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Abstract The MaxBRNN problem is to find an optimal region such that setting up a new
service within this region might attract the maximum number of customers by proximity. The
MaxBRNN problem has many practical applications such as service location planning and
emergency schedule. In typical real-life applications the data volume of the problem is huge,
thus an efficient solution is highly desired. In this paper, we propose two efficient algorithms,
namely, OptRegion, and 3D-OptRegion to tackle the MaxBRNN problem and MaxBRkNN in
two- and three-dimensional spaces, especially for the 3D-OptRegion, we propose a powerful
pruning strategy Fine-grained Pruning Strategy to reduce the searching space. Our method
employs three optimization techniques, i.e., sweep line (sweep plane in a three-dimensional
space), pruning strategy (based on upper bound estimation), and influence value computation
(of candidate points), to improve the search performance. In a three-dimensional space, we
additionally use a fine-grained pruning strategy to further improve the pruning effect.
Extensive experimental evaluation using both real and synthetic datasets confirms that both
OptRegion and 3D-OptRegion outperform the existing algorithms significantly under all
problem instances.
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1 Introduction

Given a database, an RNN (Reverse Nearest Neighbor) query returns the data points that have
a given query point as their nearest neighbor (The RNN query was first introduced in [15]). A
BRNN (Bichromatic Reverse Nearest Neighbor) is the bichromatic version of RNN, in which
all data points consist of the service point set P and the customer point set O. For a service
point p∈P, a BRNN query finds all the points o∈O whose nearest neighbor in P is p. Those
customer points o in O constitute the influence set of p and the influence value of p equals to
the cardinality of the influence set. For example, in Fig. 1a, for a service point p2, its BRNN,
i.e., the influence set, is {o2, o3}.

The MaxBRNN problem [4, 5] aims to find the region S in which all the points have the
maximum influence value, namely the cardinality of BRNN set of all points p in S is
maximized in a space. The MaxBRNN can be regarded as an optimal region search problem
and has attracted much research efforts.

The MaxBRNN problem has many interesting real life applications, such as service
location planning and emergency schedule. For example, in Fig. 1a, there are five customer
points o1 to o5 and four stores p1 to p4 in a city. Now a company wants to set up a new store
and the objective is to find a location that can attract as many customers as possible under the
assumption that the customers are more interested in visiting a convenient store based on the
distances. We draw a circle for each customer point oi (1≤i≤5), centered at oi and the distance
between oi and its nearest store as radius. The MaxBRNN problem is translated to find the
region with maximum overlapped circles, which is the intersection of three circles of o2, o3,
and o5, to set up a new store.

There have been several algorithms [5, 17, 26, 29] proposed to deal with the MaxBRNN
problem in the literature. However, all these algorithms degrade significantly as the dataset
becomes very large, hence an efficient solution is highly desired.

The MaxBRNN problem assumes that each customer only access his nearest service.
However, in reality, a customer may choose to access his k-nearest services. To handle this
situation, MaxBRNN can be generalized to the MaxBRkNN problem which finds an optimal
region such that setting up a service in this region guarantees the maximum number of
customers who would have this service as one of their k-nearest services.
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Fig. 1 Examples of MaxBRNN in two-dimensional space
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In this paper, we propose two efficient algorithms called OptRegion and 3D-OptRegion to
solve the MaxBRNN an-d MaxBRkNN problem in two- and three-dimensional spaces. Our
methods employ three optimization techniques, i.e., sweep line (sweep plane in a three-
dimensional space), pruning strategy (based on upper bound estimation), and influence value
computation (of candidate points), to improve the search performance.

Our major contributions (excluding the contributions in conference version [16]) can be
summarized as follows:

1. We extend the algorithm OptRegion to solve the MaxBRkNN problem in Euclidean
Space.

2. We propose an efficient algorithm, namely, 3D-OptRegion, to solve the Max-3D-BRNN
problem in three-dimensional space, which can be applied for arbitrary Lp-norm spaces.
The sweep (plane) technique is adopted in the algorithm to find overlapping spheres
quickly.

3. We propose an effective fine-grained pruning strategy in three-dimensional space, by
which the majority of candidate points can be pruned without evaluation.

4. We give out the correctness analysis of algorithm OptRegion and 3D-OptRegion, and we
analyze the accuracy of upper bound estimation technique used in OptRegion.

5. We conduct extensive experiments with both real and synthetic data sets to demonstrate
the performance of our proposed algorithms.

This paper is a significant extension to its preliminary conference version [16]. Compared
to the preliminary version, we extend the query to the three-dimensional space and BRkNN
query (k≥1), propose an effective pruning strategy for the three-dimensional space, and present
the theoretical analysis and experimental confirmation of the accuracy of our upper bound
estimation.

The MaxBRkNN problem is necessary in real life applications, for example, when planning
a new convenience store, considering that the customers can not only be attracted to its nearest
store, but also the sub-nearest and the k-nearest ones, then the MaxBRkNN query becomes
very necessary.

The Max-3D-BRNN problem also has many real life applications, we give three typical
examples here: 1) In some emergency applications such as in the earthquake in China, we
often need fast response for the MaxBRNN search to quickly place the supply/service centers
for rescue or relief jobs, the location of the customer points o∈Omay be changing dynamically,
thus we have to consider time as another dimension since at different moments the locations
are different. 2)Another example is sensor network distribution. Suppose that we plan to add a
new cluster node for the sensors to communicate with each other and the sensors locate in
different locations and altitude in a mountain, naturally the locations have to be described in
three-dimensional space. 3) In the location planning example, a customer considers not only
the distance to the store, but also the time driving there, and we can also consider customer
preferences as other dimensions. Thus, it’s significant to extend the MaxBRNN problem to
three-dimensional space or even higher spaces. In this paper, we propose an effective pruning
strategy for the three-dimensional space MaxBRNN problem and it is easy to extend to high
dimensional space (we leave the MaxBRNN problem in high dimensional space as one of our
future works).

The rest of the paper is organized as follows. A survey of related work is given in Section 2.
Section 3 formulates the MaxBRNN, MaxBRkNN, and Max-3D-BRNN problems. Section 4
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and Section 5 describe the algorithms for MaxBRNN in two- and three-dimensional spaces
respectively. Section 6 analyzes the time complexity and correctness of the algorithms.
Section 7 evaluates the proposed algorithm and the pruning strategy through extensive
experiments with real and synthetic datasets, and we conclude the paper in Section 8.

2 Related work

There are two types of RNN queries, namely, monochromatic and bichromatic RNN [16]. In
the monochromatic case, all points are of the same category. In the bichromatic case, the points
are of two different categories, such as services and customers. The original RNN problem has
been studied in the literature [21–23] and the proposed algorithms are mainly based on some
space-partition and pruning strategies. In recent years, the Bichromatic RNN (BRNN) prob-
lems have been studied extensively in the road network the ad-hoc network and the continuous
environment [3, 6, 10, 12, 14, 18, 20, 25]. In [28] they also generalize the BRNN problem to
the land surfaces scenario.

The MaxBRNN problem, which maximizes the number of potential customers for the new
service, was first introduced by Cabello et al. in [4, 5], where they call it MAXCOV problem
and present a solution for the two-dimensional Euclidean space. They also study other
optimization criteria in BRNN queries: MINMAX, which minimize the maximum distance
to the associated customers, and MAXMIN, which maximize the minimum distance to the
associated customers. MaxBRNN query is challenging in that there exists an infinite number
of candidate locations where the new service may be built. Wong et al. [26] define that the
MaxBRNN is to find a maximal consistent region containing the optimal locations and present
an algorithm called MaxOverlap to solve it. The Algorithm MaxOverlap in [26] utilizes a
technique called region-to-point transformation, which is also adopted in our OptRegion
algorithm. It transforms the optimal region search problem to an optimal intersection point
search problem in order to avoid searching an exponential number of regions. Nevertheless,
the MaxOverlap does not scale well because the computation of optimal intersection points is
expensive.

Wong et al. in [27] extend the MaxOverlap algorithm [26] for Lp-norm in the two and three-
dimensional space. They also extend MaxOverlap to solve the MaxBRkNN problem by
considering k-nearest neighbors instead of only one nearest neighbor. This increases the
number of intersection points to be computed, hence leading to much more performance
deterioration when k is large. In [27], they also compared their algorithms with the Buffer-
Adapt algorithm [10] which is originally designed to solve problemMaxBRNN in the L1-norm
(Manhattan Distance space). Algorithm MaxSegment in [17] tries to speed up finding the
optimal intersection point by checking intersection arcs of circles in two and three-dimensional
space. Experimental result in [17] shows that MaxSegment algorithm is faster than the
MaxOverlap algorithm [27] in all cases. However, since they don’t use any pruning strategy,
there may be a lot of intersection arcs that need to be checked, which is very time-consuming.

Zhou et al in [29] generalize the MaxBRNN problem to reflect the real world scenario
where customers may have different preferences for different service sites, and present an
efficient algorithm called MaxFirst to solve the genera-lized MaxBRkNN problem. The
MaxFirst utilizes the branch-and-bound principle, and partitions the space into qua-drants
recursively and computes the upper and lower bounds of the size of a quadrant’s BRNN. The
algorithm then retrieves only in those quadrants that potentially contain an optimal region.
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Experimental results show that MaxFirstis much more efficient than the MaxOverlap.
Nonetheless, in some situations, there may also be a lot of quadrants need to be processed,
and it has poor scalability.

Z. Chen et al in [7] extend the MaxBRNN problem to the Road Network space. P. Ghaemi
et al [13] solve the MaxBRNN problem in the Spatial Network instead of Lp-norm space, they
propose two efficient algorithm-EONL and BONL to solve the problem. F. Chen et al in [8]
focus on the MaxBRNN problem in the capacity constraint scenario in the Euclidean space.
[18, 25] extend the BRNN query to the ad-hoc network and mobile system, they adopt the
communication techniques in ad-hoc network to solve the BRNN query.

The maximizing range sum (MaxRS) problem studied in [9, 24] also aims to maximize a
region’s influence value. However, the problem has significant differences with our
MaxBRNN problem. First, the region’s shape and size is fixed in the MaxRS problem, but
in the MaxBRNN problem we know nothing about the result region (or regions).

Second, in the MaxRS problem the extend of the covered region is already known,
however, in our problem, we have to calculate the region’s radius by computing the RNNs
which makes our problem much more complicated.

3 Preliminaries

In this Section, we formalize our problem studied in this paper, and then discuss the region-to-
point transformation that is employed to tackle our problem.

3.1 Problem definitions

Suppose we have a set P of service points and a set O of customer points in a space D. Each
point o∈O has a weight w(o), which is used to represent the number of customers or
importance.

For a point o∈O, kNN(o,P) represents the set of the top-k points in P that are nearest to o.
For a point s in D (s∈P or not), BRkNN(s,O,P∪{s}) represents the set of points in O that take s
as one of their k-nearest neighbors in P∪{s}. For simplicity, we take k=1 in the following
discussion, which can be easily extended to the case k>1.

Definition 1. (Influence Set/Value) Given a point s, we define the influence set of s to be
BRNN(s,O,P∪{s}). The influence value of s is equal to ∑o∈BRNN(s, O, P∪{s})w(o).

Definition 2. (Nearest Location Region, NLR) Given a customer point o, the nearest
location region R of o is defined to be the region centered at o and containing all the point s
with d(o,s)≤d(o,NN(o,P)). NN(o,P) is the nearest neighbor of o in P and d(x,y) is the distance
between points x and y. The weight of NLR R w(R) equals to the weight of o.

In the Definition 2, we adopt the notation NLR to capture the general case when consid-
ering Lp-norm space and three-dimensional space. Minkowski distance can be adopted in
computing d(x,y). When considering Euclidean distance, i.e., the L2-norm space, in two-
dimensional space, the NLR is a circle around o with radius d(o,NN(o,P)).

Definition 3 (Consistent Region, [26]) A region R is said to be consistent if the following
condition holds: ∀s,s '∈R,s,s '∉ P , the Influence value of s is equal to s’.

Following the definition in [26], given a consistent region R, the influence value of R is
denoted as I(R) and defined as I(R)=∑o∈BRNN(s, O, P∪{s})w(o),where s denotes an arbitrary new
server point in R.
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Based on Definition 3 and the above description, we can give out the definition of Maximum
Consistent Region as follows: given a consistent region R, we say that R is a maximal consistent
region, if there does not exist another consistent regionR0 satisfying the following conditions: (1)
R⊂R0, and (2) I(R)=I(R0), we also call the Maximum Consistent Region the Optimal Region.

Problem 1 (MaxBRNN) Given a set P of service points and a set O of customer points in a
space D, we want to find an maximum consistent region (optimal region) S such that all points
in S have the maximum influence value.

For example, in Fig. 1a, the MaxBRNN (optimal) region S is the intersection of three NLRs
o2, o3, and o5, and the influence value of S is the sum of the three NLRs’ weights. Informally
speaking, the MaxBRNN returns the region with maximum overlapped NLRs.

When considering the k-nearest neighbors of a customer point, the customer point o is
associated with a set of k NLRs. The ith NLR is centered at o and contains all the points with
distance to o less or equal than the distance between o and its ith nearest neighbor.

Problem 2 (MaxBRkNN) BRkNN of s∈P, denoted by BRkNN (s, P), is a set of points o ∈
O such that s is one of the k nearest neighbors of o in P. In MaxBRkNN, we want to find the
region R (or area) such that, if a new server s is set up in R, the size of BRkNN of s (i.e.,
∑o∈BRkNN(s, O, P∪{s})w(o)) is maximized. I(R) is equal to ∑o∈BRkNN (s, O, P∪{s})w(o) in the setting
with BRkNN.

Problem 3 (Max-3D-BRNN) Given two three-dimensional datasets set P of service points
and a set O of customer points in a 3D-spaceD , the three-dimensional BRNN of s∈P, denoted
by 3D-BRNN (s, P), is a set of points o ∈O such that s is one of the nearest neighbors of o in P.
In Max-3D-BRNN, we want to find a ellipsoidal region R such that, if a new server s is set up
in R, the size of 3D-BRNN of s (i.e., ∑o∈3D-BRNN(s, O, P∪{s}) w(o)) is maximized. I(R) is equal
to ∑o∈3D-BRNN(s, O, P∪{s})w(o) in the setting with 3D-BRNN.

In Figs. 1b and 2, we give examples of MaxBRkNN and Max-3D-BRNN query. Figure 1b
demonstrates the MaxBR2NN query, for each point o ∈ O we draw the NLR to its 2NNs, and
for each point p∈P its BRkNN set is larger than BRNN, for example, for p2, its BR2NN={o1,
o2, o3}. Consequently, the result of MaxBR2NN is more complicated than MaxBRNN, as
described in Fig. 1b the MaxBR2NN regions are the red shaded region. Figure 2 describes the
same example as Fig. 1a except that it is in the three-dimensional space, the Max-3D-BRNN
(suppose k=1) region is the ellipsoidal region enclosed by three different cambered surface
(described in red, blue and green) in Fig. 2.

3.2 Region-to-point transformation

The MaxOverlap algorithm in [26] uses region-to-point transformation, which is also used in
our algorithmOptRegion, to solve theMaxBRNN problem. The optimal region search problem
is transformed into finding the maximum influence intersection point between any two NLRs,
and the maximum influence intersection point can subsequently be mapped into the optimal
region. We adopt the following two lemmas from [26], and the proof is omitted here.

Lemma 1. The maximum consistent region (optimal region) returned by the MaxBRNN
query can be represented by an intersection of multiple NLRs.

Lemma 2. Let S be the maximum consistent region returned by the MaxBRNN query. If S
is the intersection of more than one NLR, then there must exist two NLRs and at least one of
their intersection points is contained in S.

Based on lemma 1 and 2, the MaxOverlap algorithm first computes all the intersection
points of every pair of NLRs. These intersection points can be regarded as candidate points.

356 Geoinformatica (2016) 20:351–384



Then, for each intersection point, the algorithm performs a point query to find all the NLRs
covering the point and computes its influence value, from which the point with maximum
influence value is found. Last, the optimal region can be identified from the maximum
influence intersection point. It is the major drawback in MaxOverlap algorithm that the
algorithm needs to perform a point query for every intersection point to compute influence
value. The point query takes up the majority of the computation effort.

4 Algorithms in two-dimensional space

Algorithm OptRegion consists of three steps. First, NLRs are constructed for every customer
point. Then, all intersecting NLRs are detected, and the upper bound of influence values for all
NLRs are estimated. Last, the exact influence values of candidate points are computed and the
point with maximum influence value is found.

We first describe our algorithms in two-dimensional space in Section 4. We depict several
techniques used in OptRegion in Section 4.1 to 4.3, and then give the overall algorithm
OptRegion in Section 4.4. The extension to three-dimensional space is described in Section 5.

Fig. 2 An example of Max-3D-BRNN problem
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We omit the detailed description of our influence value computation technique here, since it is
similar to the algorithm MaxSegment in [17] despite some differences in details and
expressions.

4.1 Sweep line

The method to find intersecting NLRs in algorithm MaxOverlap [26, 27] and MaxFirst [29] is
as follows. First, an R*-tree is built for all NLRs. Then a range query against the R*-tree for
eachNLR is performed to find all its intersecting NLRs. But it will take a lot of time to construct
R*-tree and perform range query, especially when there is a large amount of customer points.

We adopt the sweep line approach to find all intersecting NLRs, which localize the search
range of intersecting NLRs to speed up the processing. Sweep line approach is widely adopted
in a variety of computational geometry problems, such as line segment intersection, voronoi
diagram construction et al [2].

In sweep line and subsequent prune strategy techniques, we model an NLR by its minimum
bounding rectangle (MBR) (as shown in Fig. 5), which means the result is a kind of upper
bound estimation. The exact result can be gained in the influence value computation process.

We define the y-interval of an NLR to be its orthogonal projection onto the y-axis, referring
[16] for more details. When the y-intervals of a pair of NLRs do not overlap, then they cannot
intersect. Hence, only the pairs of NLRs whose y-intervals are overlapping need to be tested for
intersection. It is obvious that there exists a horizontal line that intersects both NLRs whose y-
intervals are overlapping. So, to find these pairs we imagine sweeping a line downwards over
the plane, starting from a position above all NLRs.While we sweep the imaginary line, we keep
track of all NLRs intersecting with it, so that we can find the intersecting pairs we need.

The line is called the sweep line and the status of the sweep line is the set of NLRs
intersecting with it, as shown in Fig. 3a. The status changes while the sweep line moves
downwards, but not continuously. We use the balanced binary search tree [19] in status
structure implementation. The details of the technique can be found in the conference version
in [16] and we omit it here.

Lemma 3 [16]. To find intersecting NLRs correctly, the status structure need to be updated
only when the sweep line reaches the event points.

The proof of Lemma 3 can be found in the conference version in [16]. We maintain an
event queue to store all the event points, which are the top and bottom points of all NLRs. The
event points are ordered by their y-coordinates downwards. When the sweep line moves
downward, the event point that is the highest below the sweep line is processed. If two event
points have the same y-coordinate, the process order can be arbitrary and the result is the same.

sweep line

event

point

event

point

di

search range

sweep line left-most point

right-most

point

o1
o2

o3

o4
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(a) Event point (b) Search range (c) An example of sweep line

Fig. 3 Sweep line
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Lemma 4 [16].When the sweep line reaches the top point of an NLR R, let xleft and xright
be the x-coordinate of the left-most and right-most point of NLR R, and di be the maximum
diameter of all NLRs which are currently in the status structure (as shown in Fig. 3b). In the
status structure, the NLRs whose left-most points are out of the range [xleft−di, xright] will not
intersect with R.

The proof of Lemma 4 can be found in the conference version in [16] and we omit it here.
Based on lemma 4, we can perform a range query of [xleft−di, xright] in the status structure to
find all NLRs intersecting with NLR R at the moment R is inserted into the status structure.
When the sweep line reaches the bottom event point of R, then all intersecting NLRs with R
have been found and R can be deleted from the status structure safely.

Example 1. In Fig. 3c, Ri is the NLR of customer point oi. When the sweep line reaches
point a1 (the top event point of NLR R1), we can get the intersecting NLR list of R1 at this
moment is IR1={R2,R3,R4,R6}, for their left-most points locate in R1’s search range. At the
same time, R1 is added to the intersecting NLR list of R2, R3, R4 and R6. After R1 is inserted
into the status structure, the sweep line moves down and reaches point a3 (the top event point
of NLR R5), the set IR1 is updated to be I’R1={R2, R3, R4, R5,R6}. Finally, when the sweep line
reaches a2 (the bottom event point of NLR R1), we delete R1 from the status structure and the
resulting intersecting NLR list of R1 is I’R1. Here, we have to mention that the resulting I’R1 is a
superset of the exact intersecting NLR list, e.g., R4 in I’R1 is actually not intersecting with R1.
The exact result can be gained in the subsequent influence value computation process.

Based on the above discussion, we can see how the sweep line algorithm works and the
details of the algorithm is omitted here (which can be found in the conference version in [16]).

4.2 Pruning strategy

We divide an NLR into eight subspaces evenly, illustrated as NLR R1 in Fig. 4, by
four dotted lines, horizon, vertical, and two lines intersecting with horizon line by 45°
angle. For each subspace, we sum the weight of the NLRs intersecting with the
current NLR and locate in that subspace (including the NLR itself), noted as ws1 to
ws8. Although the partitioning scheme with eight subspaces is described here, other
partitioning scheme such as no partitioning, 4 or 16 partitioning can also be used. The
selection of partitioning scheme is based on the balance between pre-computing cost
and pruning power. With more partitioning subspaces, the pruning power is better but
we need much more pre-computing cost (Fig. 5).
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Fig. 4 An example of OptRegion
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Lemma 5 [16]. The weight sum wsi (1≤ i≤8) is the upper bound of the maximum
influence value of the intersection points in that subspace. wsMax=max{ wsi,1≤ i≤8}
is the upper bound of maximum influence value of the intersection points in an NLR.

Lemma 6 [16]. Suppose max is the maximum influence value found so far, then any
NLRs with wsMax less than max can be safely pruned without further consideration.

While performing upper bound estimation, the intersection points of NLRs are not necessary
to be computed. We only need to decide in which subspaces an intersecting NLRmay be located
with respect to the current NLR by comparing of the customer points’ coordinate values,
avoiding the time consuming computation of intersection points and corresponding influence
values [26]. When checking the intersecting NLR’s location, we use MBRs to describe NLRs
(Fig. 5) which can reduce the computation complexity without loss of correctness [16].

Based on lemma 5, after we have computed the wsMax value of all NLRs, NLRs are
processed by the descending wsMax order. The NLRs with greater wsMax have higher
probability containing the optimal intersection point and there aremore chances to prune NLRs.

4.3 Influence value computation

We adopt a novel approach to compute the influence value of intersection points quickly,
which need much less computation cost than the point query in MaxOverlap [26]. The details
of the computation method can be found in [16].

We describe our algorithm in Euclidean space for ease of expression and the algorithm can
be easily extended to Lp-norm metric space. The only requirement of our algorithm is that the
NLR should be convex. The shapes of NLRs for different Minkowski metric are given in Fig. 6.

Definition 5. (Intersection Arc) If R intersects with Ri, then the arc in the perimeter of R
within the intersection region is called intersection arc in R. The weight of the intersection arc
is equal to the weight of Ri, i.e. w(oi).

Based on the above explanation, NLR R and Ri are convex in the space. The following
lemma explains the intersection arc between R and Ri.

Lemma 7 [16]. If R intersects with Ri, there is only one intersection arc in the perimeter of
R with respect to Ri.

Considering an NLR R, all the NLR Ri that intersect with R are mapped to the arc (αi, βi) in
R. Then, the computation of influence value of an intersection point a in R is transformed to
compute the weight sum of the intersection arcs that contain the intersection point a.

o1
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a

ws1

ws2ws3

ws4

ws5

ws6 ws7

ws8

Fig. 5 Upper bound estimation
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Lemma 8 [16]. Let R be an NLR, the influence value of an intersection point a in R equals
to the weight sum of all intersection arc containing a in R (include R itself).

We illustrate briefly the influence value computation technique and the algorithm
OptRegion by Example 2 in Fig. 4.

Example 2. In Fig. 4, there are 6 NLRs Ri centered at oi∈O (1≤ i≤6). The R1

intersects with R2, R3, R5, and R6. The intersection points are a1 to a7. R1 intersects
with R6 by arc a1a1 in R1 (it is the whole circle of R1), with R3 by arc a2a4, with R4

by a3a5, and with R5 by a6a7. To find the point with maximum influence value
among a1 to a7, we only need compute the maximum overlap weight of the arc a1a1,
a2a4, a3a5, a6a7, and plus the weight of R1.

Suppose the weight of each oi is equal to 1. In Fig. 4, we compute that ws1=3, ws2=4, ws3=
4, ws4=4, ws5=3, ws6=2, ws7=3, ws8=3, so the wsMax value of R1 is 4. Similarly, the wsMax
of R2 to R6 are: 4, 4, 3, 3, 4. So, we will first deal with NLR R1 with the wsMax value 4. We
can compute the exact influence values of points a3 and a4 are 4 in Fig. 4, so, we can prune all
the other NLRs without further influence value computation since there is no NLR with the
wsMax value larger than 4. Consequently the points a3 and a4 have the maximum influence
value and are corresponding to the optimal region shown as a shaded region in Fig. 4 which is
the region overlapped by R1, R2, R3, and R6.

4.4 OptRegion

Now, we give our algorithm OptRegion in Algorithm 1. The detailed explanation of the
algorithm can be found in the conference version in [16].

Algorithm 1 OptRegion
input : O := set of customer points

P := set of service points
output: S := optimal region presented by the overlapping NLRs
1 for each o∈O construct an NLR for o
2 call SweepLine
3 compute the wsMax for all NLRs
4 sort all the NLRs by the wsMax value
5 choose the NLR R with the largest weight
6 s←any point in R, max←w(R)
7 for every R in the NLR set by descending wsMax order
8 if the wsMax of R is less or equals to max
9 break

(a) L1-norm (b) L2-norm (c) Lp-norm(p>2) (d) L -norm
Fig. 6 NLRs for different Minkowski metric

Geoinformatica (2016) 20:351–384 361



10 influence value computation for all intersection points in R,
if the computed value is greater than max, the max is replaced and s is
replaced with the intersection point for the corresponding max

11 find the intersection of all NLRs containing s, put the id of
these NLRs into S

12 return S

5 Extension to three-dimensional case

In this section, we will first introduce some techniques we utilize in three-dimensional space,
and then we extend the OptReion algorithm to three-dimensional space naturally. At last, we
develop a more efficient algorithm with a fine grained pruning strategy, defined as OptRegion
with FP, for the three-dimensional space.

5.1 Intersection arc

In the two-dimensional space, the correctness of the algorithm depends on two concepts. The
first concept is that the optimal region in the two-dimensional case can be represented by the
intersection of multiple nearest location regions (NLRs). The second concept is that all the
arcs, each of which is generated by the boundaries of two intersecting NLRs, can be used to
find the optimal region.

In the three-dimensional space, we adapt the above two concepts due to some differences
between the two-dimensional and the three-dimensional cases. For the first concept, in the
three-dimensional case, the optimal region can be represented by the intersection of multiple
NLRs, which are spheres here. For the second concept, in the three-dimensional case, the
boundaries of two intersecting NLRs generate a circle instead of an arc which is generated by
two NLRs in the two-dimensional case. It is pointed in [17] that three spheres, intersecting
each other, can generate an arc in the three-dimensional space. Based on all arcs generated by
any three spheres intersecting each other, we can find the optimal region accordingly.

Here, we have to consider two special cases. First, if any two spheres in the searching space
don’t intersect with each other, then the optimal region is the sphere with the largest weight.
Second, if there don’t exist three spheres intersecting each other, the optimal region can be
generated by two intersecting spheres with the largest weight. Since these two cases are trivial
and easy to deal with, we assume that there exist three spheres intersecting each other in the
searching space.

In a three-dimensional space, the generation of intersection arc is based on three NLRs that
intersect each other. Suppose that we are given three NLRs, R1, R2, and R3, each of which
intersects with the other two NLRs. The boundary of the intersection of two NLRs R1 and R2

(as shown in Fig. 7a) is a circle, c12, which is on a plane denoted by α. Circle c12 is called the
(R1, R2)-circle and plane α is called the (R1, R2)-plane. We say that this plane α is generated
from the two NLRs, R1 and R2. The plane α intersects with another NLR R3 and generates a
circle c3 (see Fig. 7b). Circle c3 is called the R3-circle on plane α. Now, we have two circles c12
and c3 (on the plane α), which have a similar scenario as that in the two-dimensional case.
Both circles c12 and c3 generate intersection arcs on the plane α (see Fig. 7b). The detailed
computation of the (R1, R2)-plane, the (R1,R2)-circle and R3-circle on plane α in a three-
dimensional space is given in [17].
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As described in [17], there are different orderings of processing the three NLRs. In general,
we should consider all possible orderings for any three NLRs. For example, one possible
ordering of processing is that we first consider the intersection between R2 and R3 and then
consider the intersection between the (R2, R3)-plane and the remaining NLR R1.

5.2 Sweep plane

In the two-dimensional space, we use a sweep line to help us find out the intersecting NLRs. In
a three-dimensional space, we can use a sweep plane to sweep the searching space downward
along the y-axis as shown in Fig. 8. When a new NLR is inserted into the status structure of the
sweep plane and used to search for intersecting NLRs, the search range become a rectangle
now, as shown in Fig. 9. We will extend the lemma 4 to its three-dimensional space
counterpart.

Lemma 9. Let xleft and xright be the x-coordinate of the left-most and right-most point of
an NLR R, and zfront and zback be the z-coordinate of the front-most and back-most point of
the NLR R, and di be the maximum diameter of NLRs swept up to now (as shown in Fig. 9). In
the status structure, the NLRs whose left-most points are out of the range [xleft−di, xright] or
front-most points are out of the range [zfront+di, zback] will not intersect with R.

The proof of this lemma is obvious, so we omit it here.
The SweepPlane algorithm is similar to the SweepLine algorithm except that, we use a kd-

tree [11] instead of the balanced binary search tree as a status structure, so we omit it here.

5.3 Estimation

Similar to the two-dimensional space, we use a three-dimensional MBR (minimum bounding
rectangle) to model an NLR and the result is also a kind of upper bound estimation. We divide
an NLR into eight subspaces evenly by three planes, illustrated as NLR R1 in Fig. 10a.
Suppose that the center of R1 is (x0, y0, z0), then the three planes can be denoted as x=x0, y=y0
and z=z0.

R1
R2

α

c12

α
c3

R3c12

(a) (R1, R2)-plane and (R1, R2)-circle (b) R3-circle

Fig. 7 Intersection arcs in three-dimensional space

R1 R2
sweep

plane
Fig. 8 Sweep plane in three-
dimensional space
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For each subspace of NLR R1, we sum the weight of the NLRs whose MBRs intersect with
the R1’s MBR in that subspace (including R1 itself), noted as ws1 to ws8. Although the
partitioning strategy with eight subspaces is described here, other partitioning strategies such
as 12 (18, 24) partitioning can also be used. The 12 partitioning is illustrated in Fig. 10b. The
selection of partitioning strategy is based on the balance between pre-computing cost and
pruning effect. Our experimental result shows that when the 24 partitioning is utilized in a
three-dimensional space, the pre-computing becomes very complicated and time consuming.

Lemma 5 and Lemma 6 in the two-dimensional space still hold in three-dimensional space.

5.4 Fine-grained pruning strategy

As described in Section 5.1, we can transform the MaxBRNN problem in a three-dimensional
space into a two-dimensional arc search. We map the intersection points of intersection arcs to
different angle values. Then, we scan all the intersection points to find the maximum influence
value. This is the same as the OptRegion algorithm in a two-dimensional space. The 3D-
OptRegion algorithm includes the following three major steps.

Step 1: Construct NLRs for a given dataset.

R1

y

x

z

xleft xright

di

search range

zfront zback

di
se
ar
ch
ra
ng
e

Fig. 9 Upper bound estimation in
three-dimensional space

R1

WS1

WS2

WS4

WS3

WS5

WS6WS7

WS8

R1

WS1

WS2WS4

WS3WS5

WS6

WS7

WS8

WS9

WS10

WS11

WS12

(a) 8 partitioning (b) 12 partitioning
Fig. 10 Partition strategy in three-dimensional space
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Step 2: Find out all the intersecting NLRs using SweepPlane algorithm, and construct an
intersecting NLR list for each NLR. Estimate the upper bound wsMax of maximum
influence value of the intersection points in all NLRs. Sort all the NLRs by the
descending order of wsMax values.

Step 3: Process the NLRs by the descending order of the wsMax values. For each NLR R, we
execute the following two sub-steps.

Sub-step 3.1: Find all the other NLRs intersecting with R.
Sub-step 3.2: For each NLR R0 intersecting with R, we construct intersection arcs for all

the NLRs intersecting with both R0 and R, according to Section 5.1. We
compute the influence values of the intersection points, and if the influ-
ence value is greater than the maximum influence value, we update the
record of the maximum influence value and the corresponding intersection
point.

The algorithm described above is a direct extension from a two-dimensional space to a
three-dimensional space. However, it has some obvious drawbacks. Let’s see an example.

Example 3. In Fig. 11, we have 6 spheres (NLRs). Their intersection relations are shown in
Table 1, in which the intersecting subspaces are recorded, assuming the 8 partitioning in
Fig. 10a to be used. The symbol∅ represents that two spheres don’t intersect with each other,
and the symbol ‘All’ represents that the sphere intersects with itself. After executing
SweepPlane algorithm and upper bound estimation, we get the sorted NLR list with the
intersecting lists of each NLR, as shown in Table 2, the numbers outside the brackets denote

Fig. 11 An example in a three-dimensional space
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the subspace’s ws values and the numbers inside the brackets denote the corresponding
subspace’s ids.

According to the 3D-OptRegion algorithm, we first process R1, and its corresponding
sphere pairs: R1-R4, R1-R5, R1-R6, R1-R2. In this way, we have to process R1-R2 before sphere
R6 and R4. But the R1-R2 pair is obviously the Buseless pair^, for it does not intersect with any
other spheres. Whereas the R6-R4 pair in sphere R6 and R4 intersects with two other spheres,
which means it is more likely to contain the optimal region. So, we should manage to avoid
checking these Buseless pairs^.

The main drawback of the above method is that it should process all the intersecting pairs of
an NLR according to the descending wsMax value order of NLRs. however, for a given NLR,
it may has some dense intersection areas and some sparse areas. We should try to avoid
processing these sparse areas.

We introduce a fine-grained pruning strategy to deal with the problem. The processing
order of fine-grained pruning strategy is based on the fine grain of subspace of NLRs instead of
whole NLR. we sort all the subspaces of all NLRs by the descending order of the weigh sum
ws of subspaces (ws denotes weight sum, i.e. wsi (1≤i≤8) if 8 partitioning is used for example,
it is the upper bound of the maximum influence value of the intersection points in that
subspace). In this way, we can process the NLRs’ dense intersection areas at first and avoid
processing the Buseless pairs^.

The proposed fine-grained pruning strategy works as follows. First, We compute the weigh
sum ws of all subspaces and wsMax values of all NLRs, as shown in Table 3 for the example 3.
The numbers outside the brackets are ws values of subspaces, and the numbers in the brackets
denote the ID of NLRs that intersect in this subspace. Second, we sort the NLRs in the
descending order of wsMax, which is the same as the OptRegion algorithm. Last, when
processing the NLRs by descending order of wsMax, we utilize a priority-queue to record

Table 1 The intersection relations of spheres

Intersection relation R1 R2 R3 R4 R5 R6

R1 All 5, 6 Φ 1 1, 2, 3, 4 1, 4

R2 3, 4 All Φ Φ Φ Φ

R3 Φ Φ All Φ Φ Φ

R4 7, 8 Φ Φ All 3, 4 4

R5 5, 6, 7, 8 Φ Φ 5 All 4, 8

R6 6, 7 Φ Φ 6 2, 3, 6 All

Table 2 The NLR list in descending order of the wsMax values

NLR id wsMax Subspaces’ ws value and id

R1 3 3(1) 2(4) 1(2) 1(3) 1(5) 1(6) 0(7) 0(8)

R6 3 3(6) 1(2) 1(3) 1(7) 0(1) 0(4) 0(5) 0(8)

R4 2 2(4) 1(3) 1(7) 1(8) 0(1) 0(2) 0(5) 0(6)

R5 2 2(5) 2(8) 1(4) 1(6) 1(7) 0(1) 0(2) 0(3)

R2 1 1(3) 1(4) 0(1) 0(2) 0(5) 0(6) 0(7) 0(8)

R3 0 0(1) 0(2) 0(3) 0(4) 0(5) 0(6) 0(7) 0(8)
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all subspaces of processed NLRs up to now by descending ws values. The subspaces with
higher ws values are to be processed first, to avoid processing the Buseless pairs^. In the fine-
grained pruning strategy, we sort not only the NLRs, but also their subspaces.

The 3D-OptRegion algorithm is given in algorithm 2. We explain in detail the differences,
compared with OptRegion. In line 5 and 6, a priority-queue structure pQ, which is used in the
fine-grained pruning strategy, is constructed and initialized with the sphere with the largest
wsMax value. The priority-queue pQ has two types of element: sphere and subspace. In line 7,
a table spherePair, which is initially empty, is constructed to store all sphere pairs processed up
to now. The table spherePair is used to avoid redundant processing of sphere pairs.

In line 9 and 10, while the priority-queue pQ is not empty, the head element, which is with
the maximum wsMax or ws value in the priority-queue, is deleted and stored in variable curr. If
curr is an NLR, we insert all its subspaces and its next NLR in the NLR list into the priority-
queue pQ, in line 13-15. Only NLR and subspaces whose wsMax or ws values larger than max
are inserted into the priority-queue pQ, which helps to prune some unpromising NLRs and
subspaces. Otherwise, if curr is a subspace of an NLR, we process it according to the method
described in Section 5.1, in line 16 to 24.

Algorithm 2 3D-OptRegion
input : O : = set of customer points

P : = set of service points
output: S := optimal region presented by the overlapping NLRs
1 for each o∈O construct an NLR for o
2 call SweepPlane
3 compute the wsMax for all NLRs and the ws values of all subspaces
4 sort all the NLRs by the wsMax value
5 construct the priority-queue pQ
6 choose the NLR sphere R with the largest wsMax value, put it in pQ
7 construct the processed sphere pair table spherePair
8 s←any point in R, max←w(R)
9 while pQ is not empty
10 curr←delete the head element from pQ
11 if the wsMax or ws value of curr≤max
12 break // the algorithm terminates
13 if the type of curr is sphere
14 push next NLR of curr in NLR list into pQ if its wsMax value>max
15 push each subspace of curr into pQ if its ws value>max

Table 3 The intersecting lists of NLRs

Subspace id Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8

NLR id

R1 3(4,5,6) 1(5) 1(5) 2(5,6) 1(2) 1(2) 0 0

R2 0 0 1(1) 1(1) 0 0 0 0

R3 0 0 0 0 0 0 0 0

R4 0 0 1(5) 2(5,6) 0 0 1(1) 1(1)

R5 0 0 0 1(6) 2(1,4) 1(1) 1(1) 2(1,6)

R6 0 1(5) 1(5) 0 0 3(1,4,5) 1(1) 0
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16 else if the type of curr is subspace (assuming R is the NLR of
curr)

17 for each sphere R0 in the subspace’s intersecting list
18 if (R, R0) pair hasn’t been processed (search in spherePair)
19 add (R, R0) to the table spherePair
20 find all spheres u that intersects with both R and R0
21 if the weight sum of R, R0, and all spheres u>max
22 compute (R, R0)-plane and boundary circlec12-circle
23 compute intersection circle of all spheres u with (R, R0)-plane,

and their intersection points with c12-circle
24 compute influence value for all intersection points in c12-

circle.
If the value is greater than max
update max, and replace s by the corresponding intersection point,

check pQ and prune all the
elements with wsMax or ws value<max
25 find the overlapping NLRs containing s, put the id of these NLRs

into S
26 return S
We demonstrate the effectiveness and efficiency of the fine-grain pruning strategy in the

following example.
Example 4. The setting is the same as Example 3. Each actions of algorithm, along with the

contents of the priority-queue pQ, processed sphere pair table spherePair, and the max value
are shown in Table 4.

First, the spherePair is empty, max is the weight of R1, and R1 is inserted into and deleted
from pQ. Since R1 is an NLR, we insert its subspaces, denoted as 1-1 to 1-8, and its next NLR
R6 in the NLR list into pQ.

Next, we delete 1-1 subspace from pQ. We check the intersecting list in Table 3, and process
R1 and R4 at first. Since there is no record in spherePair, we insert (R1, R4) into it. We check the
two sphere’s intersecting list, and find out that R5 and R6 intersect with both of them. Because
the weight sum of R1, R4, R5, and R6 is 4, greater thanmax, we execute line 22 to line 24 in 3D-
OptRegion algorithm. After the processing of (R1, R4), the max is updated to 4. We check pQ

Table 4 Procedure of 3D-OptRegion

Actions pQ spherePair Max S

insert R1 R1 ∅ 1 {R1}

delete R1 and insert its
subspaces and R6

{1-1, R6,1-4,1-2,1-3,1-5,1-6,1-7,1-8 } ∅ 1 {R1}

delete 1-1 and process
R1-R4

{R6,1-4,1-2,1-3,1-5,1-6,1-7,1-8 } {R1-R4} 4 {R1, R4, R5, R6 }

prune pQ ∅ {R1-R4} 4 {R1, R4, R5, R6 }

process R1-R5, R1-R6 ∅ {R1-R4,R1-R5,
R1-R6}

4 {R1, R4, R5, R6 }

return S ∅ {R1-R4,R1-R5,
R1-R6}

4 {R1, R4, R5, R6 }
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and prune all the elements with wsMax or ws value≤max=4, resulting the pQ being∅. Back to
the intersecting list of subspace 1-1, we process sphere pair R1-R5, and R1-R6 in the same way.

Then, subspace 1-1 has been finished, and since pQ is ∅ now, the algorithm terminates and
S={ R1, R4, R5, R6 } is returned as the result.

6 Analysis

In this section, we will first analyze the time complexity of our proposed algorithms-
OptRegion and 3D-OptRegion in sSection 6.1, and then in Section 6.2, we prove the
correctness of our algorithm, at last, in Section 6.3, we give out the theoretical analysis and
experiment verification of the accuracy of our upper bound estimation technique.

6.1 Time complexity

The OptRegion algorithm has the following three steps.

Step 1 (NLR construction): We use kd-tree [11] to perform nearest neighbor query. We build
a kd-tree for all service points in P, which requires O(|P|log|P|) time and O(|P|) space.
Then we use the algorithm ANN in [1] to find the nearest service point over the kd-
tree, which requires O(log|P|) time for each customer point in O. Thus, the construc-
tion of NLRs can be done in O(|P|log|P|+|O|log|P|).

Step 2 (Find intersecting NLRs and estimate upper bound of influence value): Let d1 be the
maximum number of NLRs whose MBR intersects with a given NLR’s MBR, and c
be the maximum NLRs intersecting with a sweep line. In the sweep line algorithm, it
takes O(|O|log|O|) time to sort the event queue. For each NLR, it takes O(d1+logc)
time to test intersection, and O(logc) time to insert into and delete from the status
structure. So, the overall execution time for sweep line algorithm is O(|O|(d1+log|O|)).
For each NLR, its MBR intersects with at most d1 MBRs, thus it takes O(d1) time to
process each NLR, i.e., O(|O|d1) time to estimate upper bound of influence value for
all NLRs. Thus, this step requires O(|O|(d1+log|O|)) time.

Step 3 (Find the optimal intersection point): first we need to sort all NLRs by descending
wsMax order, which re-quires O(|O|log|O|) time. Actually, we need not fully sort all
NLRs, here we only need a priority-queue that can ret-urn the NLR with next
maximum wsMax value. As soon as the wsMax value returned is below the maximum
influe-nce value found so far, remained NLRs are all pruned without further process-
ing. Let α1 (0≤α1<1) be the prune rate.

There are at most d1 intersection arcs in each NLR, the influence value computation takes
O(d1) time for each NLR.

Thus, this step requires O((1−α1)|O|d1) time.
From the analysis above, we can get the following theorem.
Theorem 1 The overall time complexity of OptRegion in a two-dimensional space is O

(|P|log|P|+|O|(log|P|+d1+log|O|)).
As described in Section 5.4, the 3D-OptRegion algorithm comprises the same three steps as

the OptRegion algorithm. The time required in step 1 is the same as OptRegion, which takes
O(|P|log|P|+|O|log|P|).
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For step 2, Let d1 be the maximum number of NLRs whose MBR intersects with a given
NLR’s MBR, and c be the maximum NLRs intersecting with a sweep plane. In the sweep
plane algorithm, it also takes O(|O|log|O|) time to sort the event queue. For each NLR, it takes
O(d1+logc) time to test intersection(since the point query in a kd-tree takes O(logc) time), and
O(logc) time to insert into and delete from the status structure(a kd-tree). So, the overall
execution time for sweep plane algorithm is also O(|O|(d1+log|O|)). For each NLR, its MBR
intersects with at most d1 MBRs, thus it takes O(d1) time to process each NLR, i.e., O(|O|d1)
time to estimate upper bound of influence value for all NLRs. Thus, this step requires
O(|O|(d1+log|O|)) time.

For step 3, let d2 be the maximum number of NLRs whose MBR intersects with two given
NLRs’MBR (it is obvious d2≤d1), and α2 (0≤α2<1) be the prune rate of fine-grained pruning
strategy. In a three dimensional space, it is easy to know that given two NLRs R and R0, the
computation of the (R,R0)-plane and (R,R0)-circle takes O(1) time. It takes O(d1d2) time to
process an NLR, So, the time required in step 3 is O((1−α2)|O|d1d2). Thus, we can get the
following theorem.

Theorem 2 The overall time complexity of 3D-OptRegion isO(|P|log|P|+|O|(log|P|+log|O|+
d1d2)).

6.2 Correctness demonstration

The correctness of OptRegion and 3D-OptRegion is guaranteed by the following five aspects:

1) Based on Lemma 3, 4, the sweep line algorithm can find all the intersecting pairs
of NLRs in a two-dimensional space. Based on Lemma 9 and the demonstration
in Section 5.2, the sweep plane algorithm can find all the intersecting spheres in
a three-dimensional space.

2) Based on Lemma 5 ,6, and the analysis in Section 4.2, the space dividing pruning
strategy can prune the NLRs correctly and the upper bound estimation can derive
a tight upper bound. According to the demonstration in Section 5.3, the 8-
partition and 12-partition strategies can pruning the searching space efficiently
in three-dimensional space, and Example 3 in Section 5.4 demonstrate the cor-
rectness and effectiveness of our Fine-grained Pruning Strategy (FPfor short). In
Section 6.3 we will demonstrate the accuracy of Upper Bound Estimation in a
more formal way.

3) According to Lemma 7,8 and Example 4 in Section 5.4, the influence value computation
process can compute th-e influence value of intersection points correctly in two and three-
dimensional spaces.

4) Based on properties in [17], the transformation of three NLRs’ intersection in a three-
dimensional space into tw-o circles’ intersection in a two-dimensional space is correct.

5) According to Algorithm 1 in Section 4.4 and Algorithm 2 in Section 5.4, OptRegion and
3D-OptRegion return the MaxBRNN region correctly in two-and three-dimensional
spaces respectively.

Above all, the correctness of OptRegion and 3D-OptRegion can be concluded as theorem
3. The detailed proof can be derived from the above description.

Theorem 3 OptRegion and 3D-OptRegion return the MaxBRNN region correctly in two-
and three-dimensional spa-ces respectively.
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6.3 Accuracy of upper bound estimation

We utilize some approximations in the upper bound estimation in algorithm
OptRegion. We approximate each NLR by its MBR to test intersection with each
other. Now we will present the accuracy analysis about the approximation strategies.
To be brevity and without loss of generality, we only analyze the accuracy for 4-
partition strategy in a two-dimensional space.

Lemma 10. Suppose the dataset is uniform distributed. Given two NLRs A and B, if B’s
MBR intersects with one subspace of A’s MBR (assuming 4-partitioning is used), then the

probability of B really intersecting with this subspace of A is π r1þ r2ð Þ 2þ8r1*r2þ3*πr22
4 r1þ2r2ð Þ

2, here

r1 and r2 are radius of A and B respectively.
Proof. Suppose A, B are the center of the NLRs, and B’s MBR intersects with the

MBR of subspace 1 of A without loss of generality. We can imagine that B’s MBR
moves along the MBR of the subspace 1 of A, so the trajectory of point B constitutes
the shaded square, as shown in Fig. 12a. For every NLR with radius r2 and its center
inside the shaded square, its MBR intersects with the MBR of subspace 1 of A. The
area of this shaded square is (r1+2r2)

2.
On the other hand, by moving NLR B around the subspace 1 of A, the trajectory

of point B constitutes another shaded region, as shown in Fig. 12b. For every NLR
with radius r2 and its center inside this shaded area, it intersects with the subspace 1
of A. we can see that this area includes a quarter of a circle with radius r1+r2, two
rectangles with the same length r1 and width r2, and three small quarters of circles
with radius r2. Thus, the area of this region is

π r1þ r2ð Þ2
4

þ 2r1*r2þ 3*
πr22
4

The probability of really intersecting is the ratio of the two shaded region.

P ¼ π r1þ r2ð Þ2 þ 8r1*r2þ 3*πr22
4 r1þ 2r1ð Þ2 ð1Þ

r1+2r2

r1+r2

r1

r2

(a) (b)
Fig. 12 Accuracy analysis of MBR approximation
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We use variable a to denote the ratio of r1 and r2 (i.e., r1/r2), then we can rewrite Eq. (1) to

P ¼ π
4
þ

2−
π

2

aþ 4

a
þ 4

ð2Þ

For Eq. (2), when a ranges from (0, +∞), P ranges in (π/4, 3π/16+0.25]. If a=1, the value
of P is about 83.3 %.

We conduct experiment on the uniform distributed dataset to confirm Lemma 10. For each
NLR, says, Ri , suppose Nij is the number of NLRs really intersect with Ri’s jth subspace and
wsij is the upperbound of this subspace, so, the subspace estimation precision rate of Ri can be
expressed as follows:

Pi ¼

X4

j¼1

Ni j

wsi j

4
ð3Þ

And consequently, we derive the subspace estimation precision rate as follows(N is the
number of NLRs),

P ¼

XN

i¼1

Pi

N
ð4Þ

The experiment result is as shown in Fig. 13, the top three lines are the values of P
computed as shown in Eq. (4) with different |O| / |P|, the x axis denotes the value of N. The
experimental values of P changes around 92 %, this is a little higher than the theoretical range
about (0.79, 0.84]. This maybe because that the theoretical analysis suppose that the data
points are generated totally randomly and they are distributed densely in the whole plane, and
the number of the data points is infinite, however in the experiments, the NLRs may have some
relationships with the customer and service points, and the cardinality of our experimental data
set is limited to 106. The experiments suggest that our upper bound estimation can have greater
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accuracy than the theoretical values, and it further proves that our pruning strategy is
reasonable and practical.

7 Performance study

In this section, we will first introduce the experimental environment and settings, and our
evaluation criterion. And then in Section 7.2 and we give out the experimental results in two-
dimensional space. Section 7.3 and 7.4 are the extension to the preliminary conference version
[16], we evaluate the effect of parameter k in MaxBRkNN problem and evaluate our 3D-
OptRegion algorithm in three-dimensional space.

7.1 Experimental settings

We have conducted extensive experiments to evaluate the performance of our algorithm
OptRegion and 3D-OptRegion. We compare our algorithm with the state-of-the-art algorithm
MaxOverlap[26], MaxSegment[17], and MaxFirst[29] for the MaxBRNN problem. All ex-
periments show that our algorithm outperforms other algorithms significantly.

The algorithms are implemented in C++, in which we reused part of the C++ code of
MaxOverlap. The C++ code of MaxOverlap is got from the authors. We implement the
algorithm MaxSegment and MaxFirst in C++ according to the description in their papers.
All experiments are carried out on a Linux machine with an Intel Core2 Duo 2.9 GHz CPU
and 2GB memory.

The performance evaluation is performed using both synthetic and real datasets. The
synthetic datasets follow Uniform, Gaussian and Zipf distributions, and the number of
customer points ranges from 50 to 200K. The customer dataset and the service dataset have
the same distribution. Two real world two-dimension datasets LB and CA, which contain 2D
points representing geometric locations in Long Beach Country and California respectively,
are used in the experiments for OptRegion. The LB and CA datasets are available at http://
www.rtreeportal.org/spatial.html. For real data sets, the number of customer point is in the
range from 10 to 40K. We partition the real datasets into two parts, the first 40K points are
customers and the remaining 20K points are services. We set the cardinality of P (service set)
to be half the cardinality of O (customer set) for both synthetic and real datasets, since in reality
the number of services is always much fewer than that of customers, we can also use other
ratios, too, e.g. |P|/|O|<1/2 which will not affect the overall performance. The statistics about
datasets are summarized in Table 5.

The weight of each customer point in both synthetic and real datasets is set to 1. When the
weights of customer points are other than 1, the experimental results are similar and we omit it
here. The k value of a MaxBRkNN query varies from 1 to 15, and its default value is 1.

Table 5 Datasets

Dataset Cardinality Dataset Default value Range

(a) Real datasets (b) Synthetic datasets

CA 62,556 | O | 50K 10~200K

LB 53,145 | P | | O |/2 5~100K
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We first conduct experiments to evaluate the pruning strategy with different partitioning
methods in a two-dimensional space in Section 7.2.1. In Section 7.2.2, to gain insight of the
performance promotion of our algorithm, we compare algorithms from two aspects of running
time: 1) overall running time, which includes the execution time for all three steps in
Section 6.1; 2) running time without preprocessing, which includes the time of finding
intersecting NLRs, estimating upper bound of influence value, and finding the optimal
intersection point, i.e. the step 2 and step3 in Section 6.1. In Section 7.3, we evaluate the
effect of parameter k from two aspects: 1) the running time of different algorithms with
different k values; 2) the pruning power of algorithm OptRegion with different k values. In
Section 7.4, we evaluate the performance of 3D-OptRegion in a three-dimensional space. First
we demonstrate the effectiveness of the fine-grained pruning strategy, and then we compare
OptRegion with the MaxSegment algorithm from the aspect of running time.

7.2 Experiment results in two-dimensional space

7.2.1 Pruning strategies in two-dimensional space

The upper bound estimation of influence value in OptRegion is based on the space partitioning
of an NLR. Different partitioning will have different pruning effect. We explore three strategies
here, i.e. 1-partition, 4-partition and 8-partition, in which an NLR is partitioned into 1, 4, and 8
subspaces respectively. We depict the pruning effect and running time of different strategies in
Fig. 14 and Table 6 respectively, which show that 4 and 8-partition are superior to 1-partition.
The experiments are conducted on the synthetic dataset with 80K customer points. Compared
to 1-partition, both 4 and 8-partition have more powerful pruning effect. We have to compute
exact influence value of more than 1300 NLRs against all 80K NLRs when 1-partition is used,
whereas only 253 and 140 NLRs really need exact influence value computation when 4 and 8-
partition are used respectively. The prune rate α is 99.83 % for 8-partition.

From Table 6 we can find that, as the increase of subspace number, the time percentage of
exact influence value computation decreases, but the time percentage of upper bound estima-
tion increases. There are almost no differences between the running time of 4 and 8-partition.
Although 8-partition strategy can prune more NLRs, the pruning procedure needs more
computation. Except the 1-partition strategy, we can choose either of the other two pruning
strategies.

Fig. 14 Pruning effect of different
strategies
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7.2.2 Performance in two-dimensional case

Overall running time The experiment results are given in Fig. 15 ( which is a reduced
version of the conference version in [16]) for synthetic and real datasets with different point set
cardinalities. Our algorithm OptRegion outperforms MaxOverlap, MaxSegment, and MaxFirst
significantly for all circumstances. The performance promotion is up to about one order of
magnitude. As the number of point set increases, the overall running time of the other
algorithms increase dramatically, whereas OptRegion has a relativelymuch smaller increase
rate, showing its good scalability. The reason of the remarkable performance improvement can
be found in [16].

Running time without preprocessing The experiment results are given in Fig. 16.
Without the preprocessing time, OptRegion is about one time faster than MaxFirst and
several times faster than MaxOverlap and MaxSegment. Comparing Fig. 16a and b,
we observe that data distribution affects the algorithms performance. All algorithms
spend more time on datasets with Gaussian distribution than uniform distribution, for
there are much more intersecting NLRs and intersection points in the dense area of
Gaussian distribution dataset.

Table 6 Running time of different pruning strategies

1-partition 4-partition 8-partition

Uniform
80K

number of NLRs not pruned 1302 253 140

time percentage of upper bound estimation 70.04 % 78.20 % 82.76 %

time percentage of influence compute 16.30 % 4.71 % 1.31 %

total time (without preprocessing) 1.67s 1.38s 1.45s

Gaussian
80K

number of NLRs not pruned 1261 69 40

time percentage of upper bound estimation 76.60 % 82.10 % 82.77 %

time percentage of influence compute 7.90 % 0.45 % 0.38 %

total time (without preprocessing) 1.58s 1.3s 1.29s
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7.3 Effect of k

7.3.1 Overall running time comparison

We first evaluate the effect of k by the comparison of running time (including preprocessing
time) with the state-of-art algorithms. As shown in Fig. 17a–d, no matter the synthetic data
sets(Uniform and Gaussian) or the real data sets (CA and LB), the execution times of all
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algorithms increase with k. This is because as k increases, the radius of NLRs increases and it is
more likely that an NLR intersects with another NLR, which makes the influence value larger.
The experiment shows that the increase in the execution time of OptRegion is smaller than that
of the state-of-art algorithms as k increases, which means our algorithm OptRegion has much
better scalability with respect to k.

7.3.2 Result of pruning strategies

We conduct experiments to demonstrate the effect of k on different pruning strategies in our
algorithm. As shown in Fig. 18, as k increases, the number of NLRs that need to be processed
after pruning increase in all pruning strategies. This is because as k increases, it is more likely
that an NLR intersects with another NLR, so the number of intersection dense areas maybe
increase, resulting in more NLRs to be processed. From Fig. 18, it can be found that the
pruning power of both 4-partition and 8-partition are still significantly better than the 1-
partition strategy (in the 8-partition strategy, the NLRs’ number is too small to see in the
figure when k=1).

It may be found that when k is larger than 5, the power of 8-partition strategy degrades
dramatically. So, when k is larger than 5, we’d better choose the 4-partition strategy.

7.4 Performance in three-dimensional case

7.4.1 Effectiveness of fine-grained pruning strategy

We evaluate the Effectiveness of fine-grained pruning strategy by comparing the
number of spheres (NLSs) and sphere-pairs processed using the uniform dataset (the
results are similar using other datasets and we omit it here), both algorithms adopt the
8-partition estimation strategy. From Fig. 19a, the number of spheres that have to be
processed in algorithm 3D-OptRegion with FP (short for fine-grained pruning strate-
gy) is almost half the number in algorithm 3D-OptRegion without FP. Figure 19b
shows that the sphere pair number processed in algorithm 3D-OptRegion with FP is
about one order less than the number in algorithm 3D-OptRegion without FP. The
performance gain of fine-grained pruning strategy mainly comes from the fact that we
sort the NLRs’ subspace instead of solely NLRs, and we can process the NLRs’ dense
area first and avoid processing the useless sphere pair.
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7.4.2 Running time comparison

We compare our algorithm 3D-OptRegion with algorithm MaxSegment, which is the most
efficient algorithm for MaxBRNN problem in the three-dimensional space, using the uniform
and Gaussian dataset (the results are similar using other datasets and we omit it here). Fig. 20a
and b show the comparison of overall running time. Since the two algorithms utilize the same
preprocess method, we also conduct experiment for comparison of running time without the
preprocessing, as shown in Fig. 21a and b.

It is obvious that algorithm 3D-OptRegion outperforms algorithm MaxSegment constantly
under all dataset instances. As shown in Fig. 21a and b, the running time without preprocessing of
algorithm 3D-OptRegion is le-ss than half of the time of algorithm MaxSegment. There are two
major advantages in 3D-OptRegion that contribute to the remarkable performance improvement:

1) We adopt sweep plane technique to find intersecting NLRs, which localizes the search
range, only needs much more simple computation, and avoids the construction of the R-
tree of NLRs, which is very time consuming;

2) We adopt a fine-grained pruning strategy, which is much efficient.

7.4.3 Effect of data distribution

To test the best/worst case for our proposed algorithm 3D-OptRegion(we only con-
sider the 3D-OptRegion with FP since it performs better than without FP), we use
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Zipf distribution datasets with different factor values varying from 0.2 to 5, which
indicate different data distributions. We test both the running time and pruning power
of our algorithm on different data sets. The data sets are described in Fig. 22, with
the increasing of the factor value, the dataset skews more dramatically, thus, using the
different Zipf datasets, we can tell the best and worst cases of our proposed algo-
rithm. From Fig. 22f, we can see that the data distribution becomes irregular when
factor value is larger than 5, so we only test factor value from 0.2 to 5.

Figure 23 shows the running time on different data distributions, we can see that
algorithm 3D-OptRegion has the best performance when factor value varies from 0.2
to 0.8 or factor value is bigger than 4. And when factor value varies from 1 to 3 the
algorithm performs worst. The reason of this efficiency change can be explained by
Fig. 24.

The critical factor that impacts the algorithm’s efficiency is the number of sphere-pairs and
subRegions being processed, and Fig. 24a, b illustrate the effect of data distribution from these
two aspects. From Fig. 24a, we can see that as factor value varies from 0.2 to 1, the number of
sphere-pairs being processed decreases while the number of subRegions being processed

0

5

10

15

0 50 100 150

3D-OptRegion
MaxSegment

Number of Customer Points(x103)

Ru
nn

in
g

Ti
m

e(
s)

0

5

10

15

20

0 50 100 150

Ru
nn

in
g

Ti
m

e(
s)

Number of Customer Points(x103)

MaxSegment
3D-OptRegion

(a)Uniform (b)Gaussian

Fig. 21 Running time without preprocessing in three-dimensional-space

0
2000

4000
6000

8000
10000

0

5000

10000
0

2000

4000

6000

8000

10000

0
2000

4000
6000

8000
10000

0

5000

10000
0

2000

4000

6000

8000

10000

0
2000

4000
6000

8000
10000

0

5000

10000
0

2000

4000

6000

8000

10000

0
2000

4000
6000

8000
10000

0

5000

10000
0

2000

4000

6000

8000

10000

0
2000

4000
6000

8000
10000

0

1000

2000

3000
0

2000

4000

6000

8000

10000

0
100

200
300

400

0

5000

10000
0

2000

4000

6000

8000

10000

(a) 0.2 (b) 0.6 (c) 1

(d) 3 (e) 5 (f) 6

Fig. 22 Data distribution (Zipf distribution with different factor value)

Geoinformatica (2016) 20:351–384 379



0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2

Zipf distribution factor value

Ru
nn

in
g

Ti
m

e(
s)

Zipf,| |=50k

3D-OptRegion-overall
running time

3D-OptRegion-runing
time without
preprocessing

(a) Factor value 0.2~1

0

5

10

15

0 1 2 3 4 5 6
Zipf distribution factor value

Zipf,| |=50k

3D-OptRegion-overall
running time

3D-OptRegion-runing
time without
preprocessing

Ru
nn

in
g

Ti
m

e(
s)

(b) Factor value 1~5

Fig. 23 Running time on different data distributions

0

10

20

30

40

0.2 0.4 0.6 0.8 1

Processed Sphere-Pair

Number

0

500

1000

1500

2000

0.2 0.4 0.6 0.8 1

Processed SubRegion

Number

(a) Factor value 0.2~1

0

10

20

30

40

50

60

1 2 3 4 5

Processed Sphere-Pair

Number

0

500

1000

1500

2000

1 2 3 4 5

Processed SubRegion Number

(b) Factor value 1~5

Fig. 24 Pruning effect on different data distributions

380 Geoinformatica (2016) 20:351–384



increases, as a result of this, the running time remains stable as shown in Fig. 23a. When factor
value varies from 2 to 5, both of the sphere pair and subRegion’s number decreases (as shown
in Fig. 24b), consequently, the running time decreases (Fig. 23b).

In general, the 3D-OptRegion algorithm performs better when the dataset is uniform or
skews dramatically.

8 Conclusion and future work

In this paper, we propose two efficient algorithms, namely, OptRegion, and 3D-OptRegion to
tackle the MaxBRNN, Max-3D-BRNN and MaxBRkNN problems, which have many appli-
cations in real life. The algorithms employ several efficient techniques, such as sweep line
(plane), upper bound estimation, and fast influence value computation. Extensive experiments
using both real and synthetic data sets verify the effectiveness and efficiency of our proposed
algorithms. The experimental results show that OptRegion and 3D-OptRegion outperform the
state-of-the-art algorithms significantly in two- and three-dimensional spaces.

There are several directions in our future work. First, the current MaxBRNN problem only
returns one optimal region. However, a decision maker may want to choose a group of optimal
regions to set up new service facilities. It is necessary to consider the problem under the
combinatorial context. Second, we will explore the MaxBRNN problem in the road network.

Acknowledgments This research was partly supported by The National Science and Technology Supporting
Plan-Project no. 2012BAH70F02, 2013BAH62F01 and 2013BAH62F02.

References

1. Arya S, Mount D-M, Netanyahu N-S, Silverman R, Wu A-Y (1998) An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. JACM 45(6):891–923

2. Berg M, Cheong O, Kreveld M, Overmars M (2009) Computational geometry: algorithms and applications.
[M]. 3rd edn. Springer, p 32–55

3. Bernecker T, Emrich T, Kriegel H-P, Renz M, Zankl S, Züfle A (2011) Efficient probabilistic reverse nearest
neighbor query processing on uncertain data. VLDB:669–680

4. Cabello S, Díaz-Báñez JM, Langerman S, Seara C, Ventura I (2005) Reverse facility location problems.
CCCG

5. Cabello S, Díaz-Báñez JM, Langerman S, Seara C, Ventura I (2010) Facility location problems in the plane
based on reverse nearest neighbor queries. Eur J Oper Res 202(1):99–106

6. Cheema M-A, Zhang W, Lin X, Zhang Y, Li X (2012) Continuous reverse k nearest neighbors queries in
Euclidean space and in spatial networks. VLDB 21(1):69–95

7. Chen Z, Wang L, Liu W (2012) Method for maximizing bichromatic reverse nearest neighbor in road
networks. J Converg Inf Technol 7(4):125–133

8. Chen F, Lin H, Gao Y, Lu D (2015) Capacity constrained maximizing bichromatic reverse nearest neighbor
search. Expert Syst Appl. doi:10.1016/j.eswa.2015.08.051

9. Choi D-W, Chung C-W, Tao Y (2012) A scalable algorithm for maximizing range sum in spatial databases.
VLDB 5:1088–1099

10. Du Y, Zhang D, Xia T (2005) The optimal-location query. SSTD:163–180
11. Friedman J-H, Bentley J-L, Finkel R-A (1977) An algorithm for finding best matches in logarithmic

expected time. ACM TOMS 3:209–226

Geoinformatica (2016) 20:351–384 381

http://dx.doi.org/10.1016/j.eswa.2015.08.051


12. Gao Y, Zheng B, Chen G, Li Q, Guo X (2011) Continuous visible nearest neighbor query processing in
spatial databases. VLDB 20(3):371–396

13. Ghaemi P, Shahabi K, Wilson J-P, Banaei-Kashani F (2014) A comparative study of two approaches for
supporting optimal network location queries. GeoInformatica 18(2):229–251

14. Kang J-M, Mokbel MF, Shekhar S, Xia T, Zhang D (2007) Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors. ICDE:781–790

15. Korn F, Ukrishnan S-M (2000) Influence sets based on reverse nearest neighbor queries. SIGMOD:201–212
16. Lin H, Chen F, Gao Y, Lu D (2013) OptRegion: finding optimal region for bichromatic reverse nearest

neighbors. DASFAA
17. Liu Y, Wong R-C, Wang K, Li Z-J, Chen C (2012) A new approach for maximizing bichromatic reverse

nearest neighbor search. KAIS
18. NghiemT-P,MaulanaK, NguyenK, GreenD et al (2014) Peer-to-peer bichromatic reverse nearest neighbours

in mobile ad-hoc networks. J Parallel Distrib Comput 74(11):3128–3140
19. Sedgewick R, BrownMH (1983) Data structures and algorithems. [M]. 1st edn. Addison-Wesley, Balanced Trees
20. Shang S, Yuan B, Deng K, Xie K, Zhou X (2011) Find the most accessible locations: reverse path nearest

neighbor query in road networks. ACM GIS:181–190
21. Singh A, Ferhatosmanoglu H, Tosun A (2003) High dimensional reverse nearest neighbor queries. CIKM:

91-98
22. Stanoi I, Agrawald D (2000) Reverse nearest neighbor queries for dynamic databases. ACM SIGMOD

DMKD:44–53
23. Tao Y, Papadias D, Lian X (2004) Reverse KNN search in arbitrary dimensionality. VLDB:744-755
24. TaoY, Hu X, Choi D-W, Chung C-W (2013) Approximate MaxRS in spatial databases. PVLDB:1546–1557
25. Tran Q, Taniar D, Safar M (2010) Bichromatic reverse nearest-neighbor search in mobile systems. IEEE Syst

J 4(2):230–242
26. Wong R-C, Özsu MT, Yu P-S, Fu A-W, Liu L (2009) Efficient method for maximizing bichromatic reverse

nearest neighbor. VLDB:1126–1137
27. Wong R-C, Özsu MT, Fu A-W, Yu P-S, Liu L, Liu Y (2011) Maximizing bichromatic reverse nearest

neighbor for Lp-norm in two- and three-dimensional space. VLDB 20:893–919
28. Yan D, Zhao Z, Ng W (2012) Monochromatic and bichromatic reverse nearest neighbor queries on land

surfaces. CIKM:942–951
29. Zhou Z, Wu W, Li X, Lee M-L, Hsu W (2011) MaxFirst for MaxBRkNN. ICDE:828–839

Huaizhong Lin is currently an associate professor of computer science in Zhejiang University. He received a
Ph.D. degree in Computer Science from Zhejiang University in 2002. His research interests are database and data
mining, spatial database, information retrieval etc., he has published over 40 research papers in journals and
conferences, and has been granted 6 patents.

382 Geoinformatica (2016) 20:351–384



Fangshu Chen received the BS degree in computer science from DaLian Unversity of Technology, China, in
2011. She is currently working toward the PHD degree in the College of Computer Science, Zhejiang University,
China. Her research fields mainly focus on spatial databases.

Yunjun Gao received the PhD degree in computer science from Zhejiang University, China, in 2008. He is
currently an associate professor in the College of Computer Science, Zhejiang University, China. Prior to joining
the faculty, he was a Postdoctoral Fellow at the Singapore Management University during 2008–2010, and a
Visiting Scholar or Research Assistant at the Nanyang Technological University, Simon Fraser University, and
City University of Hong Kong, respectively. His research interests include spatial and spatiotemporal databases,
uncertain and incomplete databases, and spatio-textual data management. He has published papers in Journals
and conferences including TODS, VLDBJ, TKDE, SIGMOD, ICDE, and SIGIR. He is a member of the ACM
and the IEEE, and a senior

Geoinformatica (2016) 20:351–384 383



Dongming Lu His research fields mainly focus on the digital media network technology and system, Heritage
digital protection and culture passing technology, Wireless and next generation Internet technology and Network
information security technology. He has publised more than 60 articles and 11 invention patents in the past five
years. His monograph Bdigital cultural relics protection and development of technology^ was published by
Zhejiang University Press and Springer. He is currently the executive director of the Computer Society, Computer
Society of network technical, director and members of the special committee of the China Digital Museum of
Zhejiang Province.

38 Geoinformatica (2016) 20:351–3844


	Finding optimal region for bichromatic reverse nearest neighbor in two- and three-dimensional spaces
	Abstract
	Introduction
	Related work
	Preliminaries
	Problem definitions
	Region-to-point transformation

	Algorithms in two-dimensional space
	Sweep line
	Pruning strategy
	Influence value computation
	OptRegion

	Extension to three-dimensional case
	Intersection arc
	Sweep plane
	Estimation
	Fine-grained pruning strategy

	Analysis
	Time complexity
	Correctness demonstration
	Accuracy of upper bound estimation

	Performance study
	Experimental settings
	Experiment results in two-dimensional space
	Pruning strategies in two-dimensional space
	Performance in two-dimensional case

	Effect of k
	Overall running time comparison
	Result of pruning strategies

	Performance in three-dimensional case
	Effectiveness of fine-grained pruning strategy
	Running time comparison
	Effect of data distribution


	Conclusion and future work
	References




