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Abstract Massive amount of data that are associated with geographic information are gener-
ated in Internet. More and more researches focus on how to retrieve geo-textual data effec-
tively. Existing methods mostly allow exact matches for query keywords but fail to support
fuzzy preference queries. In this paper, we study the skyline problem of fuzzy preference
queries. That is, given a set of geo-textual data, the skyline comprises the objects that are not
dominated by others. In this paper, we only consider the problem of two dimensions, the text
relevance dimension and the spatial relevance dimension. We introduce two functions to
quantify the text relevance and the spatial relevance. We also develop a new index structure
to organize the geo-textual data and an algorithm based on it. Theoretical analysis and
experimental results show that our method offers scalability and good performance.

Keywords Geo-textual data . Skyline . Fuzzy . Text relevance . Spatial relevance

1 Introduction

With the development of social networking services, massive data that are associated with geo-
graphic information are generated in internet, including geo-tagged micro-blogs, the social network
login information and points of interests (POIs). These data contain both text information and
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geographic information, and we refer to them as geo-textual objects. Nowadays Location Based
Services (LBS) have been widely used [1]. According to recent reports, 53 % of mobile searches
have local intent, and 20 % of Google searches are related to location [2].

Among these queries, keywords and locations are two important constraints for users, and
they may want to query the geo-textual data with both of them. In most of time, too many
results satisfying the constraint are returned and the Bbetter^ results should be returned
according to some ranking rule. Such queries are called preference queries.

Two major kinds of preference queries are top-k and skyline queries. Top-k queries on
geo-textual data have been extensively studied [3–9]. However, sometimes, the weights of the
dimensions in top-k queries are unknown. For instance, a user wants to retrieve tweets which
contain term Bhouse sale^ and are posted within 10 km of user’s workplace. As the user may
input the wrong keywords, systems should return results after considering both the similarity
of keywords and the distance. However, there is not a best allocation plan about the weights of
these two dimensions. We cannot get a measuring standard to obtain the top-k answers. In this
case, users may want to know all of the good results. Such queries are skyline queries which
are seldom considered on geo-textual data.

For this reason, we focus on the skyline problems [10, 11] in this paper. Given a set of
geo-textual objects, the skyline comprises the objects that are not dominated by others. An
object dominates another one only if it is as good or better in all dimensions and better in at least
one dimension [12]. In our paper, a user submits a query with a set of keywords which describe
objects he/she wants to retrieve, his/her location, and the scope of the query. Analogously, a
geo-textual object also contains a set of keywords and its location. Our proposed skyline query
comprises two dimensions, the text relevance which evaluates the similarity between query
keywords and object keywords and the spatial relevancewhichmeasures the distance between a
geo-textual object and the user. We need to return the objects that are not dominated by others to
the user. In this paper, an object may dominate another one when it is better in the text relevance
dimension and as good in the spatial relevance dimension, and vice versa.

Existing methods [2, 13, 14] mostly allow exact matches for query keywords but fail to
support fuzzy queries. But as the characteristics of the mobile terminal such as restrictions on
the size of the screen, users are likely to make mistakes during inputting. The most commonly
used fuzzy query algorithm to solve this problem is based on edit distance. That is, when the
edit distance between two keywords is less than or equal to the threshold which are set in
advance, we consider that they match approximately. For example, we set the threshold value
to 2, and the edit distance between Brestaurant^ and Brestaurent^ is 1, thus we consider that
these two keywords match approximately. However, the most significant drawback in this
method is that the threshold should change as the length of keywords varies. For instance,
when we set the threshold value to 4, it may work well for those long keywords with a length
of more than 10. But it doesn’t for short keywords, for example, all of the 5-length keywords
which start with character ‘b’ would match Bbread^ approximately when the threshold value is
set to 4. Obviously, such keywords are a lot. Thus we present a new function to quantify the
text relevance between geo-textual objects and the query, by considering the edit distance and
the keyword weight instead of setting the threshold in advance. And this function is also
appropriate for multi-keyword queries. In our method, we integrate the edit distance into our
text relevance function and use the result of this function to measure the text relevance, and
then get the skyline results according to it. There is no need to know whether the keywords of
an object match the query keywords or not. Thus, we do not need to set a threshold
in advance.
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Most of the existing spatial index structures are based on tree structures, such as
R-tree and Quad-tree [2]. According to the spatial location, we can easily index the
corresponding spatial object. As the query in our paper includes a specified spatial
region, we propose a new hybrid index structure, Inverted-KD tree, to manage the
objects. The Inverted-KD tree integrates the kd-tree for organizing the spatial region
information and the inverted file for organizing the keyword expression. The
Inverted-KD tree is essentially a kd-tree extended with inverted files. A main differ-

allows direct leaf-to-leaf retrieval, that is, we can retrieve one leaf node directly from
its adjacent leaf node by a pointer without from the root node. Actually, each leaf
node of a kd-tree has four pointers to the adjacent leaf nodes, and is associated with
an inverted file that organizes the keyword expression of the objects.

The contributions in our paper are as follows:

& We introduce two functions to quantify the text relevance and the spatial relevance
between geo-textual data and the query. Especially, our function for the text relevance is
the first one to deal with multi-keyword queries as we know.

& We present a new hybrid index structure, Inverted-KD tree, and propose an algorithm
based on the structure to solve the skyline problem efficiently.

& We conduct experiments on real data sets, and results show that our ideas offer scalability
and are capable of excellent performance.

The rest of our paper is organized as follows. In Section 2, we introduce related work. In
Section 3, we give the problem statement. Section 4 presents two functions to calculate the text
relevance and the spatial relevance. Section 5 introduces a new hybrid index structure called
Inverted-KD tree and an algorithm. Section 6 reports the experimental results and Section 7
concludes this paper.

2 Related work

Spatial keyword search Spatial keyword queries [15–22] have attracted much atten-
tion in recent years. It aims to retrieve objects which satisfy both spatial and keyword
constraints. Hu [23] et al. proposed Region Trie-tree based on Trie-tree. Chen [2] et
al. proposed IQ-tree which is essentially a Quad-tree extended with inverted files.
Cong [24] et al. introduced IR-tree which is essentially an R-tree equipped with
inverted files. Felipe [13] et al. raised IR2-tree which integrates signature file and
R-tree. Zhang [14] et al. presented bR*-tree by extending R*-tree with bitmaps. Li
[25] et al. proposed a novel direction-aware index structure based on traditional
MBRs. Zhang [26] et al. devised IL-Quadtree based on the linear quadtree and
inverted index to reduce the search space effectively.

The query in our paper includes a specified spatial region. If we use the existing spatial
index structures, we need to retrieve all the leaf nodes from the root node. Thus we propose a
new hybrid index structure that integrates the kd-tree and inverted files. Especially, each leaf
node of the kd-tree has four pointers to the adjacent leaf nodes. In this new index structure,
after we retrieve one leaf node we can directly start a new retrieve on another leaf node without
beginning from the root node.
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Fuzzy queries Works on approximate string search [27–29] have been researched for
a long time. The most commonly used method is dynamic programming algorithm
which is based on edit distance. The edit distance is the minimum number of edit
operations required to transform one string into another one. Most commonly, the edit
operations allowed for this purpose are: insert a character into a string, delete a
character from a string and replace a character of a string by another character. We
preset a threshold, when the edit distance between two strings is less than or equal to
the threshold, we consider that they match approximately. Xiao [30] et al. introduced
a Top-k method, that is, change the threshold constantly until getting the Top-k
answers. Recently, Hu [23] et al. proposed a function to quantify the relevance
between two objects, but it only allows single keyword queries.

In this paper, we present a new function to measure the similarity of two sets of
keywords by considering the edit distance and the keyword weight instead of setting
the threshold in advance. Furthermore, this function is appropriate for multi- keyword
queries.

The skyline operator The basic idea of skyline queries came from some old research topics
like maximum vectors and convex hull.

Borzsonyi [12] et al. first introduced the skyline operator into relational database
systems and introduced three algorithms: the block nested loops (BNL), divide-
and-conquer, and B-tree-based schemes. Kossmann [31] et al. proposed a Nearest
Neighbor (NN) method to process skyline queries. By indexing the dataset with the
R*-tree, this method partition the space recursively with the result of nearest neighbor
query. Papadias [32] et al. presented a new progressive algorithm Branch- and-Bound
Skyline based on the best-first nearest neighbor algorithm. This new approach exe-
cutes just one access to the R-tree nodes which may contains the skyline points
instead of multiple accesses to the same node. Lee [33] et al. focused on two methods
about multidimensional subspace skyline computation and developed orthogonal opti-
mization principles. Liu [34] et al. proposed ZINC which is a new indexing method
for efficient skyline computation.

We propose a skyline query processing algorithm for geo-text objects based on the
Inverted-KD tree. Our work differs from existing methods in that it does not need to know
all the dimension values of some objects.

3 Problem statement

In this section, we define the problem and related concepts.

Definition 1 A geo-textual object is defined as o=<w,l>, where o.w is a set of keywords and
o.l is a spatial point with longitude and latitude.

For instance, geo-textual objects can be geo-tagged micro-blogs, the social network login
information, or points of interests.

Definition 2 A spatial-keyword query is defined as q=<T,s>, where q.T= {t1,t2,…,tn} is a set
of query keywords and q.s is a spatial range in form of a circle.

We can use the longitude and latitude of the center and radius of the circle to describe q.s.
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Problem definition For a spatial-keyword query q including a set of keywords and a
spatial range which is restricted to a circle, the results of q is a set called Skyline
which comprises the objects that are not dominated by the rest objects within the
query range. An object dominates another one only if it is as good or better in all
dimensions and better in at least one dimension [12]. As we tackle the problem of
fuzzy queries, an object in our paper has two dimensions, the text relevance dimen-
sion which measures the level of similarity between query keywords and the text
information of geo-textual data as well as the spatial dimension which evaluates the
distance between the user and the geo-textual object.

We use the following example to illustrate the problem.

Example 1 As shown in Fig. 1, a user wants to find the objects which contain the keywords
w2 and w3, and are within r km of the location of q. In this example, the query keywords are w2

and w3, the spatial range is a circle of which radius is r km and center is the location of q. Then
o2 is returned to the user, because o2 has the highest text relevance among the objects within
query range.

Fig. 1 problem statement
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4 Relevance function

In this section, we propose two functions to quantify the text relevance and the spatial
relevance between geo-textual data and the query. Especially, the function for spatial relevance
refers to Hu [23].

4.1 The text relevance function

As we tackle the problem of fuzzy queries, the text relevance between a geo-textual object and
the query is vital. It can support fuzzy queries by measuring the similarity between the text
information of geo-textual data and keywords in the query.

Our proposed text relevance function has a full consideration at the similarity between
different keywords and keywords weight. More importantly, our method allows multi-
keyword queries.

The function to calculate the text relevance in our paper is based on edit distance. The edit
distance [23] is the minimum number of edit operations required to transform one string into
another, such as inserting, deleting and replacing. For example, the edit distance between
Bsheep^ and Bslep^ is 2. We should replace Bh^ in Bsheep^ by Bl^ and delete an Be^ from
Bsheep^ to transform the string Bsheep^ into Bslep^.

The keyword weight is another critical factor. For example, a cafe would like to offer magazines
to customers, thus the geo-textual object which represents this cafemay have the keywords Bcoffee^
and Bmagazines^.When a customer in this cafewants to find the nearest place to buymagazines, the
content of query should contains Bmagazines^ taking no account of wrong inputting. Under this
circumstance, as she is just in this café, that is, this café is the nearest place to this customer and the
textual content of the cafe contains Bmagazines^, our system will certainly return the object which
represents this café to the user. The answer is obviously wrong. An object may contain many
keywords, but only a few could represent the object and these keywords should have higherweights.
For instance, for a café, Bcoffee^ should have a higher weight than Bmagazines^.

In our paper, we use a set of counters to set the value of keyword weight in a certain object. For
example, we set a set of countersCo={c1,c2,c3} for a geo-textual object owhere o.w={w1,w2,w3}.
Then we preset a threshold denoted by β. For each keyword tj in a query where q.T={t1,t2,…,tn}, if
the edit distance between wi and tj is minimum and less than or equal to β, then we make ci plus 1.
When the sum of the counters of o is equal to 1000, we reset the weight ofwi value to the frequency
of it and the counters value to 0. For example, if c1 is 700, c2 is 200 and c3 is 100, then we set the
weight of w1 value to 0.7, the weight of w2 value to 0.2 and the weight of w3 value to 0.1.

In our paper, an object may have many keywords. We adopt the keyword which has the
minimum edit distance with the query keyword to calculate the text relevance. Furthermore, as
a query has more than one keyword, we average the text relevance of different keywords.

Consider a query q with q.T = {t1,t2,…,tn} and a geo-textual object o with
o.w= {w1,w2,…,wm}, we refer to RT(q,o) as the text relevance. It can be estimated by Eq. (1).

RT q; oð Þ ¼
Xn

i¼1

ω w*
i

� �� 1−
ed ti;w*

i

� �

li

� �
� 1

n
ð1Þ

In Eq. (1), wi
* represents the keyword in o which has the minimum edit distance with ti,

ω(wi
*) is its weight, ed(ti,wi

*) is the edit distance between ti and wi
*, and li represents the length

of ti. Especially, the subscripts of keywords wi are from 1 to n.
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4.2 The spatial relevance function

We proceed to present a function for the spatial relevance. Consider a user query q and a
geo-textual object o, we refer to RS(q,o) as the spatial relevance between q and o. Obviously,
the value of RS(q,o) is only determined by one parameter, the distance between q and o. It can
be easily estimated by a brief expression. Here we use Hu’s method [23] to estimate RS(q,o) as
it is straightforward enough.

RS q; oð Þ ¼ 1−
d q; oð Þ

r
ð2Þ

In Eq. (2), d(q,o) represents the Euclidean distance between q and o, and r represents the
radius of query q. We specify RS(q,o) to [0,1] divided by r. We conclude that the spatial
relevance will increase with the Euclidean distance between q and o decreasing. Especially, we
only need to retrieve objects in the scope of the user query, that is, d(q,o) should be less than r
and RS(q,o) is equal to or greater than zero. We ignore objects whose RS(q,o) are less than zero.

5 Algorithms

In this section, we propose a new index structure called Inverted-KD tree to organize
geo-textual objects and also an algorithm for skyline query processing based on this index.

5.1 Inverted-KD Tree

The query in our paper includes a specified spatial region. If we use the existing spatial index
structures, we need to retrieve all the leaf nodes from the root node. Thus, we propose a new
hybrid index structure Inverted-KD tree to manage the objects. The Inverted-KD tree is
essentially a kd-tree extended with inverted files.

Kd-tree component As shown in Fig. 2, the root node is associated with the attribute
abscissa and the value a, and the second level is associated with the attribute ordinate and
the value a. Then the third level is associated with the attribute abscissa and the value
a/2, the fourth level is associated with the attribute ordinate and the value a/2, the
fifth level is associated with the attribute abscissa and the value a/4, and so on. This
kd-tree covers a square area of 2a*2a. Especially, each leaf node of the kd-tree has a
pointer to the adjacent leaf node.

As shown in Fig. 2, when we have retrieved the leaf node 3, we can easily find the leaf node
4 by the pointer instead of starting from the root.

Inverted file component Each leaf node of the Inverted-KD tree is associated with an
inverted file for keywords of the geo-textual objects. The system could retrieve the text
information according to the spatial information.

As a geo-textual object has several keywords, it appears in the table of every keyword. For
example, the geo-textual object o3 in Fig. 1 has three keywords, w1, w2, and w3. Thus o3 is
stored in all tables of w1, w2, and w3. That means that the frequency of an object in the inverted
file equals to the number of its keywords.
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We divide the space into a grid of n×n, that is, the number of leaf nodes is n2. As the
Inverted-KD tree is a binary tree, there are 2n2-1 nodes in all. When the first time we retrieve
the Inverted-KD tree, we need to start from the root node, and the time complexity is
O(log(2n2-1)) =O(logn). But the time complexity will be O(1) when we retrieve the
Inverted-KD tree again directly from another leaf node by the pointer.

Given a set of objects, we first need to compute a square area which can cover all
of the objects. Then we assign the median of this foursquare in abscissa to the root
node and also the median in ordinate to the second level. Now, we divide this square
area into a grid of 2 × 2. We consider these four grids as new root nodes and divide
them recursively until the grids are tiny enough. At last, we assign inverted files to
leaf nodes for storing text information of these objects.

When a new query comes, we first extract the location of the query. Then we
search from the root node until we find the leaf node associated with the query. For
example, we extract the coordinate of a query denoted by (2a/3, 5a/3). We first
compare 2a/3 with the root’s abscissa value a, obviously, we should search the root’s
left child. Then we will compare 5a/3 with second level’s ordinate value a, and we
will continue to search the current node’s right child. Now the current node represents
a square area which is from 0 to a in abscissa and from a to 2a in ordinate. As the
third level and fourth level are associated with value a/2, we need to change the
coordinate of the query. Here we change the coordinate of the query to (2a/3, 2a/3).
Then we can continue to search from the current node in the same manner until we
find the leaf node.

Obviously, we need to change the coordinate every two levels until we visit the leaf child.
Suppose that a node covers a square area which is from 0 to m in abscissa and from 0 to m in
ordinate, and the coordinate of the query is (x, y). There are four possible cases.

1. If we visit the left child of the node’s left child, the coordinate of the query doesn’t need
to change.

2. If we visit the right child of the node’s left child, we change the coordinate to (x, y-m/2).
3. If we visit the left child of the node’s right child, we change the coordinate to (x-m/2, y).
4. If we visit the right child of the node’s right child, we change the coordinate to (x-m/2,

y-m/2).

Fig. 2 Inverted-KD Tree
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In the previous example, the root node covers a square area with the abscissa and ordinate
both from 0 to 2a. When we visit the right child of its left child, we change the query’s
coordinate to (2a/3, 2a/3) according to case 2.

The pseudo code for building the index is as follows in Algorithm 1.
Algorithm 1: Build_index(N,O,m)
For each o in O do
if o.x<m/2 and o.y<m/2 then
OLL←o
if o.x<m/2 and o.y>m/2 then
o.y←o.y-m/2
OLR←o
if o.x>m/2 and o.y<m/2 then
o.x←o.x-m/2
ORL←o
if o.x>m/2 and o.y>m/2 then
o.x←o.x-m/2
o.y←o.y-m/2
ORR←o
if m/2> then
Build_index(N->left->left,OLL,m/2)
Build_index(N->left->right,OLR,m/2)
Build_index(N->right->left,ORL,m/2)
Build_index(N->right->right,ORR,m/2)
In this algorithm, we input a node N which covers a square area with the abscissa and

ordinate both from 0 to m and a set of objects O. Line 1~13 change the coordinate of each
object and divide O into four subsets with each one associated with one grandchild of node N.
Then we build the grandchildren ofN recursively until the length of current node is less then the
threshold τ during line 14~18. As this algorithm shows, we build this index every two levels.

After we retrieve this leaf node, we can easily retrieve the surrounding leaf nodes by the pointers
between leaf nodes until we visit thewhole scope of the query. As shown in Fig. 1, after we visit node
1, we can directly visit node 2 by a pointer. In the same manner, we can continue to visit node 3–9.

To add an object, we need to find the leaf node which contains this object with the same
manner described above and add the record of this object to the inverted file associated with
the leaf node. Certainly, the number of objects that a leaf node can accommodate has an upper
limit. When exceeding this limit, this leaf node should be split. We just consider this leaf node
as a root node, and split it into four leaf nodes as the Inverted-KD tree constructs. If an object is
out of the range which the Inverted-KD tree covers, we simply choose a new root node, split it
into four grandchildren and make the original root node become a grandchild of the new root
node. We also need to split the other three grandchildren in the same manner as the
Inverted-KD tree. In this way, our Inverted-KD tree covers a square area as four times as
the original version. To update or delete an object, we need to find the corresponding leaf node
and update or delete its record in the inverted file.

5.2 Skyline query processing algorithm

As discussed in Section 3, the geo-textual objects are stored in the form of o=<w,l>, where
o.w is a set of keywords and o.l is a spatial point with longitude and latitude. If we adopt the
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existing algorithms, we need to compute the text and spatial relevance of every object. It will
incur a great deal of cost. Thus, we present a skyline query processing algorithm for
geo-textual objects.

Consider a query q whose spatial range is a circle of which radius is R. As shown in Fig. 3,
we divide the spatial range into two parts, a small circle whose radius is r denoted by I and the
rest denoted by II. We compute the skyline of the points in I, denoted by SKY1. Supposing
point o is in SKY1 and has the greatest text relevance denoted by M among all the points in
SKY1. We refer to SSP (Suspicious Skyline Points) as the set of those points in II whose text
relevance is greater than M. Then we compute the skyline of the points in SSP denoted by
SKY2 instead of computing the spatial relevance of all the points in II. We merge SKY1 and
SKY2 into SKYas the final result. The SKY1 and SKY2 could be computed according to some
existing methods. Compared to existing methods, we only need to compute the skyline of
partial objects. It is an optimizing of existing approaches. No matter which method we use as
the baseline, our method can achieve the goal of optimizing. In our paper, we adopt the BNL
algorithm because of its typicality and simplicity. Nevertheless, we only need to compute the
skyline of partial points instead of computing the skyline of all of the points by the traditional
BNL algorithm. Undoubtedly, it is an improvement and saves much time.

Experimental result shows that we will get a perfect performance when the value of r/R is
around 0.2.

The accuracy of our algorithm is proved by four theorems as follows.

Theorem 1 SKY1 is a part of the skyline of all the points in the spatial range of query q.

Proof For each point in II, its spatial relevance is less than that of any point in SKY1, because
it is further than points of SKY1. Thus, the points in SKY1 cannot be dominated by those in II.
That is, any point of SKY1 cannot be dominated by any other point in the spatial range of
query q. We can conclude that Theorem 1 is correct.

Theorem 2 Supposing a point o of SKY1 has the greatest text relevance denoted byM among
all the points in SKY1,M is also greater than or equal to the text relevance of any other point in
I.

Fig. 3 skyline problem
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Proof Obviously, M is greater than or equal to the text relevance of any other point in SKY1.
Supposing a point p of I but not in SKY1 has a greater text relevance than M. That is, the text
relevance of p is greater than that of any point in SKY1. There are two possible cases.

1. p is incomparable with all the points in SKY1.
2. p dominates one or more points in SKY1.

Obviously, case 2 will never be happen. If case 1 happens, p will be inserted into SKY1. It
conflicts with the hypothesis. Thus, there isn’t a point p of I but not in SKY1 has a greater text
relevance than M. Then we can conclude that Theorem 2 is right.

Theorem 3 For each point in SSP, it cannot be dominated by any other point which is not in
SSP.

Proof According to the definition of SSP, we can conclude that the text relevance of any point
in SSP is greater than that of any point in I by Theorem 2. Thus, each point of SSP cannot be
dominated by any point of I. We also know that the text relevance of each point in II but not in
SSP is less than that of any point in SSP. That is, any point in SSP cannot be dominated by
points in II but not in SSP. Then we can conclude that Theorem 3 is correct.

Theorem 4 SKY2 is part of the skyline of all the points in the spatial range of query q.

Proof Because SKY2 is part of SSP, any point of SKY2 cannot be dominated by any other
point which is not in SSP by Theorem 3. We also know that every point of SKY2 cannot be
dominated by points in SSP but not in SKY2 according to the definition of SKY2. That is,
points in SKY2 cannot be dominated by any other point which is not in SKY2. Theorem 4 has
been proved.

Theorem 1 and Theorem 4 prove that the algorithm presented in our paper is correct.
We denote the set of objects which is in the spatial range of query q by O. The pseudo code

of our algorithm is as Algorithm 2.

Algorithm 2: Skyline(q,O)
SKY1←Ø, SKY2←Ø, SSP←Ø, SKY←Ø;
SKY1←the skyline of area I;
M←MaxTextRelevance(SKY1);
for each o in area II do
if RT(q,o)>M then
SSP←o;
SKY2←the skyline of SSP;
SKY←SKY1 ∪ SKY2;
return SKY;
In Algorithm 2, we first initialize the set SKY1, SKY2, SSP and SKY. Then we compute the

skyline of area I and denote it by SKY1. We set M value to the maximum text relevance in
SKY1. Next, we check every object o in area II whether its text relevance is greater than M. If
RT(q,o) >M, we add o to the set SSP. Then we compute the skyline of SSP and denote it by
SKY2. At last, we merge SKY1 and SKY2 into SKY as the final result set. We retrieve the
objects by our Inverted-KD tree with the manner described in subsection 5.1.
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In this algorithm, we need not to compute the spatial relevance of objects that is in
area II but not in SSP. Suppose there are n objects in O. We refer to θ (0 < θ < 1) as
the value of r/R. There will be about θ2n objects in area I. Thus we need to process
2θ2*n operations to compute the two kind of relevance. We suppose that the ratio of
the number of objects in SSP and that in area II is α (0 <α< 1). That is, there are
α*(1-θ2)*n objects in SSP. We need to process (1-θ2)*n operations to compute the
text relevance of objects in area II and α*(1-θ2)*n operations to compute the spatial
relevance of objects in SSP. So we need to process (1 + θ2 +α-αθ2)*n operations in
total. It has (1-α)*(1-θ2)*n operations less than the skyline computation algorithms
such as BNL algorithm. As α and θ are often very small, it will have nearly half
operations less than the BNL algorithm. We will verify this analysis experimentally in
Section 6.

6 Experimental evaluation

We conducted a series of experiments to evaluate the scalability and efficiency of the
improved algorithm proposed in our paper. This section reports the experimental
settings and results. Experimental results show that our algorithm offers scalability
and high efficiency.

6.1 Experimental settings

Real dataset In our paper, the real dataset to conduct the experiments is TWEETS. We
collected 377,616 tweets tweeted by 9,475 users of America in 1 week. Every piece of tweet is
associated with a location where the user tweeted and text content, so a tweet contains the text
information and the geographic information. Since many tweets are too short to extract
keywords, we generated about 70,000 geo-textual objects which approximately follow the
uniform distribution. Every object includes a set of keywords and a location. All the objects are
indexed by the Inverted-KD tree proposed in our paper.

We conducted the experiments on a PC with Intel Core i3 2.27 GHz CPU and a
2 GB main memory, running the Windows 7 operating system. Parameter R and θ
have the same meanings with those in subsection 5.3. Unless specified otherwise, the
default settings in our paper are as follows: R= 50, θ = 0.3, and a dataset with 50,000
geo-textual objects.

Since our approach could optimize existing approaches and we use BNL just for its
typicality and simplicity. We use BNL as the baseline to test the effectiveness of optimization.

6.2 Experimental results

In this subsection, we report the results of our experiments. We compared our proposed
algorithm based on Inverted-KD-tree denoted by IKD with the traditional BNL algorithm.
In our experiments, we divided the space into a grid of 64×64. And in each experiment we
conducted 20 skyline queries which have the same radius but different centers, then average
the runtime of them as the final runtime. It’s worth mentioning that these 20 queries follow the
uniform distribution. The four experiments are as follows.
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Experiment 1: Effect of Database Size.
In this experiment, we evaluate the scalability of our algorithm by varying the size of
database between 10,000 and 70,000 geo-textual objects. The results of this experiment
are shown in Fig. 4. We can see that as the size of database increases, the average runtime
of our proposed algorithm and the BNL algorithm become longer. But the growth rate of
our proposed algorithm is lower than that of the BNL algorithm. We also see that the
runtime of our algorithm is nearly only half of the BNL. This phenomenon shows that our
proposed algorithm has a good scalability.
Experiment 2: Effect of Query Range
In this round of experiment, we evaluate the effect of the query range as we varying the
radius of the query. Figure 5 shows the result. From the result, we can see that the runtime
of both the IKD and the BNL get longer as the radius of query range increases. And our
proposed algorithm performs better than the BNL. That is because the query range
contains more objects when the radius increases, and the processing time for this query
becomes longer.
Experiment 3: Effect of the Number of Objects Keywords
This experiment is to study the effect of the number of objects keywords. We extract three
datasets with the size of 10,000, containing 1 to 3 keywords, 4 to 6 keywords, and 7 to 9
keywords, respectively. Figure 6 shows the result that the runtime of these two algorithms
become longer as the number of objects keywords increases. Since for each object, the
frequency of it in the inverted file equals to its keywords number. The more keywords
does an object has, the more times does it appears in the inverted file. Thus the runtime
will become longer if the number of keywords increases.
Experiment 4: Effect of θ
This experiment studies the effect of θ. Figure 7 shows that aswe increase θ the runtime presents
an increasing trend when θ is large but a decreasing trend when θ is small. The reason for this
phenomenon is as follows. The total runtime comprise two parts, the processing time of
computing SKY1 denoted by T1 and that of computing SKY2 denoted by T2. When θ is large,

Fig. 4 Effect of database size

Fig. 5 Effect of query range
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the total runtime will present an increasing trend as θ increases obviously. When θ is small,M
(with the same meaning as in Section 5.2) may be not large enough and SSP will have a
considerable size. Then T2 will be much longer than T1. If we decrease θ, T1 will be shorter, but
it will take more time to compute SKY2. Thus, the total runtime will become longer as θ
decreases when θ is small.

6.3 Summary

In summary, we draw four conclusions from the experiments as follows.

& IKD offers scalability and achieves good performance.
& The run time of both the IKD and the BNL get longer as the radius of query range

increases. But IKD performs better than the BNL.
& The run time of these two algorithms become longer as the number of objects keywords

increases.
& When θ is large, the total run time presents an increasing trend as θ increases. But the total

run time will become larger as θ decreases when θ is small.

7 Conclusion

In this paper, we study the skyline problem of fuzzy queries. We only consider the problem of
two dimensions, the text relevance dimension and the spatial relevance dimension. We propose
two functions to quantify these two kinds of relevance. We also present a new hybrid index
structure called Inverted-KD tree and an algorithm based on it to solve the skyline problem.
Extensive experimental results show that our algorithm offers scalability and high efficiency.

Fig. 6 Effect of the number of objects keywords

Fig. 7 Effect of the value of θ

466 Geoinformatica (2016) 20:453–469



Acknowledgments This paper was supported by NGFR 973 grant 2012CB316200, NSFC grant 61472099,
61133002 and National Sci-Tech Support Plan 2015BAH10F01.

References

1. Bao J, Mokbel MF (2013) GeoRank: an efficient location-aware news feed ranking system. In: SIGSPATIA/
L GIS 2013. 184–193. ACM, Orlando

2. Lisi C, Gao C, Xin C (2013) An efficient query indexing mechanism for filtering geo-textual data. In:
SIGMOD 2013. 749–760. ACM, NewYork

3. Long G, Jie S, Htoo Htet A, Kian-Lee T (2015) Efficient continuous top-k spatial keyword queries on road
networks. GeoInformatica 19(1):29–60

4. HuangW, Li G, Tan K-L, Feng J (2012) Efficient safe-region construction for moving top-K spatial keyword
queries. In: CIKM 2012. 932–941. ACM, Maui

5. Chen L, Cong G, Cao X, Tan K-L (2015) Temporal Spatial-Keyword Top-k publish/subscribe. In: ICDE
2015. 255–266. ICDE Press, Seoul

6. Zheng K, Su H, Zheng B, Shang S, Xu J, Liu J, Zhou X (2015) Interactive Top-k Spatial Keyword queries.
In: ICDE 2015. 423–434. ICDE Press, Seoul

7. Yunjun Gao, Xu Qin, Baihua Zheng, Gang Chen: Efficient Reverse Top-k Boolean Spatial Keyword Queries
on Road Networks. IEEE Trans. Knowl. Data Eng. (TKDE) 27(5):1205–1218 (2015)

8. Zhang D, Chan C-Y, Tan K-L (2014) Processing spatial keyword query as a top-k aggregation query. In:
SIGIR 2014. 355–364. ACM, Gold Coast

9. Chen L, Lin X, Hu H, Jensen CS, Xu J (2015) Answering why-not questions on spatial keyword top-k
queries. In: ICDE 2015. 279–290. ICDE Press, Seoul

10. Tan KL, Eng PK, Ooi BC (2001) Efficient progressive skyline computation. In: VLDB 2001. 301–310.
ACM, Roma

11. Dellis E, Seeger B (2007) Efficient computation of reverse skyline queries. In: VLDB 2007. 291–302. ACM,
Vienna

12. Borzsonyi S, Kossmann D, Stocker K (2001) The skyline operator. In: ICDE 2001. 421–430. ICDE Press,
Heidelberg

13. De Felipe I, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE 2008. 656–665.
ICDE Press, Washington

14. Zhang D, Chee YM, Mondal A, Tung AKH, Kitsuregawa M (2009) Keyword search in spatial databases:
Towards Searching by Document. In: ICDE 2009. 688–699. ICDE Press, Shanghai

15. Chen YY, Suel T, Markowetz A (2006) Efficient query processing in geographic web search engines. In:
SIGMOD 2006. 277–288. ACM, Chicago

16. De Felipe I, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE 2008. 656–665.
ICDE Press, Cancún

17. Li G, Xu J, Feng J (2012) Keyword-based k-nearest neighbor search in spatial databases. In: CIKM 2012.
2144–2148. ACM, Maui

18. Xin C, Gao C, Tao G, Jensen CS, Beng Chin O (2015) Efficient processing of spatial group keyword queries.
ACM trans. Database Syst (TODS) 40(2):13

19. Dingming W, Man Lung Y, Jensen CS (2013) Moving spatial keyword queries: Formulation, methods, and
analysis. ACM Trans. Database Syst (TODS) 38(1):7

20. Wang X, Zhang Y, Zhang W, Lin X, Wang W (2015) AP-Tree: Efficiently support continuous spatial-
keyword queries over stream. In: ICDE 2015. 1107–1118. ICDE Press, Seoul

21. Ying L, Jiaheng L, Gao C, Wei W, Cyrus S (2014) Efficient algorithms and cost models for reverse spatial-
keyword k-nearest neighbor search. ACM trans. Database Syst (TODS) 39(2):13

22. Khodaei A, Shahabi C (2012) Chen Li: SKIF-P: a point-based indexing and ranking of web documents for
spatial-keyword search. GeoInformatica 16(3):563–596

23. Jun H, Ju F, Guoliang L, Shanshan C (2012) Top-k Fuzzy Spatial Keyword Search. (in Chinese). Chin J
Comput 35(11):2237–2246

24. Cong G, Jensen CS, Wu D (2009) Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects. In:
VLDB 2009. 337–348. ACM, Lyon

25. Li G, Feng J, Xu J (2012) DESKS: Direction-Aware Spatial Keyword Search. In: ICDE 2012. 474–485.
ICDE Press, Washington

26. Zhang C, Zhang Y, Zhang W, Lin X (2013) Inverted Linear Quadtree: Efficient Top K Spatial Keyword
Search. In: ICDE 2013. 901–912. ICDE Press, Brisbane

27. Yao B, Li F, Hadjieleftheriou M, Hou K (2010) Approximate string search in spatial databases. In: ICDE
2010. 545–556. ICDE Press, Long Beach

Geoinformatica (2016) 20:453–469 467



28. Hadjieleftheriou M, Li C (2009) Efficient approximate search on string collections. In: VLDB 2009. 1660–
1661. ACM, Lyon

29. Li C, Lu J, Lu Y (2008) Efficient merging and filtering algorithms for approximate string searches. In: ICDE
2008. 257–266. ICDE Press, Cancún

30. Xiao C, Wang W, Lin X, Shang H (2009) Top-k set similarity joins. In: ICDE 2009. 916–927. ICDE Press,
Shanghai

31. Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the sky: an online algorithm for skyline queries. In:
VLDB 2002. 275–286. ACM, Hong Kong

32. Papadias D, Fu G, Seeger B, Tao Y (2003) An optimal and progressive algorithm for skyline queries. In:
SIGMOD 2003. 467–478. ACM, San Diego

33. Lee J, Hwang S-W (2014) Toward efficient multidimensional subspace skyline computation. In: VLDB
2014. 129–145. ACM, Hangzhou

34. Liu B, Chan C-Y (2010) ZINC: Efficient indexing for skyline computation. In: VLDB 2010. 197–207.
ACM, Singapore

Jianing Li is a PHD student in the College of Computer Science and Technology, Harbin Institute of
Technology. His research area covers range query in spatial databases and database acceleration.

Hongzhi Wang is an Associate Professor and doctoral supervisor at Harbin Institute of Technology. His research
area is data management, including data quality, XML data management and graph management. He is a
recipient of the outstanding dissertation award of CCF, Microsoft Fellow and IBM PhD Fellowship. He has
published more than 150 papers in refereed journals and conferences. His work was cited more than 400 times.

468 Geoinformatica (2016) 20:453–469



Jianzhong Li received his BS in Mathematics at Heilongjiang University in 1975. He is currently a Professor at
Harbin Institute of Technology. His research interests include parallel databases, data warehouses, data mining,
database techniques for web and wireless sensor networks. He has authored three books and published more than
200 technical papers in refereed journals and conferences processing in the area of databases.

Hong Gao is a professor and doctoral supervisor at Harbin Institute of Technology. She is a senior member of
CCF. Her research interests include data management, wireless sensor networks and graph database, etc.

Geoinformatica (2016) 20:453–469 469


	Skyline for geo-textual data
	Abstract
	Introduction
	Related work
	Problem statement
	Relevance function
	The text relevance function
	The spatial relevance function

	Algorithms
	Inverted-KD Tree
	Skyline query processing algorithm

	Experimental evaluation
	Experimental settings
	Experimental results
	Summary

	Conclusion
	References


