the one tablet server experiments on a local virtual machine. The system settings
when using three and six tablet servers can be seen in Table 2. Nodes that are assigned to
the role NameNode controls the distributed file system (HDFS). Zookeeper leader coordi-
nates the ZooKeeper followers (that are Secondary NameNode and Accumulo master) for
input and output operations. Secondary NameNode role is an auditing system for Hadoop,
performing periodical checkpoints. Accumulo master is responsible for load balancing, as
well as error detection, in tablet servers. The tablet server and data node roles are colocated
for decreasing the network latency. Tablet servers are responsible for managing (i.e., reads
and writes) a subset of all tables. Data nodes simply store data in HDFS. In one tablet server
settings, all the above-mentioned roles are performed on the same machine.

In one tablet server experiments, a virtual machine in a personal computer (with 2Ghz
Intel Core i7 CPU and 4GB memory and 64 GB SSD storage) is used for conducting the
experiments. In three and six tablet server experiments, the nodes used in AWS, are medium
size computing instances (officially listed as m3.large). These instances include 10-core 2.5
GHz Intel Xeon E5-2670 CPUs, 7.5 GB memory, and 64 GB SSD storage.

6.2 Implementation details

The STCOP mining system is implemented as a Java client connecting to the Accumulo
database. JTS Topology Suite8 library is employed for performing geometric operations.
The geometries are stored using the well-known text (WKT) format. In the experiments with
artificial datasets, co-occurrence coefficient threshold (cceth) is set to 0.01 and prevalence
measure threshold (pth) is set to 0.01. For solar event and basketball datasets, cceth is set
to 0.001 and pth is set to 0.05. We increased the pth for the experiments with real life
datasets to keep the counts of generated patterns and pattern instances comparable among
the datasets.

In Section 2, we have explained the automatic table splitting feature provided in Accu-
mulo. Using automatic table splitting, a table can be split and distributed into multiple
partitions when the number of rows in the table passes a certain threshold (which is pro-
vided by the administrator of the database). Another technique used for partitioning the data
is pre-splitting. When pre-splitting is employed, a number of splitting points (let n be the
number of splitting points) are provided to database upon creation, and tables are split and

7Amazon Web Services - Cloud Computing Services – http://aws.amazon.com/
8JTS Topology Suite – http://www.vividsolutions.com/jts/JTSHome.htm

http://aws.amazon.com/
http://www.vividsolutions.com/jts/JTSHome.htm

820 Geoinformatica (2016) 20:801–828

Fig. 7 The total runtime and time spent on joins for one tablet server experiments

distributed into (n + 1) partitions based on these splitting points. Balanced partitioning of
data is important as the number of active search iterators can be adequately increased when
tables are split across the different data nodes. Pre-splitting is more advantageous when
compared to automatic table partitioning, as pre-splitting can decrease the data transfer
times when splitting the tables, and efficiently utilize parallel server-side search iterators.

6.3 One tablet server experiments

In one tablet server experiments, we analyzed the runtime performance of STCOP min-
ing algorithm using classical (CDM), spatiotemporal (STDM), and indexed spatiotemporal
(ISTDM) data models. For these experiments, we employed relatively smaller artificial
datasets: A, B,C, and D. We run the experiments using one tablet server and one scanner
(search iterator). In Fig. 7 the total runtime and time spent on spatiotemporal join operations
are shown in logarithmic scale, and in Fig. 8 the size of the database is shown. The total run-
time (shown as Total Time in our charts) is the total time spent for running the STCOP-Miner
algorithm shown in Algorithm 1. The time spent on spatiotemporal join operations (shown
as Join Time in our charts) is calculated as the sum of the total time spent on locating the
query instances and performing spatiotemporal overlap search. Note that the spatiotemporal
joins are known to be the performance bottleneck of the STCOP miner algorithm [7].

From Fig. 8, it can be observed that CDM has less storage requirements. As STDM
and ISTDM use the same storage model, the size of the database is the same for STDM

Fig. 8 Total database sizes of datasets for one tablet server experiments

Geoinformatica (2016) 20:801–828 821

and ISTDM. CDM uses a string representation (WKT) of polygon objects, and timestamps
are encoded in the column qualifier field of keys. On the other hand, STDM and ISTDM
perform serialization on each spatiotemporal instance and store them as byte arrays. As we
use a simplistic Java-based serialization model without any compression, the increase in the
storage requirements for STDM and ISTDM is understandable. Another factor contributing
to this increase is the duplication strategy used (when instance trajectories span across more
than one partition cells, the instance is stored in multiple partition cells). We also observed
that from 11 % to 37 % of instances are duplicated at least once when running one tablet
server experiments.

While CDM provides compact data storage, spatiotemporal data models (STDM and
ISTDM) provide better runtime performance. For smaller datasets, the difference in the
runtime is not visible. For the dataset A, the total running time of CDM is even less than
STDM, while the IFSTDM achieves only 1.08x speedup. However, the difference in join
times is apparent when we inspect the experimental results from larger datasets (i.e., B, C,
and D). By using STDM (when compared to CDM), we can see from 2.09x speedup for
dataset B to 3.51x speedup for dataset C in one tablet server settings. Furthermore, using
indexing on top of STDM (in ISTDM) provides better total runtime. ISTDM achieves up to
8.7x speedup when compared to STDM, and 27x speedup when compared to CDM.

6.4 Multiple tablet server experiments

In multiple tablet server experiments, we employ the Amazon Web Services cloud com-
puting platform with three and six tablet servers as shown in Table 2. The STCOP mining
system is tested with larger size artificial, solar event, and basketball datasets. In multi-
ple tablet server experiments, our focus is to demonstrate the horizontal scalability of the
system and our data models with different dataset characteristics.

6.4.1 Experiments with artificial datasets

For multiple tablet server experiments, relatively larger artificial datasets C, D, E, and F
were tested. Based on our findings from one tablet server experiments with smaller artificial
datasets, we did not conduct the experiments with CDM due to the poor scalability of CDM
as shown in Fig. 7. We test the capabilities of CDM in the experiments with real life datasets.

Fig. 9 The total runtime and time spent on joins for the artificial datasets C, D, E, and F in three and six
tablet server settings

822 Geoinformatica (2016) 20:801–828

Figures 9 and 10 show the total runtime of STCOP-Miner algorithm and the time spent
on spatiotemporal joins for STDM and ISTDM in three (shown as 3 TS) and six (6 TS) tablet
server settings. Using multiple tablet servers and data nodes, we aimed to show the effects
of horizontal scalability on database side for our STCOP mining system.

Firstly, from Fig. 9, we can see the differences of using more data nodes in STDM.
Only for the relatively smaller dataset C, the three tablet server setting performs better than
six tablet server setting for STDM. We observe 3.3 to 5.0x speedup when we increase the
number of tablets from three to six. On the other hand, for ISTDM (shown in Fig. 10), we
do not see the effect of increasing the number of tablet servers. However, this is expected
as our inverted index provides direct access to key values of instances or pattern instances.
Both query instance and the instances in search results can be accessed by a constant number
of lookups. Therefore, we are not able to see particularly significant speedups when using
ISTDM. For STDM parallel scan iterators significantly change the time spent on searching
the instances. Additionally, ISTDM performs better than STDM for almost all datasets.

6.4.2 Experiments with solar datasets

The results of the multiple tablet server experiments with the solar event datasets (3Mo and
6Mo), are shown in Fig. 11. Three tablet server experiment results are shown with plain
bars, and six tablet server experiment results are shown with striped bars. It is important to
mention that the instances in artificial datasets have shorter lifespans and simpler geometries
while the instances in solar datasets have unbalanced data characteristics and significantly
more complex geometries. Another important difference between the artificial and solar
datasets is the number of generated candidate pattern instances. Solar datasets generate less
candidate pattern instances; therefore, the join and total runtime for solar datasets are shorter
than artificial datasets.

We can observe that STDM and ISTDM perform significantly better than the CDM
for both datasets, and the difference between the total runtimes of data models is caused
mainly by the difference in the join times. We also notice the performance increase when
six tablet servers are used. The performance of the joins in CDM has increased when using
six tablet servers (in 3Mo by 9 % and in 6Mo by 21 %). Similarly, for ISTDM, the join per-
formance has increased for both datasets, as well as the total runtime. For STDM in 6Mo
dataset, we recognize an 11 % performance drop. This can be explained by the overhead

Fig. 10 The total runtime and time spent on joins for the artificial datasets C, D, E, and F in three and six
tablet server settings

Geoinformatica (2016) 20:801–828 823

Fig. 11 The time spent on spatiotemporal joins (Join Time) and the total runtime of STCOP-Miner algorithm
(Total time) for the solar event datasets 3Mo and 6Mo in three (3TS) and six (6TS) tablet server settings using
classical (CDM), spatiotemporal (STDM), and indexed spatiotemporal (ISTDM) data models

of search iterator creation. Nevertheless, the total runtime performance for STDM (in 6Mo)
has increased because of the parallelized writers.

6.4.3 Experiments with basketball datasets

The results of the multiple tablet server experiments with the basketball datasets (ATL1,
ATL2 and ATL3), are shown in Fig. 12. Similar to the experiments with the solar event
datasets, three tablet server experiment results are shown with plain bars, and six tablet
server experiment results are shown with striped bars. Instances in basketball datasets
have significantly longer lifespans when compared to artificial datasets. Additionally, the
geometries of the instances in the basketball datasets are simpler than the ones in solar
event datasets. Similar to the solar event datasets, the number of generated candidate pat-
tern instances for the basketball datasets is smaller for the artificial datasets. However, the
lifespans of the pattern instances are longer.

The experimental results from the basketball datasets are similar to the results from the
solar event datasets. Both STDM and ISTDM perform better than CDM. Using six tablet
servers leads to a performance increase in join times, as well as the total runtimes for all the

Fig. 12 The time spent on spatiotemporal joins (Join Time) and the total runtime of STCOP-Miner algorithm
(Total time) for the basketball datasets ATL1, ATL2 and ATL3 in three (3TS) and six (6TS) tablet server
settings using classical (CDM), spatiotemporal (STDM), and indexed spatiotemporal (ISTDM) data models

824 Geoinformatica (2016) 20:801–828

settings. In addition to that, indexing (used in ISTDM) accelerates the join operations for
all the datasets.

6.5 Remarks

In a nutshell, we can affirm that ISTDM provides better runtime performance than STDM
and CDM for large spatiotemporal datasets, and the total runtime performance of STCOP
mining system is heavily affected by the spatiotemporal join performance.

The artificial, solar event and basketball datasets have significantly different character-
istics, and our experiments with all of them provide better insight into the behavior of the
mining system under different scenarios. Firstly, we have observed the highest speedup from
CDM to ISTDM in the artificial datasets (up to 27x). This can be explained with the higher
number of generated candidate pattern instances from the artificial datasets.

Another goal of our experiments was to inspect the scalability of our proposed data
models. In the STCOP mining system, when multiple tablet servers are used, data access
and update operations are performed in parallel. The distribution of data access and update
workload increases the performance of the system for all the data models. The spatiotem-
poral join performance of STDM and ISTDM is not significantly improved when more
tablet servers are used. However, the total runtime performance of these models is better
when more tablet servers are used, as we write the pattern instances back to the database
in parallelized fashion. Especially, in the solar event dataset experiments, we observe the
performance increase caused by the parallelized write operations with six tablet servers for
STDM. This is clearly visible from 6Mo dataset STDM results in Fig. 11, where the join
time with six tablet servers is more than the join time with three tablet servers; however, the
total runtime for six tablet server is shorter, as the parallelized writes significantly increase
the runtime performance.

7 Conclusion and future work

One integral part of knowledge discovery is the efficient retrieval of data. For relational
databases, data access methods are well-defined and efficient retrieval techniques are facili-
tated by the database vendors. However, in the context of spatiotemporal databases, efficient
and effective access methods are not available because of the diversity of spatiotempo-
ral data (historical, predicted, moving objects, etc.), complex representations (points, line
strings, polygons, geometry collections, etc.) and rich semantics (temporal sequences,
spatial colocations, spatiotemporal co-occurrences etc.). With the increasing volumes of
spatiotemporal data, it becomes necessary to employ distributed databases when mining
big spatiotemporal data. In this work, we designed a distributed STCOP mining system
which employs a distributed non-relational database, Accumulo, for storing spatiotem-
poral instances. We have introduced data models to store spatiotemporal instances in
column-oriented non-relational databases. These models are classical (CDM), spatiotempo-
ral (STDM) and indexed spatiotemporal (ISTDM) models. Classical data model simulates
the object-relational database modeling. Spatiotemporal data model follows a space-driven
partitioning strategy to capture the implicit spatial and temporal information, and exploits
the sorted nature of keys in Accumulo for efficient data retrieval. Indexed spatiotemporal
data model uses the same data modeling on the database as STDM, and utilize an inverted
index structure for improving the spatiotemporal search and join performance of STCOP
mining.

Geoinformatica (2016) 20:801–828 825

For testing the performance of the distributed STCOP mining system, we conducted
experiments with three proposed models and eleven datasets under different distribution
settings. In our experiments, we consistently see that ISTDM performs the best in the
means of runtime performance. On the other hand, CDM does not perform well mainly
because it does not capture and take advantange of the implicit spatiotemporal information,
which leads to higher spatiotemporal join times. However, it is worth mentioning that CDM
has less storage requirement than STDM and ISTDM. We also observe that using more
computing nodes increases the performance of the system for all data models.

In the future, one potential problem to investigate is the join-less mining schemas for
discovering STCOPs in distributed database environments. Another interesting problem is
the frequent pattern growth-based approaches for the task of STCOP mining.

Acknowledgments This work was supported in part by two NASA Grant Awards (No. NNX11AM13A,
and No. NNX15AF39G), and one NSF Grant Award (No. AC1443061). The NSF Grant Award has been sup-
ported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer
and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for
Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the
Directorate for Geosciences.

References

1. Apache Accumulo user manual version 1.6., https://accumulo.apache.org/1.6/accumulo user manual.
html (2014). Accessed: December 1, 2014

2. Agouris P, Aref W, Goodchild MF, Barbra S, Jensen J, Knoblock CA, Langley R, Mikhail E, Shekhar
S, Wolfson O, Yuan M (2012) From GPS and virtual globes to spatial computing-2020. Tech. rep.,
Computing Community Consortium

3. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In:
VLDB’94, Proceedings of 20th international conference on very large data bases, Santiago de Chile,
pp 487–499

4. Andrienko NV, Andrienko GL (2007) Designing visual analytics methods for massive collections of
movement data. Cartographica 42(2):117–138

5. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A,
Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

6. Aydin B, Angryk RA, Pillai KG (2014) ERMO-DG: Evolving region moving object dataset genera-
tor. In: Proceedings of the twenty-seventh international florida artificial intelligence research society
conference, FLAIRS 2014, Pensacola Beach

7. Aydin B, Kempton D, Akkineni V, Angryk R, Pillai KG (2015) Mining spatiotemporal co-occurrence
patterns in solar datasets. Astronomy and Computing. doi:10.1016/j.ascom.2015.10.003. In Press

8. Aydin B, Kempton D, Akkineni V, Govaparam S, Pillai KG, Angryk R (2014) Spatiotemporal index-
ing techniques for efficiently mining spatiotemporal co-occurrence patterns. In: Workshop on solar
astronomy big data, 2014 IEEE International Conference on Big Data. IEEE, pp 1–10

9. Burrows M (2006) The Chubby lock service for loosely-coupled distributed systems. In: Proceedings
of the 7th symposium on operating systems design and implementation 2006, OSDI ’06. USENIX
Association, Seattle, pp 335–350

10. Celik M. (2011) Discovering partial spatio-temporal co-occurrence patterns, Fuzhou, pp 116–120
11. Celik M., Azginoglu N., Terzi R. (2012) Mining periodic spatio-temporal co-occurrence patterns: a sum-

mary of results. In: 2012 international symposium on innovations in intelligent systems and applications
(INISTA), pp 1–5

12. Celik M, Shekhar S, Rogers JP, Shine JA (2008) Mixed-drove spatiotemporal co-occurrence pattern
mining. IEEE Trans Knowl Data Eng 20(10):1322–1335

13. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE
(2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2)

14. Elsberry RL (2002) Predicting hurricane landfall precipitation: optimistic and pessimistic views from
the symposium on precipitation extremes. Bull Am Meteorol Soc 83(9):1333–1339

https://accumulo.apache.org/1.6/accumulo_user_manual.html
https://accumulo.apache.org/1.6/accumulo_user_manual.html
http://dx.doi.org/10.1016/j.ascom.2015.10.003

826 Geoinformatica (2016) 20:801–828

15. Erwig M (2004) Toward spatio-temporal patterns. In: de Caluwe R, de Tr G, Bordogna G (eds) Spatio-
temporal databases. Springer, Berlin, pp 29–53

16. Gauthreaux SA, Belser CG (2003) Bird movements on Doppler weather surveillance radar. Birding
35(6):616–628

17. Ghemawat S, Gobioff H, Leung S (2003) The google file system, Bolton Landing, pp 29–43
18. Huang Y, Shekhar S, Xiong H (2004) Discovering colocation patterns from spatial data sets: a general

approach. IEEE Trans Knowl Data Eng 16(12):1472–1485
19. Kempton D, Pillai KG, Angryk RA (2014) Iterative refinement of multiple targets tracking of solar

events. In: 2014 IEEE international conference on big data, big data 2014, Washington, pp 36–44.
doi:10.1109/BigData.2014.7004402, (to appear in print)

20. Kuhn K, Campbell-Lendrum D, Haines A, Cox J (2005) Using climate to predict infectious disease
epidemics. World Health Organ, Geneva

21. Langhoff SR, Straume T (2012) Highlights of the space weather risks and society? workshop. Space
Weather 10(6)

22. Manning CD, Raghavan P, Schu̇tze H (2008) Introduction to information retrieval. Cambridge University
Press

23. O’Neil PE, Cheng E, Gawlick D, O’Neil EJ (1996) The log-structured merge-tree (lsm-tree). Acta Inf
33(4):351–385

24. Pillai KG, Angryk RA, Aydin B (2013) A filter-and-refine approach to mine spatiotemporal co-
occurrences. In: 21st SIGSPATIAL international conference on advances in geographic information
systems. SIGSPATIAL, Orlando, pp 104–113

25. Pillai KG, Angryk RA, Banda JM, Schuh MA, Wylie T (2012) Spatio-temporal co-occurrence pat-
tern mining in data sets with evolving regions. In: 12th IEEE international conference on data mining
workshops, ICDM Workshops, Brussels, pp 805–812

26. Qian F, He Q, He J (2009) Mining spread patterns of spatio-temporal co-occurrences over zones. In:
Computational science and its applications - ICCSA 2009, international conference. Proceedings, Part
II, Seoul, pp 677–692

27. Sen R, Farris A, Guerra P (2013) Benchmarking apache accumulo bigdata distributed table store using
its continuous test suite. In: IEEE international congress on big data. BigData Congress, pp 334–341

28. Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall
29. Shekhar S, Huang Y (2001) Discovering spatial co-location patterns: A summary of results. In: Proceed-

ings advances in spatial and temporal databases, 7th international symposium, SSTD 2001, Redondo
Beach, pp 236–256

30. Vatsavai RR, Ganguly A, Chandola V, Stefanidis A, Klasky S, Shekhar S (2012) Spatiotemporal data
mining in the era of big spatial data: Algorithms and applications. In: Proceedings of the 1st ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial ’12. ACM, New
York, pp 1–10. doi:10.1145/2447481.2447482, (to appear in print)

31. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Pera RAR (2010) Non-invasive
imaging of human embryos before embryonic genome activation predicts development to the blastocyst
stage. Nat Biotechnol 28(10):1115–1121

32. Yoo JS, Shekhar S (2004) A partial join approach for mining co-location patterns. In: Proceedings 12th
ACM international workshop on geographic information systems, ACM-GIS 2004, Washington, pp 241–
249

33. Yoo JS, Shekhar S (2006) A joinless approach for mining spatial colocation patterns. IEEE Trans Knowl
Data Eng 18(10):1323–1337

34. Zhang Z, Wu W (2008) Composite spatio-temporal co-occurrence pattern mining. In: Proceedings of
Wireless algorithms, systems, and applications, third international conference, WASA 2008, Dallas,
pp 454–465

http://dx.doi.org/10.1109/BigData.2014.7004402
http://dx.doi.org/10.1145/2447481.2447482

Geoinformatica (2016) 20:801–828 827

Berkay Aydin is currently a Ph.D. candidate at Department of Computer Science at Georgia State University,
and a member of Data Mining Lab. He received his B.Sc. degree from Department of Computer Engineering
at I.D. Bilkent University in 2012. His main areas of research interests are spatiotemporal pattern mining,
data modeling, and information retrieval.

Vijay Akkineni is currently a doctorate student at Department of Computer Science at Georgia State Univer-
sity, and a member of Data Mining Lab. He received his M.Sc. degree from Department of Computer Science
at Texas Tech University in 2007, and his B.Tech. degree from National Institute of Technology Warangal in
2003. His research interests are big data, data mining, and parallel computing.

828 Geoinformatica (2016) 20:801–828

Rafal Angryk Dr. Angryk is an associate professor of computer science, an affiliate professor of astron-
omy, and the director of Data Mining Lab at Georgia State University. He received M.S. and Ph.D. degrees
in Computer Science in 2004 from Tulane University. His main research interests lie in the data mining
area, and specifically in the challenge of new knowledge acquisition from real-life, massive databases. Dr.
Angryk has published over 100 journal articles, book chapters and peer-reviewed conference papers in these
areas. His research has been sponsored by the federal agencies: NASA, NGA, NSF and industry: Intergraph
Corporation, RightNow Technologies (currently Oracle), with a successful grant history exceeding $10 M.

	Mining spatiotemporal co-occurrence patterns in non-relational databases
	Abstract
	Introduction
	Motivation
	Scope
	Outline

	Non-relational databases for mining spatiotemporal data
	Architecture
	Applicability to spatiotemporal data mining

	Related work on spatiotemporal co-occurrence patterns
	Preliminary concepts on spatiotemporal co-occurrence pattern mining
	Definitions
	Measures
	Significance measures
	Prevalance measure

	STCOP-miner algorithm

	Modeling spatiotemporal co-occurrences in non-relational databases
	Classical data model
	Spatiotemporal data model
	Indexed spatiotemporal data model

	Experimental evaluation
	Experimental settings
	Implementation details
	One tablet server experiments
	Multiple tablet server experiments
	Experiments with artificial datasets
	Experiments with solar datasets
	Experiments with basketball datasets

	Remarks

	Conclusion and future work
	Acknowledgments
	References

