
Geoinformatica (2016) 20:571–628
DOI 10.1007/s10707-016-0246-1

New plane-sweep algorithms for distance-based join
queries in spatial databases

George Roumelis1 ·Antonio Corral2 ·
Michael Vassilakopoulos3 ·Yannis Manolopoulos1

Received: 11 April 2015 / Revised: 9 December 2015
Accepted: 1 February 2016 / Published online: 27 February 2016
© Springer Science+Business Media New York 2016

Abstract Efficient and effective processing of the distance-based join query (DJQ) is of
great importance in spatial databases due to the wide area of applications that may address
such queries (mapping, urban planning, transportation planning, resource management,
etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ)
and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and
a distance function to measure the degree of closeness, along with a given number of pairs
in the final result (K) or a distance threshold (ε). In this paper, we propose four new
plane-sweep-based algorithms for KCPQs and their extensions for εDJQs in the context
of spatial databases, without the use of an index for any of the two disk-resident data sets
(since, building and using indexes is not always in favor of processing performance). They
employ a combination of plane-sweep algorithms and space partitioning techniques to join
the data sets. Finally, we present results of an extensive experimental study, that compares
the efficiency and effectiveness of the proposed algorithms for KCPQs and εDJQs. This

A preliminary partial version of this work appeared in [1].

� Michael Vassilakopoulos
mvasilako@uth.gr

George Roumelis
groumeli@csd.auth.gr

Antonio Corral
acorral@ual.es

Yannis Manolopoulos
manolopo@csd.auth.gr

1 Department of Informatics, Aristotle University, GR-54124 Thessaloniki, Greece

2 Department on Informatics, University of Almeria, 04120 Almeria, Spain

3 Department of Electrical and Computer Engineering, University of Thessaly, GR-38221 Volos,
Greece

/

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10707-016-0246-1-x&domain=pdf
http://orcid.org/0000-0003-2256-5523
mailto:mvasilako@uth.gr
mailto:groumeli@csd.auth.gr
mailto:acorral@ual.es
mailto:manolopo@csd.auth.gr

572 Geoinformatica (2016) 20:571–628

performance study, conducted on medium and big spatial data sets (real and synthetic) val-
idates that the proposed plane-sweep-based algorithms are very promising in terms of both
efficient and effective measures, when neither inputs are indexed. Moreover, the best of the
new algorithms is experimentally compared to the best algorithm that is based on the R-tree
(a widely accepted access method), for KCPQs and εDJQs, using the same data sets. This
comparison shows that the new algorithms outperform R-tree based algorithms, in most
cases.

Keywords Spatial databases · Query processing · Plane-sweep technique · Distance-based
join queries · Spatial query evaluation

1 Introduction

A Spatial Database is a database system that offers spatial data types in its data model
and query language, and it supports spatial data types in its implementation, providing
at least spatial indexing and efficient spatial query processing [2]. In a computer system,
these spatial data are represented by points, line-segments, regions, polygons, volumes and
other kinds of 2-d/3-d geometric entities and are usually referred to as spatial objects. For
example, a spatial database may contain polygons that represent building footprints from
a satellite image, or points that represent the positions of cities, or line segments that rep-
resent roads. Spatial databases include specialized systems like Geographical databases,
CAD databases, Multimedia databases, Image databases, etc. Recently, the role of spatial
databases is continuously increasing in many modern applications; e.g. mapping, urban
planning, transportation planning, resource management, geomarketing, environmental
modeling are just some of these applications.

The most basic use of such a system is for answering spatial queries related to the spatial
properties of the data. Some typical spatial queries are: point query, range query, spatial
join, and nearest neighbor query [3]. One of the most frequent spatial queries in spatial
database systems is the spatial join, which finds all pairs of spatial objects from two spatial
data sets that satisfy a spatial predicate, θ . Some examples of the spatial predicate θ are:
intersects, contains, is enclosed by, distance, adjacent, meets, etc. [4]; and when θ is a
distance, we have distance-based join queries (DJQ). The most representative and studied
DJQ in the spatial database field are the K Closest Pairs Query (KCPQ) and εDistance Join
Query (εDJQ). The KCPQ combines join and nearest neighbor queries: like a join query, all
pairs of objects are candidates for the final result, and like a nearest neighbor query, the K

Nearest Neighbor property is the basis for the final ordering [5, 6]. The εDJQ, also known
as Range Distance Join, also involves two spatial data sets and a distance threshold ε, and
it reports a set pairs of objects, one from each input set, that are within distance ε of each
other. DJQ are very useful in many applications that use spatial data for decision making
and other demanding data handling operations. For example, we can use two spatial data
sets that represent the cultural landmarks and the most populated places of the United States
of America. A KCPQ (K = 10) can discover the 10 closest pairs of cities and cultural
landmarks providing an increasing order based on their distances. On the other hand, a
εDJQ (ε = 10) will return all possible pairs (populated place, cultural landmark) that are
within 10 kilometers of each other.

The distance functions are typically based on a distance metric (satisfying the non-
negative, identity, symmetry and �-inequality properties) defined on points in the data

Geoinformatica (2016) 20:571–628 573

space. A general distance metric is called Lt -distance or Minkowski distance between two
points, in the d-dimensional data space, Dd . For t = 2 we have the Euclidean distance,
for t = 1 the Manhattan distance and for t = ∞ the Maximum distance. They are the
most known Lt -distances. Often, the Euclidean distance is used as the distance function
but, depending on the application, other distance functions may be more appropriate. The d-
dimensional Euclidean space, Ed , is the pair (Dd ,L2). That is, Ed is Dd with the Euclidean
distance L2. In the following we will use dist instead of L2 as the Euclidean distance
between two points in Ed and this will be the basis for DJQs studied on this paper.

One of the most important techniques in the computational geometry field is the plane-
sweep algorithm which is a type of algorithm that uses a conceptual sweepline to solve
various problems in the Euclidean plane, E2, [7]. The name of plane-sweep is derived from
the idea of sweeping the plane from left to right with a vertical line (front) stopping at every
transaction point of a geometric configuration to update the front. All processing is carried
out with respect to this moving front, without any backtracking, with a look-ahead on only
one point each time [8]. The plane-sweep technique has been successfully applied in spatial
query processing, mainly for intersection joins, regardless whether both spatial data sets
are indexed or not [9]. In the context of DJQ the plane-sweep technique has been used to
restrict all possible combinations of pairs of points from the two data sets. That is, using
this technique instead of the brute-force nested loop algorithm, the reduction of the number
of Euclidean distances computations has been proven [6, 10], and thus the reduction of
execution time of the query processing.

It is generally accepted that indexing is crucial for efficient processing of spatial queries.
Even more, it is well-known that a spatial join is generally fastest if both data sets are
indexed. However, there are many situations where indexing does not necessarily pay off. In
particular, the time needed to build the index before the execution of the spatial query plays
an important role in the global performance of the spatial database systems. For instance, if
the output of a spatial query serves as input to another spatial query, and such an output is not
reused several times for subsequent spatial queries, then it may not be worthwhile to spend
the time for building a new index. This is especially emphasized for spatial intersection
joins that make use of indexes which need a long time to be built (e.g. R*-tree [11]) [12].
For the previous reasons, the time necessary to build the indexes is an important constraint,
especially if the input data sets are not used often for spatial query processing. Thus the main
motivation of this article is to propose new algorithms for DJQs (the KCPQ and εDJQ) on
disk resident data, when none inputs are indexed, and to study their behavior in the context
of spatial databases. Our proposal is also motivated by the work of [13, 14] for spatial
intersection joins.

Nowadays, the unnecessity of indexes for query processing is not infrequent in practical
applications, when the data sets change at a very rapid rate, or the data sets are not reusable
for subsequent queries and the use of indexes can be omitted. Moreover, disk-based solu-
tions are necessary, since main memory of a computing system is, in many cases, shared
among applications, and it is usually not enough to hold big data (although, main mem-
ory increases in size and decreases in cost, acquired data increase at higher rates than main
memory, for example, scientific data). As a possible application scenario, consider cadastre,
or urban planning very big data sets with spatial and non-spatial characteristics. Big subsets
of the data sets may be formed by considering certain (mainly non-spatial) characteristics
of the stored properties, or buildings (like, properties owned by the state, buildings higher
than 50 meters, constructions older than 50 years, or built under an obsolete anti-seismic
construction standard, non build-up large areas, etc). These (big and non-storable in main

574 Geoinformatica (2016) 20:571–628

memory) subsets are dynamic, or non-reusable, in the sense that an engineer, or an offi-
cial may create them by setting conditions for certain characteristics, use them to answer a
query, modify these conditions (and the created subsets), answer again this query, and so on.
In the process of conducting a study, like an emergency planning study, the DJQ of interest
might be to find pairs of buildings vulnerable by an earthquake and earthquake-safe public
buildings that could temporarily host people, at a limited distance.

This paper substantially extends our previous work [1] and its contributions are summa-
rized as follows:

1. We present theorems (the proofs of these theorems are included in [15]) regarding the
correctness of both algorithms for KCPQ, that is, Classic Circle Plane-Sweep (CCPS)
and Reverse Run Circle Plane-Sweep (RCPS) algorithms. They are the basis of the
following algorithms for DJQ, when neither inputs are indexed and the data are stored
on disk.

2. There are many contributions in the context of spatial intersection joins when both,
one, or neither inputs are indexed. For DJQs most of the contributions have been pro-
posed when both inputs are indexed (mainly using R-trees for KCPQ). For this reason,
in this article we propose four algorithms (FCCPS, SCCPS, FRCPS and SRCPS) for
KCPQs and their extensions for εDJQs for performing DJQs, without the use of an
index on any of the two disk-resident data sets. These algorithms employ a combination
of the plane-sweep algorithms (CCPS) and (RCPS) and space partitioning techniques
(uniform splitting and uniform filling) to join the disk-resident data sets.

3. We present results of an extensive experimental study, that compares the performance
(in terms of efficiency and effectiveness) of the proposed algorithms.

4. We also compare the performance (efficiency) of the best of the new algorithms to the
best algorithm that is based on the R-tree (a widely accepted access method).

The rest of this paper is organized as follows. Section 2 defines the KCPQ and εDJQ,
which are the queries studied on this paper, in the context of spatial databases. Moreover
a classification of spatial join and distance-based join queries taking into account whether
both, one, or neither inputs are indexed is presented. The Classic Plane-Sweep algorithm
for DJQs is described in Section 3, as well as two improvements to reduce the num-
ber of distance computations. In Section 4, the new plane-sweep algorithm (Reverse Run
Plane-Sweep, RRPS) for KCPQ is presented. In Section 5, we present and analyse the new
plane-sweep-based algorithms for the KCPQ and εDJQ. Section 6 exposes the results of
an extensive experimental study, taking into account different parameters for comparison.
Moreover, Section 6 exposes the results of an extensive experimental comparison between
the best of the new algorithms and the best R-tree based algorithm. Section 7 contains some
concluding remarks and makes suggestions for future research.

2 Preliminaries and related work

Given two spatial data sets and a distance function to measure the degree of closeness, DJQs
between pairs of spatial objects are important joins queries that have been studied actively
in the last years. Section 2.1 defines the KCPQ and εDJQ, which are the kernel of this
paper. Section 2.2 describes a classification of spatial join and distance-based join queries
taking into account whether both, one, or neither inputs are indexed, along with the review
of other recent contributions related to these DJQs.

Geoinformatica (2016) 20:571–628 575

2.1 K closest pairs query and εdistance join query

In spatial database applications, the nearness or farness of spatial objects is examined by
performing distance-based queries (DBQs). The most known DBQs in the spatial database
framework when just a spatial data set is involved are the range query (RQ) and the K Near-
est Neighbors query (KNNQ). When we have two spatial data sets the most representative
DBQ are the K Closest Pairs Query (KCPQ) and the εDistance Join Query (εDJQ). They
are considered DJQs, because they involve two different spatial data sets and use distance
functions to measure the degree of nearness between spatial objects. The former reports only
the top K pairs, and the latter, also known as Range Distance Join, finds all the possible
pairs of spatial objects, having a distance between ε1 and ε2 of each other (ε1 ≤ ε2). Their
formal definitions for point data sets (the extension of these definitions to other complex
spatial objects is straightforward) are the following:

Definition 1 (K Closest Pairs Query, KCPQ) Let P = {p0, p1, · · · , pn−1} and Q =
{q0, q1, · · · , qm−1} be two set of points in Ed , and a natural number K (K ∈ N,K > 0).
The K Closest Pairs Query (KCPQ)) of P and Q (KCPQ(P, Q,K) ⊆ P × Q) is a set of
K different ordered pairs KCPQ(P, Q,K) = {(pZ1, qL1), (pZ2, qL2), · · · , (pZK, qLK)},
with (pZi, qLi) �= (pZj , qLj), Zi �= Zj ∧ Li �= Lj , such that for any (p, q) ∈ P × Q −
{(pZ1, qL1), (pZ2, qL2), · · · , (pZK, qLK)} we have dist (pZ1, qL1) ≤ dist (pZ2, qL2) ≤
· · · ≤ dist (pZK, qLK) ≤ dist (p, q).

Definition 2 (εDistance Join Query, εDJQ) Let P = {p0, p1, · · · , pn−1} and Q =
{q0, q1, · · · , qm−1} be two set of points in Ed , and a range of distances defined by [ε1, ε2]
such that ε1, ε2 ∈ R

+ and ε1 ≤ ε2. The εDistance Join Query (εDJQ) of P and Q
(εDJQ(P,Q, ε1, ε2) ⊆ P × Q) is a set which contains all the possible pairs of points
(pi, qj) that can be formed by choosing one point pi ∈ P and one point of qj ∈ Q, having
a distance between ε1 and ε2 for each other: εDJQ(P,Q, ε1, ε2) = {(pi, qj) ∈ P × Q :
ε1 ≤ dist (pi, qj) ≤ ε2}.

These two DJQs have been actively studied in the context of R-trees [5, 6, 10, 16].
However, when the data sets are not indexed they have attracted similar attention.

2.2 Related work

This section presents a classification of the spatial join and distance-based join queries
depending on one, both or neither inputs are indexed. Moreover, other related DJQ are also
revised in the recent literature, in order to show the importance of this type of query in the
context of spatial databases.

2.2.1 Spatial join

Spatial data processing is well-known to be both data and computing intensive. The spatial
join is one of the most studied spatial query, where given two datasets of spatial objects in
Euclidean space, it finds all pairs of spatial objects satisfying a given spatial predicate, such
as intersects, contains, etc [4]. Various techniques, such as minimizing disk I/O overheads in
spatial indexing and the two phase filter-refinement strategy in spatial joins have been pro-
posed in [9]. During the past decades many algorithms for spatial joins where the datasets

576 Geoinformatica (2016) 20:571–628

reside on disk have been proposed in the literature [9, 17, 18] and recently, several contri-
butions in the context of in-memory spatial join have been proposed. In [19], the authors
have developed TOUCH, a novel in-memory spatial join algorithm, inspired with previous
works on disk-based approaches and the requirements of the computational neuroscientists.
It combines hierarchical data-oriented partitioning, batch processing and filtering concepts,
with the target to decrease the number of comparisons, execution time and memory foot-
print of a spatial join process. In [20], a thorough experimental performance study of several
(ten) spatial join techniques in main memory is reported. The techniques are first optimized
for in-memory performance and then studied in the same framework. This study suggests
that specialized join strategies over simple index structures, such as Synchronous Traversal
over R-trees, should be the methods of choice for the considered cases. In [21], the authors
re-implement the worst performing technique presented in [20] without changing the under-
lying high-level algorithm and the conclusion is that the resulting re-implementation is
capable of outperforming all the other techniques. It means substantial performance gains
can be achieved by means of careful implementation. Finally, in [22] a thorough review of
a wide range of in-memory data management and processing proposals and systems is pre-
sented, including both data storage systems and data processing frameworks. The authors
give a comprehensive presentation of important technology in memory management, and
some key factors that need to be considered in order to achieve efficient in-memory data
management and processing. In this paper, we are going to focus on disk-resident data, new
algorithms for in-memory DJQs is a task for further research.

The spatial join is one of the most related and influential spatial queries with respect to
DJQs in spatial databases and GIS. Depending on the existence of indexes or not, different
spatial join algorithms have been proposed [23]. If both inputs are indexed, several contribu-
tions have been proposed, but the most influential one is the R-tree join algorithm (RJ) [24],
due to its efficiency and the popularity of R-trees [11, 25]. RJ synchronously traverses both
trees in a Depth-First order. Two optimization techniques were also proposed, search space
restriction and plane-sweep, to improve the CPU speed and to reduce the cost of computing
overlapping pairs between the nodes to be joined, respectively.

Most research after RJ, focused on spatial join processing when one or both inputs are
non-indexed. In this category, the paper that is most closely related to our work is [14],
where several spatial joins strategies when only one input data set is indexed are investi-
gated. The main contribution is a method that modifies the plane-sweep algorithm. This
approach reads the data pages from the index in a one-dimensional sorted order and inserts
entire data pages into the sweep structure (i.e. in this case, one sweep structure will contain
objects, while another sweep structure will contain data pages).

Directly related to this paper, when both data sets are non-indexed, are methods that
involve sorting and external memory plane-sweep [12, 13], or spatial hash join algorithms
[26], like partition based spatial merge join [27]. In [13] the Scalable Sweeping-Based
Spatial Join, SSSJ, was proposed, that employs a combination of plane-sweep and space
partitioning to join the data sets, and it works under the assumption that in most cases the
limit of the sweepline will fit in main memory. In [27] a hash-join algorithm was presented,
so called Partition Based Spatial Merge Join, that regularly partitions the space, using a
rectangular grid, and hashes both inputs data sets into the partitions. It then joins groups
of partitions that cover the same area using plane-sweep to produce the join results. Some
objects from both sets may be assigned in more than one partitions, so the algorithm needs to
sort the results in order to remove the duplicate pairs. Finally, [12] extends the SSSJ of [13]

Geoinformatica (2016) 20:571–628 577

to process data sets of any size by using external memory, proposing a new join algorithm
referred as iterative spatial join.

2.2.2 KCPQ and εDJQ

The problem of closest pairs has received significant research attention by the computational
geometry community (see [28] for an exhaustive survey), when all data are stored into the
main memory. However, when the amount of data is too large (e.g. when we are working
with spatial databases) it is not possible to maintain these data structures in main memory,
and it is necessary to store the data on disk. Here, we are going to review the KCPQ and
εDJQ, focusing on whether the input data sets are indexed or not. We must emphasize that
most of the contributions that have been published until now are focused on the case when
both data sets are indexed on R-trees.

Remind that given two spatial data sets P and Q, the KCPQ asks for the K closest
pairs of spatial objects in P × Q. If both P and Q are indexed by R-trees, the concept of
synchronous tree traversal and Depth-First (DF) or Best-First (BF) traversal order can be
combined for the query processing [5, 6, 16]. For a more detailed explanation of the pro-
cessing of KCPQ-DF and KCPQ-BF algorithms on two R*-trees from the non-incremental
point of view, see [6, 15]. In [16], incremental and non-recursive algorithms based on Best-
First traversal using R-trees and additional priority queues for DJQs were presented. In
[10], additional techniques as sorting and application of plane-sweep during the expan-
sion of node pairs, and the use of the estimation of the distance of the K-th closest pair
to suspend unnecessary computations of MBR distances are included to improve [16]. A
Recursive Best-First Search (RBF) algorithm for DBQ between spatial objects indexed in
R-trees was presented in [29], with an exhaustive experimental study that compares DF,
BF and RBF for several distance-based queries (Range Distance, K-Nearest Neighbors, K-
Closest Pairs and Range Distance Join). Recently, in [30], an extensive experimental study
comparing the R*-tree and Quadtree-like index structures for K-Nearest Neighbors and
K-Distance Join queries together with index construction methods (dynamic insertion and
bulk-loading algorithm) is presented. It was shown that when data are static the R*-tree
shows the best performance. However, when data are dynamic, a bucket Quadtree begins
to outperform the R*-tree. This is due to, once the dynamic R*-tree algorithm is used, the
overlap among MBRs increases with increasing data set sizes, and the R*-tree performance
degrades.

In the case where just only one data set is indexed, recently in [31] a new algorithm has
been proposed for KCPQs. The main idea is to partition the space occupied by the data set
without an index into several cells or subspaces (according to the VA-File structure [32])
and to make use of the properties of a set of distance functions defined between two MBRs
[6].

To the best og the authors knowledge, there are no papers in the literature of spatial
databases that have addressed the problem of DJQs if both data sets are non-indexed, and
for this reason this is the main motivation of this research work.

εDJQ, also known as Range Distance Join, is a generalization of the Buffer Query, which
is characterized by two spatial data sets and a distance threshold ε, which permits search
pairs of spatial objects from the two input data sets that are within distance ε from each
other. In our case, the distance threshold is a range of distances defined by an interval of
distance values [ε1, ε2] (e.g. if ε1 = 0 and ε2 > 0, then we have the definition of Buffer

578 Geoinformatica (2016) 20:571–628

Query and if ε1 = ε2 = 0, then we have the spatial intersection join, which retrieves
all different intersecting spatial object pairs from two distinct spatial data sets [9]). This
query is also related to the similarity join in multidimensional databases [33], where the
problem of deciding if two objects are similar is reduced to the problem of determining if
two multidimensional points are within a certain distance of each other. In [34], the Buffer
Query is solved for non-point (lines and regions) spatial data sets using R-trees, where
efficient algorithms for computing the minimum distance for lines and regions, pruning
techniques for filtering in a Depth-First search algorithm (performance comparisons with
other search algorithms are not included), and extensive experimental results are presented.
We must emphasize that there are no contributions in the literature of spatial databases for
εDJQ when one or both inputs are non-indexed.

2.2.3 Other related distance-based join queries

Several DJQs have been studied in the literature which are related to KCPQ and εDJQ. In
[35] a new index structure, called bRdnn − T ree, to solve different distance-based join
queries is proposed. Other variants of KCPQ have also been studied in the context of spa-
tial databases. More specifically, approximate K closest pairs in high dimensional data [36,
37] and constrained K closest pairs [38] have been presented. In [39] the exclusive closest
pairs problem is introduced (which is a spatial assignment problem) and several solutions
that solve it in main memory are proposed, exploiting the space partitioning. In [40] a
unified approach that supports a broad class of top-K pairs queries (i.e. K-closest pairs
queries, K-furthest pairs queries, etc.) is presented. And recently, in In [41] an external-
memory algorithm, called ExactMaxRS, for the maximizing range sum (MaxRS) problem
is proposed. The basic processing scheme of ExactMaxRS follows the distribution sweep
paradigm, which was introduced as an external version of the plane-sweep algorithm. More-
over, other related problem, the maximizing circular range sum (MaxCRS), is also studied
and an approximation algorithm is presented, which uses the ExactMaxRS algorithm.

Other complex DJQs using R-trees have been studied in the literature of spatial
databases, as Iceberg Distance Join [42], K Nearest Neighbors Join [43] queries, and closely
related to DJQ processing is the All-Nearest-Neighbor (ANN) query [44]. For a more
detailed review of this classification, see [15].

3 Plane-sweep in distance-based join queries

An important improvement for join queries is the use of the plane-sweep technique, which is
a common technique for computing intersections [7]. The plane-sweep technique is applied
in [8] to find the closest pair in a set of points which resides in main memory. The basic idea,
in the context of spatial databases, is to move a line, the so-called sweepline, perpendicular
to one of the axes, e.g.X-axis, from left to right, and processing objects (points or MBRs) as
they are reached by such sweepline. We can apply this technique for restricting all possible
combinations of pairs of objects from the two data sets. If we do not use this technique,
then we must check all possible combinations of pairs of objects from the two data sets and
process them. That is, using the plane-sweep technique instead of the brute-force nested
loop algorithm, the reduction of CPU cost is proven (e.g. for intersection joins [12, 13, 24]
and KCPQ [6, 10]).

Geoinformatica (2016) 20:571–628 579

3.1 Classic plane-sweep algorithm

In general, let’s assume that the spatial objects are points. The data sets are P and Q and
they can be organized as arrays. Let’s also consider a distance threshold δ, which is the
distance of the K-th pair found so far for the KCPQ (the initial value of δ is ∞), or the
constant given maximum distance for the εDJQ. The Classic Plane-Sweep (CPS) algorithm
consists of the following steps [1, 15]:

1. It sorts the entries of the two arrays of points, based on the coordinates of one of the
axes in (e.g. X-axis) in increasing order.

2. After that, two pointers p and q are maintained initially pointing to the first entry for
processing of each sorted array of points. Let the reference point be the point with the
smallest X-value pointed by one of these two pointers, e.g. P , then as reference point
will be defined the p.

3. Afterwards, the reference point must be paired up with the points stored in the other
sorted array of points (called comparison points, q ∈ Q) from left to right, satisfying
dx ≡ q.x − p.x < δ, processing all comparison points as candidate pairs where the
reference point is fixed. After all possible pairs of entries that contain the reference
point have been paired up (i.e. the forward lookup stops when dx ≡ q.x − p.x ≥ δ is
verified), the pointer of the reference array is increased to the next entry, the reference
point is updated with the point of the next smallest X-value pointed by one of the two
pointers, and the process is repeated until one of the sorted array of points is completely
processed.

Highlight that Classic Plane-Sweep algorithm applies the distance function over the
sweeping axis (in this case, theX-axis, dx) because in the plane-sweep technique, the sweep
is only over one axis. Moreover, the search is only restricted to the closest points with
respect to the reference point according to the current distance threshold (δ). No duplicated
pairs are obtained, since the points are always checked over sorted arrays.

Clearly, the application of this technique can be viewed as a sliding vertical area on
the sweeping axis with a width equal to the δ value starting from the reference point (i.e.
[0, δ] in the X-axis), where we only choose all possible pairs of points that can be formed
using the reference point and the comparison points that fall into the current vertical area
(see Fig. 1). This figure shows the points of the data set P marked with filled circles and
the points of the data set Q marked with empty circles. Their coordinates are shown in,
Tables 1 and 2. Note that the ticks on axes are put every two units of length for both
dimensions.

Table 1 The data set P with 16 points in X-sorted order

Strips Points {index, (x, y)}

PS0 {0,(0,4)} {1,(4,15)} {2,(10,21)} {3,(17,2)}
PS1 {4,(19,8)} {5,(20,21)} {6,(22,1)} {7,(23,17)}
PS2 {8,(23,20)} {9,(25,28)} {10,(26,23)} {11,(27,2)}
PS3 {12,(29,9)} {13,(30,10)} {14,(33,28)} {15,(37,18)}

580 Geoinformatica (2016) 20:571–628

Table 2 The data setQ with 12 points in X-sorted order

Strips Points {index, (x, y)}

QS0 {0,(2,20)} {1,(7,16)} {2,(11,4)} {3,(15,27)}
QS1 {4,(18.5,30)} {5,(20,12)} {6,(21,24)} {7,(24,6)}
QS2 {8,(30,9)} {9,(32,10)} {10,(36,25)} {11,(40,6)}

In the particular instance on Fig. 1, a reference point is shown, p = {1, (4, 15)}, and it
is marked by the horizontal arrow with solid line. All points of both sets on the left of p

are already processed as ref erence points. The points Q1, Q2 on the right of the reference
point according to the CPS (step 2) satisfy the requirement dx ≡ q.x − p.x < δ (step
3) and they are combined with p to create candidate pairs: the two empty circles located
within the gray area which has a width equal to threshold δ. The first point ofQ to the right
of p which has dx-distance from p larger than δ, q = {3, (15, 27)}, is marked by the arrow
with dashed line. Once the algorithm reaches this point and calculates the dx-distance it will
stop creating pairs with p and continues with the next iteration, setting as reference point
q = {1, (7, 16)}.

3.2 Improving the classic plane-sweep algorithm

The basic idea to reduce even more the CPU cost is to restrict as much as possible the
search space near the reference point in order to avoid unnecessary distance computations
(that involve square roots) which are the most expensive operations for DJQs. The proposed
approach makes use of the plane-sweep technique and restricting of the search space.

The Classic Plane-Sweep algorithm applies the distance function only over the sweeping
axis (X-axis) and for this reason some distances have to be computed even when the points
of the other data set are faraway from the reference, since those points are included in the

Fig. 1 Classic Plane-Sweep Algorithm using sliding vertical area, window and semi-circle

Geoinformatica (2016) 20:571–628 581

sliding vertical area with width δ. Here we will propose two improvements of the Clas-
sic Plane-Sweep algorithm over two data sets to reduce the number of Euclidean distance
computations on KCPQ algorithms.

1. An intuitive way to save distance computations is to bound the other axis (not only
the sweeping axis) by δ as is illustrated in Fig. 1. In this case, the search space is now
restricted to the closest points inside the window with width δ and a height 2 ∗ δ (i.e.
[0, δ] in the X-axis and [−δ, δ] in the Y-axis, from the reference point). Clearly, the
application of this technique can be viewed as a sliding window on the sweeping axis
with a width equal to δ (starting from the reference point) and height equal to 2∗δ. And
we only choose all possible pairs of points that can be formed using the reference point
and the comparison points that fall into the current window. For example in Fig. 1 it is
shown the point q = {2, (11, 4)} is outside this window and will not be paired with the
ref erence point p.

2. If we try to reduce even more the search space, we can only select those points inside
the semi-circle centered at the reference point with radius δ (remember that the equa-
tion of all points t = (t.x, t.y) ∈ E2 that fall completely inside the circle, centered
at the reference point ref erence = (ref erence.x, ref erence.y) ∈ P with radius δ

is circle(ref erence, t, δ) ≡ (ref erence.x − t.x)2 + (ref erence.y − t.y)2 < δ2).
See Algorithm 1 at lines 11 and 23. For this reason we call this variant Classic Circle
Plane-Sweep algorithm, CCPS for short. And the application of this new improve-
ment can be viewed as a sliding semi-circle with radius δ along the sweeping axis
and centered on the reference point, choosing only the comparison points that fall
inside that semi-circle. See in Algorithm 1 how this improvement works on two X-
sorted arrays of points PS.P ∈ P and QS.P ∈ Q, considering the sweeping
axis the X-axis. When a new pair of points (p, q) is chosen, we have to determine
whether it will be inserted in the MaxKHeap or not. If the MaxKHeap is not
full, we calculate the distance between (p, q) and insert (dist, p, q) unconditionally
(lines 6,7 or 18,19). If the MaxKHeap is full, we check the following condition
dx ≡ q.x − p.x ≥ δ. If it is true, the process will stop and the new reference point
must be defined next (lines 9,10 or 21,22). If not, we check the placement of q. If
q is inside the circle (p, δ) the pair is inserted into the heap. The insertion process
(lines 11-13 or 23-25) consists of (1) removing the pair with the maximum distance
(keydistof MaxKHeaproot ≡ δ), (2) adding the newPair and reorganizing the data
structure to restore the (binary) max-heap property based on dist and (3) updating the
value of δ with the new keydistof MaxKHeaproot . See in Fig. 1, the semi-circle, in
light grey color, centered at the reference point p. This point p will be paired only with
the point q = {1, (7, 16)}. As a conclusion of this improvement is that the smaller the
δ value the greater the power of discarding unnecessary comparison points to pair up
with the reference point for computing the DJQ.

The PS and QS structures contain the information needed for processing the P and
Q data sets in strips, respectively. PS = {f irst, start, end, P [0..n − 1]} and QS =
{f irst, start, end, P [0..m−1]}, where P [· · ·] is a sorted (according to the sweeping axis)
array of the maximum number of points per strip, that is, of n and m points of the P and
Q sets, respectively. We note that n and m values depend on the size of page which may be
different for the two sets. The array P [· · ·] may hold one or more pages of points read from
the secondary memory; f irst is the absolute (in relation to the respective data set) index
of the first point of this array (used in the algorithms of Section 5); start and end specify

582 Geoinformatica (2016) 20:571–628

the part of this array that forms the current strip of the respective data set on which a plane
sweep algorithm is applied.

In [15], we provide a proof of the correctness of the Classic Circle Plane-Sweep
algorithm for KCPQ (CCPS) algorithm (Algorithm 1) through the Theorem 1.

Theorem 1 (Correctness) Let PS.P[PS.start · · · PS.end] and QS.P[QS.start· · · QS.end]
be two arrays of points in E2, sorted in ascending order of X-coordinate values (i.e. X-axis
is the sweeping axis), the sweeping direction is from left to right, and MaxKHeap is an
initially empty binary max-heap storing K pairs of points, where K is a natural number
(K ∈ N, 0 < K ≤ |PS.P | × |QS.P |). The CCPS Algorithm outputs K closest pairs of
points from PS.P and QS.P correctly and without any repetition.

Moreover, as we know from [24], the plane-sweep algorithm for intersection of MBRs
from two sets R and S of MBRs can be performed in O(|R| + |S| + kX), where |R| and |S|
are the numbers of MBRs of both sets, and kX denotes the numbers of pairs of intersecting
intervals creating by projecting the MBRs of R and S onto the X-axis. Following the same
idea, CCPS can be performed in O(|PS.P | + |QS.P | + kSA), where kSA denotes the
number of candidate closest pairs generated by the reference points from PS.P and QS.P

on the sweeping axis (e.g. X-axis).

3.3 Extension to εdistance join query

The adaptation of the CCPS algorithm from KCPQs to εDJQs is not so difficult, and we
get the Classic Circle Plane-Sweep algorithm for εDJQ (εCCPS). If we have two sorted
sets of points, we only select the pairs of points in the range of distances [ε1, ε2] for the
final result (lines 11 and 23: if (dist ≥ ε1 and dist ≤ ε2)). This means the result of this
query must not be ordered and the MaxKHeap is unnecessary (lines 5, 6, 7 and 8; and
lines 17, 18, 19, and 20), since in the case of εDJQ we do not know beforehand the exact

Geoinformatica (2016) 20:571–628 583

number of pairs of points that belong to the result. And now, the distance threshold will
be ε2 instead of key dist of MaxKHeap root (line 9: if (t.x − p.x ≥ ε2), line 21: if
(t.x − q.x ≥ ε2), line 11: if ((p.x − t.x)2 + (p.y − t.y)2 < (ε2)

2) and line 23: if ((t.x −
q.x)2 + (t.y − q.y)2 < (ε2)

2)). Therefore, the data structure that holds the result set will be
a file of records (resultFile), with three fields (dist, p, q). The modifications of this storing
are in lines 13 and 25, where we have to replace them by resultF ile.write(newPair). To
accelerate storing on the resultFile we maintain a buffer on main memory (BresultF ile), and
when it is full, its content is flushed to disk. If the distance threshold for the query (ε2) is
large enough, the compact representation of the join result can be applied [45]. It consists
of reporting groups of nearby pairs of points instead of every join link separately. This
phenomenon is known as output explosion [45] and it can appear when data density of the
sets of points is locally very large compared to the range of distances (distance threshold,
ε2), and the output of the distance-based joins becomes unwieldy. In fact, the output can
become quadratic rather than linear in the total number of data points. Finally, the proof of
the correctness of εCCPS algorithm is similar to the proof of Theorem 1 for the CCPS

algorithm (KCPQ).

4 Reverse run plane-sweep algorithm for distance join queries

An interesting improvement of the Classic Plane-Sweep algorithm is the Reverse Run
Plane-Sweep algorithm, RRPS for short [1]. The main characteristics of this new algo-
rithm are the use of the concept of run and, as long as the reference points are considered in
an order (e.g. ascending order), processing of the comparison points in reverse order (e.g.
descending order) until a left limit is reached, in order to generate candidate pairs for the
required result.

4.1 Reverse run plane-sweep algorithm for KCPQs

The Reverse Run Plane-Sweep (RRPS) algorithm [1] is based on two concepts, illustrated
in Fig. 2. First, every point that is used as a reference point forms a run with other subse-
quent points of the same set. A run is a continuous sequence of points of the same set that
doesn’t contain any point from the other set. For each set, we keep a left limit, which is
updated (moved to the right) every time that the algorithm concludes that it is only neces-
sary to compare with points of this set that reside on the right of this limit. Each point of the
active run (reference point) is compared with each point of the other set (current compari-
son point) that is on the left of the first point of the active run, until the left limit of the other
set is reached. Second, the reference points (and their runs) are processed in ascending X-
order (the sets are X-sorted before the application of the RRPS algorithm). Each point of
the active run is compared with the points of the other set (current comparison points) in
the opposite or reverse order (descending X-order). Figure 2 depicts a particular instance
of the algorithm. We see the data sets P,Q with the points of Tables 1 and 2. The current
reference point is q = {6, (21, 24)}, and it is marked by an arrow with solid line. All points
of both sets on the left of q have already been processed as ref erence points. The points
P5, P4 and P3 on the left of the reference point according to the RRPS satisfy the require-
ment dx ≡ q.x −p.x < δ and they are combined with q to create candidate pairs: the three
full circles located within the gray area which has a width equal to threshold δ. The first
point of P to the left of q which has dx-distance from q larger than δ, p = {2, (10, 21)}, is
marked by the arrow with dashed line. Once the algorithm reaches this point and calculates

584 Geoinformatica (2016) 20:571–628

Fig. 2 Reverse Run Plane-Sweep algorithm using sliding strip, window and semi-circle

the dx-distance it will stop creating pairs with q also it will update the lef tlimit of the data
set P with the point p = {2, (10, 21)}. The algorithm will continue with the next iteration,
setting as reference point p = {6, (22, 21)}.

The Reverse Run Circle Plane-Sweep algorithm for the KCPQ (RCPS) is depicted in
Algorithm 2: this is the RRPS algorithm with the sliding semi-circle improvement. Again,
a binary max-heap (keyed by pair distances, dist), MaxKHeap, that keeps the K closest
point pairs found so far is used. For each point of the active run (reference point) being
compared with a point of the other set (current comparison point) there are 2 cases.

Case 1: If the pair of points (reference point, comparison point) is inside the circle cen-
tered at the reference point with radius δ, then this pair with its distance dist is inserted
in the MaxKHeap (rule 1). The insertion process (lines 23-25 or 39-41) consists of
(1) removing the pair with the maximum distance (keydistof MaxKHeaproot ≡ δ),
(2) adding the newPair and reorganizing the data structure to restore the (binary)
max-heap property based on dist and (3) updating the value of δ with the new
keydistof MaxKHeaproot . In case the heap is not full (it contains less than K pairs),
the pair will be inserted in the heap, regardless of the pair distance, dist .

Case 2: If the distance between this pair of points in the sweeping axis (e.g. X-axis) dx

is larger than or equal to δ, then there is no need to calculate the distance dist of the pair
(rule 2). The left limit of the comparison set must be updated at the point being compared
(a comparison with a previous point of the the updated left limit will have X-distance
larger than dx and is unnecessary).

Moreover, if the rightmost current comparison point is equal to the left limit of its set, then
all the points of the active run will have larger dx from all the current comparison points
of the other set and the relevant pairs need not participate in calculations, i.e. the algorithm
advances to the start of the next run (rule 3).

Geoinformatica (2016) 20:571–628 585

The RCPS algorithm (Algorithm 2) is an enhanced version of Algorithm 1 of [1]. Since
the present paper focuses on disk resident data that are gradually transferred and processed
in RAM, the RCPS algorithm is applied on strips (sorted subarrays) of data and not on
the whole arrays of data, like Algorithm 1 of [1]. In Algorithm 2, p, q are pointers to the
current points, and lef tp and lef tq hold the left limits of the two strips, respectively (in the
algorithms of Section 5, glef tp and glef tq are analogous variables that hold the left limits
of the whole two data sets, respectively); stop run stores the end-limit of the X-coordinates
of the current run of the PS, or QS strip. run setP is set to false when p.x < q.x (then
the current active run will get ref erence points from the QS.P , starting from q, and
the comparison points will come from the PS.P , starting from the previous point of p).
Analogously, run setP is set to true when q.x ≤ p.x (then the current active run will get
ref erence points from the PS.P , starting from p, and the comparison points will come
from the QS.P , starting from the previous point of q). Note that, since active runs always
alternate between the data sets, in Algorithm 2, there is no need for an Else block to follow
the If block of lines 11-26 (the execution of code in lines 11-26 should be followed by
execution of code in lines 27-42).

In [15], we provide a proof of the correctness of the Reverse Run Circle Plane-Sweep
algorithm for KCPQ (RCPS) algorithm (Algorithm 2) through the Theorem 2.

Theorem 2 (Correctness) Let PS.P[PS.start · · · PS.end] and QS.P[QS.start· · · QS.end]
be two arrays of points in E2, sorted in ascending order of X-coordinate values (i.e. X-axis
is the sweeping axis), the sweeping direction is from left to right, and MaxKHeap is an
initially empty binary max-heap storing K pairs of points, where K is a natural number

586 Geoinformatica (2016) 20:571–628

(K ∈ N, 0 < K ≤ |PS.P | × |QS.P |). The RCPS Algorithm outputs K closest pairs of
points from PS.P and QS.P correctly and without any repetition.

In [15], an example illustrating the operation of the RCPS algorithm is included (not
included here, to limit the size of the present article). Note that, the CCPS algorithm always
processes pairs from left to right, even when the distance of the reference point to its closest
point of the other array is large (this is likely, since, runs of the two arrays can be in general
interleaved). On the contrary, RCPS processes pairs of points in oppositeX-orders, starting
from pairs consisting of points that are the closest possible, avoiding further processing of
pairs that is guaranteed not to be part of the result and substituting distance calculations
by simpler dx calculations, when possible. This way, δ is expected to be updated more
fastly and the processing cost of RCPS to be lower. This is verified in the specific example
appearing in [15].

4.2 Extension to εdistance join query

Like adapting CCPS to εDJQs (εCCPS), the adaptation of the RCPS algorithm from
KCPQs to εDJQs (εRCPS) is quite straightforward. If we have two sorted arrays of points,
we only select the pairs of points in the range of distances [ε1, ε2] for the final result
(lines 23 and 39: if (dist ≥ ε1 and dist ≤ ε2)). Since, the result of this query need
not be ordered, MaxKHeap is unnecessary (lines 16, 17, 18 and 19; and lines 32, 33,
34, and 35 can be omitted). Now the distance threshold will be ε2 instead of key dist of
MaxKHeap root (lines 20, 36, 23 and 39). Like εCCPS, the data structure that holds the
result set will be a file of records (resultFile), with three fields (dist, PS.P [i], QS.P [j])
and lines 25 and 41 should be replaced by resultF ile.write(newPair). Finally, the proof
of the correctness of εRCPS algorithm is similar to the proof of Theorem 2 for the RCPS

algorithm.

5 External sweeping-based distance join algorithms

Firstly, we present in this section four new algorithms to solve the problem of finding the
KCPQ when neither of the inputs are indexed, following similar ideas proposed in [13, 14]
for spatial intersection join. We combine plane-sweep and space partitioning to join the
data sets and report the required result. These new algorithms extend the CCPS and RRPS
algorithms to solve the KCPQ where the two set of points are stored on separate data files
on disk. Moreover, we will also extend them to solve the εDistance Join Query (εDJQ).

5.1 The external sweeping-based KCPQ algorithms

In general, the External Sweeping-Based KCPQ algorithms sort the data files containing
the sets of points, then perform the Plane-Sweep-Based KCPQ algorithm on the two sorted
disk-resident data files and, finally, return the K closest pairs of points in maxKHeap data
structure.

Sorting each data file by the values of the sweeping axis can be done with the classical
external sort/merge algorithm [46]. For instance, to sort P on the X-axis, first P is parti-
tioned in �P/B� runs (where B is the size of a buffer in main memory); each run is sorted
in main memory; and finally the runs are recursively merged in larger runs, obtaining the
sorted file P .

Geoinformatica (2016) 20:571–628 587

The External Sweeping-Based KCPQ algorithms start with the two sorted data files
(P and Q) and then, as in the Scalable Sweeping-Based Spatial Join [13, 14], divide the
sweeping axis on a set of strips. As is defined Section 3.2, we maintain two strips, PS

and QS, one for each file, in main memory, for applying the Plane-Sweep-Based KCPQ
algorithm (CCPS or RRPS) and return the K closest pairs of points from P and Q on
the maxKHeap data structure. While strips are filled with data reading the pre-defined
number of pages of points from secondary memory into PS.P and QS.P arrays, the Exter-
nal Sweeping-Based KCPQ algorithms call repetitively CCPS / RCPS with a possibly non
empty heap and with, in general, different PS.start / PS.end andQS.start / QS.end limits and
different PS.P and QS.P arrays. At the end of all such calls, the heap will host K closest
pairs formed from the two data sets.

Once the data sets are sorted, one can think about: (i) partitioning policies on the sweep-
ing axis and (ii) the appropriate number of strips (numOf Strips). We could consider two
basic strategies for partitioning the sweeping axis:

1. Uniform Filling. A strip hosts a number of points that fit in one or more disk-pages.
Using the disk-page size, we calculate the number of points that fit in each strip and
divide the data of each set into equally populated numOfStrips (= data file size / strip
size) strips (with a possibly underfilled last strip). Thus, numOfStrips is different for
each set.

2. Uniform Splitting. We partition the sweeping axis to a number of strips (or intervals)
covering, every time, the same interval on the sweeping axis for both data sets. To
accomplish this, we use a part of main memory as a buffer for PS.P and QS.P arrays
(equal to a pre-defined number of disk pages for each set) and load it with points.
Next, a synchronization process takes place. We compare the X coordinates (w.l.o.g.
we consider that X is the sweeping axis) of the last points of the two arrays of the sets.
The smallest coordinate is set as the right border of the current two strips and the points
of the other set (not the one where the point with the smallest X coordinate belongs)
that are located after the right border (have greater value of X coordinate) are left to be
examined and processed in the future. Thus, the strip for each set contains the points
of this set up to the right border. In this way, after the first iteration, the data examined
are located in an X interval with specified limits. Subsequently, we process the points
residing in the two strips. Next, we load from secondary to main memory data points
from any of the sets which does not have any points left unprocessed and we repeat the
synchronization between the points of the two sets that are located in main memory. Of
course, null strips could be created in some cases, but only for one of the two data sets
at every iteration. This situation is not problematic, however. It helps prune pairs that
will not be part of the result.

As we can see in Figs. 3 and 7, for each set, the search space is partitioned to non-
overlapping vertical strips, whatever the partition policy. We assign each point of P and
Q to one (and only one) strip. This is a very important condition for the correctness of the
algorithms, because, in this way, the same pair cannot be generated twice.

5.2 Algorithms using uniform filling

5.2.1 The FCCPS algorithm

Following the Uniform Filling partitioning policy, the two sorted data sets P and Q are
partitioned in strips equally full. W.l.o.g let’s consider strips and pages that have equal sizes,

588 Geoinformatica (2016) 20:571–628

as we can see in Fig. 3. The first sorted set (P) is partitioned in four strips (PS0, PS1, PS2,
and PS3). The second sorted set (Q) is partitioned in three strips (QS0, QS1, and QS2).

The FCCPS algorithm, see Algorithm 3, requires every time two strips, one from each
data set, to be present in the main memory. Starting the first iteration of the algorithm we
load one page from each set, P and Q. Since every strip corresponds to a page, we have
the two strips PS0 and QS0 in main memory. These two strips are the current strips. One of
the current strips will be set as the ref erence strip, that is, the strip with the leftmost f irst

point; and the other one as a comparison strip.
The process is starting by loading the first two strips PS0 and QS0. In the first step we

set the leftmost strip (PS0) as the ref erence strip, the other strip (QS0) as a comparison

strip (as it is shown in Fig. 3; lines 6 and 20 of Algorithm 3). Next we examine the K closest
pairs in these strips by using the ClassicP laneSweep (CCPS) algorithm at lines 8 and
22, during the first iteration of while-loop at lines 7 and 21, respectively, of Algorithm 3.

In the second step we must examine the points near the border (i.e. the coordinate on the
sweeping axis of the last point of the current comparison strip) with the next comparison

strip. If maxKHeap is not full, all the points of the ref erence strip (PS0) must be joined
with the next comparison strip (QS1). If maxKHeap is full, we must check the points of
the ref erence strip which have dx distance from the border smaller than the key dist of
maxKHeap root. In Fig. 3 we can see the border after the join between PS0 and QS0,
and the points of the ref erence strip (the two last points) which are near the border in
the dark gray area. Then we load in main memory the next comparison strip (QS1) to
continue searching the K closest pairs between the PS0 and QS1. After the join between
the ref erence strip (PS0) and the comparison strip (QS1) we update the border with
a new value, because of a new last point of the current comparison strip. The process
will continue by loading a new comparison strip (QS2) as long as we have strips in the
comparison set (Q) and the maxKHeap is not full or there is at least one point of the

Fig. 3 Applying the FCCPS algorithm on two data sets partitioned in strips equally full (4 points/strip)

Geoinformatica (2016) 20:571–628 589

ref erence strip near the border . This step is implemented by lines 7-17 and 21-31 in the
Algorithm 3.

In the third step, we will load in main memory the next page which corresponds to the
next strip PS1 of the ref erence set P as one of the current strips. The pair of current strips
in the new iteration will consist of PS1 and QS0 and the process will be restarted (from the
first step) by examining which of the two current strips of the sets is the left most one. This
step is implemented at lines 18 and 32 in the Algorithm 3.

We must also highlight that in Algorithm 3, T S is a temporary strip which sometimes
is loaded with points of the P set and other times of the Q set. We use this strip to
read the sequence of the next (for the CCPS algorithm) or the previous (for the RRPS

algorithm) points of the current strip which must give us comparison points. Moreover,
the function check near border(border, ref erence strip) discovers the first point of the
ref erence strip which has dx smaller than δ from the (right) border , for a more detailed
algorithmic presentation see [15].

5.2.2 The FRCPS algorithm

For the FRCPS algorithm, see Algorithm 4, we scan the strips in a different order to the
previous algorithm (FCCPS). The ref erence strips are scanned in the same order in which
the points of the data sets are sorted (i.e. in ascending order in X-axis), but the comparison

strips are scanned in the opposite order (i.e. in descending order in X-axis). In this way,
we continue to apply the basic concept of the RRPS algorithm. If A is a ref erence point
from the one data set and B, C (with B.x > C.x) are comparison points from the other
data set and moreover: (i) A.x > B.x, that is the reference points are always on the right
of the comparison points (ii) The points B and C are adjacent to the X-axis (no other item
of the same set lies between them), then we first calculate the distance of the pair (A,B)

590 Geoinformatica (2016) 20:571–628

and next the distance of the pair (A, C). Unlike the previous algorithm (FCCSP), now we
have every time in main memory four strips, two from each data set. The leftmost strip of
each data set will be defined as current and the other as next (of the current strip). So we
have two pairs of strips, the current pair and the next pair.

As it shown in Fig. 4, during the execution of the algorithm, we can have as current pair
the strips PS1 and QS1 and next pair the strips PS2 and QS2 (denoted by nPS and nQS,
respectively, in Algorithm 4).

In the first step of this iteration, we join the strips of the current pair (PS1 and QS1).
From the current pair, we will set as ref erence strip, the strip which has the rightmost
f irst point (PS1) and the other strip will be set as comparison strip (QS1). This step is
implemented by lines 13-18 and 25-30 of Algorithm 4.

In the second step, while the left limit is outside of the comparison strip, we will load
the previous strip (QS0) of the current comparison strip and we make the join between
the strips PS1 and QS0. This loop will continue until the left limit will be reached inside
the comparison strip. This step is implemented by lines 19-23 and 31-35 of Algorithm 4.

The third step is to prepare the new pair of the current strips. One of the strips of the
current pair will be replaced by one strip of the next pair. The leftmost of the strips of the
next pair will moved from the next pair to the current pair, and this strip will be replaced
by a new strip which will be loaded from secondary memory. This step is implemented by
lines 36-47 of the Algorithm 4.

We must also highlight that in Algorithm 4, glef tp and glef tq are variables that hold
global left limits for the sorted sets P and Q. lef tlim is local variable that saves the old

Fig. 4 Applying the FRCPS algorithm on two data sets partitioned in strips equally full (4 points/strip)

Geoinformatica (2016) 20:571–628 591

values of glef tp and glef tq (previous strips). nPS and nQS are the next strips of (the
current strips) PS and QS. For a more detailed presentation of Algorithm 4, see [15].

Now, we are going to show a step-by-step example of the application of the FRCPS

algorithm to find the K(=3) closest pair of the data sets P and Q having 16 and 12 points,
respectively. We also consider that the maximum number of points per strip is 4 and every
page from disk can host the same number of points (4). The data sets and the separation into
strips are shown in Tables 1 and 2 and in Fig. 3.

The FRCPS algorithm firstly reads the strips: PS0{f irst = 0, start = 0, end =
3, P [0,1,2,3]}, QS0{f irst = 0, start = 0, end = 3, P [0,1,2,3]} as current strips and
PS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]}, QS1{f irst = 4, start = 0, end =
3, P [4,5,6,7]} as next strips (see Fig. 5). Both left limits (lef tp and lef tq) are initialized
to non existing point on the left of two sets: lef tp = lefpq = {−1, (−1, 0)}.

The function using the algorithm RCPS executes the K(=3)CPQ for the strips
PS0 and QS0. Finishing this join the maxKHeap has the pairs {(dist (P2, Q1) =
5.831), (dist (P1,Q0) = 5.385), (dist (P1,Q1) = 3.162)}, where dist (Pi,Qj) is the dis-
tance dist between the points (P [i] and Q[j]) from sets P andQ, having absolute indexes
in their sets i and j respectively (regardless of the strip in which they are located), and
values for left limits lef tp = P1, lef tq = Q2.

592 Geoinformatica (2016) 20:571–628

Fig. 5 Join of strips PS0 and QS0 using the FRCPS algorithm

In this first iteration there are no strips on the left of the current strips, so we skip the
second step and we are going to execute the third step of the algorithm. In order to prepare
the next cycle, the algorithm compares the X-coordinates of the f irst points of the next

strips PS1.P [4].x = 19 and QS1.P [4].x = 18.5. Since the point QS1.P [4] is on the left,
the strip QS2 is read.

For the second iteration, we have that PS0{f irst = 0, start = 2, end =
3, P [0, 1, 2,3]}, QS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]} are the current strips,
and PS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]}, QS2{f irst = 8, start = 0, end =
3, P [8,9,10,11]} are the next strips.

The RCPS executes the K(=3)CPQ for the current strips. Note that the current strip
PS0 is starting from the point PS0.P [2] because of the lef tp = P1 value from the pre-
vious iteration. Exiting from RCPS function, no new pair is inserted into maxKHeap,
but the left limits are updated to lef tp = P3, lef tq = Q2. In order to prepare the next
cycle, the algorithm compares the f irst points of the next strips, PS1.P [4].x = 19 and
QS2.P [8].x = 30. Since the point PS1.P [4] is on the left, the strip PS2 is read.

For the third iteration, we have that PS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]},
QS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]} are the current strips, and PS2{f irst =
8, start = 0, end = 3, P [8,9,10,11]}, QS2{f irst = 8, start = 0, end = 3, P [8,9,10,11]}
are the next strips (see Fig. 6).

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS func-
tion, the maxKHeap has now the pairs {(dist (P4, Q5) = 4.123), (dist (P5, Q6) =
3.162), (dist (P1,Q1) = 3.162)} and lef tp = P4, lef tq = Q4. Since the dx distance
between points PS1.P [4] and QS1.P [4] is dx(P4,Q4) = 19 − 18.5 = 0.5 < 4.123, the
algorithm continues checking the points near the left border. The RCPS is called to join the
strips PS1 and QS0. No new pair is inserted into maxKHeap. Since the point PS2.P [8] is
on the left of the point QS2.P [8], the strip PS3 is read.

Geoinformatica (2016) 20:571–628 593

Fig. 6 Join of strips PS1 and QS1 using the FRCPS algorithm

For the forth iteration, we have that PS2{f irst = 8, start = 0, end = 3, P [8,9,10,11]},
QS1{f irst = 4, start = 0, end = 3, P [4,5,6,7]} are the current strips, and PS3{f irst =
12, start = 0, end = 3, P [12,13,14,15]}, QS2{f irst = 8, start = 0, end =
3, P [8,9,10,11]} are the next strips.

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function,
the maxKHeap has no changes, but the left limit of the Q set is updated to lef tq = Q6.
Since the dx distance between the (f irst) points PS2.P8 and QS1.P4 is dx(P8,Q4) =
23 − 18.5 = 4.5 > 4.123, the algorithm has no need to continues checking the points near
the left border.

Now, the data set P has no next strip (it is finished) and, then the status for the fifth
cycle is as follow: PS2{f irst = 12, start = 0, end = 3, P [12,13,14,15]}, QS1{f irst =
4, start = 3, end = 3, P [4, 5, 6, 7]} are the current strips and only QS2{f irst =
8, start = 0, end = 3, P [8,9,10,11]} is the next strip.

The RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS function,
the maxKHeap has no changes, but the left limit of the Q set is updated to lef tq = Q7.
The data set P has no next strip (it is finished), then the status for the sixth cycle is as
follows: PS2{f irst = 12, start = 0, end = 3, P [12,13,14,15]}, QS2{f irst = 8, start =
0, end = 3, P [8,9,10,11]} are the current strips and there is not any next strip.

Finally, the RCPS executes the K(=3)CPQ for the current strips. Exiting from RCPS

function, the maxKHeap has new pairs {(dist (P12, Q8) = 1.000), (dist (P13,Q8) =
1.000), (dist (P13,Q9) = 2.000)} and the left limits are updated to lef tp = P15 and
lef tq = Q9. Since the dx distance between points PS3.P12 and QS2.P8 is dx(P12, Q8) =
|29 − 30| = 1 < 2.0, the algorithm will continue by checking the points near the left

594 Geoinformatica (2016) 20:571–628

border between the strips PS2 and QS2. But, no new pair is found and the algorithm is
finished.

As a summary, the pages which are read from disk were 9, the pairs involved in cal-
culations were 57, the dx calculations were 89 and the complete dist-calculations were
10.

5.3 Algorithms using uniform splitting

5.3.1 The SCCPS algorithm

Following the Uniform Splitting partitioning policy, the first sorted set (P) is partitioned in
five strips (PS0, PS1, PS2, PS3 and PS4). The second sorted set (Q) is partitioned in seven
strips (QS0, QS1, QS2, QS3, QS4 and QS5).

The SCCPS algorithm, see Algorithm 5, requires two strips, one of each data set, to
be present in main memory. We define the width of a strip as the distance between the
leftmost (f irst) and rightmost (last) points of the strip on the sweeping axis. After loading
a buffer of disk pages from secondary memory with points from the two data sets into strip
arrays P , we have to execute a synchronization process (through sync queues function).
This process determines the points in the two arrays that form the respective two strips.
Note that every point between the leftmost and rightmost points of both strips has been
read from secondary memory. The coordinate of the rightmost point of the strips is defined
as border .

We examine the coordinates on the sweeping axis (i.e. X-axis) of the last points of the
current arrays PS.P and QS.P . As it is shown in Fig. 7 the strip PS0 has the 77array of
points with indexes P = [0, 1, 2, 3] which are depicted with filled circles. The strip QS0
has the array of points with indexes P = [0, 1, 2, 3] which are depicted with empty circles.
The last point QS0.P [3] is on the left of the last point PS0.P [3] (QS0.P [QS0.end].x <

PS0.P [PS0.end]). Since, it is not known if the f irst point of the Q set next to the last

point of the QS0 strip (the point QS1.P [4]) is on the left or on the right of the last point of
the current PS0 page, we set as right border the coordinate on the sweeping axis of the
last point of the QS page (QS0.P [3].x). In this way, at least one strip (QS0) will have the
maximum number of points per strip while the other strip (PS0) will have points from zero
to the maximum number of points per strip (as we can see in Fig. 7 the PS0 strip has three
points).

The process starts loading pages of points into PS0.P and QS0.P . After the
synchronization process we have two strips and the value of the border = border1. If both
strips have some points (are not empty) we examine the K closest pairs of points inside
these strips by using the Classic Plane Sweep (CCPS). This first step is implemented by
lines 5-6 of Algorithm 5.

The second step is to examine in any not empty strip, first PS and next QS the points
near the border . If themaxKHeap is full only the points that reside near the border, having
dx-distance from the border smaller than the key dist of maxKHeap root, will be selected
for joins. If the maxKHeap is not full all the points of the current strips will be eligible
for joins. First, we must join the points of the PS strip near the border with the points of
the QS strip that have not been joined with the points of the PS strip in the previous first
step. Then we must update the value of the border with the coordinate of the last point
of the QS0 strip, find the eligible points of the PS0 strip taking into account the new value

Geoinformatica (2016) 20:571–628 595

Fig. 7 Applying the SCCPS algorithm on two data sets partitioned in strips of variable width

of the border. If there are some points left, we must continue by loading the next page of
the Q set (QS1). The process will continue as long as we have a strip in the comparison

set (Q) and there is at least one point of the ref erence strip (PS0) near the current value
of the border . This second step will be executed setting as ref erence strip the QS0 and
comparison strips the rest of the points of PS0, PS1, · · · . This step is implemented by
lines 7-39 of Algorithm 5.

The third step is to prepare the next pair of strips (PS1 and QS1) by loading pages of
points from secondary memory into arrays P , synchronizing them and continuing from
the first step as long as we have points for both strips. This step is implemented by lines
40-44 of Algorithm 5.

We must also highlight that in Algorithm 5, the function sync queues(PS,QS) finds
which of the last points of the two strips is the leftmost one. Then it sets the value of the
right border equal to the X-coordinate of this point. Finally, it returns the value of the right
border. border is a variable that holds the right border of the current strips. cur border is
a local variable of the if -structure in lines 7-23 that holds the updated value of the current
border of the current comparison strip. For the other if -structure in lines 24-39 the variable
border holds the updated value of the current border. For a more detailed presentation of
Algorithm 5, see [15].

596 Geoinformatica (2016) 20:571–628

5.3.2 The SRCPS algorithm

The SRCPS algorithm, see Algorithm 6, requires two strips, one of each data set, to be
present in main memory. Before the main process of this algorithm and for the leftmost set
we reach either the first strip which has overlapwith the first strip of the other set, or the last
strip (which has no overlap with the first strip of the other set); lines 5-12 of Algorithm 6.

The first step is to synchronize the current strips (if both are not empty) and afterwards
the RRPS algorithm is called to join the points between them. This step is implemented by
lines 14-15 and 16-19 of Algorithm 6.

The second step consists of two parts. In the first part, we examine three conditions: (1)
if the strip of the first set P has at least one point in the area on left of the right border
(see Section 5.3.1), (2) if the current strip of the other set Q has points on the left of its
starting point (in the same strip or in previous strips), and (3) if the maxKHeap is not
full or if the first point of the PSi strip has a distance on the sweeping axis (dx) from the
left border (the coordinate of the last point of the previous strip of QSj) less than the key
dist of maxKHeap root (line 16 of Algorithm 6). If all conditions are true then we call the
subroutine srcps on border (Algorithm is presented in [15]). In this subroutine we join the
points of the strip PS and all points of the setQ which are on the left of the starting point of
the current QS strip. This process continues while the maxKHeap is not full or the points
have dx distance from the left border smaller than the key dist of maxKHeap root. For each
set, we keep a left limit (lef tp, lef tq), which is updated (moved to the right) every time
that the algorithm concludes that it is only necessary to compare with points of this set that
reside on the right of this limit. In Fig. 8 we can see the dx distance of the first point of the

Geoinformatica (2016) 20:571–628 597

PS1 strip from the lborderq which is smaller than the key dist of maxKHeap root. In the
second part, we swap the roles between PS and QS and we execute the same process as in
the first part. This step is implemented by lines 24-27 of Algorithm 6.

The third step is to prepare the next iteration from the beginning by updating the values of
the borders and loading the next of the current strips of both sets. This step is implemented
by lines 30-47 of Algorithm 6. We must also highlight that in Algorithm 6, lborderp and
lborderq are variables that store the current left borders of the sorted sets P and Q. For a
more detailed presentation of Algorithm 6, see [15].

Next, we are going to show a step-by-step example for the SRCPS algorithm, using
the same input data sets as in the previous example (for FRCPS). The query is also the
same, that is, we are looking for the K(=3) closest pairs in the data sets P and Q. As in
the previous example,we define that disk-page and array P in the strip have the same size,
enough to fit four points. The data sets and the separation into strips, having variable width,
are shown in the Fig. 8.

The algorithm SRCPS firstly reads the pages with the points [0,1,2,3] of the P set
and P[0,1,2,3] of the Q set. After the synchronization process the current strips are
PS0{f irst = 0, start = 0, end = 2, P [0,1,2, 3]} and QS0{f irst = 0, start =
0, end = 3, P [0,1,2,3]} (see Fig. 9). Both left limits (lef tp and lef tq) are initialized to
non existing point on the left of two sets: lef tp = lefpq = {−1, (−1, 0)}. In the first

598 Geoinformatica (2016) 20:571–628

Fig. 8 Applying the SRCPS algorithm on two data sets partitioned in strips of variable width

step, the algorithm RCPS executes the K(=3)CPQ for the strips PS0 and QS0. Finish-
ing this task the maxKHeap has the pairs {(dist (P2,Q1) = 5.831), (dist (P1,Q0) =
5.385), (dist (P1,Q1) = 3.162)} and the values for left limits are lef tp = P1, lef tq = Q0.
Since there are no strips on the left of the current strips, we must skip the second step and
continue with the third one, in which the algorithm must prepare the next iteration. There-
fore, the array PS0.P will remain in main memory. Setting the values of the indexes start

and end to the value 3, PS1{f irst = 0, start = 3, end = 3, P [0, 1, 2, 3]} will be created
and the next page, containing points [4,5,6,7], will be read from disk into array QS1.P .

For the second iteration and after the synchronization process, the current strips are
PS1{f irst = 0, start = 3, end = 3, P [0, 1, 2, 3]} and QS1{f irst = 4, start =
0, end = −1, P [4, 5, 6, 7]} (see Fig. 10). The value of QS1.end is smaller than QS1.start

and the first step (join between current strips PS1 and QS1) will be omitted (line 16 of the
Algorithm 6). The current strip PS1 has the point PS1.P [3] which is at the right border
(PS1.start = PS1.end), the starting point of the current strip QS1 is not the first point of
the setQ. The task will continue with the second step by comparing the dx distance between
the starting point of the current PS1 strip (PS1.P [3].x = 17) and the value of lborderq

which is equal to the value of the last point of the previous strip QS0 (QS0.P [3].x = 15).
Thus it is possible to find closest pairs comparing the point PS1.P [3] with the points of the
strip QS0. The second part of the second step will not be executed since the current strip
QS1 is empty (QS1.start > QS1.end). Finishing this step, the maxKHeap has not been
updated with new pairs, but the left limit lef tq = Q2. In the third step, the algorithm must
prepare the current strips for the next iteration. Therefore, the page of P points [4,5,6,7] is
read and the array QS1.P is kept in main memory for the next iteration.

Geoinformatica (2016) 20:571–628 599

Fig. 9 Join of strips PS0 and QS0 using the SRCPS algorithm

For the third iteration and after the synchronization process, the current strips are
PS2{f irst = 4, start = 0, end = 3, P [4,5,6,7]} and QS1{f irst = 4, start =
0, end = 2, P [4,5,6, 7]} (see Fig. 10). In the first step, the RCPS executes the K(=3)CPQ
for the current strips. Exiting from the RCPS function, maxKHeap has new values
{(dist (P4,Q5) = 4.123), (dist (P5,Q6) = 3.162), (dist (P1,Q1) = 3.162)}, and the left
limits have values lef tp = P1, lef tq = Q4. The current strip PS2 has points (all points)
at, or on the left of, the right border, the starting point of the current strip QS1 is not the
first point of the setQ and the difference PS2.P [4].x − lborderq = 19− 15 = 4 < 4.123.
Therefore, the second step will continue by checking the strips PS2 and QS0 (previous strip
of the current strip QS1). The current strip QS1 has (three) points at, or on the left of, the
right border, the starting point of the current strip PS2 is not the first point of the set P and
the difference QS1.P [4].x − lborderp = 18.5 − 17 = 1.5 < 4.123. Therefore, the sec-
ond step will continue by checking the strips QS1 and PS1 (previous strip of the current

strip PS2). The maxKHeap is not updated with new pairs, but the left limits of the sets
are updated to the new values lef tp = P2 and lef tq = Q4. In the third step, the algo-
rithm must prepare the current strips for the next iteration. Therefore, the page of P points
[8,9,10,11] is read and the array QS1.P remains in main memory for next iteration.

For the forth iteration and after the synchronization process, the current strips are
PS3{f irst = 8, start = 0, end = 0, P [8, 9, 10, 11]} and QS2{f irst = 4, start =
3, end = 3, P [4, 5, 6, 7]}. In the first step, the RCPS executes the K(=3)CPQ for the
current strips. Exiting from the RCPS function, the maxKHeap has not been updated
with new values, and the left limits keep the same values lef tp = P2, lef tq = Q4.
The current strip PS3 has (one) point at or on the left of the right border, the start-
ing point of the current strip QS2 is not the first point of the set Q and the difference
PS3.P [8].x − lborderq = 23− 21 = 2 < 4.123. Therefore, the second step will continue
by checking the strips PS3 and QS1 (previous points of the starting point of the current

600 Geoinformatica (2016) 20:571–628

Fig. 10 Join of strips PS1 and QS1 using the SRCPS algorithm

strip QS2). The current strip QS2 has (one) point at, or on the left of, the right border, the
starting point of the current strip PS3 is not the first point of the set P and the difference
QS2.P [7].x − lborderp = 24 − 23 = 2 < 4.123. Therefore, the second step will con-
tinue by checking the strips QS2 and PS2 (previous strip of the current strip PS3). The
maxKHeap is not updated with new pairs, but the left limits of the sets are updated to the
new value lef tp = P4. In the third step, the algorithm must prepare the current strips for
the next iteration. Therefore, the array PS2.P is kept and the page of Q points [8,9,10,11]
is read from the disk for next iteration.

For the fifth iteration and after the synchronization process, the current strips are
PS4{f irst = 8, start = 1, end = 3, P [8, 9,10,11]} and QS3{f irst = 8, start =
0, end = −1, P [8, 9, 10, 11]}. The value of index QS3.end is smaller than the index
QS3.start and the first step (join between current strips PS4 and QS3) will be omitted
(lines 16-19 of the Algorithm 6). The current strip PS4 has three points at, or on the left
of, the right border, the starting point of the current strip QS3 is not the first point of the
set Q and the difference PS4.P [9].x − lborderq = 25 − 24 = 1 < 4.123. Therefore,
the second step will continue by checking the strips PS4 and QS2 (previous points of the
starting point of the current strip QS3). The second part of the second step will not be
executed since the current strip QS3 has no points at, or on the left of, the right border
(QS3.end < QS3.start). The maxKHeap is not updated with new pairs, but the left limit
of the setQ updated to the new value lef tq = Q6. In the third step, the algorithm must pre-
pare the current strips for the next iteration. Therefore, the page of P points [12,13,14,15]
is read and the array QS2.P is kept in main memory for the next iteration.

For the sixth iteration and after the synchronization process, the current strips are
PS5{f irst = 12, start = 0, end = 3, P [12,13,14,15]} and QS3{f irst = 8, start =
0, end = 2, P [8,9,10, 11]}. In the first step, the RCPS executes the K(=3)CPQ

Geoinformatica (2016) 20:571–628 601

for the current strips. Exiting from RCPS function, the maxKHeap has new values
{(dist (P13, Q9) = 2), (dist (P13,Q8) = 1), (dist (P12,Q8) = 1)}, and the left limits have
values lef tp = P14, lef tq = Q9. The current strip PS5 has all its four points at, or on
the left of, the right border, the starting point of the current strip QS3 is not the first point
of the set Q but the difference PS5.P [12].x − lborderq = 29 − 24 = 5 > 2. There-
fore, the first part of the second step will be skipped. The current strip QS3 has three
points at, or on the left of, the right border, the starting point of the current strip PS5 is
not the first point of the set P but the difference QS3.P [8].x − lborderp = 30 − 27 =
3 > 2. Therefore, the second part of the second step will be skipped. In the third step,
the algorithm must prepare the current strips for the next iteration. Therefore, the strip
PS5 is finished and will be updated to the following values PS5{f irst = 12, start =
4, end = −2, P [12, 13, 14, 15]} and the array QS2.P is kept in main memory for the next
iteration.

In the last iteration (seventh), the first step and the first part of the second step are skipped
because the set P is finished (PS5.end = −2 < 0). The current strip QS4 has only one
point that resides at the right border, the starting point of the current strip PS5 is not the
first point of the set P but the difference QS4.P [11].x − lborderp = 40 − 37 = 3 > 2.
Therefore, the second part of the second step will be skipped. In the third part, the algorithm
must prepare the current strips for the next iteration. For this, the strips PS and QS do not
need any update because they have finished their points from the two sets and the algorithm
is terminated.

As a summary, the pages which are read from the disk were 12, the pairs involved for
calculations were 52, the dx calculations were 84 and the complete dist-calculations were
10.

5.4 Analysis

The proofs of the correctness of the External Sweeping-BasedKCPQ algorithms (FCCPS,
FRCPS, SCCPS and SRCPS) are similar to the proofs of CCPS and RRPS given
by the Theorems 1 and 2, respectively. Since the latter are the kernel for the query pro-
cessing of the former. To extend that proof we must take into account the split of the
sweeping axis into strips and the processing strategy of those strips. To see that External
Sweeping-Based KCPQ algorithms report the K closest pairs correctly and without any
repetition, one key property is that each point (from P or Q) is assigned to one and only
one strip, hence a same pair of points cannot be generated twice. And taking into account
the treatment on the borders of the strips, the External Sweeping-Based KCPQ algorithms
guarantee that all possible candidate pairs of points are considered and no duplicates are
generated.

The I/O cost of the External Sweeping-Based KCPQ algorithms can be estimated,
following a similar reasoning as in [14]:

1. The cost of sorting each data set can be expressed as 2m × P , where m represents
the number of merge levels and is logarithmic in |P | [47], and the constant factor 2
accounts for reading and writing P at each merge level.

2. The cost of the External Sweeping-Based KCPQ algorithms depends of the number
of strips that must be read from disk (sr). Let MRmax the maximum value of MR

(memory requirements) during the execution of a plane-sweep-based algorithm, the sr

can be estimated by: sr � numOf Strips × �max{(MRmax/M), 0}�, where M is the
available main memory size. Each point belonging to one of the strips must be read just

602 Geoinformatica (2016) 20:571–628

once. Therefore, the I/O cost of the External Sweeping-Based KCPQ algorithms can
be estimated as (|P | + |Q|) × sr/numOf Strips.

In summary, the I/O cost of the External Sweeping-Based KCPQ algorithms can be
estimated as:

2m × (P + Q) + (P + Q) × sr/numOf Strips

In the best case (M > MRmax), sr = numOf Strips and the cost is 2m × (P + Q) +
(P + Q). In the worst case (M ≤ MRmax), additional readings are necessary to complete
the processing for each strip as we have mentioned above.

5.5 Extension to εdistance join query

The adaptation of the External Sweeping-Based KCPQ algorithms from KCPQ to εDJQ is
not difficult. As we know, for εDJQ, we have two sets of points P and Q as input, and the
pairs of points in the range of distances [ε1, ε2] are selected for the final result and stored
in a file of records (resultFile) with three fields (dist, P [i], Q[j]), where 0 ≤ i ≤ N − 1
and 0 ≤ j ≤ M − 1. The MaxHKeap data structure is not needed. The modifications
are related to the file operations on resultFile and instead of calling to CCPS or RCPS,
the algorithms should call to εCCPS or εRCPS, respectively. Moreover, instead of call-
ing check near border(border, ref erence strip), the algorithm will call the function
εcheck near border(border, ref erence strip), which will do the same functionality,
discovering the first point of the ref erence strip which has dx smaller than ε2 from the
(right) border . More specifically, from FCCPS to get εFCCPS we should call εCCPS

instead of CCPS at lines 8 and 22, and εcheck near border(border, ref erence strip)

should be called at lines 11 and 25.
From SCCPS to get εSCCPS we should call εCCPS instead of CCPS at lines 6, 14

and 30, and εcheck near border(border, ref erence strip) should be called at lines 9,
17, 25 and 33.

From FRCPS to get εFRCPS we should call εRCPS instead of RCPS at lines
16, 22, 28 and 34. Line 20 should be replaced by while(dx-distance b/t first points of
QS.P, T S.P ≤ ε2) and line 32 bywhile(dx-distance b/t first points of PS.P, T S.P ≤ ε2).

And from SRCPS to get εSRCPS we should call εRCPS instead of RCPS at line
18. Line 20 should be replaced by if (the strip PS is not empty and the strip QS is not the
first one and (dx-distance b/t first point of PS and lborderq ≤ ε2)) and line 24 by if (the
strip QS is not empty and the strip PS is not the first one and (dx-distance b/t first point
of QS and lborderp ≤ ε2)). Finally, we have to replace RCPS by εRCPS in line 18,
maxKHeap is not used at all, εsrcps on border is called in lines 21 and 25.

6 Performance evaluation

This section provides the results of an extensive experimental study a) aiming at measuring
and evaluating the efficiency of the new algorithms proposed in Section 5 (Sections 6.2–
6.6) and effectiveness of these algorithms (Section 6.7), and b) the comparison of the new
algorithms proposed in Section 5 and four algorithms that process the same queries on R-
trees (Section 6.8). Section 6.1 presents the experimental setup that is common for parts (a)
and (b).

Geoinformatica (2016) 20:571–628 603

6.1 Experimental setup

In order to evaluate the behavior of the proposed algorithms, we have used four real spa-
tial data sets of North America, representing cultural landmarks (NAcl) consisting of 9203
points and populated places (NApp) consisting of 24491 points, roads (NArd) consisting of
569082 line-segments, and railroads (NArr) consisting of 191558 line-segments. To create
sets of points, we have transformed the MBRs of line-segments from NArd and NArr into
points by taking the center of each MBR. Moreover, in order to get the double amount of
points from NArr and NArd we choose the two points (min, max) of the MBR of each line-
segment. The data of these 6 files were normalized in the range [0, 1]2. We have also created
6 combinations of input sets (NAppN×NArrN ,NAppN×NArdN ,NArrN×NArdN ,
NArrN×NArdND,NArrND×NArdN andNArrND×NArdND) for query process-
ing. We have also used big real spatial data (retrieved from http://spatialhadoop.cs.umn.edu/
datasets.html) to justify the use of spatial query algorithms on disk-resident data instead of
using them in-memory. They represent water resources (Water) consisting of 5836360 line-
segments, parks or green areas (Park) consisting of 11504035 polygons and world buildings
(Build) consisting of 114736611 polygons. To create sets of points, we have transformed
the MBRs of line-segments from Water into points by taking the center of each MBR and
we have considered the centroid of polygons from Park and Build. We have also created 3
combinations of input sets (Water × Park, Water × Build , Park × Build) for query
processing.

We have also created synthetic clustered data sets of 125000, 250000, 500000 and
1000000 points, with 125 clusters in each data set (uniformly distributed in the range
[0, 1]2), where for a set having N points, N/125 points were gathered around the center
of each cluster, according to Gaussian distribution. We made 4 combinations of synthetic
data sets by combining two separate instances of data sets, for each of the above 4 cardi-
nalities (i.e. 125KC1N × 125KC2N , 250KC1N × 250KC2N , 500KC1N × 500KC2N ,
and 1000KC1N ×1000KC2N) and 1 combination of synthetic data sets by combining two
data sets of different cardinalities (500KC2N × 1000KC1N).

All experiments were performed on a PC with Intel Core 2 Duo, 2.2 GHz CPU with 4
GB of RAM and 2TBs of secondary storage, with Ubuntu Linux v. 14.04 LTS (Linux OS),
using the GNU C/C++ compiler (gcc).

In our previous paper [1], it is shown that the semi-circle variant of both Classic Plane-
Sweep and Reverse Run Plane-Sweep algorithms has the highest execution-time efficiency,
for the KCPQ. Therefore, all experiments were executed using CCPS and RCPS. For
the KCPQ and for all (4) algorithms we study how the value of K, disk page size, size of
the strips and size of the LRU buffer affects efficiency, by executing experiments for the
previous 14 combinations of data sets. As efficiency measures we used:

1. The overall execution time (i.e. response time); this measurement is reported in mil-
liseconds (ms) and represents the overall CPU time consumed, as well as the I/O time
needed by each algorithm.

2. The number of X-axis distance calculations (dx).
3. The number of disk accesses (disk-pages read).

To measure the effectiveness of the new algorithms, we can use the selection ratio, which
is defined as the fraction of pairs considered by the algorithms for processing over the total
number of possible pairs. This is just the opposite to the pruning ratio, and a pair selection
occurs when a candidate pair from two strips is considered for processing according to its
dx distance.

http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html

604 Geoinformatica (2016) 20:571–628

6.2 The effect of the number of pairs (K)

In order to examine the effect of the number of pairs (K) on the new algorithms, K is set
equal to 1, 10, 100, 1000 and 10000; the size of disk page equals to 4 KBytes; the size of
strip is 16 KBytes; and there is no LRU buffer (its size is 0).

6.2.1 The execution time

The results for execution time are similar for all input data sets. Table 3 shows the execution
time in ms when KCPQ is processed by the FCCPS, SCCPS, FRCPS and SRCPS algo-
rithms on the NArrN × NArdND data sets (in Tables 3–21, a value in bold is the best
value of its line). As the value of K increases, the execution time increases, but the rate of
the increment gets higher as K increases. For example, using the FCCPS algorithm, from
K = 1 to K = 10 the time increased by 0 %, from K = 10 to K = 102 by 3 %, from
K = 102 to K = 103 by 16 % and from K = 103 to K = 104 by 29 %.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS
58-12 times and FRCPS overcomes SRCPS 36-34 times. Comparing the best result among
FCCPS and SCCPS (variants of Classic Plane-Sweep algorithm) and the best result among
FRCPS and SRCPS (variants of Reverse Run Plane-Sweep algorithm) for every com-
bination of data sets, we conclude that Reverse Run algorithms are faster in all cases
(70-0).

Figure 11 shows the execution time of each algorithm for KCPQ as a fraction of
the total time consumed by all algorithms(represented by the respective bar). It is shown
that the SRCPS (line with down facing triangles as markers) was the fastest for K =
1, 10, 100, while FRCPS (line with up facing triangles as markers) was the fastest for
K = 1000, 10000. This situation is dominating in most data set combinations.

6.2.2 The number of the dx distance calculations

The results with respect to the number of dx distance calculations are similar for all input
data sets. Table 4 shows the values of this metric when KCPQ is processed by the FCCPS,
SCCPS, FRCPS and SRCPS algorithms on the NArrN × NArdND data sets. As the
value of K increases, the number of dx distance calculations also increases. However, while
the number of K increases geometrically with a ratio of 10, the number of dx distance
calculations increases with a ratio ranging between 1.83 and 2.66. For example, using the
SRCPS algorithm from K = 1 to K = 10 the number of dx distance calculations increased
by 266 %, from K = 10 to K = 102 by 183 %, from K = 102 to K = 103 by 207 % and
from K = 103 to K = 104 213 %.

Table 3 Execution time in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×
NArdND, in relation to K

K FCCPS SCCPS FRCPS SRCPS Total

1 41.48 34.84 24.03 22.14 122.49

10 41.31 33.70 23.38 21.30 119.69

100 42.44 35.22 24.17 22.67 124.50

1000 49.07 45.89 29.97 32.68 157.61

10000 63.12 62.33 42.51 50.59 218.55

Geoinformatica (2016) 20:571–628 605

Fig. 11 Fractions of execution time for KCPQ, using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×
NArdND, in relation to K

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS
49-21 times and SRCPS overcomes FRCPS 61-9 times. Comparing the best result among
FCCPS and SCCPS and the best result among (the almost identical results of) FRCPS and
SRCPS for every combination of data sets, we conclude that Reverse Run algorithms need
fewer dx distance calculations in all cases (70-0).

Figure 12 shows the number of dx distance calculations of each algorithm for KCPQ
as a fraction of the total number of dx distance calculations performed by all algorithms
(represented by the respective bar). It is shown that the SRCPS (line with down-facing
triangles as markers) took from 13.7 % up to 24.7 % of the total number of dx distance
calculations needed to execute the queries. The FRCPS algorithm has almost equal number
of dx distance calculations so its line (with up-facing triangles as markers) is overwritten
from the line of the SRCPS (note that overlapping down-facing and up-facing triangles
appear as stars). RR algorithms need fewer dx distance calculations in all cases.

6.2.3 The number of the disk accesses (pages read)

The results for number of disk accesses are similar for all input data sets and this perfor-
mance measure proved to be the most important factor that shaped the results. Table 5 shows
the values of this metric when KCPQ is processed by the FCCPS, SCCPS, FRCPS and

Table 4 Number of dx distance calculations is millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS on NArrN × NArdND, in relation to K

K FCCPS SCCPS FRCPS SRCPS Total

1 3.17 2.06 0.99 0.99 7.11

10 5.80 4.69 3.61 3.61 17.72

100 12.45 11.34 10.23 10.23 44.26

1000 33.82 32.73 31.48 31.46 129.48

10000 101.46 100.40 98.46 98.31 398.63

606 Geoinformatica (2016) 20:571–628

Fig. 12 Fractions of the number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on NArrN × NArdND, in relation to K

SRCPS algorithms on the NArrN × NArdND data sets. As the value of K increases, the
number of disk accesses increases slightly, or marginally. While K increases geometrically
with a ratio of 10, the number of pages read increases, for example, in the FRCPS algorithm,
by 0.051 %, 0.358 %, 1.069 %, and 3.678 %.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS
68-2 times and FRCPS overcomes SRCPS 70-0 times. Comparing the best result among
FCCPS and SCCPS and the best result among FRCPS and SRCPS for every combination
of data sets, we conclude that Reverse Run algorithms need fewer disk accesses in all cases
(70-0).

Figure 13 shows the number of disk accesses of each algorithm for KCPQ as a fraction
of the total number of disk accesses needed by all algorithms (represented by the respective
bar).

Summarizing the results of experiments on the effect of K , we note that: (1) The expo-
nential growth of K causes (non geometrical) increase in the execution time. (2) The
exponential growth of K causes increase in the number of dx-distance calculations with
a lower ratio (up to 3 for most datasets and up to 7 for the biggest data set combina-
tion). (3) The number of disk accesses required by FCCPS and FRCPS algorithms increases
marginally with the growth of K , unlike SCCPS and SRCPS where the increment is more
pronounced. Moreover, (4) the fastest algorithm proved to be the SRCPS for small values

Table 5 Number of disk accesses for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN ×
NArdND, in relation to K

K FCCPS SCCPS FRCPS SRCPS Total

1 13340 13991 7824 9136 44291

10 13340 16455 7828 11928 49551

100 13348 18495 7856 14252 53951

1000 13388 19387 7940 15364 56079

10000 13540 19583 8232 15772 57127

Geoinformatica (2016) 20:571–628 607

Fig. 13 Fractions of number of disk accesses for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on
NArrN × NArdND, in relation to K

of K , while FRCPS is the fastest for large values of K . Finally, (5) SRCPS was slightly the
most economical algorithm in terms of dx distance calculations.

6.3 The effect of the disk page size (pg)

In order to examine the effect of the disk page size (pg) on the new algorithms, the size of
disk pages (pg) is set equal to 1, 2, 4, 8 and 16 KBytes; K = 1000; the size of strips is 16
KBytes; and there is no LRU buffer (its size is 0).

6.3.1 The execution time

The results for execution time are similar for all input data sets. Table 6 shows the execution
time in ms when KCPQ is executed by the algorithms FCCPS, SCCPS, FRCPS and SRCPS
on the 1000KC1N × 1000KC2N data sets. As the page size increases the execution time
is reduced, but the rate of decrement continuously decreases. For example, using SRCPS
algorithm from pg = 1KB to pg = 2KB the time decreased by 12 %, from pg = 2KB

to pg = 4KB by 7.3 %, from pg = 4KB to pg = 8KB by 4 % and from pg = 8KB to
pg = 16KB by 0.15 %.

Table 6 Execution times in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N ×
1000KC2N , in relation to pg

pg FCCPS SCCPS FRCPS SRCPS Total

1 136.85 141.50 113.74 144.13 536.22

2 119.73 123.98 105.02 126.90 475.63

4 114.44 116.96 100.49 117.62 449.51

8 112.13 111.93 98.86 112.87 435.79

16 111.52 112.03 100.84 112.70 437.09

608 Geoinformatica (2016) 20:571–628

Fig. 14 Fractions of execution time forKCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N×
1000KC2N , in relation to pg

Figure 14 shows the execution time of each algorithm values as a fraction of the total
execution time consumed by all algorithms (represented by the respective bar). Consider-
ing all experiments and all data sets, we find that SCCPS overcomes FCCPS 54-16 times
and FRCPS overcomes SRCPS 51-19 times. Comparing the best result among FCCPS and
SCCPS and the best result among FRCPS and SRCPS, for every combination of data sets,
we conclude that Reverse Run algorithms are the fastest in all cases. In Fig. 14, it is shown
that the increment of the disk page size for sizes larger than 8 KB, does not give any advan-
tage in query execution for any algorithm. Experiments with page sizes larger than 32 KB
show that the execution becomes slightly slower.

6.3.2 The number of dx distance calculations

The results of the number of dx distance calculations are similar for all input data sets.
In Table 7, we can see the values of this metric when KCPQ is executed by the algo-
rithms FCCPS, SCCPS, FRCPS and SRCPS on the 1000KC1N ×1000KC2N data sets. As
the value of disk page size increases, the number of dx distance calculations stays almost
constant.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS
45-25 times and SRCPS overcomes FRCPS 58-12 times. Comparing the best result among

Table 7 Number of dx distance calculations in millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS on 1000KC1N × 1000KC2N , in relation to pg

pg FCCPS SCCPS FRCPS SRCPS Total

1 528.0 554.6 381.0 380.4 1844.0

2 529.3 554.8 381.8 381.0 1846.9

4 529.3 554.8 381.8 381.0 1846.9

8 529.5 554.9 382.0 381.4 1847.8

16 529.5 554.9 382.0 381.4 1847.8

Geoinformatica (2016) 20:571–628 609

FCCPS and SCCPS and the best result among FRCPS and SRCPS, for every combination
of data sets, we conclude that Reverse Run algorithms need fewer dx calculations in all
cases (70-0).

Figure 15 shows the number of dx distance calculations of each algorithm as a fraction
of the total number of dx distance calculations needed by all algorithms (represented by
the respective bar). SRCPS (line with down-facing triangles as markers) needed 20.63 % up
to 20.64 % of the total number of dx distance calculations needed to execute the queries.
FRCPS has almost equal numbers of dx distance calculations, so its line (with up-facing
triangles as markers) is overwritten by the line of the SRCPS. The Reverse Run algorithms
need fewer dx distance calculations in all cases.

6.3.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data sets
and this performance measure proved to be the most important factor that shaped the results.
Table 8 shows the values of this metric when KCPQ is executed by the FCCPS, SCCPS,
FRCPS and SRCPS algorithms on the 1000KC1N × 1000KC2N data sets. As the disk
page size (pg) increases, the number of disk accesses decreases. The rate of this decrement
is quite stable. While the disk page size increases geometrically with a ratio of 2, the number
of pages read decreases smoothly, for example, in the FRCPS algorithm steps by 50.74 %,
50.00 %, 49.78 %, 49.99 %.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS
64-6 times and FRCPS overcomes SRCPS 70-0 times. Comparing the best result among
FCCPS and SCCPS and the best result among FRCPS and SRCPS for every combination
of data sets, we conclude that FRCPS needs fewer disk accesses in all cases (70-0). Figure
16 shows the values of the number of disk accesses of each algorithm as a fraction of the
total number of disk accesses needed by all algorithms (represented by the respective bar).

Summarizing the results of experiments on the effect of disk page size, pg, we note that:
(1) Doubling the size of pg causes decrease in execution time not larger than 20 % on real
and synthetic data sets and not larger than 30 % on the big real data sets. (2) As pg increases,

Fig. 15 Fractions of number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on 1000KC1N × 1000KC2N , in relation to pg

610 Geoinformatica (2016) 20:571–628

Table 8 Number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on
1000KC1N × 1000KC2N , in relation to pg

pg FCCPS SCCPS FRCPS SRCPS Total

1 63044 96126 53988 105668 318826

2 31178 47453 26594 52082 157307

4 15590 23729 13298 26042 78659

8 7802 11806 6678 13032 39318

16 3902 5905 3340 6517 19664

the number of disk accesses required by the FCCPS and FRCPS algorithms decreases signif-
icantly, but for the SCCPS and SRCPS algorithms this decrease is limited. (3) The number
of dx distance calculations remains quite stable (not affected by pg). Moreover, (4) the
fastest algorithm proves to be FRCPS, while SRCPS proves to be quite economical in terms
of dx distance calculations.

6.4 The effect of the size of strips (ss)

In order to examine the effect of the size of the strips (ss) in terms of performance of the
new algorithms, we set the value of K = 1000; pg = ss (size of disk page = size of strip),
the size of strip (ss) = 2, 4, 8, 16 and 32 KBytes; and there is no LRU buffer (its size is 0). In
the previous Section 6.3.1 it was proved that the page size, having constant the size of strip
(but larger than the disk page size), affects the execution time up to 20 % in some cases. In
order to neutralize this effect of page size with respect to the execution time, we set equal
size for pg and ss.

Fig. 16 Fractions of number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on 1000KC1N × 1000KC2N , in relation to pg

Geoinformatica (2016) 20:571–628 611

Table 9 Execution time in ms for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water ×Park, in
relation to ss

ss FCCPS SCCPS FRCPS SRCPS Total

2 963.56 753.53 582.91 666.26 2966.26

4 841.25 636.73 511.40 570.36 2559.74

8 801.21 592.29 484.13 534.10 2411.73

16 802.37 586.02 484.95 527.10 2400.44

32 652.37 579.34 487.89 526.44 2246.04

6.4.1 The execution time

The results for execution time are similar for all input data sets. Table 9 shows the execution
time in ms when KCPQ is executed by the FCCPS, SCCPS, FRCPS and SRCPS algorithms
on the Water × Park data sets. As the strip size increases, the execution time is reduced,
with a decreasing rate. For example, using SCCPS, from ss = 2KB to ss = 4KB the
time decreased by 15.5 %, from ss = 4KB to ss = 8KB by 7 %, from ss = 8KB to
ss = 16KB by 1 % and from ss = 16KB to ss = 32KB by 1 %. The Reverse Run
algorithms are shown to be faster than the Classic ones.

Figure 17 shows the execution time of each algorithm as a fraction of the total execution
time consumed by all algorithms (represented by the respective bar). Considering all exper-
iments and all data sets, we find that SCCPS overcomes FCCPS 54-16 times and FRCPS
overcomes SRCPS 52-18 times. Comparing the best result among FCCPS and SCCPS and
the best result among FRCPS and SRCPS for every combination of data sets, we conclude
that Reverse Run algorithms are the fastest in most cases (68-2). In Fig. 17, it is shown that
the increment of the strip size, for sizes larger than 32 KB does not give advantage in query
execution time for any algorithm. Experiments with strip sizes larger than 32 KB show that
execution becomes slower. The Reverse Run algorithms are faster and the best strip size is
8 or 16 KB for all types of data sets, which, in all cases, is larger than the physical I/O unit.

Fig. 17 Fractions of execution time for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on Water ×
Park, in relation to ss

612 Geoinformatica (2016) 20:571–628

Table 10 Number of dx distance calculations in millions (×106) for KCPQ using FCCPS, SCCPS, FRCPS
and SRCPS on Water × Park, in relation to ss

ss FCCPS SCCPS FRCPS SRCPS Total

2 497.47 481.46 469.63 469.52 1918.07

4 497.54 479.69 469.55 469.49 1916.27

8 498.09 478.17 469.53 469.47 1915.25

16 498.46 476.74 469.49 469.46 1914.15

32 490.56 476.24 469.48 469.45 1905.73

6.4.2 The number of dx distance calculations

The results for the number of dx distance calculations are similar for all input data sets.
Table 10 shows the values of this metric when KCPQ is executed by the FCCPS, SCCPS,
FRCPS and SRCPS algorithms on the Water × Park data sets. As the value of strip size
increases the number of dx distance calculations remains almost constant.

Considering all experiments and all data sets, we find that SCCPS overcomes FCCPS
45-25 times and SRCPS overcomes FRCPS 49-21 times. Comparing the best result among
FCCPS and SCCPS and the best result among FRCPS and SRCPS for every combination
of data sets, we conclude that the Reverse Run algorithms need fewer dx calculations in all
cases (70-0).

Figure 18 shows the number of dx distance calculations of each algorithm as a fraction of
the total number of dx distance calculations of all algorithms (represented by the respective
bar). It is shown that FRCPS (line with up-facing triangles as markers) needed from 24.48 %
up to 24.63 % of the total number of dx distance calculations. The SRCPS algorithm has
almost equal number of dx distance calculations so its line (with down-facing triangles as
markers) is overwritten from the line of the FRCPS. The Reverse Run algorithms need fewer
dx distance calculations in all cases.

Fig. 18 Fractions of number of dx distance calculations for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on Water × Park, in relation to ss

Geoinformatica (2016) 20:571–628 613

Table 11 Number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on
Water × Park, in relation to ss.

ss FCCPS SCCPS FRCPS SRCPS Total

2 373,962 345,686 236,166 346,931 1,302,745

4 182,414 164,051 110,000 159,128 615,593

8 89,871 81,247 52,843 77,217 301,178

16 44,678 40,583 25,902 38,079 149,242

32 16,199 20,263 12,822 18,902 68,186

6.4.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data
sets and this performance measure proved to be the most important factor that shaped the
results. Table 11 shows the values of this metric when KCPQ is executed by the FCCPS,
SCCPS, FRCPS and SRCPS algorithms on the Water × Park data sets. As the strip size
(ss) increases the number of disk accesses decreases. The rate of this decrement is quite
stable. While the strip size increases geometrically with a ratio of 2, the number of pages
read decreases, for example, in the SRCPS algorithm, by 54.13 %, 51.47 %, 50.69 % and
50.36 %.

Considering all experiments and all data sets, we find that FCCPS overcomes SCCPS
62-8 times and FRCPS overcomes SRCPS 70-0 times. Comparing the best result among
FCCPS and SCCPS and the best result among FRCPS and SRCPS for every combination
of data sets, we conclude that FRCPS needs fewer disk accesses in all cases (70-0). Figure
19 shows the number of disk accesses of each algorithm as a fraction of the total number of
disk accesses needed by all algorithms (represented by the respective bar).

Summarizing the results of experiments on the effect of strip size, ss, we note that: (1)
The exponential growth of ss causes decrease in the execution time not larger than 15 %
for all, real and synthetic data sets. (2) As ss increases, the number of disk accesses needed

Fig. 19 Fractions of number of disk accesses (pages read) for KCPQ using FCCPS, SCCPS, FRCPS and
SRCPS on Water × Park, in relation to ss

614 Geoinformatica (2016) 20:571–628

by each of the algorithms decreases notably, but the best behaviour for this performance
measure is for FRCPS. (3) The number of dx distance calculations remains quite stable
(not affected by ss). Moreover, (4) the fastest algorithm proves to be FRCPS, while SRCPS
proves to be quite economical in terms of dx distance calculations.

6.5 The effect of the LRU buffer

In order to examine the effect of the size of the LRU buffer on the performance of the new
algorithms, we examined several LRU buffer sizes. Although, one might expect that, as a
result of finding in RAM (and not reading from disk) some of the strips needed for process-
ing, the execution time would be possibly reduced, in fact, the cost for the management of
the LRU-buffer proved to overcome any such reduction and the execution time increased
when the LRU buffer size increased. For all LRU buffer sizes, FRCPS proved to be faster
than the SRCPS algorithm in double the cases (47-23), and the one with the smallest num-
ber of strips found in the buffer (the fastest execution of FRCPS was the one without any
buffering). Moreover, the LRU-buffer does not have any effect on the number of dx dis-
tance calculations, since this performance measure is not affected whether the data are in
RAM or in disk.

6.6 Experimental results for εDJQ

In this section, we study the effect of the increment of the distance threshold (ε) on the
εDJQ. In order to examine the effect of ε on the εDJQ algorithms, ε1 is set equal to 0 and
ε2 = ε. ε = 0, 1.25 × 10−5, 2.5 × 10−5, 5 × 10−5 and 10 × 10−5 for medium real and
synthetic data, and ε = 0, 1.25 × 10−3, 2.5 × 10−3, 5 × 10−3 and 10 × 10−3 for big real
data. pg = 4 KBytes, ss = 16 KBytes and there is no LRU buffer (its size is 0).

6.6.1 The execution time

The results for execution time are similar for all input data sets. Table 12 shows the execution
time in s when the εDJQ is processed by the εFCCPS, εSCCPS, εFRCPS and εSRCPS
algorithms on Park × Build data sets. As the value of ε increases the execution time
grows, and the rate of the increment continuously grows (after the first non zero value of
the maximum distance ε). The εFRCPS algorithm is shown to be faster in the most cases.

Considering all experiments and all data sets, we find that εFCCPS overcomes εSCCPS
52-18 times and εFRCPS overcomes εSRCPS 50-20 times. Comparing the best result
among εFCCPS and εSCCPS and the best result among εFRCPS and εSRCPS for every

Table 12 Execution time in s for εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park × Build ,
in relation to ε

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 2.85 2.54 1.77 1.51 8.67

1.25 6.33 6.85 5.13 5.83 24.14

2.50 9.40 10.04 8.16 8.97 36.57

5.00 15.50 16.34 14.25 15.12 61.21

10.00 27.62 28.98 26.35 27.69 110.65

Geoinformatica (2016) 20:571–628 615

Table 13 Fractions of execution time of each algorithm over the total execution time for εDJQ using
εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park × Build , in relation to ε

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 32.89 % 29.31 % 20.43 % 17.37 %

1.25 26.23 % 28.36 % 21.25 % 24.16 %

2.50 25.71 % 27.47 % 22.31 % 24.52 %

5.00 25.33 % 26.69 % 23.28 % 24.70 %

10.00 24.96 % 26.19 % 23.82 % 25.03 %

combination of data sets, we conclude that ε Reverse Run algorithms are faster in the most
cases (67-3).

Table 13 shows the values of the execution time of each algorithm as a fraction of the
total time consumed by all algorithms on Park × Build data sets. It is shown that the
εFRCPS needed from 20.43 % up to 23.82 % of the total time to execute the queries and it
is the fastest algorithm for all values of ε > 0. For, ε = 0 the εSRCPS algorithm was faster,
since its fraction of time was 17.37 %.

6.6.2 The number of dx distance calculations

The results for the number of dx distance calculations are similar for all input data sets.
Table 14 shows the values of this metric when εDJQ is processed by the εFCCPS, εSCCPS,
εFRCPS and εSRCPS algorithms on Park×Build data sets. As the value of ε increases the
number of dx distance calculations also increases. However, while the value of ε increases
geometrically with a ratio of 2, the number of dx distance calculations increases to a same
ratio near to 2.

Considering all experiments and all data sets, we find that εSCCPS overcomes εFCCPS
70-0 times and εFRCPS overcomes εSRCPS 35-29 times. Comparing the best result among
εFCCPS and εSCCPS and the best result among εFRCPS and εSRCPS for every com-
bination of data sets, we conclude that Reverse Run algorithms need fewer dx distance
calculations in all cases (70-0).

Table 15 shows the number of dx distance calculations of each algorithm as a fraction
of the total number of dx distance calculations needed by all algorithms on Park × Build

data sets. It is shown that the εFRCPS needed 4.63 % for the case of ε = 0 and for the
other cases from 24.21 % up to 24.91 % of the total number of dx distance calculations.
The εSRCPS algorithm has a little fewer dx distance calculations than εFRCPS only in the

Table 14 Number of dx distance calculations in billions (×109) for εDJQ using εFCCPS, εSCCPS,
εFRCPS and εSRCPS on Park × Build , in relation to ε

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 0.237 0.120 0.018 0.018 0.393

1.25 2.884 2.767 2.666 2.666 10.982

2.50 5.530 5.415 5.313 5.313 21.572

5.00 10.823 10.711 10.608 10.608 42.750

10.00 21.409 21.303 21.198 21.198 85.108

616 Geoinformatica (2016) 20:571–628

Table 15 Fraction of number of dx distance calculations of each algorithm over the total number of dx

distance calculations for εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park×Build , in relation
to ε

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 60.31 % 30.49 % 4.63 % 4.58 %

1.25 26.26 % 25.20 % 24.27 % 24.27 %

2.50 25.64 % 25.10 % 24.63 % 24.63 %

5.00 25.32 % 25.05 % 24.81 % 24.81 %

10.00 25.15 % 25.03 % 24.91 % 24.91 %

case ε = 0 and in all other cases the number of dx distance calculations is almost equal.
The Reverse Run algorithms need fewer dx calculations in all cases.

6.6.3 The number of the disk accesses (pages read)

The results for the number of disk accesses (pages read) are similar for all input data sets
and this performance measure proved to be the most important factor that shaped the results.
Table 16 shows the values of this metric when εDJQ is executed by the εFCCPS, εSCCPS,
εFRCPS and εSRCPS algorithms on Park × Build data sets. As the value of ε increases,
the number of disk accesses increases. But the rate of this increment is too small for the
Reverse Run algorithms and bigger for the Classic ones. While ε increases geometrically
with a ratio of 2, the number of pages read increases with a lower ratio, for example, the
number of pages read for the εFRCPS algorithm increases by 1.57 %, 1.51 %, 3.00 % and
5.80 %.

Considering all experiments and all data sets, we find that εFCCPS overcomes 63-7 times
εSCCPS and εFRCPS overcomes 57-0 times εSRCPS (there are 13 cases of tie). Comparing
the best result between εFCCPS and εSCCPS and the best result between εFRCPS and
εSRCPS for every combination of data sets, we can conclude that ε Reverse Run algorithms
need fewer disk accesses in all cases (70-0). Table 17 shows the values of the number of
disk accesses of each algorithm as a fraction of the total number of disk accesses needed by
all algorithms.

Summarizing the results of experiments on the effect of ε, note that: (1) the geometrical
growth of ε causes a non-geometrical increase of execution time. (2) the exponential growth
of ε causes an increase in the number of dx distance calculations with a lower ratio (rang-
ing very close to 2). (3) The number of disk accesses required by εFCCPS and εFRCPS
algorithms increases marginally with the growth of ε, unlike εSCCPS and εSRCPS, where

Table 16 Number of disk accesses (pages read) in thousands (×103) for εDJQ using εFCCPS, εSCCPS,
εFRCPS and εSRCPS on Park × Build , in relation to ε

ε × 10−3 εFCCPS εSCCPS εFRCPS εSRCPS Total

0.00 1354.9 1348.9 742.6 742.6 4189.0

1.25 1360.7 1905.9 754.2 1370.2 5391.0

2.50 1366.4 1956.1 765.7 1434.5 5522.7

5.00 1377.8 2015.0 788.7 1517.5 5699.0

10.00 1400.9 2390.0 834.4 1938.4 6563.7

Geoinformatica (2016) 20:571–628 617

Table 17 Fraction of number of disk accesses of each algorithm on the total number of disk accesses for
εDJQ using εFCCPS, εSCCPS, εFRCPS and εSRCPS on Park × Build , in relation to ε

ε × 10−5 εFCCPS εSCCPS εFRCPS εSRCPS

0.00 32.34 % 32.20 % 17.73 % 17.73 %

1.25 25.24 % 35.35 % 13.99 % 25.42 %

2.50 24.74 % 35.42 % 13.86 % 25.97 %

5.00 24.18 % 35.36 % 13.84 % 26.63 %

10.00 21.34 % 36.41 % 12.71 % 29.53 %

the increment is more pronounced. Moreover, (4) faster algorithm proves to be the εFRCPS
than εSRCPS (50-20), while εFRCPS proves to be more economical in terms of dx distance
calculations than εFRCPS (35-29).

The experiments were continued in the same manner as in Sections 6.3, 6.4 and 6.5 for
KCPQ, in order to study the effect of the disk page size, the strip size and the size of the
LRU-buffer. In general, the results are similar between KCPQ and εDJQ. The fastest in
execution time and reading fewer pages from the disk proved to be the εFRCPS algorithm.
We note only that, for the case of ε = 0, SRCPS is slightly better than FRCPS. For the
cases where ε > 0, the results for εFRCPS are not as good as the ones of FRCPS. This is
explained, since the most important factors that improve the performance of an algorithm for
the KCPQ are (1) how quickly pairs with very small distances will enter the maxKHeap,
and (2) how efficiently the algorithm will manage the largest distance of these pairs. In
contrast to KCPQ, εDJQ does not need the fast finding of pairs with small distance, since
the maximum acceptable distance is consistently defined by the user beforehand (ε). Only
the smart and economical management of the given distance affects the final performance
of an algorithm.

6.7 Effectiveness study

To study the effectiveness of the proposed algorithms we will use the selection ratio, that is,
the fraction of pairs considered by the new algorithms for processing over the total number
of possible pairs (a pair is selected for processing if its dx distance is smaller than the
distance of the K-th closest pair found so far). This effectiveness measure is the opposite
to the pruning ratio, and therefore the smaller the selection ratio, the higher the power of
pruning of the algorithm.

We are going to focus on the increment of K . Tables 18 and 19 report the effect of K on
the selection ratio for real and synthetic data, respectively. In order to extract conclusions

Table 18 Fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on NArrN × NArdND

K FCCPS SCCPS FRCPS SRCPS

1 12.72 % 7.67 % 3.00 % 2.99 %

10 18.75 % 13.70 % 9.01 % 9.01 %

100 33.98 % 28.94 % 24.19 % 24.18 %

1000 82.96 % 77.96 % 72.89 % 72.84 %

10000 237.97 % 233.17 % 226.47 % 226.12 %

618 Geoinformatica (2016) 20:571–628

Table 19 Fraction of pairs (×10−6) processed over the total number of possible pairs (selection ratio) for
KCPQ using FCCPS, SCCPS, FRCPS and SRCPS on 1000KC1N × 1000KC2N

K FCCPS SCCPS FRCPS SRCPS

1 1.85 % 1.61 % 1.13 % 1.21 %

10 32.66 % 29.66 % 23.65 % 23.68 %

100 85.20 % 88.43 % 67.62 % 66.83 %

1000 266.13 % 278.41 % 191.37 % 190.96 %

10000 691.96 % 699.59 % 509.33 % 510.08 %

from the tables, we have to take into account that for the specific combination of real data
there are 191, 558 × 1, 134, 164 = 217,258,187,512 possible pairs (2.17 × 1011) and for
the specific synthetic data there are 1012 possible pairs. We can observe that an increasing
K makes the selection ratio of the proposed algorithms to increase continuously. Therefore,
the effectiveness of our algorithms degrades as K turns to be too large, due to the increase of
the distance of the K-th closest pair. And, the larger the K value, the smaller the difference
between Reverse Run algorithms and Classic plane-sweep algorithms (we mainly observe
this fact on real data) in terms of selection ratio. From these tables, we observe that SRCPS
is the winner in most of the cases, but FRCPS is very close to it (being the winner in the
remaining cases). This means that FRCPS sacrifices slightly effectiveness for efficiency, in
the use of the partitioning technique. An interesting conclusion from this effectiveness mea-
sure is that the best algorithms in pruning are the Reverse Run ones and this conclusion is
in accordance to efficiency. Moreover, since the selection ratio depends on the dx distance,
it is the most representative measure for pruning and for effectiveness.

We note that the average performance in pruning, for all combinations of real and syn-
thetic data, follows the same trend. This behaviour is shown in Tables 20 and 21, where
SRCPS is the winner in most of the cases, but FRCPS is very close to it.

6.8 Performance comparison to R-trees

In order to examine the performance of the new algorithms in comparison to a widely
accepted access method, like R-trees, we have performed experiments for measuring:

– The creation time of the sorted files needed for the new algorithms and the creation time
of the R-tree structure. In the case of the new algorithms, we used external merge sort
with 16 buffers of 16KB and in the case of the R-tree, we used advanced bulk loading

Table 20 Average fraction of pairs (×10−6) processed over the total number of possible pairs (selection
ratio) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for all real data sets

K FCCPS SCCPS FRCPS SRCPS

1 5.51 % 3.16 % 0.98 % 0.97 %

10 43.33 % 27.40 % 12.60 % 12.58 %

100 64.64 % 48.70 % 33.78 % 33.76 %

1000 137.71 % 121.45 % 105.65 % 105.51 %

10000 459.94 % 442.55 % 421.18 % 418.22 %

Geoinformatica (2016) 20:571–628 619

Table 21 Average fraction of pairs (×10−6) processed over the total number of possible pairs (selection
ratio) for KCPQ using FCCPS, SCCPS, FRCPS and SRCPS for all synthetic data sets

K FCCPS SCCPS FRCPS SRCPS

1 3.76 % 3.80 % 2.74 % 2.73 %

10 75.68 % 77.67 % 62.26 % 59.76 %

100 189.65 % 203.28 % 171.06 % 165.91 %

1000 573.11 % 587.07 % 462.33 % 462.16 %

10000 1456.99 % 1485.84 % 1252.13 % 1253.75 %

[48] (using code available form http://libspatialindex.org), to reduce the time needed
for tree construction.

– The execution time and number of disk accesses for processing the KCPQ and εDJQ.

The experiments were run for the following data set combinations: NArrN × NArdN ,
NArrND×NArdND, 500KC1N×500KC2N , 500KC2N×1000KC1N , 1000KC1N×
1000KC2N , Water × Park, Water × Build and Park × Build .

6.8.1 Experimental results for KCPQ

Table 22 shows the name and the number of objects for each data set in ascending order
of size. It also shows the sizes and creation times of the R-tree structure and sorted data
files used by the new algorithms. It is obvious that the size of the files used by the new
algorithms is approximately 3.7 times smaller than the size of the R-tree structure. The time
for the creation of files for the new algorithms ranges from 3.9 up to 8.6 times smaller than
the time for the R-tree structure.

The 8 combinations of data sets were chosen in order to take measurements between
small and big data sets and also between real and synthetic data sets. We have chosen the

Table 22 Creation time of R-tree structures and sorted data files used by the new algorithms, for several
data sets

R-tree New algorithms

Tree file length Creation time Bin file length Creation time

Data set name Number of objects (×103) (MB) (s) (MB) (s)

NarrN 191.6 16.7 0.6 4.4 0.2

NarrND 383.2 33.2 1.2 8.8 0.3

500KC1N 500.0 43.4 1.7 11.4 0.4

500KC2N 500.0 43.4 1.7 11.4 0.4

NardN 569.1 49.3 1.9 13.0 0.5

1000KC1N 1000.0 86.6 4.8 22.9 0.8

1000KC2N 1000.0 86.6 4.8 22.9 0.8

NardND 1138.2 98.7 7.0 26.1 0.9

Water 5836.4 505.9 39.8 133.6 5.4

Park 11504.0 997.0 81.7 263.3 10.6

Build 114736.6 9943.8 1104.0 2626.1 128.5

http://libspatialindex.org

620 Geoinformatica (2016) 20:571–628

fastest algorithm executing the KCPQ with R-trees, the CCPS-BF. It is the algorithm which
scans the nodes of the R-tree in Best First manner (using one global minimum heap to sort
the pairs of the nodes reached so far with minmin distance) and when a pair of leafs is
reached, the pairs of points are processed using the classic plain sweep algorithm. On the
other hand we have chosen to compare to the FRCPS algorithm executing the same KCPQs
because it is faster than SRCPS algorithm in more cases (36-34) of all combinations and all
K values. The smaller number of total pairs was for the combination NArrN × NArdN

having a total number of pairs equal to 191, 558 × 569, 082, while the biggest number of
total pairs was for the combination Park × Build data sets having a total number of pairs
equal to 11, 504, 035×114, 736, 611. Observing the values of the metrics of experiments on
real and synthetic data for the first 5 combinations we see that the FRCPS was the absolute
winner for all values of K and for all metrics. Table 23 shows both the values of query
time and total time (creation + query) needed by the CCPS-BF and FRCPS algorithms to
execute the KCPQ on NArdN × NArdND data sets. As the value of K increases, the
relative difference of execution time between the two algorithms is slightly reduced (gain
by 93.16 %, 93.16 %, 92.88 %, 91.03 % and 88.70 %). The total time, creation and query
execution time showcased similar behavior with an even smaller reduction. FRCPS needs
less total time by gain by 83.61 %.

In Table 24 (second and third columns) we can see the number of disk accesses when the
KCPQ is executed by the CCPS-BF and FRCPS algorithms on NArdN × NArdND data
sets. The increment of K didn’t significantly affect the number of needed disk accesses for
both algorithms. FRCPS again proved to be more efficient than CCPS-BF by an average
gain of 88.73 %.

Table 25 shows the values of query time and total time (creation + query) when the
KCPQ is executed by the CCPS-BF and FRCPS algorithms on the combination of big data
sets Water × Build . As the value of K increases, the relative difference of execution time
between the two algorithms didn’t showcase a clear pattern. The FRCPS remained faster
for all K values smaller than 10.000 while CCPS-BF was faster for the last value of K .
The relative differences (gain) are as follows: 8.99 %, 54.35 %, 49.14 %, 35.93 % and
−39.13 %. For positive (negative) values the FRCPS is faster (slower). FRCPS was also
faster for all K values of the total time, creation and query execution time. FRCPS needs
less total time by 88.09 %. In Table 24 (forth and fifth columns) we can see the number
of disk accesses in relation to K values for the same data sets combination. The increment
of K didn’t significantly affect the number of needed disk accesses for both algorithms.
FRCPS again proved to be more efficient than CCPS-BF by an average gain of 12.58 %.

Table 23 Query execution time(ms) and total time(s) (creation+execution) of CCPS-BF and FRCPS for
NArdN × NArdND data sets

Query execution Creation + query

Time (ms) Execution time (s)

K CCPS-BF FRCPS CCPS-BF FRCPS

1 467.81 31.99 8.698 1.421

10 473.99 32.44 8.704 1.422

100 481.24 34.27 8.711 1.423

1000 496.50 44.53 8.727 1.434

10000 586.10 66.24 8.816 1.455

Geoinformatica (2016) 20:571–628 621

Table 24 Number of disk accesses of CCPS-BF and FRCPS algorithms for NArdN × NArdND and
Water × Build data sets

Number of disk accesses

NArdN × NArdND Water × Build

K CCPS-BF FRCPS CCPS-BF FRCPS

1 80,562 8,955 813,256 709,320

10 80,582 8,967 813,386 709,592

100 80,616 8,987 813,786 710,464

1000 80,784 9,095 815,094 712,796

10000 81,290 9,519 819,130 720,012

Considering all experiments and all data sets, we find that FRCPS overcomes CCPS-BF
38-2 times for query execution time, 40-0 for total time and 38-2 times for disk accesses.

6.8.2 Experimental results for εDJQ

The same 8 combinations of data sets were used in order to take measurements while exe-
cuting the εDJQs with ε = 0, 1.25 × 10−5, 2.5 × 10−5, 5 × 10−5 and 10 × 10−5 for the
first 5 combinations (medium real and synthetic data), and with ε = 0, 1.25 × 10−3, 2.5 ×
10−3, 5×10−3 and 10×10−3 between the last 3 combinations (big real data). We have cho-
sen the fastest algorithm for executing εDJQwith R-trees: the εCCPS-BF. On the other hand
we have chosen to compare to the εFRCPS algorithm executing the same εDJQs because it
is faster than εSRCPS algorithm in more cases (50-20) of all combinations and all ε values.
Observing the values of the metrics of experiments on real and synthetic data, small or big
data sets for all the 8 combinations we see that the εFRCPS was the absolute winner for all
values of ε and for all metrics. Table 26 shows both the values of query time and total time
(creation + query) needed by the εCCPS-BF and εFRCPS algorithms to execute the εDJQ
on the biggest combination, Park × Build data sets. As the value of ε increases, the rela-
tive difference of execution time between the two algorithms was slightly reduced (gain by
98.62 %, 96.76 %, 94.88 %, 91.16 % and 83.95 %). The total time, creation and query exe-
cution time showcased similar behavior with an even smaller reduction. εFRCPS needs less
total time gain of 88.80 %.

Table 25 Query execution time(s) and total time(s) (creation+execution) of CCPS-BF and FRCPS for
Water × Build data sets

Query execution Creation + query

Time (s) Execution time (s)

K CCPS-BF FRCPS CCPS-BF FRCPS

1 3.577 3.256 1,147.371 137.094

10 3.607 1.646 1,147.401 135.484

100 3.596 1.829 1,147.391 135.667

1000 3.619 2.319 1,147.413 136.157

10000 3.810 5.302 1,147.605 139.140

622 Geoinformatica (2016) 20:571–628

Table 26 Query execution time(s) and total time(s) (creation+execution) of εCCPS-BF and εFRCPS for
Park × Build data sets

Query execution Creation + query

Time (s) Execution time (s)

ε × 10−3 εCCPS-BF εFRCPS εCCPS-BF εFRCPS

0.00 127.9 1.770 1,314 140.8

1.25 158.3 5.129 1,344 144.2

2.50 159.4 8.157 1,345 147.2

5.00 161.1 14.249 1,347 153.3

10.0 164.2 26.354 1,350 165.4

In Table 27 we can see the number of disk accesses when εDJQ is executed by the
εCCPS-BF and εFRCPS algorithms on Park × Build data sets. The increment of ε didn’t
significantly affect the number of needed disk accesses for both algorithms. εFRCPS again
proved to be more efficient than εCCPS-BF by an average gain of 89.46 %.

Considering all experiments and all data sets, we find that εFRCPS overcomes εCCPS-
BF in all cases of ε values and for all data sets in all performance metrics.

6.9 Conclusions from the experiments

In our previous work [1], it was shown that the Reverse Run PS algorithms are faster than
the Classic ones for the KCPQ, when the data is stored and processed in main memory.
Classic PS algorithms always process data sets from left to right and the runs of the two sets
are generally interleaved. On the other hand, RR PS algorithms process pairs of points in
opposite sweeping order, starting from pairs of points that are the closest possible to each
other, avoiding further processing of pairs that is guaranteed not to be part of the final result
and restricting the search space by using dx distance values on the sweeping axis. Due to
these, the pruning distance (key dist of MaxKHeap root) is expected to be updated more
quickly and the query processing cost of RR PS algorithms is expected to be smaller.

From the experiments presented previously, when the data are stored on disk, we con-
clude that the main factors that determine the execution time are: (1) The number of
operations and comparisons; (2) The number of pages that are transferred from disk to main
memory; (3) The volume of memory required and its management; and (4) How quickly

Table 27 Number of disk accesses of εCCPS-BF and εFRCPS algorithms for Park × Build data sets

Number of disk accesses

ε × 10−3 εCCPS-BF εFRCPS

0.00 7,347,596 742,593

1.25 7,356,476 754,233

2.50 7,365,108 765,657

5.00 7,382,220 788,657

10.0 7,416,790 834,369

Geoinformatica (2016) 20:571–628 623

maxKHeap is filled up with pairs having small distances and how fast the pruning dis-
tance is reduced (it is important for the KCPQ, unlike the εDJQ), because the lower its
value is, the greater the power of pruning. Each of these factors affects differently the final
result. FRCPS is faster in more cases, considering different values of K , disk page size
(pg), size of strips (ss) and size of LRU buffer (bs), although SRCPS requires less memory
in comparison to FRCPS.

With respect to the number of dx distance calculations, the SRCPS algorithm seems to
be better (lower number of calculations) in most cases, although FRCPS is quite close (i.e.
the difference compared to SRCPS in total calculations is rather small). This is due to the
fact that for the RR PS algorithms, if we ignore the non-sweeping dimension, the number
of calculations can be proved to be optimal, since we always start with the closest pair of
points.

With respect to the number of disk accesses, FRCPS needs the least disk accesses in
all experiments (considering different values of K , pg and ss). This is due to the combi-
nation of RR PS processing and the uniform filling technique, since, for uniform filling,
the number of strips is predefined beforehand and it is smaller than for uniform splitting
(higher non-uniformity of data leads to larger difference between the two techniques). This
means that the number of strips read from disk, or the number of disk accesses, is smaller.
In addition, the number of disk accesses seems to be the most influential factor governing
an algorithm’s efficiency in execution time, and the difference between SRCPS and FRCPS
becomes significant for this performance measure: FRCPS is totally dominating, and thus,
faster.

In conclusion, FRCPS is the best algorithm for all performance or efficiency measures
for the following reasons:

1. a smaller number of strips partition the space,
2. a smaller number of strips are read from disk,
3. a more consistent application of RR PS processing is applied in the management of

strips.

Moreover, this work emphasizes on the effective use of dx distance for pruning, consid-
ering the selection ratio as the effectiveness measure. The main conclusion in this context
is that RR PS algorithms are the most effective ones for pruning, highlighting that SRCPS
is slightly better than FRCPS.

Finally, from this extensive experimental study of the new algorithms, we conclude that
RR PS algorithms are the most efficient and effective ones for the KCPQ and εDJQ, and
the FRCPS variant is the best one.

Regarding the comparison of the new algorithms to the widely accepted R-tree based
methods, the file needed by the new algorithms is created in extremely smaller time than
the R-tree structure. The best new algorithm (FRCPS) answers the KCPQ in significantly
smaller time than the best R-tree based algorithm (CCPS-BF), in most cases. It is slower in
only 2 cases out of the 40 cases studied. An analogous situation (in 2 out of the 40 cases
the new algorithm looses) arises for the number of disk pages read by the algorithms. This
can be attributed to the data distribution of these cases that favors the algorithms that work
on a tree structure. Nevertheless, even in these 2 cases, the total (creation + query) time of
the new algorithm for answering the KCPQ is significantly smaller. The best new algorithm
(εFRCPS) answers the εDJQ in significantly smaller time and with significantly less pages
read from disk than the best R-tree based algorithm (εCCPS-BF), in all cases. The fact that
the εDJQ requires finding of all (not only K) pairs within a specified distance forces the

624 Geoinformatica (2016) 20:571–628

R-tree algorithms to search within the whole tree, and thus the new algorithm is faster even
in the above 2 cases.

Overall, even when the data sets do not change at a very rapid rate, or are reusable for
subsequent queries, the best new algorithm is a better choice than the best R-tree based
algorithm for the KCPQ and the εDJQ.

7 Conclusions and future work

This paper has presented several efficient and effective algorithms (FCCPS, SCCPS, FRCPS
and SRCPS) for the KCPQ and εDJQ, when neither inputs are indexed. First of all, we
have enhanced the classic plane-sweep algorithm for DJQs with two improvements: slid-
ing window and sliding semi-circle. Next, we proposed a new algorithm called Reverse Run
Plane-Sweep, that improves the processing of the classic plane-sweep algorithm for DJQs,
minimizing the Euclidean and sweeping axis distance calculations. Then, as the main con-
tribution of this work, four algorithms (FCCPS, SCCPS, FRCPS and SRCPS) for KCPQ
and εDJQ are proposed, without the use of indexes on both disk-resident data sets. These
four algorithms employ a combination of plane-sweep and space partitioning techniques
to join the data sets. We also presented results of an extensive experimental study, where
efficiency and effectiveness measures are explored for the proposed algorithms. From this
performance study, that was conducted on medium and big spatial (real and synthetic) data
sets, when neither input is indexed, we conclude that RR PS algorithms are the most effi-
cient and effective for the KCPQ and εDJQ, and that FRCPS is the best variant, which
combines RR PS processing with uniform filling partitioning technique. Finally, the best of
the new algorithms was experimentally compared to the best algorithm that is based on the
R-tree (a widely accepted access method), for KCPQs and εDJQs and it was shown that
the new algorithms outperform R-tree based algorithms, in most cases. For future work, we
plan to further investigate the adaptation of the new plane-sweep-based algorithms, when
neither input is indexed, to other DJQs (as Iceberg Distance Join Query [42] and K Near-
est Neighbour Join query [43]). Moreover, it would be interesting to study approximate
implementations of the proposed algorithms by using the distance-based approximate tech-
niques presented in [37] and to implement new in-memory DJQ algorithms inspired in the
disk-based approaches.

Acknowledgments Work of all authors funded by the Development of a GeoENvironmental information
system for the region of CENtral Greece (GENCENG) project (SYNERGASIA 2011 action, supported by
the European Regional Development Fund and Greek National Funds); project number 11SYN 8 1213. Work
of Antonio Corral also supported by the MINECO research project [TIN2013-41576-R] and the Junta de
Andalucia research project [P10-TIC-6114].

References

1. Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2014) A new plane-sweep algorithm for
the k-closest-pairs query. In: SOFSEM conference, pp 478–490

2. Güting RH (1994) An introduction to spatial database systems. VLDB J 3(4):357–399
3. Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall

Geoinformatica (2016) 20:571–628 625

4. Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2):170–231
5. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial

databases. In: SIGMOD conference, pp 189–200
6. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2004) Algorithms for processing k-

closest-pair queries in spatial databases. Data Knowl Eng 49(1):67–104
7. Preparata FP, Shamos MI (1985) Computational geometry - an introduction. Springer
8. Hinrichs K, Nievergelt J, Schorn P (1988) Plane-sweep solves the closest pair problem elegantly. Inf

Process Lett 26(5):255–261
9. Jacox EH, Samet H (2007) Spatial join techniques. ACM Trans Database Syst 32(1):7

10. Shin H, Moon B, Lee S (2003) Adaptive and incremental processing for distance join queries. IEEE
Trans Knowl Data Eng 15(6):1561–1578

11. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access
method for points and rectangles. In: SIGMOD conference, pp 322–331

12. Jacox EH, Samet H (2003) Iterative spatial join. ACM Trans Database Syst 28(3):230–256
13. Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter JS (1998) Scalable sweeping-based spatial join. In:

VLDB conference, pp 570–581
14. Gurret C, Rigaux P (2000) The sort/sweep algorithm: a new method for r-tree based spatial joins. In:

SSDBM conference, pp 153–165
15. Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) New plane-sweep algorithms for

distance-based join queries in spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece,
http://delab.csd.auth.gr/∼michalis/TR-01-2014.pdf

16. Hjaltason GR, Samet H (1998) Incremental distance join algorithms for spatial databases. In: SIGMOD
conference, pp 237–248

17. Rigaux P, Scholl M, Voisard A (2002) Spatial databases - with applications to GIS. Elsevier, San
Francisco

18. Samet H (2007) Foundations of multidimensional and metric data structures. Morgan Kaufmann, San
Francisco

19. Nobari S, Tauheed F, Heinis T, Karras P, Bressan S, Ailamaki A (2013) TOUCH: in-memory spatial
join by hierarchical data-oriented partitioning. In: SIGMOD conference, pp 701–712

20. Sowell B, Salles MAV, Cao T, Demers AJ, Gehrke J (2013) An experimental analysis of iterated spatial
joins in main memory. PVLDB 6(14):1882–1893

21. Sidlauskas D, Jensen CS (2014) Spatial joins in main memory Implementation matters! PVLDB 8(1):97–
100

22. Zhang H, Chen G, Ooi BC, Tan K, Zhang M (2015) Inmemory big data management and processing: a
survey. IEEE Trans Knowl Data Eng 27(7):1920–1948

23. Mamoulis N, Papadias D (2001) Multiway spatial joins. ACM Trans Database Syst 26(4):424–475
24. Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In:

SIGMOD conference, pp 237–246
25. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD conference, pp

47–57
26. Lo M-L, Ravishankar CV (1996) Spatial hash-joins. In: SIGMOD conference, pp 247–258
27. Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: SIGMOD conference, pp 259–270
28. Smid M (2000) Closest-point problems in computational geometry. In: Sack J-R, Urrutia J (eds)

Handbook of computational geometry. Elsevier, Ch 20, pp 877–935
29. Corral A, Almendros-Jiménez JM (2007) A Performance comparison of distance-based query algorithms

using r-trees in spatial databases. Inf Sci 177(11):2207–2237
30. Kim YJ, Patel JM (2010) Performance comparison of the r*-tree and the quadtree for knn and distance

join queries. IEEE Trans Knowl Data Eng 22(7):1014–1027
31. Gutiérrez G, Sáez P (2013) The k closest pairs in spatial databases when only one set is indexed.

GeoInformatica 17(4):543–565
32. Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search

methods in high-dimensional spaces. In: VLDB conference, pp 194–205
33. Koudas N, Sevcik KC (2000) High dimensional similarity joins: algorithms and performance evaluation.

IEEE Trans Knowl Data Eng 12(1):3–18
34. Chan EPF (2003) Buffer queries . IEEE Trans Knowl Data Eng 15(4):895–910
35. Yang C, Lin K-I (2002) An index structure for improving nearest closest pairs and related join queries

in spatial databases. In: IDEAS conference, pp 140–149
36. Angiulli F, Pizzuti C (2005) An approximate algorithm for top-k closest pairs join query in large high

dimensional data. Data Knowl Eng 53(3):263–281

http://delab.csd.auth.gr/~michalis/TR-01-2014.pdf

626 Geoinformatica (2016) 20:571–628

37. Corral A, Vassilakopoulos M (2005) On approximate algorithms for distance-based queries using r-trees.
Comput J 48(2):220–238

38. Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: SSTD conference, pp 252–
269

39. U LH, Mamoulis N, Yiu ML (2008) Computation and monitoring of exclusive closest pairs. IEEE Trans
Knowl Data Eng 20(12):1641–1654

40. Cheema MA, Lin X, Wang H, Wang J, Zhang W (2011) A unified approach for computing top-k pairs
in multidimensional space. In: ICDE conference, pp 1031–1042

41. Choi D, Chung C, Tao Y (2014) Maximizing range sum in external memory. ACM Trans. Database Syst.
39(3):21:1–21:44

42. Shou Y, Mamoulis N, Cao H, Papadias D, Cheung DW (2003) Evaluation of iceberg distance joins. In:
SSTD conference, pp 270–288

43. Böhm C, Krebs F (2004) The k-nearest neighbour join: turbo charging the kdd process. Knowl Inf Syst
6(6):728–749

44. Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In:
SSDBM conference, pp 297–306

45. Bryan B, Eberhardt F, Faloutsos C (2008) Compact similarity joins. In: ICDE conference, pp 346–
355

46. Graefe G (1993) Query evaluation techniques for large databases. ACM Comput Surv 25(2):73–
170

47. Aggarwal A, Vitter JS (1988) The input/output complexity of sorting and related problems. Commun
ACM 31(9):1116–1127

48. Leutenegger ST, Edgington JM, Lopez MA (1997) Str: a simple and efficient algorithm for r-tree
packing. In: ICDE conference, pp 497–506

George Roumelis studied Physics in Aristotle University of Thessaloniki (AUTH), Greece and is currently
working as a teacher and a vice-principle in a local high school of Thessaloniki, Greece. He obtained a
master’s degree in Information Systems from the Open University of Cyprus (2011) and is currently a PhD
candidate in the Department of Informatics of AUTH, working on spatial databases. His main research inter-
ests include access methods, query processing and spatial and spatio-temporal databases. He has published
several original papers in international conferences. His interests also include software development and
support for educational and administration units in the public educational system of Greece.

Geoinformatica (2016) 20:571–628 627

Antonio Corral is an Associate Professor at the Department of Informatics, University of Almeria (Spain).
He received his PhD (2002) in Computer Science (European Doctorate) from the University of Almeria
(Spain). He has participated actively in several research projects in Spain (INDALOG, vManager, etc.) and
Greece (CHOROCHRONOS, ARCHIMEDES, etc.). He has published in referred scientific international
journal (Data & Knowledge Engineering, The Computer Journal, GeoInformatica, Information Sciences,
etc.), conferences (SIGMOD, SSD, ADBIS, SOFSEM, PADL, etc.) and book chapters. His main research
interests include access methods, query processing and spatial and spatio-temporal databases.

Michael Vassilakopoulos obtained a five-year Diploma in Computer Eng. and Informatics from the Univer-
sity of Patras (Greece) and a PhD in Computer Science from the Department of Electrical and Computer Eng.
of the Aristotle University of Thessaloniki (Greece). He has been with the University of Macedonia, the Aris-
totle University of Thessaloniki, the Technological Educational Institute of Thessaloniki, the Hellenic Open
University, the Open University of Cyprus, the University of Western Macedonia, the University of Central
Greece and the University of Thessaly. For three years he served the Greek Public Administration as an Infor-
matics Engineer. Currently, he is an Associate Professor of Database Systems at the Department of Electrical
and Computer Engineering of the University of Thessaly. He has participated in/coordinated several RTD
projects related to Databases, GIS, WWW, Information Systems and Employment. His research interests
include databases, data structures, algorithms, data mining, employment analysis, information systems, GIS
and current trends of data management.

628 Geoinformatica (2016) 20:571–628

Yannis Manolopoulos is Professor with the Department of Informatics of Aristotle University of Thessa-
loniki. He has been with the University of Toronto, the University of Maryland at College Park and the
University of Cyprus. He has also served as Rector of the University of Western Macedonia in Greece, Head
of his own department, and Vice-Chair of the Greek Computer Society. He has co-authored 5 monographs
published by Kluwer and Springer, 8 textbooks in Greek, as well as ∼300 journal and conference papers
on Data Management. He received > 10000 citations from > 1500 distinct academic institutions and 2 best
paper awards from ACM SIGMOD and ECML/PKDD conferences. He has also served as main co-organizer
of several major fora, among others: ADBIS 2002, SSTD 2003, SSDBM 2004, ICEIS 2006, EANN 2007,
ICANN 2010, AIAI 2012, WISE 2013, CAISE 2014, conferences. He has acted as evaluator for funding
agencies in Austria, Canada, Cyprus, Czech Republic, Estonia, EU, Hong-Kong, Georgia, Greece, Israel,
Italy and Russia. Currently, he serves in the Editorial Board of The VLDB Journal, The World Wide Web
Journal, The Computer Journal.

	New plane-sweep algorithms for distance-based join queries in spatial databases
	Abstract
	Introduction
	Preliminaries and related work
	K closest pairs query and distance join query
	Related work
	Spatial join
	KCPQ and DJQ
	Other related distance-based join queries

	Plane-sweep in distance-based join queries
	Classic plane-sweep algorithm
	Improving the classic plane-sweep algorithm
	Extension to distance join query

	Reverse run plane-sweep algorithm for distance join queries
	Reverse run plane-sweep algorithm for KCPQs
	Extension to distance join query

	External sweeping-based distance join algorithms
	The external sweeping-based KCPQ algorithms
	Algorithms using uniform filling
	The FCCPS algorithm
	The FRCPS algorithm

	Algorithms using uniform splitting
	The SCCPS algorithm
	The SRCPS algorithm

	Analysis
	Extension to distance join query

	Performance evaluation
	Experimental setup
	The effect of the number of pairs (K)
	The execution time
	The number of the dx distance calculations
	The number of the disk accesses (pages read)

	The effect of the disk page size (pg)
	The execution time
	The number of dx distance calculations
	The number of the disk accesses (pages read)

	The effect of the size of strips (ss)
	The execution time
	The number of dx distance calculations
	The number of the disk accesses (pages read)

	The effect of the LRU buffer
	Experimental results for DJQ
	The execution time
	The number of dx distance calculations
	The number of the disk accesses (pages read)

	Effectiveness study
	Performance comparison to R-trees
	Experimental results for KCPQ
	Experimental results for DJQ

	Conclusions from the experiments

	Conclusions and future work
	Acknowledgments
	References

