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Abstract This article describes DSL3S, a domain specific modelling language for Spatial
Simulation in the field of Geographic Information Systems (GIS). Techniques such as cel-
lular automata and agent-based modelling have long been used to capture and simulate the
temporal dynamics of spatial information. Tools commonly employed to implement spa-
tial simulation models include code libraries and pre-compiled models; the former require
advanced programming skills while the latter impose relevant constraints on application
scope. Previous attempts to produce domain specific languages in the field have invariably
resulted in new textual programming languages (e.g. SELES, NetLogo, Ocelet) that are
platform specific and in some cases with weak GIS support and interoperability. DSL3S
synthesises relevant concepts of spatial simulation in a UML profile, that allows the design
of simulation models through the arrangement of graphical elements. An implementation
of this language is also presented, that relies on Model Driven Development (MDD) tools
distributed with the Eclipse IDE. This includes a code generation infrastructure, that pro-
duces ready to run simulations from DSL3S models, supported by the MASON simulation
tool-kit. Finally, DSL3S models for three simple and classical simulations allows to better
illustrate and discuss the usage of the language.
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1 Introduction

The data stored in an information system usually portraits the world as it was at a spe-
cific moment or interval in time. This is especially true for spatial data, but with the added
certainty that it will also evolve with time. The patterns of land use and land cover, of
social, economic, and demographic variables in general, change constantly with time. Entire
organisations have developed with the sole purpose of collecting and updating spatial data,
through several data acquisition techniques [20]. Nevertheless, regular data collection pro-
vides at best a periodic picture of the changing reality, which in some applications may not
be enough [2]. Stakeholders of an information system may need not only to know how the
data changed in the past; in order to plan ahead or otherwise reason upon the data, they also
need to understand why it changed the way it did and how it may continue to evolve in the
future.

This need is met by specific tools and methodologies composing a niche of spatial anal-
ysis called Spatial Simulation [6]. Such tools allow the simulation of space-time changes of
spatially distributed variables, usually on a discrete representation of space. Their use can
improve knowledge on geographic phenomena in two ways [2]: (1) disclose the dynam-
ics behind changes observed in the past and (2) forecast future evolution and change. The
dynamics identified is typically applied to a set of data during a time period of interest [21].

Every since the inception of the first spatial simulation code library in the 1990s, the
field experienced rapid growth with an increasing number of tools, such as Swarm, RePast
or StarLogo, today comprising perhaps more than one hundred [6]. However, the spatial
analyst is thus faced with a non trivial choice of tools, often requiring solid programming
skills, at times facing data interoperability issues.

This article presents a Domain Specific Language (DSL) for spatial simulation in
the context of GIS, named “Domain Specific Language for Spatial Simulation Sce-
narios” (DSL3S). Additionally, an accompanying development framework is intro-
duced, that allows the development of models through the arrangement of graphical
elements and their relationships, dispensing formal programming knowledge. These
graphical models can then be translated into ready to run simulations through the
application of code generation techniques [35]. The Information Systems Group of
INESC-ID1 research centre associated with the Instituto Superior Técnico of the
Universidade de Lisboa, has now close to a decade of experience in this field,
applying Model-Driven Development (MDD) and Language Engineering techniques
in difference contexts, particularly through the ProjectIT and MDDLingo initiatives
[13, 32, 34, 38, 39].

Section 2 of this article reflects on the need for DSLs in Spatial Simulation; Section 3
reviews and compares previous DSLs in the field. Section 4 describes the proposed approach
and Section 5 outlines the syntax and structural semantics of the language. Section 6 details
the prototype implementation of this language and the technologies supporting it. Section 7
presents three application examples of DSL3S. Finally, Section 8 summarises the article and
discusses future work.

1http://www.inesc-id.pt/.

http://www.inesc-id.pt/
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2 Background on spatial simulation

Cellular Automata is the oldest technique used in Spatial Simulation [45] in which the world
is discretised in a grid of regular cells evolving in accordance to a fixed set of rules. More
recently, Agent-based Modelling has become a popular paradigm, with wide application in
the GIS context [2]. An agent can be defined as an autonomous object that perceives and
reacts to its environment [12, 37, 43], a concept that stems from object oriented program-
ming. Agent-based Modelling and Cellular Automata are two techniques that superimpose
to some extent in the GIS context, though the former brought new processing possibilities,
with geographic entities not only reacting to stimuli but also storing knowledge and rea-
soning before acting. Agents can also be used to model phenomena that do not have direct
geographic meaning, such as social or economic interactions.

With at least two decades of history in the GIS field, Spatial Simulation has been
in good measured barred from regular spatial analysts. To choose an appropriate tool,
the analyst faces in first place the option between two categories: those tools provid-
ing support at Program-level—closer to a programming language approach—and those
that operate at Model-level—closer to the conceptual level. The first commonly comprise
source code libraries usable with high level programming languages. The second consists
in pre-programmed tools that only allow users the parametrisation of the model. These two
categories can be seen as the ends of a spectrum of support level defined by the multiple
tools available in this field. [11]. At the middle of this spectrum are found DSLs that try to
find a balance between the levels of support.

Program-level tools, such as Swarm [19], MASON [23] or REPast [28], can reduce some
of the burdening of directly using a general purpose programming language, but still require
good programming skills from the analyst [41]. Most of these code libraries are based on
object oriented languages, such as Objective-C or Java, by themselves not easily accessible
to entry level programmers. The full knowledge of one of these code libraries is some-
thing achievable only with several months of practice [33]. There is thus a relevant time lag
between the option for one of these tools and a first simulation prototype, which for some
projects may not be acceptable.

On the other hand, Model-level support tools (e.g. SLEUTH [5], TELSA [24], LANDIS
[25]) tend to be quite specific, much of the model behaviour and assumptions are hidden in
the software and may not be explicit or modifiable; their use in other application fields is
largely impossible. The analyst can in fact dispense programming skills using this kind of
tools, but is constrained to a specific field (e.g. Hydrography, Forest Management) and over-
all simulation behaviour. These tools also tend to narrow the interaction with geo-referenced
data, by imposing certain formats or in some cases by lacking output functionality. More-
over, Model-level tools tend to impose dependencies on third party software that may not
be trivial to overcome. Evolution or generalisation of these tools can sometimes become too
expensive and fate them to extinction. Traditionally, they take advantage of market niches
providing the needs of a specific and restricted group of users, thus the commercial nature
of many of them.

In this context, three essential problems and difficulties arise as the motivation for the
DSLs in this field:

1. most spatial simulation tools require specialised programming training;
2. those tools that do not require such knowledge are narrow scoped and tend to

compromise GIS interoperability; and
3. an integrated approach to the description, documentation and communication of agent-

based models is largely lacking [27].
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Analysts working with spatial data either come from GIS related areas, like Geography,
Cartography or Geodesy, or from the scientific domains of application, such as Biology,
Economics or Environmental Science. Even higher education programmes on these fields
largely lack programming training, particularly on object oriented development. GIS ana-
lysts thus generally lack the knowledge and practice of trained programmers, being unable
to use the most common Spatial Simulation tools. The involvement of programmers in
Spatial Simulation projects becomes indispensable, creating a further communication step
between a model concept and its implementation.

On the other hand, the option for pre-compiled Model-level tools also imposes its dose
of burdens. First of all the correct implementation of this sort of models is often hard or
impossible to verify, since most are commercial, or otherwise closed source tools. Experi-
ments with different behaviours or the input of alternative spatial information is impossible,
which sometimes leads analysis to conform to the model, where the opposite would be the
desired approach.

Lastly, regarding model descriptions, if a model can only be described by the source
code that implements it, then it becomes unreadable to most GIS analysts, as per the above.
Beyond that, source code specificities, such as data input/output, syntactic structure and
programming paradigm, cast a layer of obfuscation that makes it hard to compare differ-
ent models. There are numerous concepts common to any spatial simulation, such as the
succession of time, spatial variables, agents, behaviours or spatial location. For example, a
wildfire model can appear entirely different from a land use model simply because different
tools were used to implement each concept, even though the basic programming constructs
that compose each of them can be the same. Without some sort of common descriptive lex-
icon, models are harder to compare and communicate, even those produced for the same
application domain.

Potential exists for a wider adoption of Spatial Simulation techniques, provided tools that
make model development more accessible to non-programmers, together with a common
lexicon for their description.

3 Related work

There have been several attempts to create DSLs for Spatial Simulation, trying to bridge the
gap between Program-level and Model-level tools. In this section some of these DSLs are
briefly described.

StarLogo started as a specialisation of the Logo functional programming language,
directed at Agent-based simulations. It was an educational project at the MIT to help
students exploring emergent behaviour. StarLogo was progressively transformed into a
multi-platform tool with the adoption of Java as execution environment; eventually it
evolved into a spin-off named NetLogo. The lexicon of NetLogo is composed of four main
concepts, all different kinds of agents: (i) turtle - agent capable of moving across the sim-
ulation space; (ii) patch - a static subdivision of the simulation space; (iii) link - a relation
between two turtles; (iv) observer - a non-spatial agent capable of collecting data from, and
provide data to, other agents. Agents can themselves contain variables to store data and
can be grouped in agentsets. A vast library of over 300 pre-built models has been gathered
for education purposes,2 covering a wide range of disciplines. Both StarLogo and NetLogo

2http://ccl.northwestern.edu/netlogo.

http://ccl.northwestern.edu/netlogo
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are relatively easy to learn, especially when compared to Program-level tools, dispensing
the higher skills needed to use an object oriented language [31]. An integrated text edi-
tor supports swift development and the exploration of model dynamics. More recently an
extension3 for spatial data input was made available, although entirely reliant on ESRI data
formats. Berryman [3] reports that this extension requires advanced programming skills to
master. Of the various DSL attempted in this field, NetLogo seems to be the most popu-
lar, retaining a large number of users. In great measure this is due to its fast prototyping
capabilities, to which the integrated text editor greatly contributes. However, readability
issues common to traditional programming languages slowly emerge with larger and more
complex models, especially if spatial data is involved.

The Spatially Explicit Landscape Event Simulator (SELES) is the product of a research
project at the Simon Fraser University, a declarative DSL for Landscape Dynamics [11].
SELES was conceived to be used closely with GIS software, supporting a vast range of
different raster formats (most common in Land Use / Land Cover data) for landscape data
input. SELES takes also as input a set of global variables and the declaration of several
landscape events and agents. Landscape events describe the model dynamics, each requir-
ing the declaration of a spatial domain and recurrence frequency. For each event a spreading
mechanism is specified and how it affects its neighbourhood. Even though using keywords
closer to the context of simulation, simulations coded with SELES are somewhat remi-
niscent of third generation languages, with distinct data and procedure environments, still
leaving many usual coding activities to the user. It is a good example of a DSL that while
dealing away with some of the complexity of traditional programming languages, achieves
little in terms of abstraction. SELES is shipped with a dedicated code editor and a simulator
that runs the model by interpreting the code files and reading in the spatial data. At run time
the simulator displays the model in a graphical interface. Both these programs are available
free of charge as closed executables for Microsoft operating systems.

MOBIDYC (Modelling Based on Individuals for the Dynamics of Communities) is an
Agent-based approach to the study of population dynamics, directed at the fields of Biology
and Ecology [17]. It was conceived to provide a tool accessible to non-programmers, par-
ticularly biologists. In essence, MOBIDYC is a Smalltalk code package, defining a set of
simple primitives, such as environment, agent and state, plus a set of pre-defined behaviours.
A model requires in first place the creation of agents and their respective states; behaviours
are coded with primitive relations between the names of state variables, such as arithmetic
operations. Observing agents to collect data can be added, but results are made available
only in tabular format. Models developed with MOBiDYC can be quite fluid and easy to
understand, if targeting Biology related problems; in other domains the semantics of the
code can become harder to grasp. There is no explicit mechanism to interact with GIS soft-
ware, MOBIDYC was conceived to run primarily on purely artificial spaces. The source
code is open and free, but is dependent on VisualWorks, a commercial IDE. The reliance
on this IDE provides wide portability to MOBIDYC, running on Microsoft, Macintosh and
Linux operating systems.

Ocelet is a declarative DSL for landscape dynamics aimed at tackling common difficul-
ties in capturing space-time dynamics with traditional modelling techniques [8]. It takes an
unconventional approach to this field by mimicking the concept of service-oriented archi-
tecture, with models composed by components interacting with each other through services.

3http://ccl.northwestern.edu/netlogo/docs/gis.html.

http://ccl.northwestern.edu/netlogo/docs/gis.html
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To declare a model with Ocelet, the developer disposes of five principal constructs: (i) entity
- a component that provides a set of services; (ii) service - communication port of an entity,
accepting a set of arguments and returning a set of results; (iii) relation - bonding entities
through their services (when compatible); (iv) scenario - describing which relations within
an entity have to be activated, and when; (v) datafacer - a device through which entities
access data. Entity behaviour is coded as actions behind each service through mathemati-
cal expressions. The double paradigm of this language presents a novel approach to spatial
simulation, but it is not entirely clear if it eases model understanding. Users lacking a back-
ground on computer science may find the service-oriented architecture alien and hard to
frame with spatial simulation. On the other hand the service-oriented paradigm provides a
level of abstraction over the general purpose of a model that is lacking in the other lan-
guages reviewed here. However, as the amount of code required to describe larger models
expands, this abstraction slowly dilutes. The language is supported by two Eclipse plug-ins:
a language editor and a code generator. The artefacts generated are Java classes that can be
compiled to specific operating systems or platforms.

In recent years a consortium of French and Vietnamese research centres and universities
has developed an agent based modelling IDE called GAMA [18]. It is conceived to support
large models and to provide seamless integration with spatial data. This IDE interprets a
textual DSL called GAML (GAMA Modelling Language). A model in GAML is declared
in similar fashion to SELES: a structured file composed by sequences of statements that can
either be declarative of imperative. The core concept of this language is Species, essentially
an agent class, that underpins most other concepts. A GAML model is structured into four
code sections: (i) Header - setting the model name and optionally importing other model
files; (ii) Global species - declaring a special species called ”world agent” enclosing global
properties of the model; (iii) Species and grids - where are declared classes of agents and
grid topologies (discrete spatial variables); (iv) Experiments - special agents that carry out
the execution of the model, being two types: gui and batch. A species is defined as a set
of attributes plus a set of actions and behaviours. Behaviours include: reflex - a sequence
of statements that can be executed at each time step; init - a special form of reflex that is
evaluated only once when the agent is created; task - a reflex with a weight associated that
determines its execution priority in the scheduler; and state - determines if the agent should
enter/leave a particular state at each time step. Beyond four primitive data types (bool, float,
int and string), GAML supports several advanced features found in general purpose pro-
gramming languages: loops, iterators and data structures such as lists, maps or matrices. Of
the DSL reviewed here GAML is possibly the most versatile, with a wider range of appli-
cation, due to an extensive number of features and constructs. Eventually, it may come to
build a relevant user community like NetLogo did. Nevertheless, as with SELES, GAML
still mimics in various ways early third generation languages (such as COBOL) with strict
environments for specific code sections. Mastering a language of this depth is naturally a
lengthy process, presenting a relevant challenge for less experienced users. GAMA is built
on Eclipse, runs on Java and is released under an open source license.

A graphical DSL not conceived for spatial simulation, but worth of mention, is the Agent
Modelling Language (AML) [42]. It was developed for social dynamics and is reliant on
the Model Driven Architecture (MDA) infrastructure, extending a wide range of differ-
ent UML meta-classes. Its concepts are organised hierarchically, through several levels of
generalisation. At the top is the concept of semi-entity, an abstract element that can be of
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two types: behavioured or socialised; the former represents elements that can act on their
environment, the later specifies elements that can form societies and participate in social
relationships. The concrete building blocks of AML are entities, that can be of three types:
(i) agents - capable of interactions, observations and autonomous behaviour; (ii) resources
- physical or informational entities whose availability is constrained; and (ii) environments
- logical or physical surroundings that determine under which conditions entities can exist
and function. Three other main concepts model social dynamics: (i) structures - to identify
societies and roles; (ii) behaviour - constructs for communication, observation, reaction and
services; and (iii) attitudes - to describe individual agent drivers: needs, intentions, goals,
beliefs. There is much more to AML, constructs to specify mental agent aspects and even
concepts to describe model deployment and execution. No interpreter or code generation
infrastructure has ever been developed for AML and no applications could be found in the
literature. It is possible that such a detailed language presents too much of a challenge for a
full implementation. On the other hand, at the time AML was published, MDA tools where
few and less mature than today. AML presents itself as a resource with great potential that
is yet to be fulfilled.

Existing DSLs for Spatial Simulation can ease model development and reduce the build-
up time in prototyping, but do not fully avoid the need of programming skills. As with
general purpose programming languages, the user has to understand the meaning of key-
words and how to compose a coherent set of instructions or declarations into a specific
model. Some of these DSLs were clearly developed for educational purposes, more as pro-
totyping than analysis tools. Lack of GIS interoperability is an issue to some of them, as
so platform or operating system dependency. Apart from AML, these previous DSLs focus
on providing a refined concrete syntax but still framed in older programming paradigms
emanating from declarative of functional languages.

A wider review of spatial simulation tools can be found in de Sousa and Silva [7].

4 Proposed approach

The vision of this proposal is to provide GIS analysts means of prototyping spatial simu-
lation models with graphical diagrams, that can be parametrised and tuned to the specific
application domain. These graphical models are then feed to a code generation facility to
produce a ready-to-run simulation based on one of the popular Program-level tools for
basic validation. From there analysts can tune the model at the conceptual level using
graphical constructs in an iterative process. In this fashion GIS analysts focus their work
on modelling itself, abstract of concerns specific to programming, data input or platform
dependencies.

Modelling plays an indispensable role in classical engineering disciplines, allowing engi-
neers to study large and complex systems from a higher level of abstraction [1]. In the field
of software engineering, modelling is yet to be widely adopted [4], although in many cases
end users are requiring systems with a degree of complexity that goes well beyond the abil-
ities of traditional software development tools [14]. Moreover, the integration with parallel
disciplines, such as systems engineering, software engineering, control engineering,
business process engineering, etc, can be greatly simplified with proper modelling
tools [16].
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Model-Driven Development (MDD) is a generic designation for several tools and
methodologies used to thoroughly include modelling in software engineering [1, 40]. The
successful application of MDD requires a fundamental shift in the way software engineers
use models, evolving from ad hoc complementary documents to the main focus of their
work, thus relegating coding to the background. This is achie-ved through model-to-model
and model-to-code transformations, and in some cases by direct model execution. With
MDD source code becomes a sub-product of the development process, where the focus is
on what the system must do, instead of how it does it [35].

The motivation behind MDD in the software development field is the gain of produc-
tivity and quality it can yield through automatic code generation. But further advantages
have been identified that justify its application to other domains. In first place the increase
in understandability, especially since MDD mostly relies on graphical constructs, more
expressive by nature, but also for dispensing the text parsing needed to comprehend source
code [35]. Secondly, it promotes fast prototyping, by allowing model execution from a high
level of abstraction, before much effort or resources have to be spent on development. This
allows early model validation and later on, during the model refinement process, also to
identify unintended or undesired model changes [26, 36]. MDD further makes possible the
creation of user-definable mappings, the capturing of domain specific concepts at an onto-
logical (or meta-model) level, producing a lexicon of model constructs totally independent
of particular code languages or specific software platforms [1, 14]. Finally, it is important
to note that a successful MDD application also brings forward an increase in interoperabil-
ity, by offloading such technical concerns on the code generation infrastructure, that can be
adapted to match particular environments or platforms [1, 14].

DSL3S is an application of the MDD philosophy to the specific field of Spatial Sim-
ulation, as an alternative way to address the problems identified in Section 2. By raising
the level of abstraction at which development takes place, this approach can facilitate
the communication between programmers and analysts and other stakeholders lacking
programming knowledge [26]. It can also allow prototyping by non-programmers. By
detaching model development from specific technologies, it can improve interoperability
with geo-spatial data, generating the appropriate code as needed. Lastly, it can lay the foun-
dations for a standard language in the field, as successful efforts in parallel fields have
proved, like SysML4 or ModelicaML.5

This work employs the Model-Driven Architecture (MDA)6 methodology, the concrete
MDD approach specified by the Object Management Group (OMG). The UML 2.0 mod-
elling language allows the extension of its core primitives (graphical elements, links, etc)
through specialisation for different application domains [29]. This is achieved with the defi-
nition of a UML Profile, a collection of stereotypes, properties and constraints. Stereotypes
are specialisations of existing UML model elements, defining new elements representing
narrower abstractions. A semantically related set of stereotypes, specified by properties and
restrictions, can thus be used to customise UML into a new specialised language dedicated
to a certain domain.

4http://www.sysml.org/.
5https://www.openmodelica.org/index.php/home/tools/134.
6http://www.omg.org/mda/.

http://www.sysml.org/
https://www.openmodelica.org/index.php/home/tools/134
http://www.omg.org/mda/
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DSL3S takes spatial simulation as a branch of the wider Spatial Analysis GIS field,
where model inputs primarily originate from a GIS and whose outputs also have geo-
referenced relevance. At this time the language does not contemplate agents with the internal
cognitive capacities that Franklin and Grasser [15] classify as adaptive agents, nor are any
explicit concepts of society, or societal interaction considered. All agents are assumed to
exist in the space of simulation, thus forcefully being spatial elements. The language does
not employ a distinction between Agent-based models and Cellular Automata, aiming at a
single approach to both schools of Spatial Simulation, hiding such implementation details
from the user.

5 The DSL3S language

DSL3S is defined as a UML profile that includes a set of stereotypes enclosing abstractions
underpinning Spatial Simulation. These stereotypes can be seen as the conceptual terms
used when explaining a simulation with the terminology of this application domain, e.g.,
describing “fire” as an agent (because it is mobile and transforms the landscape) or “height”
as a spatial variable (that has no innate activity but may influence the actions of certain
agents). The DSL3S UML profile allows the development of simulation models by applying
these stereotypes and creating the correct relations between them.

This section details the DSL3S language; Section 5.1 presents its Abstract Syntax, Sec-
tion 5.2 its Concrete Syntax, Section 5.3 lays out the structural semantics and Section 5.4
introduces some guidelines related to model organisation.

5.1 Abstract syntax

Three main constructs can be identified underpinning a spatial simulation: Spatial variables,
Glocal variables and Animats. Spatial variables are spatial information layers that have
some sort of impact on the dynamics of a simulation, e.g. slope that deters urban sprawl or
biomass that feeds a wildfire. Animat is a term coined by Wilson [44] signifying artificial
animal; in this context it is used more widely, representing all spatial elements that change
or induce change in their surroundings; examples are: fire (in a wildfire model), urban areas
(in a sprawling model) or predators (in a population dynamics model). Global variables
provide information that is constant across the space of simulation, such as wind direction in
a wildfire model or economic trends in an urban development model. Another important sort
of context variables are those that support Animat internal state. An Animat is composed by
a set of Attributes that describe each instance at a certain moment in time.

The elements considered so far focus on the information needed to run a spatial simu-
lation, but more is required to capture spatial dynamics, the way animats act and react to
the environment has to be made explicit. This character of simulation is termed Opera-
tion. DSL3S proposes a set of just six predefined animat operations, intending to match the
essential properties of an agent, as outlined by Franklin and Grasser [15] (autonomous, con-
tinuous, reactive, proactive and mobile) with the core concepts found in Cellular Automata
(state, neighbourhood, transition rules and time). In their seminal book, Epstein and Axtell
[10] conceive a considerably larger set of operations, including elaborate processes such
as trade and cultural exchange. The option for a strict set of operations rests on three rea-
sons: (i) to keep the language compact and easy to learn; (ii) more refined operations are
less common in spatial simulation applications and can eventually be composed with these
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Fig. 1 The DSL3S meta-model

simpler primitives; and (iii) to insulate the user from technical implementation details in the
choice between Cellular Automata and Agent-based models. These animat operations are:

– Emerge: sets the conditions under which a new instance of an animat can appear in the
simulation, i.e., the act of ”birth”; an example may be an urban development simulation
where the emergence of new urban spots is possible in an area that meets a certain set
of criteria, like distance to transport infrastructure or topography.

– Move: relates an animat with one or more spatial variables or with other animats
determining the locations that are more or less favourable to be in.

– Replicate: captures operations where an animat replicates itself, such as an organism
in a biological simulation reproducing a sibling.

– Supply: provides access to animat internal attributes, thus making resources or infor-
mation available to other animats. It is the supply side of an interaction between
animats.

– Harvest: an operation that allows an animat to collect resources or information from
other elements in its neighbourhood; it may concern other animats, targeting attributes,
or spatial variables. Between animats it is the demand side of an interaction, the coun-
terpart of Supply. Examples may be wildfire consuming biomass or the seizure of
resources from another animat as with a predator-prey simulation.

– Perish: defines the circumstances under which an animat may cease to exist during
simulation; examples can be a biological animal starving or a fire extinguishing.

Figure 1 presents these key constructs in a conceptual model. A Simulation is composed
by a set of Spatial and Global variables plus a set of Animats; the latter are composed by a
set of Attributes and Operations, that determine how their internal state evolves. An animat
acts through different types of Operations, that can induce changes on global and spatial
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variables, or be employed to interact with other animats. Different Animat configurations
can be assigned to a Simulation, thus creating a different simulation scenario.

5.2 Concrete syntax

The DSL3S UML profile gives body to the abstract syntax outlined above, with constructs
defined as UML stereotypes. The properties of each stereotype are detailed in Appendix A.
The stereotype Simulation is used to host definitions such as the spatial extent of
simulation. It bonds together all the other elements, as an entry point to the simulation.

The stereotype Global is intended to be a scalar value that can vary with time. It can,
for instance, be set randomly at simulation start and/or made to evolve randomly each time
step. It can also be feed into the model as a predefined time-series, that may be an input
from a text file.

The Spatial stereotype is essentially a stub for the input of geo-referenced data. Each
instance corresponds to a spatial layer (either in raster or vector format) with the char-
acteristic of having an unequivocal value for each location in space. This stereotype also
provides means for the fully random generation of spatial variables, that may be useful for
prototyping with synthetic scenarios.

The stereotype Animat is an aggregation of attributes existing at a identifiable loca-
tion in space. The Attribute stereotype is a single characteristic of the Animat,
representable by an primitive data type, such as an integer or a boolean (e.g. popu-
lation in an urban development simulation). The initial number of animat instances of
each type, and their spatial positioning, can be provided by a specific geo-referenced
data set, such as a raster map. The values of Attribute elements can also be ini-
tialised with the same spatial data set, through its attribute table. These initial Animat
and Attribute settings can also be randomly generated for simulations where it may
apply.

The animat operations identified previously are also stereotypes in DSL3S; in detail:

– Emerge: this stereotype defines neighbourhood thresholds relative to spatial variables,
or relative to other animat attributes, above which the emergence of a new animat
becomes possible. When a new animat is created, its initial state is set according to the
parameters set in the Animat class itself.

– Move: this stereotype provides properties to weight the relevance of each related class
influencing the movement of an animat. For instance, in a predator-prey simulation
the movement of a ”sheep” animat may be positively weighted in relation to a ”grass”
Spatial layer and negatively weighted in relation to a ”wolf” animat.

– Replicate: this stereotype provides properties to set replication thresholds against
the animat internal state. Impact on the reproducing animat and inheritance of attribute
values to the new animat can also be modelled with specific properties. As with the
Emerge operation, the initial state of a new animat resulting from a replication is set
according to the properties set in the Animat class itself.

– Supply: together with Harvest this stereotype provides ways for animats to
exchange assets. It makes the information or resource held in a particular Attribute
available to other animat. A limit may be set on the amount of this asset that another
animat may acquire in each interaction.

– Harvest: this stereotype provides properties to parametrise how an interaction
impacts the harvesting Animat. This is modelled with an harvest rate or harvest
amount. A consumption rate of 100 % may be used to model preying relationships,
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whereas 0 % can be used to simply collect information on neighbouring animats and
variables.

– Perish: This stereotype defines an interval of values relative to an Attribute
element, determining the conditions for the existence of the Animat itself.

Other operation stereotypes can be added in the future if necessary; DSL3S is conceived
to remain a language open to further extension.

5.3 Structural semantics

To properly define a DSL3S simulation a set of rules must be followed regarding the valid
associations between the different language constructs. Table 1 synthesises these rules,
indicating which relations are valid and their respective cardinalities. A more thorough
description of these rules follows.

Each DSL3S model must contain exactly one Simulation construct. To it each
Animat, Global or Spatial elements composing the model must be associated.

Spatial and Global variables represent passive constructs, but may appear associ-
ated with operation constructs, in such cases becoming sources of information and resources
to Animat elements. As for Attribute constructs, they must always be associated to
exactly one Animat (the owner).

An Animat aggregates Attribute elements, defining its internal composition.
Animats do not link directly to any of the information constructs, Spatial or Global,
neither to other Animats. All associations of an Animat with other elements of a
simulation are made through its operation constructs.

A Move construct associates an Animat with other spatial objects. It can create a link to
an Attribute or to a Spatial variable, quantifying propensity for movement. Beyond
the link to the owner Animat, each Move construct must also link to exactly one other
construct.

Emerge constructs are subject to rules similar to those applying to the Move opera-
tion, they must always link one Animat (its owner) with another construct in the model.
Beyond Attribute and Spatial constructs, Emerge can also associate an Animat
to a Global construct.

The Supply construct must always be associated to an Attribute, to which it pro-
vides access. It can then be associated to multiple Harvest constructs that access the
resource or information supplied.

Harvest must also be always associated to an Attribute that stores the collected
resource or information. On the other end it may associate to a single other construct:
Supply (in case the harvested target is an Animat), Global or Spatial.

Replicate and Perish construct are simpler, since each must be linked to a sole
Attribute construct, creating the boundary conditions for the respective operation. They
can not be associated with any other construct, and thus each can only take part in a single
association in the model.

5.4 Model organisation - views

Models built with DSL3S can become visually complex if a single diagram is used to
represent all classes, properties and associations. To avoid such difficulties and provide a
thorough structure for the development and presentation of models with the language, a
multi-view approach is proposed. These views intend to display the model in such a way
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Fig. 2 DSL3S model views

that each aspect of a simulation can be better presented in a specific diagram, namely the
following: Simulation, Animat, Animat Interactions and Scenario views (see Fig. 2).

The Simulation View contains the model settings and the participating variables. It
includes the single Simulation construct plus the necessary Global and Spatial
elements.

The Animat View provides a container where to define the structure of an animat. In
this view an Animat and its belonging Attribute constructs should be present, plus
any associations to Spatial or Global elements. This includes any operations linked to
these elements: Emerge, Move, Replicate or Perish. A view of this kind per animat
is recommended, thus visually encapsulating its configuration.

The Animat Interaction View is used to to describe operations between animats. It
should contain all the Supply and Harvest constructs relating two (or more) animats,
plus associated Attribute elements. Move operations relative to other animats may also
be set in this view.

Lastly the Scenario View, is used to assign animats to a simulation. In this way, the
designer may explore different animat configurations that can be used in different runs of a
same simulation.

This multi-view structure is recommended, but does not have to be necessarily followed
to develop a model with DSL3S. The user is free to use alternative organisations that may
be considered more appropriate in specific cases.

6 MDD3S - prototype implementation

“Model Driven Development for Spatial Simulation Scenarios” (MDD3S) is the name of
the prototype framework that supports the DSL3S language. MDD3S relies solely on open
source tools (see Fig. 3):

(i) Papyrus - an Eclipse7 add-on for UML modelling supporting the DSL3S UML
profile;

(ii) Acceleo - another Eclipse add-on supporting the model-to-code transformation
templates;

(iii) MASON - a Program-level spatial simulation framework used as a library by the
code generated.

7http://www.eclipse.org/modeling.

http://www.eclipse.org/modeling
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Fig. 3 The technologies used to
implement MDD3S

This section reviews some relevant aspects of these technologies in the scope of the
MDD3S framework.

6.1 Papyrus

Papyrus8 is an open source project started by the Commissariat á l’Énergie Atomique in
France, with the aim of producing an advanced graphical editor for the UML language. It is
based on the Eclipse Modelling Framework9 (EMF), allowing the edition and visualisation
of structured models defined with the XMI standard. It also provides a set of Java classes to
facilitate model manipulation. Presently Papyrus is close to fully support version 2 of UML,
bearing the development of ad hoc DSLs through the definition of UML profiles.

6.2 Acceleo

Acceleo10 is an open source code generator created by the French company Obeo. It is also
built on EMF, facilitating interoperability with several other EMF based modelling tools.

8http://www.eclipse.org/modeling/mdt/papyrus/.
9http://www.eclipse.org/modeling/emf/.
10http://www.acceleo.org/pages/introduction/en.

http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/emf/
http://www.acceleo.org/pages/introduction/en
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Table 2 The Java service hasLinkedStereotype used in MDD3S to determine if a model element is
linked to elements of specific type

Acceleo interprets the MOF Model to Text Transformation language11 (MOFM2T), also an
OMG standard. Though not yet fully implementing MOFM2T, the model-to-code transfor-
mations produced with Acceleo are today possibly the closest to the scheme proposed by
the OMG.

The model-to-code transformation mechanism is based on special files called templates,
which define the text output to produce from a graphical model. They are composed by
regular text plus a series of annotations that are substituted by values and names of model
elements at transformation time. Traditional computational operations such as branches or
loops are also possible to include with specific annotations, producing more complex trans-
formations. Templates can be articulated through an inclusion mechanism, whereby a master
template can make use of several other templates, creating a transformation chain. When
fully developed, a transformation chain can be transformed into an independent plug-in for
Eclipse, facilitating its portability and application.

Acceleo 3 fully supports transformations from models using UML profiles, identifying
stereotypes applied on classes and providing access to its properties. The later is not based
on MOFM2T, but provided by a service, essentially a Java method that browses through the
UML object model associated with each class (example in Table 2).

When a transformation chain is applied on a model all its elements are run through
the several templates declared in the master. Typically, the template file filters each ele-
ment, generating code only for those with a specific stereotype applied on. Such is the case
with MDD3S, a template named Simulation, for example, generates the code for ele-
ments with the homonym stereotype applied. In most cases a template produces a text file,
in MDD3S these are the Java classes that compose the end model. Alternatively, a tem-
plate may simply generate a segment of code to be included in another file; in MDD3S the
Perish template is an example, producing a method to be included in Java class gener-
ated for Animat type elements (Table 3). The Java assets generated for each stereotype are
detailed in Appendix A.

11http://www.omg.org/spec/MOFM2T/1.0/.

http://www.omg.org/spec/MOFM2T/1.0/
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Table 3 The MDD3S template for the Perish stereotype; it parses an Animat element and successively
iterates through each of the associated Attribute elements and to the Perish elements associated to
these. hasStereotype(), isNotNull() and getTaggedValue() are external services

6.3 MASON

MASON (acronym for Multi-Agent Simulator Of Neighbourhoods) is a light-weight,
highly-portable, multi-purpose agent-based modelling package [23]. MASON is a tool that
in some aspects contrasts with earlier simulation packages like Swarm or RePAST that date
back to the 1990s, following a strict object oriented philosophy from its very beginning.
Its objects are architected in such a way that simulation models are completely isolated
from visualisation and input/output mechanisms. MASON is fully written in Java and open
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source, producing programs that are highly portable, not only running alike, but also pre-
senting identical results across different platforms. Comparative results have shown that
MASON is likely the fastest of the main Program-level tools for spatial simulation [31].
Supported by extensive documentation and a relevant community,12 MASON has slowly
expanded its adoption.

GeoMason13 is an extension that provides objects to deal specifically with geo-
referenced data. Input and output functionality is available for both raster and vector
datasets, relying on third party packages: the Java Topology Suite14 for geometry manipu-
lation, GeoTools15 for vector formats input/output and GDAL16 for raster formats.

Its light-weight infrastructure, extensive documentation, and ease of integration through
Eclipse made MASON an obvious choice to support MDD3S.

7 Validation

The DSL3S UML profile and its accompanying MDD3S framework are publicly available
at the code sharing platform GitHub.17 Some examples are also available that showcase the
usage of the language. In this section three of these illustrative simulations are discussed.

7.1 Simulation model A—predator-prey

Predator-Prey simulations are one of the oldest applications of spatial simulation techniques
[9], used to study population dynamics in the field of Biology. It usually features two animal
species, where one feeds of the other; energy flows through the food chain in waves, whose
period and amplitude are function of the growth rates of the several species.

7.1.1 The DSL3S model

This example takes place in a synthetic plane of 100 by 100 abstract space units. There are
three main elements to this simulation: a Spatial variable named Pasture and two ani-
mats: Predator and Prey (Fig. 4). Pasture covers the whole simulation space and is initiated
from a sample raster file that represents energy available at each space unit. This energy at
each location increases at each time step, at a fixed rate, up to a defined limit.

Prey is an herbivore animat composed by a single Attribute: PreyEnergy. At simu-
lation start a number of these animats are cast randomly across the simulation space, with
its Energy attribute also randomly initialised. PreyEnergy declines steadily at each time step
by a defined amount. A Perish operation attached to Energy sets a lower threshold below
which the animat is discarded from the simulation. An Harvest operation parametrises
the feeding act of Prey over Pasture; at each time step the animat can take all the Pasture
energy available at the location it occupies into its own PreyEnergy attribute. Two Move

12http://cs.gmu.edu/∼eclab/projects/mason.
13http://cs.gmu.edu/∼eclab/projects/mason/extensions/geomason/.
14http://www.vividsolutions.com/JTS/JTSHome.htm.
15http://www.geotools.org/.
16http://www.gdal.org/.
17https://github.com/MDDLingo/DSL3S.

http://cs.gmu.edu/~eclab/projects/mason
http://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/
http://www.vividsolutions.com/JTS/JTSHome.htm
http://www.geotools.org/
http://www.gdal.org/
https://github.com/MDDLingo/DSL3S
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Fig. 4 Predator-prey model in DSL3S; simulation, scenario and prey views

operations relate Prey with both Pasture and PredEnergy, making it prefer locations with
high Pasture energy and free of Predator instances. Finally, a Replicate operation sets a
threshold above which the Prey can reproduce itself, as so the amount of energy passed on
to the offspring in the process (the DSL3S view for Prey is shown in Fig. 5).

Predator is a carnivore animat that shares many similarities with Prey. It also possesses a
single attribute (PredEnergy) and its instances are created from an input vector layer, using
the layer attribute table to initialise Predator attributes. Its energy also declines with time
and a Perish operation determines when it ceases to exist. Predator feeds on Prey, accord-
ing to an Harvest operation linking to a Supply operation associated with PreyEnergy.
When a Predator feeds of a Prey it takes up all of its energy, triggering the later’s Perish
operation. A single Move operation links Predator again to the Prey energy attribute, this
way compelling it to move towards locations where well nurtured Prey instances exist.
A Replicate operation sets similar reproduction conditions to those for Prey (Fig. 5
presents the Predator view).

7.1.2 The resulting application

The simulation generated from this DSL3S model produces the typical population cycles
seen in this type of models, as in the case of the historical WATOR model [9]. Figure 6 shows
the simulation space during a sample run at time-steps 0, 30, and 90. Prey animats reproduce
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Fig. 5 Predator-prey model in DSL3S; predator and interaction views

faster and thus dominate the space during the first time steps, producing an initial growth
wave, reaping the fertile feedstock. In time, Predator animats feed of the excessive amount
of Prey animats creating a new wave; this Predator wave clears some areas, fostering growth
of the Pasture space variable in certain patches.

7.2 Simulation model B—forest fire

Forest fire has been a classical application field for spatial simulation [22], whereby the
direction and intensity of fire at hypothetical locations is explored. The example here pre-
sented is rather simple, intended to illustrate other sorts of spatial dynamics possible to
model with DSL3S.

Fig. 6 A sample run of the Predator Prey DSL3S simulation; Pasture is portrayed with a yellow to green
choropleth, Prey is portrayed in blue and Predator in red
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Fig. 7 Forest fire model in DSL3S

7.2.1 The DSL3S model

There are only two elements to this simulation, a Spatial variable for Forest and an
Animat for Fire. Forest occupies the entire simulation space (100 by 100 units) and is
initialised from a sample raster layer; it is not set to evolve with time.

Fire is composed of a single Attribute, registering the Intensity of each instance. At
simulation start a pre-defined number of Fire instances is randomly cast in space with Inten-
sity at its minimum value. An Harvest operation associates Intensity with Forest, defining
the burning process, a constant depletion rate of the biomass existing at the location.

The amount of biomass burnt is transferred to the Intensity attribute, but at the beginning
of each time step this variable is brought back again to its minimum; a Perish operation
attached to Intensity guarantees that the animat is discarded if no biomass is left at the
location (Intensity remains at the minimum). Fire is an animat that does not move, but it
can spread to adjacent locations. This is modelled with Emerge operations, that link Fire
to Forest and Intensity. The larger the amount of biomass in a location, and the more intense
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Fig. 8 A sample run of the Fire DSL3S simulation. Fire is represented with a choropleth from yellow (low
intensity) to red (high intensity)

the fires burning in its neighbourhood, the higher the probability of a new Fire to emerge;
the presence of a close by Fire animat is indispensable.

If the probabilities set for these Emerge operations are high enough, eventually most of
the biomass burns down in this simulation. Still, it can be used to observe uneven fire spread
patterns, following spatial patches with denser biomass. Figure 7 presents the diagrams
defining the Fire simulation.

7.2.2 The resulting application

Figure 8 portraits a run of the simulation generated from the Fire model described above.
At time-step 0 three fire spots are randomly cast in the simulation space. With a rela-
tively high probability of sprawling to adjacent cells, it slowly consumes the vegetation
in every direction, especially towards locations with higher biomass density. The random-
ness of the emergence routine is apparent in the assorted locations left untouched after
100 time-steps.

7.3 Simulation model C—urban sprawl

Urban dynamics was another of the early application fields adopting spatial simulation tech-
niques. The growth of cities is taken generally as an emergent process, bounded by spatial
restrictions and enablers, by which the urban fabric sprawls. SLEUTH [5], a Model-level
tool dating back to the 1990s, proved particularly successful in this domain and has been
applied to varied geographic contexts.

7.3.1 The DSL3S model

In this example space is vacant at simulation start and is progressively occupied by urban
elements. The simulation is built around four elements: (i) an Animat named Urbe that
possesses a single Attribute, storing its Age; (ii) a Global variable termed Speed that
declines with time; (iii) a Spatial variable to input a vector layer with Protected areas,
where urban growth is not possible; (iv) another Spatial variable that inputs a Roads
layer, an enabler of urban sprawl. Figure 9 presents the full model in three views.
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Fig. 9 Urban sprawl model in DSL3S

At simulation start a single Urbe animat is cast at random in the simulation space, it is
not mobile and all the dynamics operates through related Emerge operations. In first place
there is the SprawlAge operation that sets the probability of a new Urbe animat emerging
nearby an existing Urbe; this operation is linked to the Age attribute, rendering emergence
less probable near older urban areas. Also to constraint growth with time (mimicking dimin-
ishing capital investment) is the SprawlSpeed operation, linking to the Speed variable; as its
internal value declines with time, it slows downs growth. SprawlRoads relates Urbe with
Roads, increasing the probability of emergence around spatial features of this layer. In sim-
ilar fashion, SprawlProtect sets the probability of emergence to zero (with a large negative
weight) over spatial features in the Protected areas layer. The Simulation space is set to
a grid of 100 by 100 cells, this way determining the space between adjacent emerging urban
elements.

Fig. 10 A sample run of the Urban Sprawl DSL3S simulation; Urbe is portrayed with a red to cyan ramp,
Roads are portrayed in yellow and Protected areas in dark blue
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7.3.2 The resulting application

Figure 10 shows the simulation space resulting from this model at time steps 0, 100 and
400. In the very beginning there is a single urban element, presented in red; in dark blue
are shown Protected areas, while yellow lines portrait Roads. Development is swift in
the beginning, with new urban elements emerging along road features; as they age, the
colour of Urbe elements slowly fades to a light cyan. With time, sprawl slows down and
a larger number of steps is required for changes in the urban fabric to become apparent.
With the areas surrounding Roads taken, sprawl then turns inwards, but avoiding Protected
polygons.

8 Conclusion and future work

The application of spatial simulation techniques to the GIS domain remains today locked
in the choice between versatile tools, and the option for ease of use with pre-built mod-
els. The former require advanced programming skills, while the later impose relevant
compromises of transparency and scope. A need exists for a higher level of development
abstraction, that can also improve the documentation, readability and communication of
models.

Several DSLs, and respective tools, such as NetLogo, Ocelet or GAML, were previously
tried in this field, invariably producing declarative or functional languages, in some cases
lacking a formalisation of their abstract syntax. Table 4 succinctly compares a selection of
these with DSL3S. In essence, these efforts relying on textual languages end in the pit-
falls identified by Selic [36] regarding fourth generation languages: they struggle to hike
the level of abstraction at which model development takes place. They also impose com-
promises with platform dependence and in some cases with weak spatial data support and
interoperability.

This work proposes a different approach to this subject, applying the MDD phi-
losophy. The end result is the DSL3S UML profile, that forms a graphical language,
and its companion MDD3S framework, that involves a modelling and a model-to-
code transformation infrastructure. These assets permit to translate a graphical and
platform independent model produced with DSL3S into a coded simulation sup-
ported by a Program-level tool. In other fields this approach has proved capable
of inducing faster development, reduce coding errors and improve model readability
[4, 26, 30].

The application of DSL3S, and MDD tools in general, requires a certain degree of famil-
iarity with graphical semantics (e.g. boxes and links) and modelling tools that may not be
straightforward to all users. In spite of broad usage in computer science, languages such as
UML do not yet feature in curricula of other technical disciplines. For this reason, DSL3S
was conceived as a rather compact language, defining only eleven constructs, five structural
and six operational. A structure of views is also proposed, that helps organising models
developed with the language. This contrasts with AML, for instance, where the focus was
mainly on defining a deeply detailed language, missing any modelling and model-to-code
transformation infrastructure.

The relative simplicity of DSL3S can be restrictive to some extent in more demanding
and complex scenarios. Nevertheless, functionality provided by the MDD3S framework can
already transform abstract models into executable code, allowing at least for fast simulation
prototyping. This article shows how DSL3S language elements can be combined to produce
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diverse simulations on different fields of application. To further ease the usage of DSL3S,
a user manual has been created on-line18 that is being expanded with examples and best
practices. A series of tutorial videos will also be included.

Current development of the MDD3S framework relies on MASON, a modern Java library
for spatial simulation. This option also guarantees interoperability with geographic data,
namely through the GeoMASON extension. This framework is being developed on the
Eclipse IDE, using the MDD ad-ons Papyrus (for UML modelling) and Acceleo (for code
generation). The code generated with MDD3S is relatively extensive vis à vis the expected
outcome from ad hoc development with a Program-level tool. At this stage, MDD3S prizes
simplicity and understandability over performance, a character of its purpose as a demon-
strator prototype. If performance ever becomes a requirement model-to-code transformation
templates can be optimised in that sense. Going further, transformations may even be devel-
oped to target a programming language closer to machine code such as C. Having a single
abstract model producing different implementations relying on different code libraries is
another distinctive advantage of this MDD approach.

In the near future, DSL3S will be further assessed through its application with real world
scenarios. This iterative research process will allow to understand how far it can go in its
current form and if extensions are necessary.
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a Ciência e a Tecnologia - under the projects UID/CEC/50021/2013, CMUP-EPB/TIC/0053/2013 and
DataStorm Research Line of Excellency funding (EXCL/EEIESS/ 0257/2012).

Appendix A

This appendix details the properties of each DSL3S stereotype and how it influences the
code generation process.

A.1 Simulation

A.1.1 Properties

– simulName - A string with a title for the Simulation, to be presented in the user interface.
– spaceHeight - A numeric value indicating the height of the simulation space. Used to

frame the class that hosts all animat instances during simulation.
– spaceWidth - A numeric value indicating the width of the simulation space; used as

spaceHeight.

A.1.2 Artefacts

From this element two Java classes are generated: Sim.java, and SimGUI.java (where Sim
is replaced with the content of the simulName property). The first contains all initialisa-
tion routines, that create new animats and set up the simulation at its start; it also contains
methods to discard animats during simulation time. The spatial data structures holding ani-
mats, Spatial variables plus Global variables are all properties of the Sim.java class

18https://githubcom/MDDLingo/wiki.

https://githubcom/MDDLingo/wiki
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too. SimGUI.java contains all properties required to present the simulation with a MASON
GUI; it also initialises these properties.

A.2 Animat

A.2.1 Properties

– inputFile - Path to a spatial layer containing features setting the initial number and
location of animats. Attributes of this layer can be used to initialise Attributes
owned by this Animat element. Each feature in this spatial layer produces an singular
Animat instance.

– initNum - The number of animats at simulation start. In case an input layer is not
provided, this property is used to randomly cast animats in the simulation space.

– wanderer - Determines whether the animat should move randomly in case no Move
stereotype is linked to it. Prevents an Animat instance from standing idle in an optimal
location.

– colourMin - An RGB colour definition used to portrait the animat in the user interface.
Defines a cloropleth together with colourMax, that is used in function of the values of
one or more of the Attribute elements owned.

– colourMax - RGB colour defining the top end of the cloropleth used to portrait the
Animat.

A.2.2 Artefacts

For each Animat class in the model a Java class with the same name is generated. It contains
properties and methods to store and manage each of its Attribute elements, plus the
MASON step() routine, containing the code to be executed at each simulation time step.
A second Java class is also generated, again with the Animat name, but with the suffix
Portrayal; as its name implies, it defines a cloropleth and methods to display the Animat in
the GUI.

A.3 Attribute

A.3.1 Properties

– attribute - This property is used to initialise the Attribute instance with the value of
the corresponding value in the attribute table of the spatial layer assigned to the owning
Animat element.

– minValue - Minimum admissible value of the Attribute.
– maxValue - Maximum admissible value of the Attribute.
– stepVariation - Numerical value determining how the Attribute evolves with time.

At each time step this value is summed to the Attribute.
– display - Boolean determining if the Attribute is used to portrait the owning

Animat.
– initValue - Numerical value that initiates the Attribute (alternative to initRandom

and attribute).
– initRandom - Boolean indicating if the Attribute is to be initiated with a random value

(alternative to initValue and attribute).
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A.3.2 Artefacts

A single Java class named Variable.class is generated, that serves as a generic encapsulation
for atomic values used in the simulation. This class includes a set of properties (value, max-
imum, minimum and variation) and a set of corresponding setter and getter methods. In the
Animat Java class, a property of type Variable is generated for each owned Attribute
element; the initValue and initRandom properties are included as static Java properties in
the Sim.class.

A.4 Spatial

A.4.1 Properties

– inputFile - Path to a spatial layer initialising the Spatial element. In case it is a
vector layer, each feature generates a Spatial instance; for raster layers each cell is
transformed into a Spatial instance.

– minValue - Minimum admissible value for the variable.
– maxValue - Maximum admissible value for the variable.
– stepVariation - Numerical value determining how the variable evolves with time. At

each time step this value is summed to the Spatial instance.
– display - Boolean determining if the Spatial variable is to be portrayed in the user

interface. Since a Spatial variable can cover the entire simulation space, not all may
be displayed.

– initValue - Numerical value that initiates the variable in all locations of the simulation
space (alternative to initRandom and inputFile).

– initRandom - Boolean indicating if the variable is to be initiated with random values
(alternative to initValue and inputFile).

– colourMin - RGB colour defining the lower end of the cloropleth used to portrait the
variable.

– colourMax - RGB colour defining the top end of the cloropleth used to portrait the
variable.

A.4.2 Artefacts

Elements of this type in the model produce a Java class with the same name. This class
extends the MasonGeometry class from the GeoMASON library and includes a property of
type MasonGeometry. A Portrayal class is also generated, with the same display functions
as in the Animat case.

A.5 Emerge

A.5.1 Properties

– probability - Sets the probability of emergence of a new Animat in presence of the
associated Attribute or Spatial variable.

– scope - Determines the radius of the neighbourhood to take into account in the
emergence process.

– required - Boolean that sets the presence of the associated Attribute or Spatial
variable as indispensable (or not) for the emergence of a new Animat instance.
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– lowerThreshold - Lower value of the interval within which the associated Attribute
or Spatial variable may trigger the emergence.

– upperThreshold - Upper value of the interval within which the associated Attribute
or Spatial variable may trigger the emergence.

A.5.2 Artefacts

For each Animat in the model, a single Java class is produced, named after the
Animat plus the suffix Emerge. The logic of every Emerge operation associated to the
Animat is collected here. This Java class also has a step() method that is executed at
each time step. It browses through the simulation space, at each location evaluating the
probability of emergence. The probabilities from each Emerge element are summed up, if
the resulting value is above a random number generated between 0 and 100, then emergence
takes place.

A.6 Move

A.6.1 Properties

– weight - Numerical value determining the weight of the associated element
(Attribute or Spatial) in the movement process of the associated Animat.

– scope - Sets the radius of the neighbourhood to scout.

A.6.2 Artefacts

For each Animat a method named move() is generated containing the logic of all Move
elements linked to it. This method is included in the corresponding Animat Java class and
invoked in the step() method. At each time step the move() method searches for relevant
instances within the neighbourhood(s) defined, collecting a set of candidate locations. The
Animat moves into the location within the set of candidates with highest weight.

A.7 Harvest

A.7.1 Properties

– percentHarvested - Percentage of the harvested Attribute or Spatial variable to
be taken (alternative to valueHarvested).

– valueHarvested - Exact quantity of the harvested Attribute or Spatial variable
to be taken (alternative to percentHarvested).

– maxIntake - Sets a limit to the amount harvested from the associated Attribute or
Spatial.

– scope - Sets the radius of the neighbourhood to take into account in the harvest process.

A.7.2 Artefacts

For each Animat a method named harvest() is generated containing the logic of all Har-
vest classes linked to the Animat in the model. It searches the within the neighbourhood(s)
defined for relevant instances, invoking their harvest method counterparts as needed. This
method is included in the corresponding Animat Java class and invoked in the step() method.
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A.8 Supply

A.8.1 Properties

– maxImpact - Sets a limit to the amount supplied from the associated Attribute.

A.8.2 Artefacts

A method named supplyAttribute() is generated containing the logic of access to the
Variable property of concerned Attribute. It is included in the respective Animat Java
class.

A.9 Replicate

A.9.1 Properties

– lowerThreshold - Lower value of the interval within which the associated Attribute
may trigger the replication process.

– upperThreshold - Upper value of the interval within which the associated Attribute
may trigger the replication process.

– toll - Numerical value defining the impact of replication on the associated Attribute
of the parent Animat.

– inheritance - Numerical value defining the amount transmitted to the associated
Attribute from the parent to the child Animat.

A.9.2 Artefacts

For each Animat a method named replicate() is generated containing the logic
of all Replicate classes linked to the Animat in the model. This method
is included in the corresponding Animat Java class and invoked in the step()
method.

A.10 Perish

A.10.1 Properties

– lowerThreshold - Lower threshold of the associated Attribute below which
instances of the associated Animat are discarded.

– upperThreshold - Upper threshold of the associated Attribute below which
instances of the associated Animat are discarded.

A.10.2 Artefacts

For each Animat Java class a method named perish() is generated contain-
ing the logic of all Perish classes linked in the model. It is invoked in the
step() method a tests all the Variable type properties of concerned Attribute
elements.
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