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Abstract In real world scenarios, people’s movement include several environments rather
than one, for example, road network, pavement areas and indoor. This imposes a new chal-
lenge for moving objects database that the complete trip needs to be managed by a database
system. In the meantime, novel queries regarding different transportation modes should also
be supported. Since existing methods are limited to trips in a single environment and do not
support queries on moving objects with different transportation modes, new technologies
are essentially needed in a database system. In this paper, we introduce a benchmark called
GMOBench that aims to evaluate the performance of a database system managing moving
objects in different environments. GMOBench is settled in a realistic scenario and is com-
prised of three components: (1) a data generator with the capability of creating a scalable
set of trips representing the complete movement of humans (both indoor and outdoor); (2)
a set of carefully designed and benchmark queries; (3) Mode-RTree, an index structure for
managing generic moving objects. The generator defines some parameters so that users can
control the characteristics of results. We create the benchmark data in such a way that the
dataset can mirror important characteristics and real world distributions of human mobility.
Efficient access methods and optimization techniques are developed for query processing.
In particular, we propose an index structure called Mode-RTree to manage moving objects
in different environments. By employing the proposed index, the cost of benchmark queries
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is greatly reduced. GMOBench is implemented in a real database system to have a practical
result. We perform an extensive experimental study on comprehensive datasets to evaluate
the performance. The results show that by using the Mode-RTree we achieve significant
performance improvement over the baseline method, demonstrating the effectiveness and
efficiency of our approaches.

Keywords Moving objects · Transportation modes · Benchmark · Query processing ·
Index

1 Introduction

Recently, the area of moving objects with different transportation modes becomes an
interesting topic due to novel applications on detecting outdoor transportation modes and
advanced trip plannings. Based on raw GPS data, motion modes such as walking, driving
and cycling can be inferred in order to have more contextual information of mobile users
[38, 42]. In Microsoft’s project GeoLife, researchers aim to discover transportation modes
from GPS data by identifying a set of sophisticated features such as velocity, acceleration
and heading changing rate [57, 58]. In an advanced transportation system [1, 5], a realistic
traveling plan includes a trip with different choices of modes and constraints with modes,
e.g., less than two bus transfers, the walking distance is smaller than 300 meters.

As a kind of human behavior, transportation modes are closely related to the movement.
Recognizing such pieces of information can enrich the knowledge of a user’s mobility.
From the viewpoint of the database community, the management of continuously changing
location data and transportation modes (environments) requires dedicated support from the
underlying database system. However, existing techniques are only able to manage the data
in one environment such as free space or road network, and cannot answer new queries on
moving objects traveling through several environments. The first problem needs to be solved
is to have a consistent and efficient location representation in all available environments
such as road network, bus network and indoor. Based on a data model proposed in [55],
we develop new techniques in a database system to support efficient query processing for
moving objects in different environments, for example, Indoor → Walk → Bus → Walk.
To evaluate the performance of such a database system, a benchmark is needed to test the
system under a wide range of queries.

A benchmark [4, 9, 13, 37, 41, 43, 48], consisting of a set of comprehensive and scalable
datasets and a group of well defined queries, plays a crucial role in evaluating the function-
ality and performance of a database both for application users and developers. Additionally,
a benchmark allows one to test a system’s capabilities and helps determine its strengths or
potential bottlenecks. In the field of moving objects databases, simulation is widely accepted
[11, 14] to provide synthetic data for designing and testing new data types and access meth-
ods due to the difficulty of getting a large amount of real data. In particular, real data
might not be comprehensive enough to thoroughly evaluate the system in consideration.
Consequently, researchers develop tools to create synthetic data in a realistic scenario. Nev-
ertheless, existing data generators [6, 40, 47] and benchmarks [11, 14, 46] only deal with
the movement in one environment without considering transportation modes. The data do
not represent the complete trips of humans. It is also not easy to get the real data of moving
objects with precise transportation modes including both outdoor and indoor. To solve the
problem, new methods are needed to generate moving objects with multiple transportation
modes in a realistic way.
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A large amount of indices have been proposed to efficiently support query processing
on trajectories in the literature [8, 10, 12, 24, 34]. However, none of them consider the
important property of moving objects: transportation modes. They only tackle the problem
in a single environment without managing the complete trajectory, i.e., a portion of the
movement is indexed. Additionally, in the current state-of-the-art indices work by grouping
object extents on spatial and temporal without maintaining other useful information such
as the transportation mode and geographic objects. For some environments such as road
network and indoor, the location of a moving object is closely related to the underlying
environment. This calls for an index structure that is equipped with new properties to speed
up query processing.

Previous works [53–55] are fundamental steps to the present benchmark where a data
model is designed to represent generic moving objects by referencing to the underlying
environments, and a data generator is developed to create all real world environments: road
network, bus network, metro network, pavement areas and indoor. After that, a meaningful
analysis and evaluation of such a system necessitates a comprehensive benchmark.

In this article, we propose a benchmark called GMOBench to evaluate the database per-
formance by a broad range of novel queries on moving objects considering transportation
modes and different environments. We process the complete past movement (also called tra-
jectory) and generate scalable and comprehensive datasets to simulate a variety of real life
scenarios. It makes no sense to create human movement in a pure random fashion as usu-
ally there is an evident motivation to start a trip, accomplishing some tasks or performing
an activity.

To achieve the goal of realistic simulation, we define a set of rules to create trips with
various properties to model human movement behavior in practice. For example, people’s
trajectories exhibit regular patterns [20] most of the time, e.g., commuting. On the week-
end, based on the habits and preferences they may have some trips to interesting places
such as home of friends, shopping malls, and cinemas. To perform an activity, people usu-
ally prefer nearby to distant places, e.g., look for the nearest hotel. Since moving objects are
generated based on real life behavior, our benchmark datasets can be used for some other
applications. For example, one can monitor the traffic condition (e.g., rush hour) by cre-
ating trips between home and work places during a certain time period. As these moving
objects contain multiple transportation modes, one can analyze the data and test whether
the traffic jam can be relieved by improving and adjusting the public transportation system.
One can also investigate people’s movement inside buildings by generating indoor moving
objects.

Complementary to the benchmark data generator, we design a set of queries to test a vari-
ety of operator constellations and data access methods. Two groups of queries are proposed
where one deals with the underlying environments and the other considers moving objects.
Most of the queries are not supported by existing methods for the reason that previous work
is limited to one environment. In the baseline method, optimization strategies are developed
to improve the query efficiency.

Another important aspect in the benchmark is that we develop an index structure named
Mode-RTree to manage generic moving objects. We intend to develop general access meth-
ods that can minimize the cost of overall benchmark queries instead of a particular query.
Such an index supports moving objects with different transportation modes. By thoroughly
analyzing benchmark queries, we find a key step in the query processing. That is, the rela-
tionship between moving objects and the underlying geographic objects such as roads, buses
and buildings has to be well maintained. To solve the problem, we propose a mapping
method and integrate an integer in the tree node to build the relationship. During the query
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processing, we can prune objects that do not fulfill the query condition. As a result, the
benchmark performance is further improved by employing the index.

With the aim of producing a practical and systematic result, the data generator, the pro-
posed index and related query algorithms are all implemented in a real database system
SECONDO [22]. We present a thorough experimental study for performance evaluation
under comprehensive datasets. The results demonstrate the effectiveness and efficiency of
the proposed method. Among all queries, the improvement is between 2 times and orders of
magnitude in terms of CPU and I/O accesses using the large dataset. The evaluation is per-
formed in SECONDO, as to our knowledge there is not yet any other available DBMS that
can represent generic moving objects and execute the given set of queries. The contribution
of the paper is summarized as follows:

• We develop a data generator to produce moving objects in different environments.
Some rules are defined in order to create the data in a realistic way. One can generate
a trip containing only one mode (e.g., an indoor trip) or several transportation modes.
We present the algorithm of creating a trip passing through several environments with
precise locations and transportation modes.

• A set of benchmark queries is carefully defined including 4 queries on geographic
information and 17 queries on generic moving objects.

• In the baseline method for answering queries, some optimal techniques are developed
to improve the query efficiency.

• We propose an index structure called Mode-RTree to efficiently manage moving objects
in different environments and maintain the relationship between moving objects and
the underlying geographic objects. By employing the Mode-RTree, the performance of
benchmark queries is significantly improved.

• Extensive experiments are conducted to test the benchmark performance. The results
confirm the efficiency and effectiveness of the proposed technique, and demonstrate
that using the Mode-RTree substantially outperforms the baseline method, achieving
orders-of-magnitude performance improvement.

The rest of the paper is organized as follows: A concise overview of related work is pre-
sented in Section 2. In Section 3, we elaborate the configuration of benchmark data and the
generating algorithm. Benchmark queries are defined in Section 4. We introduce the base-
line method in Section 5 and propose the index in Section 6. We perform the experimental
evaluation in Section 7, discuss the advantage of GMOBench in Section 8 and conclude the
paper in Section 9.

2 Related work

2.1 Moving objects with transportation modes

In the research literature, there is some work related to transportation modes on mov-
ing objects, which can be classified into two categories: (1) trip plannings considering
transportation modes; (2) discover transportation modes from GPS data.

The paper [5] presents a data model to support querying a trip consisting of several trans-
portation modes, e.g., Bus, Walk, Train. The authors deal with returning a shortest path
(SP) with multiple transportation modes to connect the origin and the destination, where SP
can have more constraints and choices, e.g., different motion modes, the number of trans-
fers. An interesting query is proposed in [1] that computes isochrones in multi-model and



Geoinformatica (2015) 19:227–276 231

schedule-based transport networks. The goal is to find the set of points on a road network,
from which a specific point of interest can be reached within a given time span.

To provide more contextual information and enrich a user’s mobility with informative
knowledge, Zheng et al. [57, 58] develop a method based on supervised learning to auto-
matically infer users’ transportation modes. [38] creates a classification system that uses
a mobile phone with a built-in GPS receiver and an accelerometer to determine the trans-
portation mode of an individual when outside. Stenneth et al. [42] propose an approach
to inferring a user’s mode based on the GPS sensor on the mobile device as well as the
knowledge of the underlying transportation network, e.g., bus stop locations, railway lines.

The above work is different from ours. The data model [5] does not represent the precise
location and transportation modes for moving objects, but describes them conceptually and
abstractly. They assume the data including trajectories and modes are already known in the
database. Besides, indoor environment is not considered. In [1], they address the issue of
query processing in a transportation system without involving moving objects, and only two
transportation modes are supported: Walk and Bus. Transportation modes discovered from
GPS data are only for outdoor movements because a GPS receiver will lose signal indoors.
We do not focus on inferring motion modes. Based on a data model for generic moving
objects [55], we evaluate the performance of a database system that supports a group of
queries on moving objects in different environments.

2.2 Benchmarking

A benchmark proposed in [50] deals with 3-dimensional spatio-temporal data that require
significant temporal processing and storage capabilities, and has provisions for evaluating
the ability of a spatio-temporal database to handle 3-dimensional data. The work expands
on the Sequoia 2000 and Paradise benchmarks, and is oriented towards general operating
system and database system performance comparison. In the context of moving objects
databases, [46] proposes a benchmark that includes a database description and a group of
representative SQL-based queries. Ten benchmark queries plus two operations for load-
ing and updating data are proposed. The authors give an ER diagram of a database for
location-based services where the entities include humans, buildings and roads. Humans
visit buildings (shops) for their interests and requests on products. Each road stores two
kinds of data: (1) a polyline; (2) the time when people pass the road. But the paper does not
present a method to create the benchmark database and there is no performance evaluation.

BerlinMOD [14] is a benchmark that uses the SECONDO DBMS [22] for generating
moving object data. A scenario is simulated where a number of cars move within the road
network of Berlin and sampled positions from such movements are used as the data. The
method models a person’s trips to and from work during the daytime on workdays as well as
some additional trips in the evening and on the weekend. Long-term observations of moving
objects are available, e.g., a month. A set of carefully selected SQL-based queries constitute
the workload. However, these benchmarks only process moving objects and queries in one
environment and do not consider transportation modes. Compared with the aforementioned
work, our benchmark is general in the context of moving objects where the system manages
trips passing through different environments and supports new queries on these data.

Benchmarking moving objects indices is studied in [11, 25, 30], focusing on location
update, current and near future positions. [30] presents a benchmark termed DynaMark for
dynamic spatial indexing, that is towards location-based services. Three types of queries
are defined that form the basis of location-based service applications: proximity queries,
kNN queries and sorted distance queries. A benchmark called COST [25] is concerned
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with the indexing of current and near-future moving objects positions and aims to evaluate
the index ability to accommodate uncertain object positions. Three types of queries are
investigated, timeslice query, window query and moving window query. In [11], three types
of datasets are generated: (1) uniform distribution; (2) Gaussian distribution and (3) road-
network-based datasets. The goal is to measure the overall index efficiency and to simulate
certain real-world scenarios. The query workloads consist of the range query and the kNN
query. A set of aspects is proposed for the performance evaluation such as data size, update
frequency and buffer size.

2.3 Spatio-temporal data generators

The so far developed tools have been using random functions and road networks to model
different physical aspects of moving objects. A network-based moving objects generator is
proposed in [6, 7] for the traffic application. Objects are created in a random way and appear
and disappear when their destinations are reached. Important concepts of the generators are
the maximum speed, the maximum edge capacity, etc. Two kinds of methods are used for
setting positions and velocities for moving objects generation [40], uniform distribution and
skewed distribution.

GSTD [47], a widely used spatio-temporal generator, defines a set of parameters to con-
trol the generated trajectories: (1) the duration of an object instance; (2) the shift of objects
and (3) the resizing of objects. Initialized by a certain distribution of points or rectangle
objects, GSTD computes at every time step the next position and the shape of objects based
on parametrized random functions. Later, the generator is extended to produce more real-
istic moving behavior such as group movement and obstructed movement, by introducing
the notion of clustered movement and a new parameter [35]. G-TERD [49] is a genera-
tor for time evolving regional data in an unconstrained space and Oporto [39] is a realistic
scenario generator for moving objects motivated by a specific application, fishing. A set
of rules is defined to create indoor moving objects in [56], like an object in a room can
move to the hallway or move inside the room. In summary, these generators only con-
sider a single environment and cannot generate moving objects passing through different
environments.

There are also various spatio-temporal simulators for different applications. ST-ACTS
[19] is a simulator that uses geo-statistical data sources and intuitive principles to model
social and geo-demographic aspects of human mobility. The model is based on commer-
cial source data describing some statistics of Denmark’s population. Some principles are
defined to govern the social aspects of mobility, e.g., home-work and home-school. STEPS
[31] is a parametric mobility model for human mobility, which makes abstraction of spatio-
temporal preferences in human mobility by using a power law to rule the movement. The
work focuses on human geographic mobility and defines the human mobility as a finite
state. The mobility is modeled by a discrete-time Markov chain in which the transition
probability distribution expresses a movement pattern. GAMMA [23] is a framework in
which trajectory generation is treated as an optimization problem and solved by a genetic
algorithm. Two examples are given to show how to configure the framework for different
simulation objectives, in a cellular space and a real-life symbolic moving behavior. How-
ever, the aforementioned methods do not consider the detailed routing between locations,
that is, how people move from one place to another. As a result, transportation modes and
movement environments are not addressed.

The goal in [28] is to provide a friend-finder service. The considered places are not
general, including only home and entertainment places. Also the observed time periods are
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limited to Friday and Saturday nights. The method sets some parameters for the simulation,
like source, destination, and starting time. In order to have a realistic model of distributions,
a survey is prepared to collect the data of real users based on interviews of more than 300
people. In the simulation, home places are distributed almost uniformly on the map, with a
minor concentration on central zones of the city.

2.4 Indices on trajectories

In the last decade, a substantial amount of index structures have been proposed to effi-
ciently access trajectories. A good survey on trajectory indexing and retrieving is given in
[26, 59]. Depending on the environment, indices can be classified into three categories: (1)
free space; (2) road network; and (3) indoor.

In free space, two variations of the R-Tree for polyline indexing are suggested in [34],
TB-Tree and STR-Tree, assuming that the motion is piecewise linear, where TB-tree is
to bundle segments from the same trajectory into leaf nodes. MV3R [44] is a structure
combining a standard R-Tree and a variant of the partially persistent R-Tree, supporting
both time-stamp and time-interval queries. A two-level indexing structure called SETI is
proposed in [10], where the structure decouples the indexing of the spatial and temporal
dimensions. The Multiple TSB-tree is proposed in [60] to support the historical and spatial
range close-pair queries for moving objects. The paper [32] offers an indexing technique
capable of accurately capturing the past, present, and (near) future positions of moving
objects.

Practically, objects usually move on a pre-defined set of paths as specified by the
underlying network, thus a couple of indices for road network are proposed. Since the
movement is constrained by the underlying road network, the combination of two-level
R-Trees is employed by [12, 15, 33] where the first level is for roads and the second is
for trajectories. The paper [36] proposed an index called T-PARINET, which is a structure
combining graph partitioning and a set of composite B+-tree local indices for trajectory
data flows. Recently, some index structures for moving objects in a symbolic indoor space
[24, 27] are also developed to support range and nearest neighbor queries over indoor
objects. Xie et al. [52] propose a composite index scheme that integrates indoor geometries,
indoor topologies and indoor uncertain objects to support indoor distance-aware queries
efficiently.

However, previous works do not consider different transportation modes and those tech-
niques only deal with moving objects in one environment, i.e., a portion of the complete
movement. As a result, existing indices only have the capability of grouping objects on tem-
poral and spatial dimensions, but do not manage transportation modes. The query algorithm
can not prune objects that do not fulfill the condition on transportation modes, degrading
the query performance for generic moving objects.

3 Benchmark data

3.1 Data model

We let the space for generic moving objects be covered by a set of infrastructures
(environments), each of which corresponds to an environment and contains its possi-
ble transportation modes. A notation is defined for each infrastructure, listed in Table 1.
Transportation modes are summarized in Definition 3.1.
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Table 1 Components for space
Space Irn: Road network Car, Taxi, Bike

Irbo: Region-based Outdoor Walk

Ibn: Bus Network Bus

Imn: Metro Network Metro

Iindoor : Indoor Indoor

Definition 3.1 Transportation Mode
TM = {Car, Walk, Indoor, Metro, Taxi, Bike, Bus}

Each infrastructure consists of a set of infrastructure objects (IFOBs) representing avail-
able places for moving objects. For example, streets and roads constitute Irn and polygons
representing pavement areas compose Irbo. The bus network Ibn comprises bus routes, bus
stops and moving buses. The location of a moving object is represented by referencing to
the underlying IFOBs. We give the definition below.

Definition 3.2 Generic Location

Dgenloc = {(oid, (loc1, loc2))|oid ∈ Dint , loc1, loc2 ∈ Dreal}

A generic location consists of two attributes with oid being an IFOB id and (loc1, loc2)

describing the relative position according to that object. The representation has different
semantics according to the infrastructure characteristic. For example, in a road network oid

is a route identifier and (loc1,⊥) records the relative location on the route. Given a location
in Irbo, oid maps to a polygon and (loc1, loc2) represents the location inside the polygon.
In spite of various data types for IFOBs such as line and region, we make an abstraction for
them and only keep the object identifier to let the location model be simple.

To represent moving objects with transportation modes, we denote a generic trajectory
by tr =< u1, u2, ..., un >, that is a sequence of temporal units ordered by time where each
unit defines the movement during a time interval. In detail, we have

ui = (i, gl1, gl2,m)(gl1, gl2 ∈ Dgenloc ∧ gl1.oid = gl2.oid,m ∈ T M)

where i denotes the time interval, gl1, gl2 are the start and end locations, respectively, and
m is the transportation mode. We assume that the object moves linearly during i so that the
positions between gl1 and gl2 are calculated by a linear function. Consider such an example
movement: Car → Walk → Indoor. The units record ids for (1) roads; (2) pavement areas;
(3) rooms. The precise locations are identified by gl1 (gl2).

The method represents a moving object in a compact way. Two units ui, uj are merged
into one if they fulfill the conditions: (1) ui.i and uj .i are adjacent; (2) ui.m = uj .m; (3) ui

and uj reference to the same IFOB and the linear functions are the same. Some examples
are shown in the following. (1) locations for a car (taxi or bicycle) moving on a road segment
with a constant speed are compressed into one unit denoting (i) the road id and (ii) the
positions of endpoints for such a segment; (2) locations for a bus (metro) traveler are not
explicitly recorded but reference to the bus (metro) and this can avoid the redundant data for
people who take the same bus. Consequently, the storage size for moving objects is greatly
reduced.
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3.2 Movement principles

In order to create realistic benchmark data, we define a set of movement rules that can
reflect the characteristics and distributions of human behavior in practice. Human move-
ment has a certain distribution in terms of time and location, and in most cases people
move from one place to another with the objective of performing a certain activity at the
target place. We define in total four movement rules that consider both (1) physical and
(2) social aspects of mobility. The former considers a geographical impact, e.g., location,
distance, while the latter regards human community behavior, preferences or habits. We
believe that both physical and social factors are essential for creating the benchmark data
and are able to mirror key features of human movement. The four rules are defined as
follows.

• MR1. This rule is to represent regular movement [17, 20], which usually has a peri-
odic pattern. A large majority of people go to work in the morning and come back in
the evening. There are additional trips between work places during the office time, as
people may travel to another place for business or conference meeting. Evidently, these
regular trips occur on weekdays in most cases.

• MR2. Movement in a single environment. For example, people walk around in the city
center (pedestrian areas) for shopping on the weekend, and a clerk moves from his
office room to the conference room. This rule is used to generate a short trip limited to
one environment.

• MR3. Motivated by the famous nearest neighbor query [16, 29, 45], we create a trip
from the query location to the closest qualified location. For instance, a person wants
to find the nearest hospital. If the target place is a short distance away from the query
location, the traveler can go by walking. Otherwise, he may wish to travel by the public
transportation system. In this case, the closest bus stop is found and then he travels by
bus. Another example could be a car searching the nearest gas station. Trips generated
by this method are based on the physical aspect, i.e., distance.

• MR4. A trip is triggered by the purpose of visiting a point of interest. The concept of an
interesting location is general, a personal apartment, a sightseeing place, a restaurant,
etc. On the weekend, people may visit friends, go shopping or meet in a park.

Compared with MR1, trips defined by MR2, MR3 and MR4 can be considered as irreg-
ular movement, but they occur frequently in daily life. There is a large amount of such
trips, especially for MR3. An extensive study having been done on NN queries in moving
object databases, confirms that this query is fairly common and widely used in daily life,
motivating us to define a rule for the movement performing such an activity. Trips gener-
ated by MR1, MR3 and MR4 may pass through different environments, leading to multiple
transportation modes.

The trips created by above rules reflect the most common movement of humans, leading
to the generated data in a realistic scenario. The purpose of defining precise rules is to
generate the data in a well defined method and a clear motivation. The method is flexible
and one can add more rules to generate desired and interesting trips, e.g., a traveler passes a
sequence of places at the minimum cost.

3.3 Parameters

To create a generic moving object, three parameters have to be configured: (1) Location;
(2) Time; (3) Transportation Modes.
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Location plays a key role for creating trips for the reason that it specifies where the trip
starts and ends. No restrictions are made for the start and end locations of a traveler, i.e.,
they can be in any environment defined in Table 1. In particular, the location is related to
an IFOB, e.g., a road or a bus. If the start and end locations are in distinct environments, a
trip involving different transportation modes is created. In the following, we show how the
location parameter is specified to create desired trips. Stated in Section 3.1, the whole space
is partitioned into a set of infrastructures each of which consists of a set of IFOBs. A unique
number is assigned to each IFOB, and each infrastructure has a range of integers denoting
its element ids.

Definition 3.3 Integer Sets for IFOB ids
Let ID(Ii) denote the set of IFOB ids for one environment, Ii ∈ {Irn, Irbo, Ibn,

Imn, Iindoor }. Then, the overall integer set for IFOB ids is represented by IO ID =
⋃

ID(Ii).

We perform the union on IFOB ids for all environments. There is no overlapping between
integer sets from different infrastructures. Since the location representation (Definition 3.2
in Section 3.1) records an IFOB id, one can set an integer range denoting certain IFOBs. The
range determines the environment for the start and end locations. The parameter is defined
below.

Definition 3.4 Start and End Locations
A pair l(ls , le) denotes the start and end locations of a trip fulfilling the condition:
(i) ls = (gls, cs), le = (gle, ce) (gls, gle ∈ Dgenloc, cs, ce ⊆ IO ID);
(ii) gls .oid ∈ cs ∧ gle.oid ∈ ce.

The location parameter is represented by a pair of objects defining the start and end loca-
tions as well as location domains, cs and ce. They are two sets each of which designates
an integer range for the location. That is, the environment for gls (gle) is determined by
cs (ce). For example, if cs = ID(Irn), the start location is on a road. If cs = ID(Irbo), gls
is located in the pavement area. For the case cs = ce = ID(Iindoor ), there are two possibil-
ities: (1) gls and gle are in the same building; (2) gls and gle are in different buildings.
Case (1) is simple. Case (2) implies a trip from one building to another, e.g., from home to
office.

By defining cs and ce, one can set up the location in a flexible way. cs(ce) can be either
(i) a range indicating a set of ids or (ii) a set with a single value denoting a specific object
id. For case (i), a concrete value belonging to the given set needs to be specified in order
to let the trip start from a precise IFOB. We let such a value be randomly chosen from the
set. For example, if cs = ID(Irn), a stochastic road is selected. For case (ii), the method is
able to create a trip starting from (ending at) a specific IFOB, e.g., a road or a building. In
the above two cases, when a concrete IFOB is determined, we randomly choose a location
belonging to the IFOB and let it be the accurate start (end) location. For instance, if a road
is chosen, we let a stochastic position on the road be the start (end) location of a trip. If a
building is selected, a random location inside a room is chosen.

Time In principle, a trip can start at any time instant. But human movement has a certain
time distribution that most trips occur in the range [6:00, 22:00] [18].

Definition 3.5 Start Time of a Trip
Let Hour = {0,1,...,23} and Min={0, 1,...,59} be two sets of integers.
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The start time of a trip is defined as a four-tuple t(h,min, hc, minc) where

(i) h ∈ hc ⊆ Hour;
(ii) min ∈ minc ⊆ Min.

The two attributes h and min define the start time of a trip and each value is set accord-
ing to its corresponding domain. We have hc for h and minc for min. One can generate the
desired trip on time distribution by configuring hc and minc. For example, to create a trip
from home to work place in the morning, the time parameter can be set by hc = {6, 7, 8}
and minc = Min. We let the concrete value for h and min be uniformly distributed in the
defined sets hc and minc. This method is general and effective, and is able to satisfy dif-
ferent requirements as one can shrink or enlarge the ranges for hc and minc to get certain
distribution. For example, we can set hc = {8} and minc = {0, 1, ..., 30} to create a trip whose
start time is between 8am and 8:30am.

Modes People have different choices on vehicles for their traveling, by car or using public
transportation system. If the traveling distance is short, the mode Walk or Bike can also
suffice. A trip can contain a single mode or multiple modes. The value depends on the
start and end locations to some extent. Regarding the locations, we make the following
assumptions for the transportation modes involved by a trip.

• Assumption 1. If ls and le are located in the same building, we define the movement to
be inside such a building. That is, the mode is only Indoor.

• Assumption 2. If ls and le belong to the same outdoor environment such as Irn or Irbo,
then the mode is single and determined by the environment, e.g., Car in Irn.

Based on the two assumptions, the case that a trip contains different transportation modes
occurs when (1) ls and le are located in different buildings; or (2) ls and le belong to different
infrastructures. Otherwise, the modes are determined.

We investigate the components of transportation modes in a trip and find out the fol-
lowing behavior. First, Walk is the only mode that connects to another one, e.g., Walk →
Car, Indoor → Walk → Bus. We define that the connection between two modes such as
Car → Indoor and Indoor → Bus is not allowed. Usually, people do not directly change
from Bus to Car, or from Indoor to Taxi. A short distance of walking is required. This
is consistent with the result from [57] in which the authors infer transportation modes
from raw GPS data and find that the walk segment is up to 99% as the transition between
different transportation modes. Second, among outdoor transportation modes, Car and
Bike are private vehicles, while Bus, Metro, and Taxi are public. In most cases, people
travel by either private vehicles or public transportation system. It’s rare that both vehi-
cles are involved in one trip. Consequently, we distinguish between the two cases when
produce trips. To sum up, we do the following partition on transportation modes based on
Definition 3.1.

Definition 3.6 The Partition of Transportation Modes
Let A = {Walk} and B1={Indoor}. Public and private vehicles are defined to be B2={Bus,

Metro, Taxi}, B3={Car, Bike}. Thereby, TM = A ∪ B1 ∪ B2 ∪ B3.

Note that two modes can only be connected via Walk and there is no mode switch
between elements from

⋃3
i=1 Bi . The purpose of performing the partition is to make a clear

recognition on transportation modes in a trajectory. One can figure out the implicit relation-
ship between modes and define possible modes for a trip. This will benefit the procedure
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Table 2 Transportation mode
transition A B1 B2 B3

A 1 1 1 1

B1 1 1 0 0

B2 1 0 1 0

B3 1 0 0 1

of producing a trip containing reasonable transportation modes, making the data practical.
Table 2 gives the transition matrix for TM. A is transitive to all the others, while B1, B2, B3
are only transitive to themselves and A.

Definition 3.7 Transportation Modes in a Trip
The mode is a set mc ⊂ TM to specify possible values included by a trip.

See some instances: (1) mc = B1, movement inside a building; (2) mc = B2 ∪ A, e.g.,
take a bus and then a short distance walking; (3) mc = A ∪ B1 ∪ B3. It is worth noting that
if the mode is already determined by ls and le (the two assumptions above), mc is decided
and does not have to be specified.

3.4 Configure parameters

In this part, we show how to set the three parameters to create trips simulating human
movement. At first, we divide the integer set ID(Iindoor ) representing buildings into three
subgroups {H, W, SE}, where H refers to the set for personal houses, W denotes the ids for
work buildings such as office buildings, universities, and SE (Shopping and Entertainment)
is for buildings like shopping malls, cinemas. If a trip starts from or ends in the indoor
environment (a building), we use the subgroup to determine the type of the building. H, W
and SE are also used to create certain trips according to the rule. For example, we can set
the location domain by H ∪ W for MR1 to represent regular movement between home and
work. The trip representing friends visiting on the weekend (MR4) can set H for both start
and end locations.

A trip is an optimal route with respect to the minimum cost (e.g., distance, time) from one
location to another and the result is used to create a generic moving object. The start and end
locations can be in one environment or in different environments, where the latter involves
multiple transportation modes. For each rule, a set of movement instances is specified to
create concrete trips.

Table 3 lists some instances for each rule as well as the parameter settings. For simplicity,
we only show the domain for each parameter. In some cases, transportation modes are in fact
chosen by the location (see MR2). Otherwise, mc is variable and can be specified according
to the requirement. For example, people can drive by car or use the public transportation
system to travel between home and work. The values in the table are possible settings.

3.5 Trip generation algorithm

We outline the algorithm that generates a trip with different transportation modes. First, a
set of graphs is introduced. A trip is created based on the shortest path (SP) where the start
and end locations can be located in different environments, resulting in a set of sub trips
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Table 3 Example movements and parameter settings

Rule Movement instance Start and end locations Start time Modes

(cs , ce) (hc) (mc)

MR1 1) travel from home to work H, W [6, 9] A ∪ B1 ∪ B2

2) business travel between working W, W [9, 16] A ∪ B1 ∪ B3

places

MR2 1) people walk around in the city center ID(Irbo), ID(Irbo) [10, 18] A

2) a clerk walks from one office to W,W [9, 16] B1

another

MR3 1) a car searches the nearest restaurant ID(Irn), ID(Iindoor ) [10, 20] A ∪ B3

2) a traveler looks for the nearest bus stop ID(Irbo), ID(Ibn) [9, 20] A

MR4 1) go to a shopping mall from home H, SE [10, 20] A ∪ B1 ∪ B3

2) visit friends H, H [10, 20] A ∪ B2

in several infrastructures. In the sequel, different trip planning algorithms are needed, e.g.,
indoor navigation, trip planning for pedestrians, routing in bus network. Figure 1a lists all
infrastructure graphs.

Second, to create a trip passing through a set of environments, location mapping tech-
nique is required to convert positions from one system to another. Consider the case that a
pedestrian searches the nearest bus stop. To answer such a query, at first the location of the
qualified bus stop is mapped to the pavement. This is because the representation of a bus
stop is not simply a point but contains some other information such as the bus route id, the
relative order on the route. Then, the shortest path from the query location to the bus stop is
returned where the path is located in the walking area. Since a walking segment is the part
connecting movements in different environments, the location mapping is actually between
Irbo and the other infrastructures. We denote the mapping by M(Irbo, I ′) (I ′ ∈ {Irn, Ibn,
Imn, Iindoor }) and explain the procedure as follows.

Several data types are defined to represent IFOBs. To be more specific, the location of
a bus or metro stop is defined by a point, roads are defined by spatial lines, pavements are
defined by polygons, and indoor objects such as rooms and staircases are represented by
proposed data types (see [55]). The mapping between each I ′ and Irbo is actually to create
a connection between two spatial objects:

1. Irbo and Irn: Given a location on a road, we take this point and find the closest point
to it from the pavement. That is, we calculate the closest distance between a point and

Notation Meaning

Road Graph

Pavement Graph

Bus Network Graph

Metro Network Graph

Indoor Graph

(a)

Name Meaning

car speed

metro speed

walking speed

(b)

Fig. 1 Infrastructure graphs and defined speed
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a region. Such a pair of points is used to build the connection and denote two locations
in their corresponding environment. Whenever the movement changes from Irn to Irbo,
the point inside a region is chosen as the start location of the next trip. Conversely, we
receive a location on the pavement and find the closest point to it from the road, i.e.,
calculate the closest distance between a point and a line.

2. Irbo and Ibn: Since lines representing bus routes are from the road network, the map-
ping procedure is the same as above. A set of bus stops is identified and their mapped
locations in Irbo are stored in the database. Later, query processing can make use of the
result if two environments are to be connected, e.g., a pedestrian searches the nearest
bus stop.

3. Irbo and Imn: The location of a metro stop is represented by a point. We find the closest
point from the pavement to the metro stop and choose it as the result. This is performed
by computing the distance between a point and a region. We put a metro stop with its
mapped point in Irbo into a tuple and store all metro stops in a relation in the database.

4. Irbo and Iindoor : The 2D area of a building in space is represented by a polygon. The
location of the entrance/exit of a building is defined to a point inside a polygon. To
perform the mapping, we find the closest pair of points between two regions, where one
is for the building and the other is for the pavement. If a traveler leaves the building, the
point inside the building polygon is the end of the indoor trip and its mapped location
inside the pavement is the start location of walking. In the reverse way, when a traveler
visits a building, we get the building entrance and choose the mapped location in Irbo

as the end location of walking, and then the traveler changes to Indoor.

Third, a set of speed values are defined. We summarize them in Fig. 1b. Each road is
assigned a value as the maximum speed allowed for cars. Such a value is also used for the
bus moving on the road. vm is the speed for metros. The walking speed for both indoor and
outdoor is specified by vw . Without loss of generality, we use the first movement instance
of MR1 in Table 3 to describe the procedure of the algorithm.

Step 1: Assuming that the traveler uses the bus network, the corresponding graphs {Grbo,
Gbn, Gindoor } are selected according to transportation mode parameters.

Step 2: Let s be the home location of the traveler and the nearest bus stop to s is found.
M(Irbo, Ibn) returns the pavement location for the bus stop, denoted by bs. By
running the SP algorithm on Grbo, a walking path l1 from s to bs is obtained. We
create an object < l1, Walk> and put it into the path set P .

Step 3: We execute the SP algorithm on Gbn to find a bus connection to the destination
stop. Let l2 be the bus path and the pair < l2, Bus > is inserted into P . If a short
walking is included for changing the bus, such a path is also put into P with the
mode Walk.

Step 4: M(Irbo, Ibn) maps the destination stop to the pavement location be. Again, we use
Grbo to find the SP from be to e, the building entrance (maps to Irbo). l3 denotes
such a walking path and we insert < l3, Walk> into P .

Step 5: We run the SP algorithm on Gindoor to find an indoor shortest path l4 from e

to the final destination, e.g., an office room. The last sub path as well as the
transportation mode is collected and we put < l4, Indoor> into P .

Step 6: For each pi ∈ P , we take the corresponding speed value from Fig. 1b and create
the sub movement.

In the end, we perform the union on all sub trips to get the complete trip, the definition
of which is given in Section 3.1.
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4 Benchmark queries

4.1 Query list

We present a set of interesting queries to form the benchmark workload, categorized into
two groups. One requests data from infrastructures and the other deals with generic moving
objects. We provide the formulation for all queries by using an SQL-like language in the
Appendix A.

Infrastructure Queries.

• Q1. Find out all metros passing through the city center.
• Q2. Given a building, find all bus stops that are within a radius of 300 meters.
• Q3. Which streets does Bus No. 12 pass by?
• Q4. Where can I change between bus route No. 16 and No. 38? Where can I change

between metro route No. 2 and No. 8?

The first three are concerned with interactions between different infrastructures as
users may compare IFOBs from different environments. In a public transportation
system, travelers need to know the place where they can switch between different routes.
Queries on Generic Moving Objects.

We consider the following aspects: (1) referenced IFOBs by moving objects; (2)
transportation modes; (3) time intervals; (4) spatial data and locations.

• Q5. At 8am on Monday, who sits in the bus No. 32? At 8am on Monday, who sits in
the metro No. 2?

This query deals with travelers who take the bus (metro) from a specific route at the
given time and covers three aspects above: (1), (2) and (3). The query result is not the
case for a particular bus or metro, but all available buses (metros). At the query time,
there may be several buses (metros) moving on the route.

• Q6. What is the percentage of people traveling by public transportation vehicles?

For this query, we define the the modes {Bus, Metro, Taxi} to be the case of traveling
by public transportation vehicles.

• Q7. Where does Bobby walk during his trip? And how long does he walk?
• Q8. Find out all people passing room 312 at the office building between 9am and

11am on Monday.

To answer Q7, Q8, we need to get a sub trip according to the transportation mode.

• Q9. Who arrived by taxi at the university on Friday?
• Q10. Who entered bus No.3 at bus stop “University” on Tuesday afternoon?

The above two queries deal with interactions between different environments. To
answer these queries, one should find the place where people change transportation
modes.

• Q11. Find out all people walking through zone A and zone B on Saturday between
10am and 3pm.

• Q12. Did anyone who was on floor H-5 of the office building between 2pm and 5pm
take a bus to the stop “train station” on Friday?
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• Q13. Did bus No. 35 pass by any bicycle traveler on Monday?

Q13 considers the distance between two moving objects with different transportation
modes. It is interesting to discover such a relationship as the two objects move in different
environments. The bus parameter means a group of buses which all belong to the route
No. 35 but with different departure time, instead of a particular bus trip.

• Q14. Did someone spend more than 15 minutes on waiting for the bus at the bus
stop Cinema on Saturday?

• Q15. How many people visit the cinema on Saturday?

• Q16. Find out all people staying at room 154 in the university for more than one
hour on Thursday.

Besides the outdoor trips, indoor moving objects can also be traced.

• Q17. Did someone spend more than one hour traveling by bus (metro)?
• Q18. Find out all people changing from bus No. A to bus No. B at stop X. Find out

all people changing from metro No. A to metro No. B at stop Y.

In a public transportation system, knowing the place where people do the transfer is
meaningful to analyze and investigate the schedule and route distribution.

• Q19. Find out all trips starting from zone A and ending in zone B by public
transportation vehicles with the length of the walking path being less than 300
meters.

We search trips by considering the start and end locations as well as transportation
modes. A and B are defined to be a set of locations, represented by regions. They can
be areas with high road density, implying a large number of residences. The query is
helpful for travel recommendation. Meaningful knowledge can be discovered from past
movements.

• Q20. Find the top k bus (metro) routes with high passenger flow for all workdays.

• Q21. Find the top k road segments with high traffic during the rush hour for all
workdays.

By analyzing the histories of movements, routes with high passenger flow can be dis-
covered and the schedule in a public transportation system can be adjusted to improve
the traffic. For Q21, the traffic value of a road segment is set as the number of mov-
ing objects passing by during the rush hour ([7:00, 9:00] ∪ [16:00, 18:00]), where the
following transportation modes are considered: {Car, Taxi, Bicycle, Bus}.

4.2 Discussion

One motivation of setting the above queries in the benchmark is from the application. As
a kind of human behavior, transportation modes could help understand individuals’ daily
life in a deep way and this involves an interesting range of moving objects applications.
For some recommendation services, it would be better for the system to provide trip plan-
nings with different modes as users may have their own interest. This brings the task to
capture trajectories with contextual data in the database, and the system should be capable
of answering new queries to provide advanced services. Transportation modes are closely
related to environment, leading to a group of queries asking for the relationship between
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trajectories and IFOBs. Knowing exact transportation modes would enrich mobility with
informative knowledge and establish a deep understanding of movement. The proposed
queries have application examples in real world, making the benchmark understandable.

GMOBench is a domain-specific benchmark, settled in the scenario of moving objects
with multiple transportation modes. To our knowledge, majority of queries in the benchmark
are not supported by existing methods or other systems. Therefore, efficiently answering
those queries is essential for databases, in particular, moving objects databases. Part of
queries in the benchmark is from [55] in which we propose a group of queries to test the
expressiveness of data model in terms of data types and operators. New queries complement
the benchmark to test typical operations within the problem domain. This is called relevant,
which is one key requirement for domain specific benchmarks [21]. To demonstrate this, we
provide the formulation of benchmark queries in the appendix. Additionally, most queries
are designed in such a way that they are amenable to optimization strategies.

The detailed knowledge of data characteristics plays a crucial role in query design. The
transportation mode of a moving object changes over time and such temporal data is repre-
sented by moving int. In this setting, one can ask queries such as what is the integer during
a time interval, at which time the integer changes and list all integers in life time. Simi-
lar queries are defined in the benchmark that find trajectories whether a particular mode
exists in the time interval, when the mode changes and whether certain modes are involved.
Solely investigating transportation modes is not sufficient (too simple) and hence the loca-
tion is requested in the meantime. For example, we are interested in knowing when a traveler
switches from Walk to Bus, and at which bus stop.

Ultimately, we target measuring the cost of common operator constellations and access
patterns as testing the implementation in a system needs a broad class of representative
queries. Our queries vary in general characteristics such as selectivity, join, aggregation and
extraction (retrieve a subtrip with a certain mode). Typical relationships like pass, intersect,
and distance as well as new defined operations (e.g., at) are also investigated. The bench-
mark characterizes complex queries that a sequence of modes as well as defined locations
are issued, for example, Q10 and Q12. However, a thorough theoretical analysis on the com-
pleteness of benchmark queries is not available. There are some popular queries in moving
objects databases, but not considered in this paper. For example, nearest neighbor query
is not included because we do not identify an application in the context of transportation
modes.

5 Baseline method

In this section, we introduce some optimal techniques based on performing a linear search
on generic moving objects, i.e., without using a Mode-RTree.

5.1 Transportation mode access

By observing and analyzing involved operators for queries, there is a frequently called
procedure in the benchmark workload. That is checking whether a transportation mode is
included by a trajectory. Since a large part of queries specifies a transportation mode (e.g.,
Q7, Q9, Q16), one needs to find all qualified moving objects. To get the result, one option
is to sequentially scan all units, comparing the mode attribute to see if the value is identical
to the argument. However, this yields a linear searching for each trajectory. The ability to
determine the existence of a mode in a fast way can reduce the overall running time.
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We optimize the procedure as follows. An integer IM (32 bits) is assigned to each tra-
jectory to denote the involved transportation modes where a bit indicates whether a mode
exists or not. Each transportation mode is assigned a value as an index to locate the corre-
sponding bit in IM. We mark the bit true if the mode exists and false if it does not exist.
Suppose that the least significant (right-most) seven bits are used for the modes in Defini-
tion 3.1. We assign 0 for Car as the bit index, 1 for Bus, and so on. A moving object with the
following sequence of modes Indoor → Walk → Bus → Walk defines the value 14 (binary
0001110). We calculate IM for each trajectory in advance and store it as an attribute along
with the trajectory in a tuple. Later, if a query needs to determine the existence of a mode,
both the query mode and the integer are taken as input. The index for the bit denoting the
mode is calculated, and the stored integer is examined.

Assume that there are N trips stored in the database and one trip contains M units on
average. The original method needs NM times of unit access to find all qualified trips. With
the optimization technique, we can achieve the result by N integer comparisons.

5.2 Index on units

Recall that a moving object is represented by a set of units arranged in a linear order on
time (Section 3.1). To retrieve a sub trip with a certain mode, at present we need to linearly
traverse all units to check the value and return the qualified data. For instance, to answer
Q5 the movement with the mode Bus is returned, and in Q7 walking trips are specified. For
travelers who take public vehicles, one might get the sub trip on a particular bus (metro),
seeing Q10 and Q18. Obviously, the sequential scan yields poor performance for large data.
This motivates us to build an index in order to access units according to transportation
modes in a fast way.

Let I = {(m, l, h)|m ∈ TM, l, h ∈ Dint } be the index built on the units from each tr .
Each element in I consists of three attributes where m records the transportation mode and
l, h are entries pointing to the start and end locations of a sequence of units with the mode
m. That is, each element maps to a sub movement with a single mode. For example, we
have such an example movement

tr = < (Indoor)1, (Indoor)2, ..., (Indoor)10,

(Walk)11, (Walk)12, ..., (Walk)15,

(Bus)16, (Walk)17, ..., (Walk)20 > .

The index built on tr is I = {(Indoor, 1, 10), (Walk, 11, 15), (Bus, 16, 16), (Walk, 17,
20)}. Although I is still a list structure, the quantity of elements depends on the number
of modes, usually quite few. Each element locates the range of units with a certain mode.
Consequently, given a mode m we first scan the index to determine the positions of qualified
units and then access them to get the concrete data. The advantage is a large number of units
that do not fulfill the condition can be skipped by visiting I .

5.3 Project the movement

The above two methods apply to almost all queries on moving objects, whereas we also
develop a technique to improve the efficiency of a specific query (Q13) that originally
needs a long processing time. To answer such a query, the procedure maps the following
moving objects into free space: (1) moving objects with the mode Bike and (2) a set of buses
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belonging to one route, with the aim of computing the distance in the same environment. The
distance value is represented by a moving real which consists of a sequence of units. Each
unit describes the distance function in a time interval. We briefly introduce the procedure of
calculating such a value.

Let mo B and mo b denote a Bike traveler and a bus, respectively. Each object is
represented by a moving point that contains a set of pieces, each describing a linear
movement from one location to another during a time interval. Since the object moves
in free space, the location is identified by a point. The algorithm first refines the units
from both mo B and mo b to get two subsets that have overlapping time intervals, and
then sequentially scans the subsets to calculate the value between each pair of quali-
fied pieces (time intervals have intersections). This method deteriorates over long time
and suffers from poor performance if the refined subset contains a large number of ele-
ments. For example, if mo B and mo b have almost the same period (perhaps a long time
interval), then the procedure accesses nearly all units of mo B and mo b to compute the
distance.

Let us consider the places where mo B and mo b can be located. All roads are available
for mo B, but mo b only moves along the pre-defined bus route. Evidently, the case that
mo b passes mo B can only occur when mo B is moving on the road segment that the bus
route maps to. In other cases, it is not necessary to calculate the distance even when the time
intervals of mo B and mo b are overlapping. For example, mo b can not pass mo B if they
are far away from each other.

Consequently, before running the costly algorithm of calculating the distance between
two moving points, we first project the Bike movement to road segments that the bus route
maps to. This leads to a small number of units for a moving point as unqualified move-
ment pieces are pruned. Usually, the road segments on which a bike traveler moves and a
bus route do not have too many intersections. Given a bus route, we map it to a set of road
segments each of which is denoted by (rid, ls , le), where rid (∈ Dint ) indicates the road id
and ls , le (∈ Dreal) refer to the start and end locations of such a road segment, respectively.
Recalling the location representation in Definition 3.2 of Section 3.1, the value oid corre-
sponds to a road if the moving object is a bike traveler, resulting in fast access to the road
segment.

6 Mode-RTree

In this section, we present the Mode-RTree that is for indexing generic moving objects.
First, the input data for the index is introduced in Section 6.1. Then, we discuss the index
architecture in Section 6.2. The index feature in detail is presented in Section 6.3. We intro-
duce how to build the Mode-RTree in Section 6.4. Finally, the query algorithm is described
in Section 6.6.

6.1 Input data

Suppose we have two trips:

• Bobby drives the car to the parking place, then walks to the office building, and enters
his office room.

• Bobby walks from home to a bus stop, travels by bus to the stop near to the office
building, then walks to the building and finally enters the office room.



246 Geoinformatica (2015) 19:227–276

The above two trajectories can be described by:

(1) tr1: <Car, Walk, Indoor>;
(2) tr2: <Walk, Bus, Walk, Indoor>.

Recall Section 3.1: the location of a moving object is represented by referencing to the
underlying IFOBs, each of which has an unique id. Let SubTrip(tr , m)(m ∈ TM) return a
subtrip of tr with the mode m. Then, SubTrip(tr1, Car) has the value like

< ((i1, (3, (0.0,⊥)), (3, (203.0,⊥)), Car), ...

(in, (16, (124.0,⊥)), (16, (78.0,⊥)), Car)) >,

in which each unit represents the movement on a road segment during a time interval. The
unit records the start and end locations on that segment by storing the road id (e.g., 3, 16)
and the relative position on the road. Similarly, SubTrip(tr2, Bus) has the value

< ((i1, (150290, (⊥,⊥)), (150290, (⊥,⊥)), Bus),

(i2, (151230, (⊥⊥)), (151230, (⊥,⊥)), Bus)) > .

That means, the person first travels by bus (id = 150290) and then transfer to another one
(id = 151230). We also have SubTrip(tr1, Walk) that receives a sequence of walking units,
omitted here.

As benchmark queries request data from various environments, the index should be
capable of distinguishing pieces of movements with different transportation modes. A
complete trajectory consists of a set of subtrips, each of which corresponds to the move-
ment in one environment. This motivates us to decompose a generic moving object into
a set of pieces. Each piece represents a subtrip and fulfills the condition: (i) only con-
tains one transportation mode; and (ii) references to one IFOB. That is, we aim to
obtain a set of pieces, each of which represents the movement related to a particular
IFOB. For example, the Car movement of Bobby on a specific road fulfills the condi-
tion. However, if the road name(id) of Bobby moves along changes, another subtrip is
produced.

Given a generic moving object, the decomposing procedure is composed of two phases:
First, based on modes we partition the trajectory into a sequence of subtrips, each of which
contains only one transportation mode. Second, each subtrip is further split into pieces of
movements and each part includes one IFOB id. Using the first trip above, we get (1) Sub-
Trip(tr1, Car), (2) SubTrip(tr1, Walk), and (3) SubTrip(tr1, Indoor). Then, the result of
splitting SubTrip(tr1, Car) is:

sub1
1 = (i1, (3, (0.0,⊥)), (3, (203.0,⊥)), Car)

sub2
1 = (in, (16, (124.0,⊥)), (16, (78.0,⊥)), Car)

For the second trip, we first get (1) SubTrip(tr2, Walk); (2) SubTrip(tr2, Bus), (3) Sub-
Trip(tr2, Walk), and (4) SubTrip(tr2, Indoor). Afterwards, we have the following pieces for
SubTrip(tr2, Bus)

sub1
2 = (i1, (150290, (⊥, ⊥)), (150290, (⊥,⊥)), Bus)

sub2
2 = (in, (151230, (⊥⊥)), (151230, (⊥, ⊥)), Bus)
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Based on those pieces of movements, we propose movement units defined in the
following.

Definition 6.1 Movement Units
A movement unit is represented by mu = (traj id, box, m, ref id) where traj id (∈

Dint ) records the trajectory identifier, box stores a 3D box built on spatial and temporal
data, m (∈ TM) refers to a transportation mode, and ref id shows the referenced IFOB id.

In a movement unit, besides spatial, temporal and transportation mode, we record the
referenced IFOB id for the purpose of building the connection between moving objects and
underlying IFOBs. The value can be a road id, a bus id, or a building id. This piece of
information is extremely useful for answering benchmark queries because majority of them
take IFOB ids as the input parameter, e.g., Q5, Q8, Q12. For {sub1

1, sub2
1, sub1

2, sub2
2},

movement units are

mu1 = (1, box, Car, 3),

mu2 = (1, box, Car, 16),

mu3 = (2, box, Bus, 150290),

mu3 = (2, box, Bus, 151230).

For simplicity, the precise data of the 3D box is omitted. We create a set of movement units
for each generic moving object. The procedure is straightforward for IFOBs such as roads,
buses and metros. In the following, we explain the method for other environments: Iindoor

and Irbo.
When processing indoor moving objects, the referenced id of the location is the com-

bination of a building id and a room id (see Appendix B in detail). Given a trip inside a
building, the room id keeps changing while the build id remains the same. Thus, when cre-
ating movement units we omit the room id and collect pieces of movements only based on
the building id. That is, we group the movement inside a building as one movement unit
instead of producing a set of units in order to have a compact representation.

Regarding walking units, the method is different from the others. We represent the over-
all area for walking in a city as a large polygon. To efficiently manage the large polygon,
we decompose it into a set of triangles and each is assigned an unique id. The location for
walking units is represented by referencing to a triangle and storing the relative location
inside that triangle, with the left lower point of the bounding box being origin point. How-
ever, practically, user do not issue queries on these triangle ids which are hidden from the
application level. We ignore the triangle id when processing walking units, but record the
absolute location in space. A length threshold is defined to decompose the trajectory. If the
length of a walking trajectory is larger than the threshold (e.g., 600m), we split the trajectory
into pieces aiming to reduce the deviation of the spatial range.

In the end, we explain the difference between movement units and units in a moving
object defined in Section 3.1. One could simply build a movement unit based on each ui .
However, this method does not have a compact representation as the trajectory referencing
to an IFOB may be split into pieces. For example, several units may be needed to store in
the Car movement on a particular road. Some effort is needed for maintaining the data and
the produced result is trivial. Additionally, the quantity of produced movement units might
be large. Employing the method above, the data size is reduced. Collecting movement units
in all environments, we build the index structure on them.
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6.2 Index structure

By conducting a thorough analysis on benchmark queries, we gain some important findings:
(1) besides spatial and temporal data, transportation modes are also considered and play an
important role when querying trajectories; (2) in most queries, users are interested in part
of the movement, e.g., the bus trip or indoor movement, although the complete trajectory is
maintained; (3) the query contains the information of a particular IFOB, which is referenced
by moving objects. Through an analytical study on those behaviors, we aim to develop an
index structure that can

1. manage spatial, temporal data as well as transportation modes for moving objects
2. distinguish pieces of movements with different transportation modes
3. be capable of maintaining the relationship between moving objects and referenced

IFOBs

To achieve the goal, we propose an index structure called Mode-RTree to manage generic
moving objects. The index is a two level structure (drawn in Fig. 2) in which the upper level
contains a set of modes and records. For each transportation mode, we have a record storing
the root node of a subtree. As a result, the upper level has two components:

(mode list, tree pointers).

mode list is a list of transportation modes and tree pointers is a list of records. Each trans-
portation mode defined in Definition 3.1 has an item in mode list. Correspondingly, a record
for the root node of a subtree storing trajectories with that mode is put in tree pointers. In
Fig. 2, we show modes Car and Bus as well as the subtrees.

The lower level consists of a set of extended 3D RTrees (E3D-RTree for short). Compar-
ing with the standard 3D R-Tree, an E3D-RTree is developed to integrate an integer per node
to manage referenced ids for movement units. Thus, each node in an E3D-RTree (either a
leaf or non-leaf) contains entries of the form (MBR, ObjPtr, R), where

• MBR is the bounding box for temporal and spatial data in the subtree
• ObjPtr is an array of pointers for child nodes or objects
• R is an integer representing referenced object ids in the subtree.

Root Node

R MBRbitmap = 11...11

Leaf Node

R MBR

Root Node

R MBR

Leaf Node

R MBR

Car Bus Upper Level

Lower Level

Fig. 2 The architecture of mode-RTree
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Note that the semantic meaning of the integer here is different from the one in
Section 5.1. Each E3D-RTree manages pieces of movement with only one mode. That is,
there is one E3D-RTree for trips with Car, one E3D-RTree for trips with Walk and so on.
The input data for an E3D-RTree are movement units presented in Section 6.1. The root
node of an E3D-RTree is recorded at the upper level, which performs the mapping from a
transportation mode to the corresponding E3D-RTree. In a leaf node of an E3D-RTree, each
item points to a movement unit.

Next, we introduce the reason for managing reference IFOB ids in the index. On one
hand, among benchmark queries, many of them request the data by issuing a particular
IFOB, e.g., a bus/metro route (Q5, Q10, Q13), a building and even a room (Q8, Q9, Q12).
If these pieces of information are maintained by the index, obviously, we can prune objects
according to this condition and minimize the portion of the dataset being processed. On the
other hand, a moving object contains referenced IFOB ids and we aim to index this kind
of data. This motivates us to develop a data structure to support additional functionality for
efficient query processing. Each node in an E3D-RTree maintains the data for a set of IFOB
ids that movement units in the subtree reference to. In a leaf node, the integer marks all
IFOBs that are referenced by movement units. In a non-leaf node, the value is the union of
its child nodes. Using this property, we can prune the node if the integer does not contain
the requested data from the query when traversing the index.

As an example to illustrate the idea, we take Q5.

• Q5. At 8am on Monday, who sits in the bus No. 32? At 8am on Monday, who sits in
the metro No. 2?

The query searches people taking a particular bus No. 32 at the query time. Given a node
of the E3D-RTree storing trips with bus movement, if movement units in that subtree do not
reference to any bus from route 32, the required data is not contained by the integer in the
node. Then, such a node can be safely pruned. We elaborate the feature of the integer in the
next subsection.

6.3 The mapping

We now turn to the method of integrating the integer R in each node to represent IFOB
ids. Such a value plays a pivotal role in managing the data. The idea is to maintain the
relationship between moving objects and referenced IFOBs in the index. Since benchmark
queries issue the data on some specific IFOBs, we can prune unqualified nodes according
to the query condition. An integer is integrated in each node, and more specifically its bit
value is used to manage IFOB ids. We propose a mapping method between IFOB ids and a
set of bits in the integer. Given a node of an E3D-RTree, we mark the bit for a set of IFOB
ids, contained by moving units. Consequently, we check the integer when access a node. If
movement units managed by this node do not reference to a particular IFOB requested by
the query, we prune the node. As a result, The following lemma is used.

Lemma 1 Given a node Ni in an E3D-RTree, let bitmap(Ni .R) return the bitmap of the
integer. For a benchmark query Q, let Q.o denote the requested IFOB id and bitmap(Q.o)
return the bitmap. Then, we prune Ni iff bitmap(Ni .R) ∩ bitmap(Q.o) = ∅.

Integers are represented in a computer by a group of bits. We let |bitmap(Ni.R)| (32 or
64) denote the number of bits for Ni.R. Each E3D-RTree manages movement units with one
transportation mode, thus the integer in each node records IFOB ids in one environment. A
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Fig. 3 The bitmap for roads

city may have thousands of roads and buildings, much larger than 32(64). To build the con-
nection between IFOB ids and bitmap(Ni.R), we divide IFOB ids into a set of groups, each
of which contains disjoint ranges of values and maps to a bit. The number of groups depends
on the quantity of bits. Suppose that Ni.R has 32 bits, we need a precise specification of
how 32 bits and a set of ids are related. The method is as follows.

In general, we perform the mapping between 32 bits and a set of ids, building the con-
nection between data stored under different representations. Since the number of IFOB ids
is different in each environment, several mapping methods may be used. As listed in Table 1
(see Section 3.1), there are five environments in total. We define a set of disjoint integers for
reference objects ids, e.g., [1, 5000] for Irn, [6000, 7000] for Ibn. For each environment Ii

(∈ {Irn, Irbo, Ibn, Imn, Iindoor }), we let |ID(Ii)| return the quantity of IFOBs. For example,
|ID(Irn)| shows the number of roads. Comparing |bitmap(Ni.R)| and |ID(Ii)|, we have two
possibilities:

• case (i): |bitmap(Ni.R)| ≥ |ID(Ii)|
• case (ii): |bitmap(Ni.R)| < |ID(Ii)|

Case (i) is simple and the basic strategy is used. We let each IFOB id be one bit in Ni.R.
For example, Imn fits to this case as a city usually does not have so many metro routes. Each
metro route contains a unique id, and a bit in Ni.R is used for that route. We mark the value
if movement units stored in the node reference to metros belonging to that route. Otherwise,
the bit is false.

In most cases, |bitmap(Ni.R)| is much smaller than |ID(Ii)| (e.g., Irn, Iindoor ) and mul-
tiple IFOB ids are placed into a bit. The method is to partition |ID(Ii)| into |bitmap(Ni.R)|
groups, each of which identified by a bit maps to a set of IFOB ids 1. Following this pro-
cedure, we divide a set of ids into 32 groups and each IFOB id is placed into a group. The
number of ids per group may not be the same, depending on whether |ID(Ii)| can be evenly
divided by 32. If |ID(Ii)| cannot be evenly divided, we process it as follows. The number
of elements per group is kept the same for groups with bits from 0 to 30, and we leave the
group for bit 31 as a special case, i.e., the number of ids is not the same as the others.

Take the example Irn. Assuming that there are 5000 roads in total with the id starting
from 1, we have lowerbound(|ID(Irn)|/32) = 156 elements (one can also take the upper-
bound) in groups corresponding to bits [0, 30] and 5000-31*156 = 164 elements in the
group for bit 31. Let bitmap(Ni.R)[i] locate the ith bit in the integer. Figure 3 depicts the
result of the mapping between ID(Irn) and bitmap(Ni.R).

1Given a set of values, we produce a set of bin numbers and each value corresponds to a bin. This procedure
is called binning in bitmap indexes [51].
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6.4 How to build the index

In order to have a good property for the index, specifically, the locality for E3D-RTree
nodes, before building the index we process movement units as follows. First, the overall
time range is divided into a set of intervals and each mu is set an id for its time interval. For
example, if all moving objects represent one week movement, one can set 12 (or 24) hours
as one interval. Second, the space is partitioned into a set of equal size cells represented by
rectangles, and each mu is assigned two values cellx and celly to show x and y positions
of the cell where mu is located. Third, we sort movement units in the following order: (1)
mu.m; (2) time interval id; (3) cellx, celly, and these sorted movement units are the input
data 2

Initially, mode list and tree pointers are set empty. For a coming movement unit, we
first check its transportation mode. If the mode does not exist in mode list, a new item is
created. At the same time, a new E3D-RTree is created and the root node record is put in
tree pointers. If the mode of a following movement unit already exists, we take the cor-
responding root node of an E3D-RTree and insert the movement unit into the subtree. To
reduce the cost of frequently calling the root node and adjusting the structure when insert-
ing the data, we build each E3D-RTree in a bulkload method [2, 3]. For this reason, we sort
moving units by transportation modes in the first step and then build each E3D-RTree one
by one.

The bulkload method works as follows. The index retrieves a set of sorted movement
units and puts them into a leaf node until the node is full. If the case happens, the current leaf
node is inserted into a node at the higher level and a new leaf node will be created. Following
this procedure, we build the subtree for movement units with Car, and then the subtree for
movement units with Walk, and so on. An important aspect is that each E3D-RTree only
manages movement units with one transportation mode.

For each E3D-RTree, after inserting all movement units, we update the integer in each
node to set the correct value. This is done in a bottom-up way. Given a node, we first calcu-
late the value of its son nodes or objects, and then perform the union. Using the recursively
calling method, we repeat the procedure for each node. In the end, the integer of the root
node marks all referenced ids of movement units managed in this tree.

6.5 Update

In this part, we discuss how to dynamically maintain the Mode-RTree to keep track of cur-
rent data. Instead of processing new movement units one by one, we insert them into the
Mode-RTree by bulkload, which is the same as creating the index. Choosing this strategy is
intended to avoid the high cost of frequent insert and delete operations in the index. Given
a set of recently coming movement units, we sort them by (1) mu.m; (2) time interval
id; (3) cellx, celly. Since movement units with different modes are put into their corre-
sponding trees, each E3D-RTree is handled individually for a particular mode. For units
with the same mode, we preserve the constraint that they are ordered by time, which is

2In the implementation, a movement unit is developed to be a relational tuple containing four attributes
(traj id, box, m, ref id). In order to efficiently access the data in the future, we combine each movement
tuple with its corresponding subtrip in one relational tuple. The subtrip is represented by a moving point.
Movement units with the same mu.m, time interval id, cellx and celly are sorted by the moving point.
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consistent with the organization of objects in the tree. Moreover, new arrival units are inher-
ently chronologically ordered. A subtree is created for new objects and inserted into an
appropriate node of the E3D-RTree. That is, a pointer to the root of the subtree is added
to an entry of a node in the chosen E3D-RTree. This is done by traversing the E3D-RTree
in a top-down way and stopping at the level whose height is the same as the subtree. The
place to insert the subtree is recorded as well as the path from the root. Then, we update the
integer as well as bounding boxes of each node in the branch.

If a new transportation mode is involved for some applications, e.g., airplane, the Mode-
RTree is updated as follows. First, movement units with the new mode are produced, which
is similar to the procedure of creating other units. Second, an E3D-RTree is created to store
pieces of movements containing the new mode. Third, at the upper level of the Mode-RTree,
the new mode as well as the root record for the new E3D-RTree are appended. Since sub-
trees for different modes are managed separately, the integration of a new mode does not
influence subtrees for other modes.

6.6 Query algorithms

In general, the query procedure contains two phases: (i) subtree retrieval; and (ii) access the
subtree to find objects that fulfill the query condition. The first phase is simple. Depending
on the transportation mode, we take the E3D-RTree in the beginning. In some cases, more
than one subtree are needed as the query condition requests several modes, e.g., Q19 (Bus,
Metro, Taxi, Walk). In the second phase, we traverse the subtree and prune some branches
that do not contain qualified objects.

There are 17 queries related to moving objects in the benchmark. By employing the
proposed index, we can improve the performance of 14 queries in total, excluding Q6, Q7
and Q21. Due to the quantity of benchmark queries, we do not introduce the algorithm for
each of them. We take Q12 as an example to present the method as the query procedure is
similar.

• Q12 Did anyone who was on floor H-5 of the office building between 2pm and 5pm
take a bus to the stop “train station” on Friday?

To answer the query, besides checking the time period, we aim to find moving objects
that fulfill the following condition on transportation modes:

1. pass floor H-5 of the office building
2. the bus trip starts from a bus stop nearby the office building and ends at a stop near to

the train station

Since trips with different transportation modes are separately managed by the Mode-
RTree, we access two subtrees for modes Indoor and Bus, respectively. For each subtree, we
collect candidates that fulfill the condition. Afterwards, we perform the join on two sets of
candidates and take trips that appear in both sets as the result. In the following, we introduce
how to find candidates in each subtree.

Before showing the algorithm, some notations are introduced. In the example here, the
query Q consists of two parts, Q = Q1 ∪ Q2, where Q1 is for Indoor and Q2 is for Bus.
Each part contains three components: (1) Qi.t , a time interval; (2) Qi.m, the transportation
mode; (3) Qi.o, IOFB ids (i ∈ {1, 2}).

We give the algorithm of Q12 in Algorithm 1. The algorithm takes in three parameters:
the Mode-RTree, Q and a set of movement units denoted by MU. There are two subroutines:
searching Indoor and Bus trips, respectively.
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Algorithm 1 BenchQuery12(Mode-RTree, Q, MU)

split Q into Q1 and Q2 ;
L1 ← IndoorTrips(Mode-RTree, Q1, MU) ;
L2 ← BusTrips(Mode-RTree, Q2, MU) ;
return L1 ∩ L2 ;

First, we present the procedure of searching candidates that fulfill the Indoor condition.
Algorithm 2illustrates the pseudo code. In the beginning, we choose the subtree according
to the transportation mode, the E3D-RTree for indoor trips.

Next, we initialize two variables, the query window q box and the bitmap for query
IFOB ids. q box is a 3D box, used to filter nodes on spatial and temporal conditions. The
time dimensional value is set by Q1.t . We set the spatial value as follows. For indoor candi-
dates, we want to find objects that pass floor H-5 in a particular building. The spatial value
depends on the range of the building in space. Thus, we let the spatial value of q box be the
2D bounding box of the building in outdoor space. Obviously, moving objects that do not
pass such a region cannot be the result. The second variable to set is the bitmap of IFOB ids
in the query. Using the mapping method in Section 6.3, we mark the corresponding bit for
Q1.o.

Algorithm 2 proceeds by setting the result list RL. A queue L is used to store E3D-RTree
nodes. Starting from the root node, the algorithm traverses the E3D-RTree in a branch-and-
bound manner to find candidate objects. Given a node Ni , we compare the bitmap of Ni.R

and Q1.o (initialized above). If the two bitmap intersect, we open such a node and proceed
to check other conditions. Otherwise, we prune the node (Lemma 1). For each entry in Ni ,
we check whether the box of the child node intersects q box. In this step, nodes that do
not fulfill the condition on spatial and temporal are pruned. If Ni is a leaf node, we retrieve
the movement unit mui that the entry points to. If the reference id of mui belongs to Q1.o,
this moving object is put into the candidate list RL. If Ni is a non-leaf node, we insert child
nodes into L for further consideration. After processing all nodes in the queue L, we return
the result list finally.

The procedure of searching trips for Bus is almost the same with the exception that
q box and bitmap(Q2.o) are set in a different way. Since we know the start and end bus
stops for those trips, we get bus routes that the stops belong to. Each route has an id and
the geographical information. We perform the union on geographical information of those
bus routes and define the overall bounding box be the spatial box of q box. Those bus route
ids are collected and set as Q2.o. A bus route includes a set of schedules, each of which
is identified by a bus trip, referenced by a moving object. We propose another mapping
between a bus route id and its bus trip ids in order to determine the bus route for a movement
unit. The algorithm in detail is omitted as it is similar to Algorithm 2.

7 Performance evaluation

We report extensive experimental results in this section. The implementation is devel-
oped in an extensible database system Secondo [22] and programmed in C/C++ and Java.
A standard PC (Intel 3.3 GHz, 4 GB memory, 500GB disk) running Suse Linux (kernel
version 2.6.34) is used. We utilize the tool MWGen [54] to create all infrastructure data
based on real road datasets and public floor plans (e.g., http://www.modulargenius.com/
default.aspx, http://www.edenresort.com/home, http://www.greenhosp.org/floor plans.asp).

http://www.modulargenius.com/default.aspx
http://www.modulargenius.com/default.aspx
http://www.edenresort.com/home
http://www.greenhosp.org/floor_plans.asp
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Algorithm 2 IndoorTrips(Mode-RTree, Q1, MU)

Two road datasets are used, Berlin (http://www.bbbike.de/cgi-bin/bbbike.cgi) and Houston
(http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html). The tool takes roads
and floor plans as input and constructs the overall space for moving objects including road
network, pavement areas, bus network, metro network and a set of buildings.

7.1 Experimental setup

Our benchmark generator provides a set of configuration parameters that allow a user to
create the desired datasets, including (1) the total number of moving objects; (2) the number
of trips according to each movement rule; (3) the distribution of transportation modes; (4)
start and end locations; (5) time distribution. In the following, we present the setting in our
experiment.

We simulate one week movement. All trips are created based on the rules presented in
Section 3.2 and the distribution is listed in Fig. 4a. The notation B is for Berlin and H is
for Houston. We add one more pattern to create moving objects visiting several places, e.g.,
home → shopping → restaurant → home. The time distribution of each rule is shown in
Fig. 4b.

We summarize the settings of transportation modes in Fig. 4c. All trips except those
from MR2 include both indoor and walking movement. MR2 defines the movement in one
environment (Region-based Outdoor or Indoor), leading to the determined mode. For trips
based on MR3, we let part of them travel by car and the other use public transportation
vehicles. Since the trip is motivated by nearest neighbor query, we find that usually the

http://www.bbbike.de/cgi-bin/bbbike.cgi
http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
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Name Percentage(B) Percentage(H)

MR1 40% 35%

MR2 10% 20%

MR3 10% 20%

MR4 30% 20%

Long Trips 10% 5%

(a) Rule Distribution

Name Time Periods Days

MR1 [6:30, 19:00] Mon-Fri

MR2 [9:00, 17:00] Mon-Sat

MR3 [9:00, 17:00] Mon-Sat

MR4 [10:00, 21:00] Mon-Sun

Long Trips [6:30, 20:00] Mon-Sat

(b) Time Distribution

Name Berlin Houston

MR1, MR4 Indoor + Walk +

Bike : 5%
Car : 50%
Bus : 20%
Metro : 20%
Taxi : 5%

Indoor + Walk +

Bike : 5%
Car : 60%
Bus : 15%
Metro : 15%
Taxi : 5%

MR2 Walk: 40%; Indoor: 60% Walk: 40%; Indoor: 60%

MR3 Indoor + Walk +

Car : 50%
Bus : 35%
Taxi : 15%

Indoor + Walk +

Car : 60%
Bus : 28%
Taxi : 12%

Long Trips Indoor + Walk + Car: 100% Indoor + Walk + Car: 100%
(c) Transportation Modes Distribution

Fig. 4 Benchmark generator parameters

distance from the query location to the target place is not very far. A distance threshold is
defined for the resulting path to determine whether the traveler will go on foot directly or
by bus (taxi). This applies to the case that the query user is a pedestrian, not for a car. We do
not include the mode Metro because usually such a mode is not contained in a short distance
trip. We let the modes be Indoor + Walk + Car for a long distance journey. For some rules,
we let the two cities have different distributions on transportation modes.

7.2 Datasets

Figure 5 lists all datasets that we use for the experiment. All infrastructure data are shown
in Fig. 5a and the detailed information of buildings is reported in Fig.5b. We create a set
of buildings of different types based on their floor plans to simulate a city environment.
Besides static IFOBs, there are buses and metros represented by moving objects. In both
bus and metro networks, we define a schedule for each route to create trips. For the bus
schedule, there are more trips on the day ∈ {Mon, Tue, Wed, Thu, Fri, Sat} than on Sunday.
For metros, schedules are the same for the whole week. We report the setting in Fig. 5c.
Moving objects datasets are described in Fig. 5d, where |U| denotes the quantity of total
units for moving objects, |A| shows the average number of units per trip, and |MU| is the
total number of movement units (input data for the index). The generator allows to create
data sets of varying sizes, thus is a flexible tool for evaluation.

7.3 Benchmark performance

We use the CPU time and I/O accesses as performance metrics where the I/O accesses mean
the number of pages that are read into the cache. In the database system, the cache size is set
as 64M and one page size is 4k. The results of each query are averaged over five runs. For
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Berlin Houston

X Range [0, 44411] [0, 133573]

Y Range [0, 34781] [0, 163280]

Roads 3,250 4,575

No. Vertices in P 116,516 437,279

Bus Routes 89 92

Metro Routes 10 16

Buildings 4,996 5,992

Size 2.5 G 9.7 G

(a) Infrastructure Data

Type Berlin Houston Rooms NO.

house 3,713 5,000

officeA 600 530 294

officeB 487 266 214

shopping mall 80 79 360

cinema 6 8 21

hotel 39 40 584

hospital 46 48 89

university 20 20 431

train station 1 1 56

(b) Statistics of Buildings

Berlin Houston

No. Bus Trips in

One Day

5,220 5,594

(From Mon to Sat)

No. Bus Trips On

Sun

2,660 2,788

No. Metro Trips in

One Day

1,897 3,046

(From Mon to Sun)

(c) Mobile Infrastructure Data

Name Trips No. Disk Size

(G)

|U| (M) |A| |MU| (M)

B10K 11,792 0.103 0.702 59.52 0.382

B50K 52,364 0.474 3.23 61.72 1.82

B200K 210,328 1.89 12.85 61.1 7.27

B500K 525,636 4.7 32.3 61.4 18.21

B1M 1,050,200 9.48 64.6 61.5 36.36

B2M 2,100,208 18.87 128.45 61.2 49.57

H1M 1,033,452 10.42 58.87 56.96 23.86

(d) Moving Objects

Fig. 5 Classification of datasets

the constant value of a query such as a particular person, a university or an office building,
we manually select an arbitrary value from the possible set.

7.3.1 Queries on infrastructures

Infrastructures in both Berlin and Houston are used for evaluation, produced by the tool
MWGen. In detail, IFOBs include roads represented by lines, pavements defined by a large
polygon, bus (metro) routes and stops, moving buses (metros), and buildings. We use a line
to represent geographical information of a route, and the location of a stop is identified by a
point. Moving points are utilized for buses and metros. Given a building, we denote its 2D
area in space by a polygon and use proposed data types (see [55]) for objects such as rooms,
staircases and corridors. The statistics of all IFOBs are reported in Fig. 5a and b. Parameters
in each query are set as follows. In Q1, the city center is defined to be a rectangle. The size
is 4000 in length and 3000 in width for Berlin, and 9000 in length and 9000 in width for
Houston. The building in Q2 is randomly selected from the domain. The query route is also
chosen in a stochastic way in both Q3 and Q4.

We report the cost of infrastructure queries in Fig. 6, where both time and I/O measure-
ments are plotted in logarithmic scale. The results show that the cost of Houston is higher
than that of Berlin. This is because Houston contains more infrastructure objects and occu-
pies a larger area. Q3 takes more time and I/O accesses than other queries as the procedure
involves the costly intersection computation between roads and bus routes.

7.3.2 Scaling datasets

In this part, we report the result of evaluating the system performance between the Mode-
RTree and the baseline method when the size of the dataset increases. We choose the
infrastructure data of Berlin and generate different numbers of trips, from Berlin10K to
Berlin2M. Figure 7 depicts the cost where the result is the sum over all queries. When
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Dataset Q1 Q2 Q3 Q4-B Q4-M

Berlin 0.06 0.13 0.95 0.1 0.07

Houston 0.08 0.18 3.1 0.16 0.09

(c) CPU Time (sec)

Dataset Q1 Q2 Q3 Q4-B Q4-M

Berlin 73 180 1,542 6 17

Houston 111 236 10,386 87 36

(d) I/O Accesses

Fig. 6 Query cost on infrastructures

the number of moving objects increases, both CPU time and I/O accesses rise proportion-
ally. The Mode-RTree is much faster than the baseline method. Specially, the deviation is
obvious when the dataset becomes large. Note that CPU and I/O measurements are plot-
ted in logarithmic scale. The detailed value of each query is reported in Figs. 14 and 15 in
Appendix C.

7.3.3 Employ the Mode-RTree

Next, different datasets are used to evaluate the performance by employing the Mode-RTree.
We use datasets B2M and H1M, and report the running cost of each query. The effect and
advantage of the index is demonstrated in Figs. 8 and 9. The experimental results confirm
that the Mode-RTree achieves orders-of-magnitude better performance. We put the accurate
cost of each query in Appendix C from Fig. 16 to Fig. 19. Q6, Q7 and Q21 are not supported
by the index and not included here.
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Fig. 8 B2M

7.3.4 Query parameters

By analyzing the execution procedure of benchmark queries, we find that majority of them
have a common step. That is, given a time interval, a transportation mode and an IFOB id,
the query gets all objects that reference to that IFOB with the mode during the time interval.
For example, Q5 returns all moving objects referencing to a particular bus at the query time.
To answer Q16, we find objects that stay in a specific room. We extract this step and test
the efficiency. Besides benchmark queries, this procedure has many applications like

• who pass Alexender street by bike on Sunday morning?
• Did some enter room 123 in the office building this morning?

We conduct experiments to compare the efficiency of this common step between the
Mode-RTree and baseline method. The query contains three parameters: (1) the time interval
is randomly generated; (2) we let the transportation mode be a value from M’ = {Bus, Metro,
Car, Taxi, Bike, Indoor}; and (3) the reference id is defined to be a random value from
its possible set. For each transportation mode from M’, we execute the query and collect
the running cost. In the end, we summarize the cost of all transportation modes and let the
overall value be the final result (six queries in total). Figures 10 and 11 show the result of
datasets Berlin and Houston, respectively. The proposed index offers orders-of-magnitude
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Fig. 9 H1M

performance improvement over the baseline method. The precise value of the running cost
is shown Figs. 20 and 21 in Appendix C.

7.3.5 Discussion

Observe that the performance of most queries is significantly improved when the Mode-
RTree is employed. The reason is, these queries request the data by considering transporta-
tion modes and IFOBs, which are efficiently managed by the index. Thereby, besides spatial
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and temporal dimensions, we can prune unqualified objects on transportation modes and
referenced IFOBs. Usually, one or several subtrips (e.g.,Bus, Indoor) are involved to answer
the query instead of the complete trajectory. Thus, some branches in the tree can be safely
cut if they do not fulfill the condition. Experimental results show that the pruning strategy
substantially decreases the cost in terms of CPU time and I/O accesses. Using large datasets
such as 1 or 2 million moving objects, the CPU time is less than for 3 sec in most cases.

There are three queries not supported by the Mode-RTree, Q6, Q7 and Q21. We explain
the reason as follows. To answer Q6, the procedure needs to collect all moving objects con-
taining public transportation modes. If we employ the Mode-RTree, three subtrees (Bus,
Metro and Taxi) have to be retrieved. Afterwards, we traverse each subtree to find qualified
objects. Since there is no information about IFOB ids, i.e., no pruning condition, the com-
plete tree has to be accessed. In the end, we have to group movement units on traj id to
remove duplicate data. There is no advantage of using the Mode-RTree. Regarding Q7, we
need to find a particular trajectory in the database according to its id. Again, the features of
the Mode-RTree is not utilized.

The last query Q21 takes the most cost among all queries. By analyzing the procedure,
we find that the majority of time is spent on mapping bus routes into road segments, up
to 90%. The reason is, we need to know the roads that bus passengers travel along. This
procedure purely processes the spatial data, and is not related to moving objects. As a result,
the Mode-RTree can not speed up the query processing.

8 The advantage of GMOBench

Compared with other benchmarks on moving objects [11, 14, 25, 46], the superiority of
GMOBench includes the following three parts: (1) data; (2) queries; (3) index.

Data We design a data generator which is able to produce a complete trip containing both
indoor and outdoor movements. Several environments are defined as well as places where
transportation modes change. Trips in different environments are seamlessly integrated to
constitute a comprehensive movement. Besides the location data, transportation modes are
precisely determined to enrich the mobility. In contrast, other works solely process moving
objects in free space and ignore transportation modes. The location is accurately repre-
sented, but environment and transportation modes are missing. The objective of this work is
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to evaluate the performance of a system that represents moving objects in a comprehensive
way. Another favourable aspect is we formulate parameters to create moving objects, which
is applicable to generate more representative trips.

Queries Due to the representation issue, queries in existing benchmarks do not support
different environments and transportation modes. We target the problem in this benchmark.
In particular, there are queries referring to at which place the moving object switches from
one environment to another (e.g., Bus → Walk, Walk → Indoor) and how human movement
occurs by public vehicles. The indoor trip is also well investigated as we not only find
out the located indoor space such as rooms and staircases, but also determine the precise
location. To our knowledge, this is the first benchmark for moving objects with multiple
transportation modes. Since the precise location is represented by our method, some well
known queries are supported, e.g., range queries, nearest neighbors. Those works have been
extensively studied in previously proposed benchmarks, and thereby not fully included in
this work.

Index The proposed index Mode-RTree has the capability of managing trajectories in differ-
ent environments. Although moving objects show various features depending intrinsically
on the environment, they are unified into one framework in this task. Such a property is
not covered by current indices for moving objects. Furthermore, the reference relationship
between IFOBs and moving objects is maintained by the index, which supplies the power
for accelerating query processing. This is motivated by answering a number of queries
that require the database to find out the correlation between moving objects and particular
IFOBs. The problem is not extensively studied in the current state-of-the-art. Moving points
in BerlinMOD [14] are not index-based. Papers [11, 25] perform the evaluation of moving
objects indices that target current and near-future positions in free space. However, those
indices only support one environment and can not answer queries referring to transporta-
tion modes as well as the request of receiving trajectories according to IFOBs. The present
benchmark solves the issue.

9 Conclusions

We propose a benchmark GMOBench that evaluates the performance of a database sys-
tem managing moving objects traveling through different environments. A data generator
is developed to create benchmark data in a realistic scenario and reflect the distribution and
characteristics of human movement in practice. Some parameters are defined to produce
the data in a flexible way. A group of queries on infrastructure data and moving objects is
set as the benchmark workload. Based on the baseline method, several optimal techniques
are proposed. More importantly, we design an index structure to manage moving objects
with multiple transportation modes. By employing the index, the performance of majority
of benchmark queries is significantly improved over the baseline method. The efficiency
and effectiveness of proposed techniques are studied through comprehensive experiments,
and detailed experimental results are reported.

In this benchmark, we implicitly assume that moving objects follow the shortest path
between two locations. This might not always be true in practice, especially for buses and
pedestrians. In addition, there are some irregular trips for humans, which cannot be formal-
ized by some rules. At this moment, we do not consider defining a complete set of rules to
simulate all cases, but common trips in daily life. This is in accord with assumptions made
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by most existing data generators. Thus, it is of interest to take into account trips with some
special behavior in the future. Regarding benchmark queries, a popular query called nearest
neighbor is not investigated. The reason is, this query focuses on location but not trans-
portation modes. We do not find an application in this context. Another interesting query is
to find trajectories fulfilling the condition on transportation modes in a certain order, e.g.,
Indoor → Walk → Bus. The present benchmark establishes such a query (Q12) but there
are more examples to study. We only deal with histories of moving objects in this work. It
is also important to find an approach to supporting on-line update.

Acknowledgment This work is supported in part by NSFC under grants 61300052, the Scientific Research
Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), and Natural Science
Foundation of Jiangsu Province of China under grants BK20130810.

Appendix A - Formulate Benchmark queries

To formulate queries, we provide a relational interface to exchange information. Several
relations are provided to manage infrastructure data and moving objects, summarized in
Table 4. route is a data type that we propose to represent bus (metro) routes. A bus (metro)
route is represented by a sequence of segments each of which defines the locations of start
and end bus stops as well as the connection described by a line. For the indoor environment,
we design a data type called groom used in Rel Room to represent all rooms of a building,
e.g., office rooms, corridors, staircases. Since in some cases one room can have several
floors such as an amphitheater and a chamber, a groom object consists of a set of elements
each of which defines the 2D area of a floor and the height above the ground level.

To access an infrastructure, we assign a symbol to each relation (summarized in Fig.12a)
and obtain the data from the operator get infra described in Fig. 12b. Figure 13 lists the
operators that are used to access the data and formulate the queries. To represent the trajec-
tories of moving objects (i.e., the projection into space), we propose a data type genrange

which defines a set of elements. Each element records the path according to a referenced
object as well as the transportation mode.

We use qt to denote the query time parameter. For the queries (Q4, Q5, Q17, Q18, Q20)
on both bus and metro, it is sufficient to show the query expression for a bus network as the
procedure is similar for metros.

Table 4 Data relation schemas

Road network Rel Road (R id:int, GeoData: line, Name: string)

Region-based outdoor Rel Rbo (Reg id:int, Reg: region, Name: string)

Bus network Rel BStop (Br id:int, Stop id: int, GeoData: point, Name: string)

Rel BRoute (Br id:int, GeoData: route, Name: string)

Rel Bus (Bus id:int, Br id:int, Traj: genmo, Name: string)

Metro network Rel MStop (Mr id:int, Stop id: int, GeoData: point, Name: string)

Rel MRoute (Mr id:int, GeoData: route, Name: string)

Rel Metro (Metro id:int, Mr id:int, Traj: genmo, Name: string)

Indoor Rel Building (B id: int, GeoData: region, Name: string)

Rel Room (B id: int, Room id: int, GeoData: groom, Name: string)

Generic moving objects MOGendon (Mo id:int, Traj: genmo, Name:string)
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Name Signature

get infra space × int rel

(b) Access Relations

Fig. 12 Access infrastructures

• Q1. Find out all metros passing through the city center.
Let Reg C be a region denoting the city center area.

SELECT mr.Mr id
FROM get infra(SpaceGendon, METROROUTE) as mr
WHERE mr.GeoData intersects Reg C

• Q2. Given a building named by X, find all bus stops within 300 meters.

SELECT bs FROM get infra(SpaceGendon, BUILDING) as
b,

get infra(SpaceGendon, BUSSTOP) as bs
WHERE b.Name = X and distance(b.GeoData,
bs.GeoData) < 300

• Q3. Which streets does bus No. 12 pass by?

SELECT r.Name
FROM get infra(SpaceGendon, BUSROUTE) as br

get infra(SpaceGendon, ROAD) as r
WHERE br.Br id = 12 and br.GeoData intersects
r.GeoData

Name Signature

intersects route × region bool
route × line bool
periods × periods bool

inside genloc × line bool
genloc × region bool

distance region × point real

theloc int × real × real genloc

length genrange real

duration periods real

deftime genmo periods

val intime (genloc) genloc
initial genmo intime (genloc )
final genmo intime (genloc )
ref id genloc int

(a) Basic

Name Signature

atinstant genmo × instant intime (genloc)
atperiods genmo × periods genmo

contains genmo × tm bool
genmo × int bool

at genmo × tm genmo
genmo × genloc genmo
genmo × point genmo

freespace genmo mpoint
genloc point

passes genmo × region bool
genmo × groom bool

trajectory genmo genrange

(b) Advanced

Fig. 13 Operators used in queries
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• Q4. Where can I switch between bus route No. 16 and No. 38?

SELECT bs1, bs2
FROM get infra(SpaceGendon, BUSSTOP) as bs1,

get infra(SpaceGendon, BUSSTOP) as bs2,
WHERE bs1.Br id = 16 AND bs2.Br id = 38 AND
bs1.GeoData = bs2.GeoData

• Q5. At 8am on Monday, who sits in the bus No. 32?

SELECT mo.Name
FROM get infra(SpaceGendon, BUS) as bus, MOGendon as
mo
WHERE ref id(val(mo.Traj atinstant qt)) = bus.Bus id
and bus.Br id = 32

• Q6. What is the percentage of people traveling by public transportation vehicles?

Let no mo = SELECT COUNT(*) FROM MOGendon

Let no submo = SELECT COUNT(*)
FROM MOGendon as mo
WHERE mo.Traj contains BUS or

mo.Traj contains METRO or
mo.Traj contains TAXI

SELECT DIV(no submo, no mo)

• Q7. Where and how long does Bobby walk during his trip?

SELECT mo.Traj at Walk
FROM MOGendon as mo
WHERE mo.Name = "Bobby"

SELECT duration(deftime(mo.Traj at Walk))
FROM MOGendon as mo
WHERE mo.Name = "Bobby"

• Q8. Find out all people passing room 312 at the office building between 9:00am and
11:00am on Monday.

SELECT mo.Name
FROM MOGendon as mo,

get infra(SpaceGendon, BUILDING) as b,
get infra(SpaceGendon, ROOM) as rm

WHERE b.Name = "Office-X" and b.B id = rm.B id and
and rm.Room id = 312 and
((mo.Traj at Indoor) atperiods qt) contains

rm.Room id

• Q9. Who arrived by taxi at the university on Friday?
To arrive by taxi at the university means that the final location of the passenger

within the taxi belongs to some driveway area close to the university. Such a part of
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the road network is also managed in the database as an object UniDriveway of type
line.

SELECT mo.Name
FROM MOGendon AS mo
WHERE val(final((mo.Traj atperiods qt) at Taxi)))

inside UniDriveway

• Q10. Who entered bus No. 3 at bus stop University on Tuesday afternoon?

SELECT mo.Name
FROM MOGendon AS mo,

get infra(SpaceGendon, BUSSTOP) AS bs,
get infra(SpaceGendon, BUS) AS bus

WHERE bs.Br id = 3 AND bs.Name = "University" AND
bus.Br id = 3 AND

bs.GeoData = freespace(val(initial((mo.Traj
atperiods qt) at

theloc(bus.Bus id,
undef, undef)))))

• Q11. Find out all people walking through zone A and zone B on Saturday between
10am and 3pm.

SELECT mo.Name
FROM MOGendon AS mo,

get infra(SpaceGendon, RBO) AS R1,
get infra(SpaceGendon, RBO) AS R2

WHERE R1.Name = "Zone-A" AND R2.Name = "Zone-B" AND
((mo.Traj atperiods qt) at Walk) passes

R1.Reg AND
((mo.Traj atperiods qt) at Walk) passes

R2.Reg

• Q12. Did anyone who was on floor H-5 of the office building between 2pm and 5pm
take a bus to the stop “train station” on Friday?

To be on floor H-5 means to be in any of the rooms of floor H-5. We create a table
associating rooms with their floors:

Uni Rel(B id: int, Floor: string, Room id: int)

SELECT mo.Name
FROM MOGendon AS mo,

Uni Rel AS u,
get infra(SpaceGendon, ROOM) AS r,
get infra(SpaceGendon, BUSSTOP) AS bs1,
get infra(SpaceGendon, BUSSTOP) AS bs2

WHERE u.Floor = "H-2" AND u.B id = r.B id AND
u.Room id = r.Room id AND

(mo.Traj atperiods qt) passes r.GeoData AND
bs1.Name = "University" AND
bs2.Name = "Main station" AND
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freespace(val(initial((mo.Traj atperiods qt)
at Bus))) =

bs1.GeoData AND
freespace(val(final((mo.Traj atperiods qt) at
Bus))) =
bs2.GeoData

• Q13. Did bus No. 35 pass any bicycle traveler by on Monday?
We define pass to mean that there exists a time instant that the distance between the

two moving objects is less than 3 meters.

SELECT mo.Name
FROM get infra(SpaceGendon, BUS) AS bus,

MOGendon AS mo
WHERE bus.Br id = 35 AND

sometimes(distance(freespace(bus.Traj
atperiods qt),

freespace((mo.Traj
atperiods qt) at Bicycle)) < 3.0)

• Q14. Did someone spend more than 15 minutes on waiting for the bus at the bus stop
Cinema on Saturday?

SELECT mo.Name
FROM MOGendon AS mo,

get infra(SpaceGendon, BUSSTOP) AS bs
WHERE bs.Name = "Cinema" AND

duration(deftime((mo.Traj atperiods qt) at
bs.GeoData)) > 15

• Q15. How many people visit the cinema on Saturday?

SELECT COUNT(*)
FROM MOGendon AS mo,

get infra(SpaceGendon, BUILDING) AS b
WHERE b.Name = "Cinema" AND

(mo.Traj atperiods qt) contains b.B id

• Q16. Find out all people staying at room 154 in the university for more than one hour
on Thursday.

SELECT mo.Name
FROM MOGendon AS mo,

get infra(SpaceGendon, BUILDING) AS b,
get infra(SpaceGendon, ROOM) AS r

WHERE b.Name = "University" AND b.B id = r.B id AND
r.Room id = 154 AND
duration(deftime(mo.Traj atperiods qt) at

theloc(r.Room id,undef,undef))) > 60
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• Q17. Did someone spend more than one hour traveling by bus?

SELECT mo.Name
FROM MOGendon AS mo
WHERE duration(deftime(mo.Traj at Bus)) > 60

• Q18. Find out all people changing from bus No. A to bus No. B at stop X.

SELECT mo.Name
FROM MOGendon AS mo

get infra(SpaceGendon, BUSSTOP) as bs,
get infra(SpaceGendon, BUS) as bus1,
get infra(SpaceGendon, BUS) as bus2

WHERE bus1.Br id = A AND bus2.Br id = B AND
bs.Name = X AND
freespace(val(final(mo.Traj at

theloc(bus1.Bus id)))) =
freespace(val(initial(mo.Traj at

theloc(bus2.Bus id)))) AND
freespace(val(final(mo.Traj at

theloc(bus1.Bus id)))) =
bs.GeoData

• Q19. Find out all trips starting from zone A and ending in zone B by public
transportation vehicles with the length of the walking path being less than 300 meters.

SELECT mo.Name
FROM MOGendon AS mo

get infra(SpaceGendon, RBO) AS R1,
get infra(SpaceGendon, RBO) AS R2

WHERE R1.Name = "ZoneA" AND R2.Name = "ZoneB" AND
val(initial(mo.Traj)) inside R1.GeoData AND
val(final(mo.Traj)) inside R2.GeoData AND
((mo.Traj contains Bus) OR (mo.Traj contains

Metro) OR
(mo.Traj contains Taxi)) AND
length(trajectory(mo.Traj at Walk)) < 300

• Q20. Find the top k bus (metro) routes with high passenger flow for all workdays.

SELECT TOP k *
FROM

SELECT bus.Br id, COUNT(*) AS NO
FROM MOGendon AS mo

get infra(SpaceGendon, BUS) AS bus
WHERE mo.Traj contains Bus AND

((mo.Traj atperiods qt) at Bus)) contains
bus.Bus id

GROUP BY bus.Br id
ORDER BY NO DESC
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• Q21. Find the top k road segments with high traffic during the rush hour for all
workdays.

To answer such a query, we create a relation storing all road segments with the
schema

Rel RoadSeg: (S id: int, GeoData: line, R id: int)

where S id is the unique segment id, GeoData stores the geometrical property and R id
indicates the id for the road that the segment belongs to. For each road, we decompose
it into a set of pieces at the junction positions and each piece is stored as a tuple in
Rel RoadSeg.

First, we get the traffic of each road segment by aggregrating the number of buses
passing by.

LET Rel BRCOUNT =
SELECT br.Br id, br.GeoData, COUNT(*) AS NO
FROM get infra(SpaceGendon, BUSROUTE) as br,

get infra(SpaceGendon, BUS) as bus
WHERE deftime(bus.Traj) intersects qt AND

bus.Br id = br.Br id
GROUP BY br.Br id

Each tuple in Rel BRCOUNT indicates the number of trips for each bus route.

LET Rel RES1 =
SELECT s.S id, SUM(br.NO) AS FLOW
FROM Rel BRCOUNT as br,

Rel RoadSeg as s
WHERE br.GeoData intersects s.GeoData
GROUP BY s.S id

We perform the join on bus routes and road segments to get the segments that each
bus route maps to. Then, we group the tuple by segment id and call the aggregation
function to get the total number of buses passing a segment from different routes.

Second, we get the traffic from moving objects that contain one of the modes {Car,
Taxi, Bike}. At first, we collect the paths of these trips.

LET Rel Traj C =
SELECT trajectory(mo.Traj at CAR) AS Path
FROM MOGendon AS mo
WHERE deftime(mo.Traj) intersects qt

LET Rel Traj T =
SELECT trajectory(mo.Traj at TAXI) AS Path
FROM MOGendon AS mo
WHERE deftime(mo.Traj) intersects qt

LET Rel Traj B =
SELECT trajectory(mo.Traj at BIKE) AS Path
FROM MOGendon AS mo
WHERE deftime(mo.Traj) intersects qt
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LET Rel Traj = Rel Traj C union Rel Traj T union
Rel Traj B

Then, we do the join on the paths and road segments to get the traffic value.

LET Rel RES2 =
SELECT s.S id, COUNT(*) AS FLOW
FROM Rel Traj AS p,

Rel RoadSeg AS s
WHERE p.Path intersects s.GeoData
GROUP BY s.S id

Third, we merge the two traffic relations Res RES1 and Res RES2 to get the final
result.

SELECT TOP k *
FROM

SELECT r1.S id, r1.FLOW + r2.FLOW as C
FROM Rel RES1 as r1,

Rel RES2 as r2
WHERE r1.S id = r2.S id
ORDER BY C DESC

Appendix B

Unique IFOB id and reference id for an indoor location

In order to have a unique id for each IFOB, we define a set of disjoint ranges each of which
is used for one infrastructure, e.g., [1, 5000] for Irn, [6000, 7000] for Ibn. Given a generic
location gl ∈ Dgenloc, the meaning of gl.oid is clear if the IFOB belongs to an outdoor
infrastructure. However, for the indoor environment different buildings can have the same
room id (e.g., ROOM NO 12, ROOM NO 35), only using the building id cannot uniquely
identify an indoor location.

To solve the problem, gl.oid is set by combining a building id and a room id for
an indoor location. We introduce how to achieve the goal in the following. For the sake
of clear presentation, we use two strings B Id and R Id to denote a building id and a
room id, respectively. Suppose that gl is located in the room R Id = “123” of a building
B Id = “167654”, then gl.oid is assigned by the concatenation of B Id and R Id, that is
“167654123”. Let len(B Id) return the length of a string for B Id. The range for all build-
ing ids is carefully chosen in order to fulfill the condition len(B Idmin) = len(B Idmax),
i.e., the number of digits is the same for each id. Otherwise, an ambiguous case can
occur.

Afterwards, len(B Id) is a fixed value (new building construction is not considered) and
we can extract B Id and R Id from an indoor location. Using the example before, we can
get B Id = “167654” and R Id = “123“ from gl.oid = “167654123”.
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Appendix C - experimental statistics

Query B10K B50K B200k B500K B1M B2M

Q5-B 0.07 0.08 0.08 0.07 0.09 0.09

Q5-M 0.04 0.05 0.06 0.04 0.05 0.06

Q6 0.1 0.3 0.7 1.4 2.7 7.0

Q7 0.2 0.4 0.8 1.5 2.9 7.3

Q8 0.2 0.19 0.18 0.1 0.2 0.2

Q9 0.52 0.53 0.72 0.33 0.95 1.3

Q10 0.07 0.07 0.08 0.06 0.09 0.2

Q11 0.04 0.07 0.24 0.51 1.08 2.17

Q12 0.66 0.71 0.78 0.81 1.17 1.7

Q13 1.25 1.3 1.46 1.55 2.05 2.88

Q14 0.03 0.04 0.06 0.06 0.09 0.12

Q15 0.07 0.08 0.1 0.11 0.16 0.22

Q16 0.19 0.18 0.2 0.1 0.21 0.24

Q17-B 0.1 0.41 1.68 4.17 8.34 17.38

Q17-M 0.07 0.2 0.79 1.77 3.8 7.4

Q18-B 0.25 0.25 0.24 0.3 0.3 0.36

Q18-M 0.01 0.01 0.01 0.02 0.01 0.01

Q19 0.05 0.13 0.39 0.85 1.95 3.99

Q20-B 0.14 0.41 1.51 3.75 7.45 15.52

Q20-M 0.09 0.19 0.71 1.6 3.38 6.65

Q21 19.7 20.0 21.5 23.4 27.8 43.0

Total 23.85 25.6 32.29 42.5 64.77 117.79

(a) CPU time (sec)

Query B10K B50K B200K B500K B1M B2M

Q5-B 0.435 0.426 0.449 0.474 0.488 0.5

Q5-M 0.192 0.207 0.219 0.242 0.254 0.279

Q6 0.001 0.001 0.001 0.001 0.5 40.5

Q7 0.03 0.03 0.3 0.3 0.8 81.4

Q8 0.13 0.162 0.286 0.38 0.61 0.78

Q9 0.686 0.868 2.388 2.987 5.32 8.67

Q10 0.016 0.037 0.115 0.195 0.287 0.486

Q11 0.045 0.146 0.672 1.549 3.16 6.34

Q12 0.245 0.568 1.725 3.81 7.1 12.22

Q13 2.47 2.76 3.757 5.643 8.96 15.08

Q14 0.022 0.054 0.147 0.317 0.572 1.08

Q15 0.014 0.045 0.172 0.381 0.775 1.52

Q16 0.022 0.026 0.09 0.255 0.469 0.895

Q17-B 0.551 2.998 12.488 32.05 64.07 129.24

Q17-M 0.524 2.191 8.944 21.578 43.11 86.77

Q18-B 0.014 0.081 0.634 1.132 1.532 2.22

Q18-M 0.003 0.003 0.003 0.003 0.003 0.003

Q19 0.312 1.613 6.124 15.346 30.812 65.14

Q20-B 0.001 0.091 9.71 31.219 62.826 126.6

Q20-M 0.001 0.124 7.208 20.873 41.47 83.20

Q21 1.2 21.2 50.2 97.2 190.6 470.5

Total 6.9 33.63 105.63 235.93 463.72 1133.42

(b) I/O Accesses(k)

Fig. 14 Scaling datasets by employing the Mode-RTree

Query B10k B50k B200k B500k B1M B2M

Q5-B 0.2 0.5 1.8 4.2 7.63 14.76

Q5-M 0.1 0.5 1.7 4.2 7.31 14.95

Q6 0.1 0.7 2.7 7.0 10.61 20.89

Q7 0.2 0.8 2.9 7.3 14.18 27.83

Q8 0.2 0.7 2.5 6.6 10.8 21.28

Q9 0.7 1.1 2.6 5.5 9.08 17.71

Q10 0.8 1.7 5.4 12.7 14.43 28.07

Q11 0.6 3.2 14.3 40.9 15.76 31.14

Q12 0.7 1.3 3.4 7.5 10.77 19.36

Q13 1.4 2.0 4.2 8.4 10.22 19.08

Q14 0.4 1.2 4.1 10.0 9.14 17.9

Q15 0.3 1.0 4.3 11.3 9.91 19.04

Q16 0.2 0.8 3.0 8.0 12.77 25.05

Q17-B 0.2 0.9 3.8 10.1 15.74 30.98

Q17-M 0.2 0.8 3.2 8.4 12.18 24.5

Q18-B 0.7 1.6 5.0 12.1 17.92 26.78

Q18-M 0.7 2.4 8.7 21.3 24.83 36.65

Q19 0.1 0.8 4.4 10.5 49.33 17.37

Q20-B 0.4 1.4 5.0 12.7 15.5 33.91

Q20-M 0.3 1.0 3.8 9.5 12.24 25.39

Q21 19.7 21.5 27.8 43.0 49.06 81.77

Total 28.3 45.9 114.4 261.0 339.41 554.41

(a) CPU Time (sec)

Query B10k B50k B200k B500k B1M B2M

Q5-B 2.0 5.8 19.9 48.0 87.88 174.54

Q5-M 0.4 0.9 7.4 46.9 88.35 176.21

Q6 0.001 0.001 0.5 40.5 85.04 170.03

Q7 0.03 0.3 0.08 81.4 170.17 340.14

Q8 2.1 10.0 54.6 149.3 139.81 282.12

Q9 1.6 2.1 19.4 47.3 89.79 177.86

Q10 1.5 3.5 23.8 63.6 101.51 200.44

Q11 2.6 13.3 64.0 170.8 134.09 267.47

Q12 1.0 5.2 27.8 66.8 104.18 206.14

Q13 1.4 2.7 18.8 51.7 90.86 180.34

Q14 0.3 1.5 24.2 79.6 92.23 184.11

Q15 1.5 10.1 90.4 232.0 134.45 272.28

Q16 3.9 21.5 93.0 232.6 201.57 401.83

Q17-B 1.8 17.7 90.7 227.8 202.64 405.08

Q17-M 2.1 15.4 72.1 179.4 166.99 333.45

Q18-B 1.0 5.1 32.9 81.0 118.66 221.68

Q18-M 1.8 2.1 28.7 71.2 109.57 208.03

Q19 4.9 24.9 109.6 285.1 125.39 245.7

Q20-B 0.1 22.0 88.8 221.4 199.78 397.97

Q20-M 0.03 15.2 69.7 173.2 163.72 326.78

Q21 1.2 50.2 190.6 470.5 338.61 675.28

Total 41.8 229.1 1126.7 3020.2 2945.27 5847.48

(b) I/O Accesses(k)

Fig. 15 Scaling datasets by baseline method
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Query Baseline Mode-RTree

Q5-B 14.76 0.09

Q5-M 14.95 0.06

Q8 21.28 0.2

Q9 17.71 1.3

Q10 28.07 0.2

Q11 31.14 2.17

Q12 19.36 1.7

Q13 19.08 2.88

Q14 17.9 0.12

(a)

Query Baseline Mode-RTree

Q15 19.04 0.22

Q16 25.05 0.24

Q17-B 30.98 17.38

Q17-M 24.5 7.4

Q18-B 26.78 0.36

Q18-M 36.65 0.01

Q19 17.37 3.99

Q20-B 33.91 15.52

Q20-M 25.39 6.65

(b)

Fig. 16 CPU time (sec) for B2M

Query Baseline Mode-RTree

Q5-B 174.54 0.5

Q5-M 176.21 0.279

Q8 282.12 0.775

Q9 177.86 8.67

Q10 200.44 0.486

Q11 267.47 6.34

Q12 206.14 12.22

Q13 180.34 15.08

Q14 184.11 1.08

(a)

Query Baseline Mode-RTree

Q15 272.28 1.52

Q16 401.83 0.895

Q17-B 405.08 129.244

Q17-M 333.45 86.773

Q18-B 221.68 2.22

Q18-M 208.03 0.003

Q19 245.7 65.14

Q20-B 397.97 126.60

Q20-M 326.78 83.20

(b)

Fig. 17 I/O accesses (k) for B2M

Query Baseline Mode-RTree

Q5-B 7.67 0.1

Q5-M 7.63 0.08

Q8 10.19 0.24

Q9 9.48 1.18

Q10 14.62 0.2

Q11 13.1 1.03

Q12 10.18 1.24

Q13 30.75 8.87

Q14 9.13 0.09

(a)

Query Baseline Mode-RTree

Q15 10.21 0.14

Q16 12.8 0.13

Q17-B 13.44 7.74

Q17-M 11.89 3.31

Q18-B 11.66 0.42

Q18-M 16.31 0.01

Q19 9.08 1.71

Q20-B 12.15 7.03

Q20-M 10.56 2.99

(b)

Fig. 18 CPU time (sec) for H1M
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Query Baseline Mode-RTree

Q5-B 88.89 0.49

Q5-M 86.45 0.37

Q8 134.41 0.38

Q9 92.28 9.37

Q10 104.32 0.09

Q11 126.57 2.31

Q12 100.54 5.23

Q13 102.76 23.76

Q14 87.12 0.36

(a)

Query Baseline Mode-RTree

Q15 129.09 0.36

Q16 191.34 0.39

Q17-B 166.85 58.77

Q17-M 157.4 38.86

Q18-B 106.26 2.73

Q18-M 101.43 0.03

Q19 143.11 41.86

Q20-B 168.36 57.92

Q20-M 154.45 38.35

(b)

Fig. 19 I/O accesses (k) for H1M

1h Bus Metro Car Taxi Bike Indoor Sum

No Index 17.98 17.12 22.48 16.33 16.23 20.21 110.35

Mode-RTree 0.09 0.07 0.05 0.03 0.04 0.1 0.38

2h

No Index 17.73 17.55 20.87 16.77 16.79 25.59 115.3

Mode-RTree 0.15 0.1 0.06 0.06 0.04 0.09 0.5

4h

No Index 18.91 17.65 23.31 16.26 16.12 20.96 113.21

Mode-RTree 0.23 0.18 0.1 0.05 0.05 0.1 0.71

8h

No Index 23.15 22.05 25.97 16.49 16.37 23.09 127.12

Mode-RTree 0.38 0.36 0.14 0.05 0.07 0.1 1.1

12h

No Index 27.27 26.69 27.69 16.78 16.6 24.28 139.31

Mode-RTree 0.54 0.52 0.2 0.08 0.07 0.11 1.52

(a) CPU (sec)

1h Bus Metro Car Taxi Bike Indoor Sum

No Index 184.53 178.0 245.96 172.03 171.64 271.33 1223.49

Mode-RTree 1.06 0.54 0.7 0.056 0.034 0.465 2.86

2h

No Index 182.63 179.05 250.35 172.48 171.89 401.83 1358.23

Mode-RTree 1.54 0.81 1.14 0.08 0.04 0.55 4.16

4h

No Index 191.14 181.97 259.01 173.31 172.30 297.72 1275.45

Mode-RTree 2.3 1.86 1.92 0.15 0.072 0.061 6.36

8h

No Index 205.26 192.58 284.07 175.79 173.97 352.48 1384.15

Mode-RTree 4.39 4.6 3.03 0.37 0.17 0.91 13.47

12h

No Index 217.85 200.48 306.87 178.22 176.00 391.75 1471.17

Mode-RTree 6.97 6.62 4.45 0.61 0.32 0.97 19.94

(b) I/O Accesses(k)

Fig. 20 Query parameters: B2M

1h Bus Metro Car Taxi Bike Indoor Sum

No Index 8.88 8.24 10.81 7.97 7.85 9.73 53.48

Mode-RTree 0.13 0.08 0.08 0.06 0.05 0.09 0.49

2h

No Index 8.6 8.38 9.6 8.08 7.96 8.97 51.59

Mode-RTree 0.13 0.09 0.06 0.06 0.07 0.09 0.5

4h

No Index 9.25 8.87 10.33 8.33 8.18 9.48 54.44

Mode-RTree 0.2 0.1 0.08 0.05 0.06 0.1 0.59

8h

No Index 10.3 10.1 11.52 8.1 7.87 10.31 58.2

Mode-RTree 0.35 0.19 0.08 0.07 0.07 0.11 0.87

12h

No Index 11.43 11.64 12.14 8.24 8.09 10.01 61.55

Mode-RTree 0.52 0.24 0.07 0.06 0.07 0.11 1.07

(a) CPU (sec)

1h Bus Metro Car Taxi Bike Indoor Sum

No Index 95.31 90.5 109.70 87.44 87.16 120.64 590.75

Mode-RTree 0.85 0.39 0.38 0.01 0.02 0.31 1.96

2h

No Index 96.06 90.99 112.12 87.74 87.26 125.06 599.23

Mode-RTree 1.14 0.51 0.41 0.02 0.02 0.35 2.45

4h

No Index 97.44 91.9 116.30 88.27 87.42 133.26 614.59

Mode-RTree 1.65 0.81 0.48 0.02 0.02 0.39 3.37

8h

No Index 102.15 95.95 128.1 89.52 88.09 157.28 661.09

Mode-RTree 2.99 1.88 0.6 0.03 0.03 0.5 6.03

12h

No Index 105.56 98.3 136.80 90.36 88.74 170.4 690.16

Mode-RTree 4.68 2.62 0.75 0.03 0.05 0.54 8.67

(b) I/O Accesses(k)

Fig. 21 Query parameters: H1M
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