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Domain-driven co-location mining
Extraction, visualization and integration in a GIS

Frédéric Flouvat · Jean-François N’guyen Van Soc ·
Elise Desmier ·Nazha Selmaoui-Folcher

Abstract Co-location mining is a classical problem in spatial pattern mining. Considering
a set of boolean spatial features, the goal is to find subsets of features frequently located
together. It has wide applications in environmental management, public safety, transporta-
tion or tourism. These last years, many algorithms have been proposed to extract frequent
co-locations. However, most solutions do a “data-centered knowledge discovery” instead of
a “expert-centered knowledge discovery”. Successfully providing useful and interpretable
patterns to experts is still an open problem. In this setting, we propose a domain-driven
co-location mining approach that combines constraint-based mining and cartographic visu-
alization. Experts can push new domain constraints into the mining algorithm, resulting
in more relevant patterns and more efficient extraction. Then, they can visualize solutions
using a new concise and intuitive cartographic visualization of co-locations. Using this
original visualization approach, they identify new interesting patterns, and use uninterest-
ing ones to define new constraints and refine their analysis. These proposals have been
integrated into a prototype based on PostGIS geographic information system. Experiments
have been done using a real geological datasets studying soil erosion, and results have been
validated by a domain expert.
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1 Introduction

Context These last years, environmental monitoring has become an important research
topic. The explosion of spatial data collected by experts, sensors and satellites opens new
challenges and perspectives. Mining these spatial data to extract interesting, useful, and
unexpected knowledge on environmental phenomenas is particularly challenging. For exam-
ple, soil erosion has a deep impact all over the world, and affects environment and economy.
This phenomenon is natural but it is greatly accelerated by anthropic activities (e.g. bush
fires, deforestation, mining projects) and climate change (resulting in intense precipitation
events). It has also a strong impact on connected terrestrial and coastal ecosystems such as
mangrove and coral reefs. Identifying key components of these erosion processes is essential
to have a good environmental management and a sustainable development.

Actual data volumes are considerable and their nature is complex (e.g. spatial, noisy, het-
erogenous). Understanding and predicting environmental phenomenons require advanced
methods for data analysis and modeling. Mining spatial patterns, and more precisely co-
locations, is one of the important topics when studying spatial data [15, 28, 29, 32, 51, 54,
55]. A co-location is a set of boolean features frequently occurring together [51]. An exam-
ple of co-location in environmental data could be {mine, erosion}. This pattern highlights a
possible correlation between mines and soil erosion. These last years, many algorithms have
been proposed to extract frequent co-locations. However, interpretation of results by experts
is difficult due to the huge number of patterns usually extracted (thousands to millions of
patterns). Moreover, lots of these patterns are not really interesting for experts.

Challenges Our work deals with the two following important challenges of knowledge dis-
covery in data (KDD): how to improve the relevancy of extracted patterns? and how to
facilitate interpretation of results by experts? These two challenges are closely related as
we will show later in the paper.

Adding user constraints to improve pattern quality, or to express user requirements, has
been widely studied in the itemset mining literature [42, 49]. Itemsets are a specific class of
patterns. They represent sets of items that occur frequently in the same transactions. In the
itemset setting, there is classically two approaches: integrating constraints in preprocessing
or integrating constraints in the mining algorithm. One interest of the second approach is
to iteratively integrate new constraints without needing to reprocess the data. Thanks to
theoretical properties of some of these constraints, this second approach also enables to
improve mining performances. Integration of expert constraints in pattern mining is not new,
but it has never been done for spatial patterns, that exhibit specific properties compared with
itemsets (s.t. spatial and thematic dimensions of geographical databases). In this context,
our paper tackles the following questions:

– What kinds of constraints can be defined for co-locations, taking into considera-
tion characteristics of spatial data and theoretical properties necessary to improve
algorithm performances?

– How to help experts in choosing and defining their constraints?

Effective visualization of extracted patterns is one of the big challenges in KDD [13].
Lots of contributions have been done [8]. When working with spatial data, a classical
approach is to display informations on maps. However, displaying a co-location on a map
is not trivial because a co-location only represents a global spatial correlation between
objects or events. For example, the co-location {mine, erosion} represents the correla-
tion “soil erosion is often located near mines”. It is not associated to one location, since
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several mines and erosion objects can occur closely together in different locations. Consid-
ering that we may have thousands to millions of co-locations and for each one thousands
to millions of instances, it is impossible to display all these objects on the map (it would
become unreadable). However, it is important for experts to have a global view of the solu-
tions before studying more precisely some patterns. As a consequence, our work have to
solve the following problems:

– How to display a co-location on a map?
– How to display all extracted co-locations on a map in a concise and readable way for

experts?

Contributions To our knowledge, no contributions have tried to tackle these challenges.
Most solutions do a “data-centered knowledge discovery” instead of a “expert-centered
knowledge discovery”. Existing works focus on pruning techniques, spatial join optimiza-
tion, local patterns or concise representations. They do not integrate experts knowledge and
needs in the co-location mining process, nor a visualization approach adapted to expert
practices (see Section 2).

To deal with these limits, we propose a new process where constraint-based mining and
cartographic visualization of co-locations are combined to improve relevancy and interpre-
tation of results. On the one hand, constraints decrease the number of patterns extracted,
while increasing their relevancy, which facilitates visualization and interpretation of solu-
tions. On the other hand, our effective visualization approach enables to quickly identify
irrelevant patterns, which can be used by experts to define new constraints.

This process is based on a new family of spatial and thematic constraints exhibiting the-
oretical properties compatible with mining algorithms (see Section 4.2). In existing works,
the only constraint integrated in the mining algorithm is the frequency constraint (to keep
most frequent co-locations). Expert constraints are taking into account when selecting and
preprocessing original data. As a consequence, data has to be reprocessed each time an
expert needs to refine its analysis or change its constraints. Our approach avoids this prob-
lem. Experts can iteratively refine their analysis by integrating new constraints without
reprocessing data. At each iteration, they obtain more meaningful co-locations, and algo-
rithm performances are improved. Moreover, only constraints on data can be applied in
preprocessing (e.g. filtering objects, features or themes from data). In our work, we pro-
pose new constraints on co-locations, which avoid analysis of uninteresting correlations for
experts. So these constraints cannot be used in a preprocessing step, but during co-location
mining.

Our process is also based on an original visualization approach for co-locations (see
Section 4.3). This approach provides a concise and intuitive cartographic visualization of
co-locations based on a new heuristic clustering algorithm. In existing works, the visu-
alization of extracted co-locations is never covered. Restitution of solutions is done in a
textual format (a basic report with a list of co-locations), which is not effective and does
not correspond to expert practices. To the opposite, we propose a graphical representation
of co-locations. In our approach, each co-location is displayed on the map depending on
the spatial distribution of its instances. To limit the number of informations displayed on
the map, we have developed a new effective clustering algorithm. Thus, our visualization
approach provides to experts a concise and intuitive way to visualize results, while giving
additional informations on co-locations (where and how they are generally located).

Finally, we have done an extensive experimental analysis of our approach on a real appli-
cation (see Section 5). We studied soil erosion on two different areas. A qualitative analysis
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has been conduced by an expert. It shows the interest of our contributions to iteratively find
more relevant patterns, and demonstrates how intuitive is our visualization approach. Our
quantitative analysis illustrates the impact of the different parameters on performances, and
shows the scalability of the whole process compared to existing approaches (i.e. the apriori-
like co-location mining algorithm of Shekhar and Huang [51] and a visualization based on
the two clustering algorithms of Ester et al. [19]; Pelleg and Moore [47]).

To sum up, the contributions of this paper are:

1. a generic process combining constraints and visualization to improve relevancy and
interpretation of co-locations;

2. a new class of spatial and thematic constraints that can be integrated in any co-location
mining algorithm;

3. a generic approach to optimize algorithm performances thanks to the theoretical
property of these constraints;

4. a new visualization approach that provides a global view of extracted co-locations on a
map;

5. an original and efficient clustering algorithm that summarizes informations displayed
on the map;

6. a thorough application of the process on soil erosion data (with quantitative and
qualitative analysis of results with an expert).

2 Related works

2.1 Spatial pattern mining

Spatial data exhibits a unique property: “everything is related to everything else but nearby
things are more related than distant things” (first law of geography in Tobler [52]). In this
context, spatial pattern mining aims at discovering implicit relations in spatial data using
spatial proximity [27]. These approaches may be classified in three families: transactional
approaches, multi-relational approaches and co-location-based approaches.

The principle of transactional approaches such as Koperski and Han [35]; Bogorny et al.
[9] is to map spatial data to transactional data (such as in market basket analysis). Spatial
relationships are extracted prior to pattern mining, and features are grouped into transac-
tions. In other words, a transaction can be viewed as a set of features (e.g. mine, erosion,
savanna) associated to the same zone (e.g. catchment basin). Thus, at the end of this pre-
processing of spatial relationships, spatial information is no more explicitly encoded in the
data. We have a classical transactional database. This preprocessing step enables to use clas-
sical frequent itemset mining algorithms. This method is used by Koperski and Han [35] to
extract association rules in a geographic database given a spatial relationship (e.g. “objects
near by large towns”). Bogorny et al. [9] extend the work of Koperski and Han [35] by
introducing knowledge constraints in the preprocessing step.

Multi-relational pattern mining [14, 38, 40] extends transactional approaches to mine
spatial databases composed of multiple tables. They also use inductive logic program-
ming to express concept hierarchies and mine multi-level patterns in spatial databases.
Spatial hierarchies represent geographic descriptions at different granularity levels (e.g.
ward, district, county). Transactions materialize features (e.g. population, car availability)
around reference objects (e.g. ward) and spatial relationships between objects (e.g. link to,
close to).
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Co-location-based approaches, also called event-based approaches, focus on events and
their neighbor relationships [28, 51, 55]. They compute spatial relationships on-the-fly dur-
ing extraction, and not in a preprocessing step such as in previous approaches. Shekhar and
Huang [51] have defined the co-location concept based on Koperski and Han [35]. The goal
is to find all subsets of spatial features likely to occur together. A new interest measure,
the participation index, has been proposed to filter patterns. This measure is closely related
to the cross-K function, a statistical measure of interaction between spatial objects. Thanks
to the anti-monotone property of this predicate, a levelwise algorithm (an adaptation of the
apriori algorithm of Agrawal and Srikant [1]) has been proposed to extract interesting co-
locations. This co-location mining algorithm has been improved in Yoo and Shekhar [55] to
avoid costly spatial joins in the database. Celik et al. [15] extend the notion of co-location to
zonal co-location pattern (intuitively a local zone-scale co-location pattern). More recently,
Qian et al. [48] propose an approach to mine co-location patterns w.r.t. several neighborhood
constraints. Despite all of these contributions to co-location mining, to our knowledge, none
of existing solutions integrate expert constraints in the mining process. They only propose
a preprocessing step to filter input data w.r.t knowledge constraints.

Integration of expert constraints inside itemset mining algorithms is not new. In the liter-
ature, two classes of constraints have been used to filter itemsets: objective constraints and
subjective constraints [42]. Objective constraints are generally based on frequency and/or
statistical properties of itemsets. For example, the minimal frequency constraint [1] is such
constraint. Subjective constraints enable to express interestingness of itemsets w.r.t. expert’s
goals or needs (see, e.g., [44, 46, 49]). Examples of objective constraints for itemsets are: all
items must be {=,≤,≥} to an expert value; a given value must (or mustn’t) be in the item-
set; the size of the itemset must be smaller than a threshold; or the min/max/avg/sum of the
numeric values in the itemset must be {=,≤,≥} to an expert value. Constraints proposed
for itemset mining do not consider spatial or thematic aspects, which is normal since trans-
actional data do not focus on these informations. To the opposite, organization of spatial
data in thematic layers are key concepts of Geographical Information Systems. First, GIS
were developed to store, manage, analyze and display geographical informations, in other
words spatial data. Second, the notion of thematic layer was introduced by practitioners in
order to organize and analyze informations based on logical layers. As a consequence, it is
important to integrate these two aspects in co-location mining. It would enable experts to
express operations that they usually do in a GIS (e.g. studying a specific area, or analyzing
correlations between specific themes).

Let us recall that constraint-based mining enables to improve the relevancy of computed
patterns, but also to use theoretical properties of constraints (e.g. monotonicity property)
to perform complete though computationally efficient extractions (see, e.g., [10]). Thus,
defining new constraints is not trivial since we have to ensure that their theoretical properties
are compatible with mining algorithms.

2.2 Visualization of data mining results

Information visualization and data mining are two domains considered to achieve effective
knowledge discovery [8]. Information visualization aims at helping interpretation of large
quantity of data by providing effective visual representations. Data mining aims at extracting
hidden knowledge in data by providing efficient algorithms. These two domains have been
coupled in several papers. The literature review done in Bertini and Lalanne [8] identifies
three types of visualization-mining cooperation: computationally enhanced visualization,
visually enhanced mining, and integrated visualization and mining.
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Computationally enhanced visualization corresponds to visualization approaches
improved by data mining. For example, data mining (e.g. clustering or itemset mining) can
be used to reduce informations displayed to users, which is a well known problem in visual-
ization. As an example, Yang et al. [53] propose a hierarchical dimension ordering, spacing
and filtering approach to explore high dimensional datasets. They group dimensions in a
dimension hierarchy using a clustering approach. Thus, users can easily navigate and ana-
lyze the data. Morrison et al. [43] and Heer and Boyd [26] are other examples of such
approaches based on multidimensional scaling and graph clustering.

Visually enhanced mining corresponds to data mining approaches where visualization
techniques are used to provide easily understandable results to users. For example, Mine-
Set [11] is an interactive system for data mining integrating data visualization. Different
kinds of visualizer (statistics, scatter, map, tree) are available according to the type of result
to visualize. Recently, Leung et al. [36] deal with visualization of frequent itemsets. The
authors developed a system, WiFIsViz, for visualizing frequent itemsets based on orthogo-
nal graphs (wiring-type diagrams). Frequent itemsets are shown in a two-dimensional space,
where the x-axis shows items and the y-axis shows the frequencies (Fig. 1). An itemset X

is represented by a horizontal line connecting nodes, where each node represents an item of
X. Moreover, itemsets sharing the same prefix are merged, which improve the visualization.

Integrated visualization and mining corresponds to approaches in which visualization
and data mining are totally combined. In such solutions, human can directly interact with
the mining algorithm using a visual environment. For example, Chen and Liu [16] propose
a visual framework in which users can interactively evaluate and refine clustering at each
step of the process. Andrienko et al. [4] also propose a visual analytics toolkit to analyze
mobility data based on clustering. Thanks to this toolkit, users can progressively find and
refine trajectory clusters through sampling and classification. Figure 2 shows an example of
trajectories with the corresponding cluster.

As shown in the previous example, spatial data are usually displayed on a map since car-
tographic visualization is very intuitive for users. A typical system is the one proposed in
Andrienko and Andrienko [3]. The user can perform different data analysis, such as cluster-
ing or association rules, and visualize the results on the map or a report. For example, after
clustering, spatial objects are displayed on the map with different color and label w.r.t. their
cluster. At the opposite, mined association rules are displayed in a textual report. When the
mouse cursor is positioned on a specific rule of the report, the corresponding objects are
highlighted in the map (and vice versa). More recently, Andrienko et al. [4] and Guo [23]

Fig. 1 Examples of visually enhanced frequent itemset mining with WiFIsViz [36] and FP-Viz framework
[34]
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Fig. 2 Example of spatial integrated visualization and mining to cluster cars trajectories [4]

also use a cartographic visualization to display large spatial data. They both use clustering
and user interactions to limit informations displayed on the map. However, the first work
study mobile objects trajectories, while the second one study geographically embedded
networks (graphs).

As far as we know, none of the solutions proposed in the literature were designed to
display co-location patterns in a simple, concise and intuitive way for experts. Existing
solutions return results in a textual format. They do not take into consideration the spatial
nature of the underlying objects and expert requirements. Initial works on visualization of
co-location are presented in Selmaoui-Folcher et al. [50] and Desmier et al. [18].

3 Theoretical framework

3.1 Preliminaries and definitions

This section recalls the co-location mining framework proposed in Shekhar and Huang
[51]; Huang et al. [28]; Yoo and Shekhar [55]. Let F be a set of features (also called
object-types) and D be a database of spatial objects. Each object in D consists of a tuple
< object id, location,f eature >, where f eature ∈ F . We denote that each object is
associated with a feature f ∈ F by fobject id . For example, in Fig. 3, F = {A,B,C,D, E},
D = {A1, C2, B3..., E12} with A1 =< 1, (x1, y1),A >, C2 =< 2, (x2, y2), C >, etc.

A co-location X ⊆ F is a subset of features (object-types) such that its instances are
located in the same neighborhood. The neighborhood relationship is defined as a binary
relation R(o, o′) between two spatial objects o and o′. Depending on user requirements, R
can be based on a distance threshold between two objects, or based on their intersection,

Fig. 3 Example of spatial database
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or it can be any reflexive and symmetric spatial relation (e.g. the inclusion relation does
not satisfy these properties). A co-location instance is a set of objects that forms a clique
under R. To simplify, we use in our examples a simple neighborhood relation based on the
Euclidean distance (i.e. two objects are neighbors if their Euclidean distance is less than
a given threshold). For example (Fig. 3), the set of objects {A9, B4,D10} is an instance
of the co-location {A, B,D} w.r.t. a fixed Euclidean distance threshold (represented by
dotted lines). To the opposite, {A1, B4, C7} or {A1, B4, D10} are not co-location instances
of {A, B,D}. Note that an instance I of a co-location X is a set of objects such as no
proper subset of I is also a co-location instance (we cannot have {A0, A1, B4, C7}). The
table instance of a co-location X, denoted T IX, is the set of all its instances. For example,
the table instance of {A, B,C} is T I{A,B,C} = {{A1, B8, C7}, {A5, B6, C2}} and the table
instance of {B,D} is T I{B,D} = {{B4, D10}} (see Fig. 3).

However, not every co-location is interesting. Thus, authors have proposed a preva-
lence measure to determine the strength (the frequency) of a co-location. This measure
is called participation index and it represents the minimal probability to have an object
in a given co-location instance compared with the total number of instances. More pre-
cisely, they introduce the participation ratio pr(X, f ) for a feature f in a co-location X

as the fraction of objects with feature f in instances of X, to the total number of objects
with feature f . For example, in Fig. 2, pr({A,B,C}, A) = 2/3 since {A,B,C} has two
instances (T I{A,B,C} = {{A1, B8, C7}, {A5, B6, C2}}) and feature A has three instances
(A1, A5 and A9). In the same way, pr({A,B,C}, B) = 1/2 and pr({A,B,C}, C) = 1.
Then, they define the participation index, denoted pi(X), as the minimum of the partici-
pation ratios. In the example, pi({A, B,C}) = min(pr({A,B,C}, A), pr({A, B,C}, B),

pr({A,B,C}, C)) = 1/2.
Based on these definitions, we have to solve the following problem : Given F a set of

features, D a spatial database, R a neighbor relation and α ∈ [0, 1] a threshold. The
problem is to find the set of prevalent co-locations, i.e. {X ⊆ F |pi(X) ≥ α}.
3.2 A new framework for constraint-based co-location mining

In this subsection, we extend the co-location concept based on the theoretical framework of
Mannila and Toivonen [41]. Thus, classical co-location mining is generalized to extraction
of co-locations based on any monotone domain constraint.

The pattern mining framework defined in Mannila and Toivonen [41] is a generaliza-
tion of the frequent itemset mining problem [2]. Thanks to this framework, itemset mining
algorithms have been successfully applied in various domain such as association rules [1],
functional dependencies [30], inclusion dependencies [17], and query rewriting [33] to men-
tion a few. This framework can be summarized as follows: “Given a database D, a finite
language L for expressing patterns or defining subgroups of the data, and an anti-monotone
(or monotone) predicate Q for evaluating whether a pattern ϕ ∈ L is true or “interesting”
in D, the discovery task is to find the theory of D with respect to L and Q, i.e. the set
T h = {ϕ ∈ L|Q(D, ϕ) is true}”. The co-location mining problem defined in Shekhar and
Huang [51] is another application of this framework. Thus, it benefits of the great amount
of work done to develop itemset mining algorithms. It explains why Shekhar and Huang
[51] could easily adapt the classical Apriori algorithm [1] (initially proposed for frequent
itemset mining) to mine co-location patterns.

Fitting co-location mining in this framework has another advantage: we can generalize
the discovery of co-location patterns to any anti-monotone boolean predicate Q and to any
boolean spatial relationship R. The mapping of the co-location concept in the previous
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framework, and its extension to a domain driven co-location framework is presented in
Fig. 4.

This extension also provides a condensed representation of the co-locations: the positive
border of interesting co-locations (i.e. maximal interesting co-locations w.r.t. set inclusion).
Indeed, since any subset of an interesting co-location is also an interesting co-location
(thanks to the anti-monotone property), experts can deduce all the interesting co-locations
based on the maximal ones. In practice, the number of interesting co-locations may be
extremely important. Only providing maximal interesting co-locations to experts might
make easier their interpretation of results.

4 Combining constraints and visualization to deliver domain knowledge

4.1 Overview of the process

In this paper, we propose a new process where constraint-based mining and cartographic
visualization of co-locations are combined to improve relevancy and interpretation of
results. This process, derived from the classical KDD process of Fayyad et al. [20] is illus-
trated in Fig. 5. This process begins with the classical steps of KDD, i.e. data selection,
data preprocessing and data transformation. Then, constraint-based co-location mining is
performed based on expert parameters (i.e. frequency threshold and domain constraints).
In the first iteration of the process, the set of domain constraints may be empty if the
expert doesn’t have enough knowledge about the studied phenomenon. After, extracted co-
locations are displayed on a map thanks to our cartographic visualization approach. Based
on the generated map, the expert identify interesting patterns leading to new knowledge,
but also uninteresting patterns. These frequent irrelevant patterns are used by the expert to
express new spatial and thematic constraints. These new constraints are used in the next

Fig. 4 Domain-driven co-location mining framework
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Fig. 5 Our KDD process combining constraints and visualization to improve relevancy and interpretation of
co-locations

iteration of the process to refine co-location mining. Note that at this moment, the expert
can also decrease the frequency threshold to find other, less frequent, patterns.

4.2 Domain-driven extraction of co-locations

4.2.1 Spatial and thematic domain constraints

In the previous framework, the conjunction of anti-monontone constraints, CDom, is used
to integrate domain constraints in the mining process. This section presents several domain
constraints that can be used by experts to integrate their knowledge. This approach leads to a
better interpretation of results, and improve algorithm performance by pruning non relevant
information during the mining process. Note that this work differs from Bogorny et al. [9]
in which knowledge constraints are introduced in a preprocessing step.

In our context, domain constraints represent known, or unrelevant, relations for experts.
These constraints can be considered as exclusion rules. We define two types of constraints :

– constraints on features and themes
– spatial constraints on objects

Constraints on features and themes The first type of constraints excludes co-locations
w.r.t. specific features and/or themes. The idea here is to avoid analysis of uninteresting
correlations.

Several constraints can be expressed based on this principle. The most basic one
is to exclude user-defined features from co-locations. In other words, given a co-
location X ⊆ F and a set of features F ⊆ F , the predicate CallFeatures(X, F ) =
¬(F ⊆ X) is true iff the features of F are not in the co-location X. For example, if
F = {serpentinite, harzburgite}, then all co-locations composed of {serpentinite,

harzburgite} are ignored during pattern mining. In the same way, we can define the predi-
cate Cfeatures (X,F ) = ¬(F ∩ X �= ∅), which is true if none of the features of F are in the
co-location X.
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In domains manipulating geographical data, Geographical Information Systems (GIS)
are classical tools used by experts to store and study their data. A key concept of GIS is the
organization of data in thematic layers. Arctur and Zeiler [5] defined a thematic layer as “a
collection of common geographic elements, such as road networks, soil types, an elevation
surface ...”. The notion of thematic layers was introduced by practitioners in order to orga-
nize the geographic informations in maps into logical information layers. This concept is a
key element in the manipulation and analysis of data by practitioners.

To extend domain constraints to themes, we need to define more formally the notion of
themes.

Definition 1 Given F the set of features, a theme t is a set of features such that t ⊆ F .

Remark 1 In a GIS, the set of all themes, denoted T hemes, is such that ∀t1, t2 ∈ T hemes,
t1 ∩ t2 = ∅.

Based on this definition, we can define another predicate that excludes co-locations
related to a given theme. More formally, given a co-location X ⊆ F and a theme
t ∈ T hemes, the predicate Ctheme(X, t) = ¬(X ∩ t �= ∅) is true iff the co-location X

is not composed of theme t features. For example, if t = {savanna, sparse vegetation on
ultramafic substrate, woody-herbaceous scrub, woodland dense scrub, forest on ultramafic
substrate } is the vegetation theme, all co-locations related to the vegetation theme, such as
{savanna,baresoil, serpentinite}, are not studied.

More generally, we can identified two types of domain constraints: intra-theme con-
straints and inter-theme constraints. Intra-theme constraints exclude relations (and thus
co-locations) between features from the same theme. For example, the expert may not be
interested in relations between features serpentinite and harzburgite in the lithology theme.
It is the case if the expert doesn’t want to study correlations between different soil types.
Inter-theme constraints exclude relations between features of several specific themes. For
example, the expert may not be interested in relations between hillslope erosion and mines
in erosion theme and human constructions theme. It is the case if the expert wants to focus
its study on natural erosion.

For intra-theme constraints, we can define a predicate that excludes co-locations show-
ing correlations related to a given theme. More formally, given a co-location X ⊆ F and
a theme t ∈ T hemes, the predicate Cintra(X, t) = ¬(|X ∩ t | ≥ 2) is true iff the co-
location X is not composed of several features of theme t . For example, if t = { savanna,
sparse vegetation, woody-herbaceous scrub, woodland dense scrub, forest on ultramafic
substrate } is the vegetation theme, the co-location {savanna, sparsevegetation} is not
studied (as well as all its supersets), whereas the co-location {savanna,baresoil} is
extracted.

For inter-theme constraints, we can extend previous constraints to detect co-locations
based on several themes. The predicate Cinter(X, t1, t2) = ¬((X ∩ t1 �= ∅) ∧ (X ∩ t2 �= ∅))

is true iff the co-location X is not composed of features in themes t1 and t2. Such con-
straint is useful if experts want to avoid analysis of correlations between themes t1 and
t2. More generally, given a co-location X ⊆ F and a set of themes T ⊆ T hemes,
the predicate Cinter(X, T ) = ¬(∀t ∈ T (X ∩ t �= ∅)) is true iff all the themes of
T are not studied in the co-location X. For example, if T = {vegetation, lithology},
then all co-locations based on the vegetation and the lithology themes, such as the co-
location {savanna, serpentinite, harzburgite}, are not studied (savanna ∈ vegetation

and serpentinite, harzburgite ∈ lithology ). Note that patterns such as {savanna,
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sparsevegetation,baresoil} are still extracted, since baresoil isn’t related to a theme
of T .

The previous constraint enables experts to prune patterns fully related to specific themes.
For example, if T = { vegetation, lithology, man-made construction}, the co-location
{savanna, serpentinite, harzburgite} is studied, because the co-location doesn’t deal
with the man-made construction theme. To cope with such case, we introduce the pred-
icate CpartInter (X, T ) = ¬(∃t1 ∈ T (t1 ∩ X �= ∅) ∧ ∃t2 ∈ T (t2 ∩ X �= ∅)), which
is true iff co-location X is not related to themes of T (not necessarily all themes, but at
least 2). Thus, this predicate enables to prune all co-locations related to T themes, even
if only a subset of T themes match. We call such constraints partial inter-theme con-
straints. With such constraint, if T = { vegetation, lithology, man-made construction}, the
co-location {savanna, serpentinite, harzburgite} is not studied.

Table 1 presents all constraints on features and themes. One interest of our approach
is that new domain constraints can be defined based on a conjunction, or disjunc-
tion, of the previous ones. For example, we can define the predicate Cinter(X,F, t) =
Cfeatures(X, F ) ∧ Ctheme(X, t), which is true iff co-location X does not study the relation
between F features and theme t .

All the constraints defined in this section are anti-monotone, and can be used to prune
the search space. The proof of monotonicity is straightforward for basic constraints. For
example, given a theme t (a set of features), if X is a set of features satisfying Cintra(X, t),
i.e. |X ∩ t | < 2, then any subset Y of X also satisfies Cintra. For more complex constraints
such as conjunction/disjunction of constraints, the predicate stills anti-monotone since each
of the basic constraints is anti-monotone. For example, let X be a co-location and C, C ′ be
two basic constraints on features and themes. If X satisfies the constraint C ∨ C ′, Y ⊆ X

also satisfies this constraint, since C and C ′ are both anti-monotone.

Spatial constraints on objects The second type of constraints excludes spatial objects. The
idea here is to avoid analysis of specific correlations in user-defined geographical areas. For
example, such constraint can be used by experts to focus their study on a specific area. On
the contrary, it can be used to exclude an area for which experts know that there is noisy
data.

An example of such constraint could be “study only objects located in the rectangular
area delimited by (100,200,400,600) coordinates”. More formally, let D be the geographical
database, I ⊆ D be an instance of a co-location X and shape be the geographical coordi-
nates of a polygon. The predicate CspatialIn(I, shape) = (∀o ∈ I (In(o, shape))) is true
iff all objects of a co-location instance I are in the shape area.

This basic constraint can be generalized to any spatial boolean relation r . The predicate
CspatialAll(I, shape, r) = (∀o ∈ I (r(o, shape))) is true iff all objects of instance I satisfy

Table 1 Constraints on features and themes CDom

Domain constraint Type

CAllFeatures (X, F) = ¬(F ⊆ X) Feature constraint

Cfeatures (X, F) = ¬(F ∩ X �= ∅) Feature constraint

Ctheme(X, t) = ¬(X ∩ t �= ∅) Thematic constraint

Cintra(X, t) = ¬(|X ∩ t | ≥ 2) Intra-theme constraint

Cinter (X, T ) = ¬(∀t ∈ T (X ∩ t �= ∅)) Inter-theme constraint

CpartInter (X, T ) = ¬(∃t1 ∈ T (t1 ∩ X �= ∅) ∧ ∃t2 ∈ T (t2 ∩ X �= ∅)) Partial inter-theme constraint
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the spatial relation r in the area shape. Thanks to this predicate, it is possible to express
constraints such as “study all instances whose objects are near a mine area”. Note that all
objects in I must satisfy the spatial relation. For example, if r is the relation “not in”, all
objects in I must not be in the area shape. An instance that has only some of its objects not
in the area is not studied. Indeed, a spatial constraint such as “∃o ∈ I (r(o, shape))” cannot
be used because, in such case, the participation index of co-location X may be greater than
the one of Y ⊆ X, which is the basic property used to prune the search space in the mining
algorithm.

Spatial constraints can also be mixed with feature and theme constraints. Such con-
straint can be used to avoid analysis of specific correlations in specific areas. An example
of this type of constraints could be “do not study objects characterized by not bare
ground or vegetation theme, and located in a rectangular area having (100,200,400,600)
as coordinates”. In this example, the predicate is CspatialAll(I, shape, notIn) ∧
Cfeatures(X, {notbareground}) ∧ Ctheme(X, {vegetation}) with I an instance of co-
location X and shape =< (100, 200), (400, 200), (400, 600), (100, 600) >.

Table 2 presents all spatial constraints. Such as for thematic constraints, new domain
constraints can be defined using a conjunction/disjunction of these spatial constraints.
For example, experts can focus on correlations between a mine and its nearby environ-
ment using a constraint such as Cmine(I, shapeMine) = CspatialAll(I, shapeMine, in) ∨
CspatialAll(I, shapeMine, near). This spatial constraint enables to only study instances
whose objects are in the perimeter of the mine or close to it.

On the contrary to constraints on features and themes, spatial constraints are not used
directly to prune co-locations. These constraints affect the computation of the co-location
ratio by reducing the number of co-location instances studied. Thus, they are not involved
in the predicate Q used in the co-location mining algorithm, but in the table instance calcu-
lation. Therefore, the definition of table instance is modified. The table instance T IX of a
co-location X in spatial database D is:

T IX = {I ⊆ D | I is an instance of X according to R and CSpa(I) = true}
with CSpa(I) is any conjunction/disjunction of spatial constraints

Note that these spatial constraints do not modify the anti-monotonicity of the co-location
predicate. Indeed, the number of instances used to process the participation index is always
decreasing (not strictly) whenever we have a conjunction or disjunction of the previ-
ous spatial constraints. For example, given shape, shape′ two areas and r ,r ′ two spatial
boolean relations. If I is an instance of X satisfying a conjunction of spatial constraints
CspatialAll(I, shape, r)∨CspatialAll(I, shape′, near ′), J ⊆ I is also an instance of Y ⊆ X,
since ∀o ∈ I , we have r(o, shape) or r(o, shape′).

Table 2 Spatial constraints CSpa

Domain constraint Type

CspatialIn(I, shape) = (∀o ∈ I (In(o, shape))) Spatial inclusion constraint

CspatialAll(I, shape, r) = (∀o ∈ I (r(o, shape))) Generic spatial constraint

CspatialAll(I, shape, r) ∨ CF Spatial and thematic constraint

with CF a constraint on features and themes of Table 1

CspatialAll(I, shape, r) ∧ CF Spatial and thematic constraint

with CF a constraint on features and themes of Table 1
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4.2.2 Mining co-locations using domain constraints

Thanks to the pattern mining theoretical framework, the domain constraints introduced in
the previous subsection can be directly integrated in pattern mining algorithms. In this sub-
section, we present how our constraints can be integrated in two existing pattern mining
algorithms: a levelwise apriori-like algorithm [1, 41, 51] and an adaptive algorithm [21].
These two algorithms highlight the generic nature of our approach.

A levelwise algorithm for finding all constrained co-locations A classical approach to mine
patterns is to use a levelwise exploration of the search space. More precisely, the princi-
ple of this approach is to do a breadth-first exploration of the search space from smaller
patterns to larger ones, and to use an anti-monotone property of the predicate to prune
patterns. Indeed, if the pattern X is false w.r.t. the predicate, all patterns Y ⊃ X are
false.

First, the algorithm searches interesting patterns of size 1. Then, at each iteration k, a set
of candidate patterns of size k, denoted Candk, is generated by using interesting patterns of
size k − 1. A candidate pattern is a pattern having all its k − 1 sub patterns interesting. After
this generation step, all candidate patterns are tested against the predicate, and the resulting
interesting patterns are used to begin the next iteration (others are pruned). The algorithm
stops when the set of candidate patterns is empty.

The generic levelwise algorithm presented in Mannila and Toivonen [41], and used in
Shekhar and Huang [51] for co-location mining, is modified as follows:

As shown by Algorithm 1, spatial constraints on objects are used in the evaluation step
(lines 4-8), i.e. when testing if a co-location is interesting or not w.r.t. the participation
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index threshold. Actually, these constraints limit the number of objects studied during the
generation of the table instance of each co-location (line 5), and thus limit the number of
spatial joins done. Constraints on features/themes are used in the generation step (line 11),
i.e. when constructing new candidate co-locations based on interesting ones found in the
previous iteration. These constraints remove, from the set of candidate patterns, co-locations
that are not satisfying thematic constraints defined by the expert.

An adaptive algorithm for finding maximal constrained co-locations A classical level-
wise strategy is efficient when the size of interesting patterns remains small. However, when
the dataset has large interesting co-locations, the search space explored by such strategies is
exponentially large (2k co-locations for an interesting co-location of size k), and the algo-
rithm does not fit in memory. To avoid such problem, several strategies have been proposed
in the literature (e.g. depth-first strategies in Zaki et al. [56], Burdick et al. [12], levelwise
exploration with “jumps” in Bayardo [7]; Lin and Kedem [37], pattern growth strategies in
Han et al. [25]).

In this paragraph, we present an adaptive strategy based on the work done in Flouvat
et al. [21] for maximal frequent itemset mining. The principle of this strategy is to com-
bine the strength of both levelwise algorithm and dualization based algorithms, to find
maximal co-locations. “Small” maximal interesting co-locations are efficiently discovered
using the levelwise strategy. “Large” maximal interesting co-locations are efficiently dis-
covered by dualization. A dualization corresponds to a jump into the search space, where
“small” uninteresting patterns (discovered by the levelwise algorithm) are used to generate
large potentially interesting patterns. These “jumps” are not based on a heuristic such as in
many algorithms, but they are based on a theoretical property of the positive and negative
borders [45].

Recall that another interest of mining maximal interesting co-locations is to provide a
condensed representation of all interesting co-locations, since this set is smaller and experts
can deduce all interesting co-locations based on maximal ones (but not their interesting-
ness measure). When the number of interesting co-locations is too large, this makes easier
interpretation of results by experts.

This algorithm does a levelwise generation (lines 2 and 24) and evaluation (lines 5–12)
of candidate co-locations. Such as in the previous levelwise algorithm, domain constraints
are used in these steps to prune candidate patterns (in red, lines 1,2 and 24) and to prune
spatial objects (in red, line 6 and 17). In line 13, maximal constrained co-locations found
during this levelwise exploration are stored in the positive border Bd+. The levelwise
exploration also finds (minimal) uninteresting co-locations (line 10). These uninteresting
co-locations are used to do a dualization/jump in the search space (lines 15–22), and to
generate large potentially interesting co-locations. The theoretical properties of dualization
guarantee that these patterns are the best maximal potentially interesting co-locations that
can be generated based on known co-locations. Co-locations of this “optimistic” positive
border are evaluated against domain constraints and participation index (line 17 and 18).
Maximal constrained co-locations found are stored in the positive border (line 19). They
are also used to prune candidate patterns in the levelwise generation step (line 24). This
alternation of levelwise exploration and jumps continues until no more candidate patterns
are generated. Note that jumping too soon may not be interesting, since we may not have
enough informations (known interesting co-locations) to generate maximal interesting co-
locations. To deal with this problem, the function IsDualizationRelevant is used to find
the best level to begin jumps w.r.t. dataset characteristics (see Flouvat et al. [21] for more
details).
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4.3 Domain-driven visualization of co-locations

The visualization of data mining results is essential to have usefull domain knowledge. In
domains manipulating geographical data, GIS are classical tools for storing and visualizing
spatial data. A main characteristic of GIS is the cartographic visualization of the information
in thematic layers.
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However, the potential high number of co-locations and instances may lead to an unread-
able map. Moreover, if co-locations are presented in a textual report, experts lose spatial
information of the underlying objects (see Fig. 6). Another option is to display all instances
of only one selected co-location. This approach is done by Andrienko and Andrienko [3].
It enables to have detailed informations about events of one preselected co-location, but we
can’t have a global view of all co-locations at the same time.

To deal with these problems, we propose a new cartographic visualization of co-locations
in a GIS. Since each interesting co-location may have a high number of instances, our idea
is to summarize these instances using a new clustering approach, and to integrate them in a
layer of the GIS. The resulting co-location layer will display to experts where and how each
co-location is generally located, thus giving a global view of the spatial distribution of the
solutions.

Thus, if we refer to the classification done in Bertini and Lalanne [8], we present in this
paper a visually enhanced mining approach. Visualization techniques are used to provide
easily understandable data mining results to users. However, our approach differs from basic
approaches using only classical visualizer (e.g. scatter, map, trees), since it uses data mining
(clustering) to improve map readability.

4.3.1 How to visually represent a co-location?

First of all, we introduce the visual representation of co-locations proposed in this paper.
As introduced in Section 3, co-location instances are sets of objects that form cliques under
a neighborhood relation. As a consequence, it is natural to represent each co-location by a
labeled clique, where each vertex is a feature and each edge represents the neighborhood
relation. Figure 7 illustrates this definition (without considering colors).

An important aspect in co-location mining is the prevalence measure (i.e. the participa-
tion index). We use edge-coloration to visually represent the strength of a co-location. We
let users choose a “base color” for all edges. Then, for a given co-location, color of edges
is a saturation adjustment based on this color. The color saturation is calculated using the

Fig. 6 Co-location visualization problem
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Fig. 7 Colored and labeled clique representation of co-location {mining zone, sparse vegetation, sensitive
trail, river erosion} with pi( {mining zone, sparse vegetation, sensitive trail, river erosion}) = 0.8

prevalence measure (saturation factor). A strong co-location (i.e. with a high value of par-
ticipation index) will have a bright color, whereas a weak co-location will have a darker
one. For example, in Fig. 7, the base color chosen by users is red and edges color is bright
red since the participation index of the co-location is high.

A main characteristic of GIS is a cartographic visualization of data in thematic layers
(e.g. vegetation, erosion or man made construction), each one being composed of spatial
objects associated to features/attributes (e.g. tropical forest, savannah or maquis for the
vegetation theme). In our approach, we use vertex-coloration to show the theme associated
to each feature. For example, in Fig. 7, vertex color for “sparse vegetation” is green since
this information belongs to the “Vegetation” layer of the GIS.

4.3.2 How to position co-locations in the GIS map?

Clustering the spatial distribution of a co-location A co-location only gives in itself few
spatial informations. For example, saying that “co-location {A,B,C} is frequent” only
informs the experts that object-type A, B and C are often close to each other, but he don’t
know where and how. The spatial information of a given co-location is mainly carried by its
instances. Since the number of instances of a given co-location may be huge and their spa-
tial distribution heterogeneous, we have to identify some typical localizations, i.e. to group
instances w.r.t. their spatial position. To do this, we perform a cluster analysis.

This cluster analysis can be done using any clustering method such as K-means [39] or
DBSCAN [19], directly in the mining algorithm. For each candidate co-location X, the min-
ing algorithm generates its table instance to process the participation index. If the constraints
are satisfied, the candidate co-location is interesting and the clustering can be applied on
the table instance. This can be done during the evaluation step (for example, line 6 in
Algorithm 1).

However, running a new clustering for each co-location is time consuming. We can opti-
mize this processing by considering that all co-locations are constructed based on the same
set of features. Therefore, we develop a two-steps heuristic clustering method integrated in
the mining algorithm based on:

– a clustering of each feature instances, run once at the beginning of the co-location
mining algorithm (Algorithm 3).
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– a clustering of each co-location instances based on the preprocessed clusters, using a
merge and split approach (Algorithm 4).

First, Algorithm 3 generates clusters of each feature instances as a preprocessing step for
co-location mining. In other words, it summarizes where each object-type (feature) occurs.
For each feature f satisfying domain constraints (line 1), the algorithm groups objects hav-
ing feature f based on their locations (line 3–4). Note that only objects satisfying spatial
domain constraints are studied (line 3). These clusterings are done using the X-means algo-
rithm [47] implemented in Weka [24]. The interest of X-means compared to K-means is that
the number of clusters k is no more an input parameter. Figure 8 (step “pre processing clus-
ters”) illustrates this “pre-clustering” in which instances of each object-type (e.g. A, B and
C) are partitioned independently.

Second, Algorithm 4 uses these preprocessed clusters as a basis for clustering the table
instance of each interesting co-location. This algorithm is used in line 7 in the levelwise
Algorithm 1, and lines 13 and 19 in the adaptive Algorithm 2. It processes each table
instance using a merge and split approach. Given a co-location X, its table instance T IX

and the clusters of X’s features
⋃

i∈X Clustersi , this methods partitions T IX’s instances
using preprocessed clusters of i ∈ X. The principle is to partition (“split”) instances



166 Geoinformatica (2015) 19:147–183

Fig. 8 Clustering instances of co-location {A,B,C}

according to the features f having the highest number of clusters. However, using this
method, we may have conflictual clusters, i.e. two different clusters sharing common
objects. Figure 8 illustrates this problem for co-location {A, B,C}. If we split accord-
ing to clusters of C, we have {A2, B2, C2} and {A3, B2, C3} (two instances of co-location
{A,B,C}) in two different clusters. However, these two clusters share a common object: B2.
This means that these two clusters are not so far from each other. To deal with this problem,
we study each pair of objects o1 and o2 in different clusters of f ∈ X, denoted by clustero1
and clustero2 (lines 4-8). These objects are in two instances I1 and I2 of co-location X. If
these instances share a common objects o′ with feature g ∈ X (g �= f ), then clustero1 and
clustero2 are conflictual clusters (line 8). In such case, clustero1 and clustero2 are merged
(line 9). We continue this merge approach until the features f having the highest number
of clusters does not change anymore (line 13). Then we can split instances of X w.r.t. clus-
ters of f (line 14). In the example of Fig. 8, this approach results in merging the two first
clusters of C.

From clusters of instances to co-locations in the GIS map For each interesting co-location
X, at the end of the clustering step, we have several clusters of instances representing the
typical locations of X. For example, we have three typical locations (i.e. three clusters) for
co-location {A, B,C} in Fig. 8. We propose to associate each typical location (i.e. each
cluster) to a clique, and to position the vertices of the clique based on the spatial coordinates
of the objects in the cluster.

A co-location X is set of features (or object-types). As presented in Section 4.3.1, each
feature f ∈ X is associated to a vertice in the clique visual representation. Thus, for a
given cluster (i.e. a typical location), the position of each feature f in the map (i.e. the
position of the vertice with label f ) is the average position of the objects associated to
this feature in the cluster. In other words, each vertex with feature f is the centroid of f ’s
objects in the studied cluster. For example, in Fig. 9, the first cluster is composed of four
instances of co-location {A, B,C}. These four instances involve 4 objects with feature A
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Fig. 9 Visualization of a co-location {A,B,C} in the GIS Map

({A1, A2, A3, A4}), 3 objects with feature B ({B1, B2, B3}), and 3 objects with feature C

({C2, C3, C4}). To represent this typical location of co-location {A,B,C}, we draw in the
map a clique having 3 vertices (one with label A, one with label B and one with label C).
Each vertex is the centroid of the objects with the corresponding feature (e.g. the vertex with
label A is the centroid of objects {A1, A2, A3, A4}).This approach is applied to the three
clusters of {A, B,C}, resulting in three cliques in the final map.

The main interest of this approach is to visualize more precisely where and how inter-
esting co-locations are generally located. Thus, it gives additional informations to experts
compared with existing solutions. For example, Fig. 9 shows that co-location {A, B,C} is
generally located in the north west, in the center and in the south east of the map. This
approach has the advantage to provide experts a global picture of the spatial distribution
of all co-locations. Using a classical visualization approach, it would have been difficult to
have such informations. Note that this approach can also give additional informations on
how features of a co-location are compared to each others.

5 Application to soil erosion data

5.1 Prototype architecture

The proposals discussed in this paper have been integrated in a prototype coupled with a
PostGIS database (Fig. 10). PostGIS is a spatial database extension for PostgreSQL.

For the data mining part, this prototype is based on a data mining tool called iZi [22].
This tool is used to solve interesting pattern mining problems as defined in the formal
framework of Mannila and Toivonen [41], by providing generic algorithm implementations.
This tool has been extended by two sub-modules. The first one allows to mine interesting
co-locations. It takes as input parameters the data (a PostGIS table), the spatial relation stud-
ied, the participation index threshold used to select interesting co-locations, and the expert
constraints. This module can output all interesting co-locations or only the maximal ones.
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Fig. 10 Architecture of the prototype

The second one allows the access and storage of co-locations in a PostGIS geographical
database.

For the visualization part, QuantumGIS (a free desktop application framework) is used
as an interface to visualize data and interesting co-locations stored in the GIS. Note that
experts can use the zoom functionality of the GIS to focus on an area or on specific patterns.

The co-location mining module extracts interesting co-locations w.r.t. domain con-
straints, generates spatialized clique representations and stores theme in a PostGIS table.
Then, results are displayed to experts by QuantumGIS. Experts can choose to display
several thematic layers among them one for interesting co-locations.

5.2 Experimental protocol

We used our approach to study soil erosion in two areas. These two areas are located in
the south east coast of New-Caledonia. In these areas, natural erosion takes place as well
as erosion related to mining activities. The first area is the Ouinné area. Its surface is about
110 km2. 18 thematic layers were considered. Among them are thematic layers dealing
with soil erosion, land cover, geological surfaces, mining activities and road network. These
layers contain 68 features (object-types) and 3943 spatial objects. The second area is the
Kwe Binyi area (which is located 50 km south east from Ouinné). Its surface is about 29 km2.
In this dataset, 21 thematic layers were considered. These layers contain 71 features (object-
types) and 7306 spatial objects.

The data was stored in a PostGIS geographical database (vector format). Two spa-
tial relations of PostGIS were considered to define the neighborhood relationship: the
St intersects function and the St dwithin function. With the first one, two objects are
neighbors if their spatial intersection is not empty (i.e. they share at least a boundary). With
the second one, two objects are neighbors if they are within a distance of one another (two
distance thresholds are studied). We focus our analysis on maximal interesting co-locations
(w.r.t. vertex inclusion), with a size strictly greater than one.

First, a specialist in soil erosion analyzes results of the apriori-like co-location mining
approach of Shekhar and Huang [51] on the Ouinné dataset. This approach does not con-
sider domain knowledge (i.e. experts constraints). Several participation index thresholds
were studied with the spatial relations based on St intersects and St dwithin Post-
GIS functions. We used our clustering-based visualization approach to display interesting
co-locations to the expert. This highlights the interest of our visualization approach.

Then, the expert analyzes results of our constraint-based co-location mining approach.
The constraints were defined using uninteresting patterns (known or irrelevant co-locations)
found by the expert in the previous experiments (without constraints). The main objective
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of this analysis is to highlight that new interesting patterns can be discovered thanks to our
constraints.

After this qualitative analysis, we study the performances of our approach, compared
with existing ones, on the Ouinné and Kwe Binyi datasets. We compare our constraint-
based co-location mining with the apriori-like co-location mining algorithm of Shekhar
and Huang [51]. We also compare our new clustering algorithm, used in our visualization
approach, with the DBSCAN algorithm of Ester et al. [19] and the X-Means algorithm of
Pelleg and Moore [47]. Execution time encompasses mining time and visualization time,
i.e. the clustering time and the time to store the visual representations in PostGIS tables.
Several participation index thresholds were studied with three spatial relations (“intersects”,
“within 100 m” and “within 200 m”). We also present the number of patterns extracted for
each experiment. The main objective of this analysis is to show the impact of constraints
and visualization on execution time and number of solutions.

5.3 Qualitative analysis of extracted patterns

5.3.1 Results without constraints

Following results present an analysis of interesting co-locations obtained on Ouinné dataset,
using two spatial relationships (St intersects and St Dwithin at 200 m) and a partici-
pation index threshold of 0.6. The algorithm used is the classical apriori-like co-location
mining algorithm (i.e. without constraints). In this subsection, we only describe some typical
patterns. Some of these patterns are interesting and others are rather obvious.

St intersects spatial relation The algorithm extracts 31 interesting co-locations. These co-
locations are decomposed in two types: intra-themes patterns and inter-themes patterns.
Intra-themes patterns show correlations between features of the same theme (e.g. correla-
tions between several types of vegetations). Inter-themes patterns show correlations between
features of different themes (e.g. correlations between soil erosion, vegetation and mines).

Intra-themes patterns An example of interesting intra-theme pattern is the co-location
{dense para forester scrub, ligno-herbaceous scrub} (size 2), i.e. “dense para forester scrub
and ligno-herbaceous scrub are often neighbors”. Both belong to the land cover layer. Ligno-
herbaceous scrub and dense para forester scrub were classified as vegetation on ultramafic
substrate. These features are frequently associated. Ligno-herbaceous scrub is part of non-
forest formations on ultramafic substrate. According to Jaffré [31], this correlation may be
related to past fire events since ligno-herbaceous scrub substitutes shrubby vegetation (e.g.
dense para forester scrub) when affected by fires.

Other extracted patterns are obvious. The co-location {uncontrolled mining
landfills and coulees of materials, mining area and mine spoils} (size 2) from the geologi-
cal surfaces layer is an example. Uncontrolled landfills were currents practices near mines
before environmental laws were enacted by New-Caledonia congress. These areas are the
results of accumulation of mining tailing, which are not valorized, not redeveloped, and left
on mining areas. These landfills are often linked to erosion forms. However, this relation
seems obvious because landfills are coming from mining areas.

Inter-themes patterns An example of interesting inter-theme pattern is {trail, area degraded
by mining activities}. Figure 11 displays this co-location (represented by the two cliques of
size 2) and its corresponding instances (polygons in orange for “areas degraded by mining
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Fig. 11 Visualization of inter-themes pattern {trail, area degraded by mining activities}

activities” and lines in maroon for “trails”). We also display the instances of this co-location
to confirm the spatial distribution of the pattern. As shown by this map, our visualization
approach enables to see two typical locations for this pattern: one in the north-west of the
studied area, and one in the south-east.

As confirmed by the expert, these two features are closely related, since most of trails are
located on areas degraded by mining activities. These trails are used by mining companies
that extract Nickel in these areas. Since 1971, trails with screes on hillslopes are numerous.
As observed by geologists, these mining trails participate in erosion of nearby areas. Thus,
this co-location is particularly interesting for risk management, since it highlights areas in
which the combination of trails and mines may cause soil erosion.

Another example of pattern is {trail, water course}. This pattern is particularly interest-
ing since erosion forms are impacted by the presence of trails and watercourses. Authors in
Atherton et al. [6] use this correlation to define a new indicator, WDI (Watershed Devel-
opment Index), based on the number of water courses crossed by roads in one square
kilometer.
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St Dwithin spatial relation at 200 m Then, our expert analyzes co-locations extracted with
the same participation index threshold (i.e. 0.6), but with a less strict neighbor relation (i.e.
St Dwithin at 200 m). The main idea here is to show the impact of the spatial relation
on extracted patterns. With these parameters, new interesting co-locations are found. 46
patterns are extracted (36 of size 2, 6 of size 3, and 4 of size 4). Among these patterns, very
located patterns, concerning a few number of geographic entities, are found. For example,
co-location {salt marsh, backfills on maritime area not related to mining} is one of these
new co-locations. Only six geographic entities represent salt marshes, and one for backfill
on maritime area (and their surface is small).

Obvious patterns also appear in these results. An example of obvious pattern is {main
water courses, zonal water courses, fresh water} (Fig. 12). Main water courses, secondary
water courses, zonal water courses are coming from the same hydrographic network. Each
object represents a part of this network. This co-location doesn’t highlight an interesting
correlation, but it only shows how the hydrographic network has been integrated in the GIS.

New interesting patterns are also displayed. For example, the co-location {area degraded
by mining activities, bare ground on ultramafic substrate} is both obvious and interesting.
Figure 13 shows the spatial distribution of this pattern. This relation is obvious because, in
this area, 86% of bare grounds on ultramafic substrate are in, or near, areas degraded by
mining activities. Most objects are mines in exploitation or formerly exploited. Thus, the
co-location in itself doesn’t give any new information. However, the spatial distribution of
this pattern (visualized thanks to our approach) is very interesting, because these ultramafic
soils (laterites) are easily erosive when they have no vegetations.

Conclusions of these experiments This first analysis confirmed the interest of our
clustering-based visualization approach for experts. Our approach provides a global view

Fig. 12 Visualization of co-location {main water courses, zonal water courses, fresh water}



172 Geoinformatica (2015) 19:147–183

Fig. 13 Visualization of co-location {area degraded by mining activities, bare ground on ultramafic
substrate}

of the spatial distribution of co-locations. It enables to quickly identify interesting patterns
in the map. Then, each interesting pattern can be studied in details by zooming and dis-
playing its instances (i.e. objects). Thus, experts can easily navigate from a global view of
the solutions to a more detailed view. Thanks to informations on the spatial distribution of
co-locations, interpretation and exploitation of patterns by experts is easier (e.g. pattern of
Fig. 13).

It also confirms the impact of the spatial relation: less strict neighbor relation enables to
extract more patterns. However, no matter what is the neighbor relation, co-location mining
still provides obvious, not interesting, patterns to experts. This observation highlights the
need of integrating domain constraints in the mining process. Using such constraints, expert
knowledge can be taken into consideration. Obvious correlations can be pruned, participa-
tion index thresholds can be decreased, and new patterns can be discovered (as shown in the
next subsection).

5.3.2 Results with constraints

In this subsection, we present the results of our constraint-based approach on the same
dataset (Ouinné), with the same neighbor relations. The domain constraints have be defined
based on obvious and not interesting patterns found in the previous experiments (with a
basic co-location mining algorithm). Thanks to these constraints, less patterns are generated,
performances are improved and lower participation index thresholds can be tested. The
previous algorithm cannot mine patterns using these thresholds due to the large number
of solutions. In the following, we present some examples of patterns extracted using these
lower thresholds.
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The co-location {secondary water course, bare grounds on ultramafic substrate} is an
example of new pattern extracted thanks to constraints. It has been extracted using the
St Intersects function and a participation index threshold of 0.5. This pattern is interest-
ing because such soils are often related to mining activities. When these mining soils have
no vegetations, erosion can be very important. In such case, water courses crossing these
soils can be polluted.

The expert has also discovered new interesting patterns with St Dwithin at 200 m and a
participation index threshold of 0.5. For example, the co-location {area degraded by mining
activities, woody herbaceous scrub}, i.e. areas degraded by mining activities are often near
woody herbaceous scrubs (Fig. 14). Woody herbaceous scrub is interesting because of its
high percentage of endemic plants. Moreover, this type of vegetation is particularly adapted
to mining soils. Such vegetation is essential to revegetation and restoration of these areas
degraded by mining activities.

Of course, all the new patterns extracted thanks to constraints were not interesting. An
example of pattern is {woody herbaceous scrub, dense para forester scrub, sparse vegeta-
tion on ultramafic substrate} mined with St intersects function and a participation index
threshold of 0.3. This relation is obvious because these types of vegetation are often associ-
ated or near. They are vegetations on ultramafic substrate. Only the vegetal cover is different
between these classes.

Conclusions of these experiments The interest of our approach is that we can use these unin-
teresting or obvious patterns as constraints, and find new patterns with lower participation
index thresholds (since constraints improve algorithm performances). Thus, the discovery of
interesting patterns for experts is iterative and interactive. At each iteration, experts identify

Fig. 14 Visualization of co-location {area degraded by mining activities, woody herbaceous scrub}
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uninteresting patterns and use them as constraints to find new patterns in the next iteration.
For example, at the end of the first experiments (Section 5.3.1) with a participation index
threshold of 0.6, the expert has identified 37 constraints. They have been used to define
new constraints from which the expert has found new interesting patterns. Discovered con-
straints can also be used on other datasets to improve both performances and relevancy of
extracted patterns.

5.4 Quantitative analysis and performance evaluation

Following experiments were done on a Intel Xeon 2.66 GHz with 4Go of RAM. The
operating system was Windows Server 2003.

5.4.1 Impact of constraints

In this subsection, we focus on the impact of constraints on execution time. In these exper-
iments, execution time encompasses mining time (with or without constraints), and also
clustering time since visualization is totally integrated in mining algorithms.

Figure 15 compares execution time with our constraint-based mining approach and with-
out constraints (i.e. using the classical apriori-like mining algorithm) for three neighbor
relations (St intersects, St dwithin at 100 m, and St dwithin at 200 m) and various par-
ticipation index thresholds. The constraints used in these experiments are the 37 constraints
derived from obvious and uninteresting patterns mined with a threshold of 0.6 on the Ouinné
dataset. We used the classical levelwise co-location mining approach presented in Shekhar
and Huang [51].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ot

al
 T

im
e 

(s
ec

)

Minimum participation index

Ouinne St_intersects

classical apriori-like mining algorithm 
 (without constraints)

our constraint-based mining algorithm 
 (with constraints)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ot

al
 T

im
e 

(s
ec

)

Minimum participation index

Ouinne St_dwithin 100m

classical apriori-like mining algorithm 
 (without constraints)

our constraint-based mining algorithm 
 (with constraints)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ot

al
 T

im
e 

(s
ec

)

Minimum participation index

Ouinne St_dwithin 200m

classical apriori-like mining algorithm 
 (without constraints)

our constraint-based mining algorithm 
 (with constraints)

Fig. 15 Execution time with and without constraints on the Ouinné datastet
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These results on the Ouinné dataset confirm the impact of constraints on execution time.
Mining with constraints is far more efficient than without them. This difference is more
important when the neighbor relation is less strict (e.g. St dwithin at 200 m), because more
candidate co-locations are generated and tested with such relation.

These results are explained by Fig. 16. This figure shows the number of co-locations
extracted during the experiments presented in Fig. 15. The number of patterns mined with
constraints is much lower. Constraints prune lot of patterns, which improves execution time.
It also enables to extract new patterns at lower participation index thresholds. For example,
with the participation index threshold at 0.4 (and St dwithin at 200 m), we extract 22 new
patterns with the threshold at 0.6. This extraction is done in 671 s. instead of 3228 s. for the
same threshold but without constraints.

Figure 17 compares execution time on Kwe Binyi dataset and Ouinné datastet (with the
same neighbor relation). Characteristics of Kwe Binyi dataset are different from the ones of
Ouinné datastet. Kwe Binyi dataset represents a smaller area (29 km2 instead of 110 km2

for Ouinné dataset) with more spatial objects (7306 objects instead of 3943 for Ouinné
dataset). Kwe Binyi dataset is a dense dataset w.r.t. spatial and feature dimensions. Its 7306
geographic objects are associated to 71 features, grouped in 21 themes. In comparison,
Ouinné datastet is composed of 3943 geographic objects associated to 68 features, grouped
in 18 themes. Figure 17 highlights the impact of this difference on execution time. Mining
takes more times on Kwe Binyi dataset. However, we can note that constraints have always
the same interest. Mining with constraints is faster, which enables to extract patterns at
lower thresholds.

Finally, note that this important impact of constraints on execution time was not obvi-
ous. We could have constraints that don’t prune many patterns. In such case, the time saved
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Fig. 16 Number of co-locations extracted with and without constraints on the Ouinné datastet
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Fig. 17 Comparison of execution time on Kwe Binyi dataset and Ouinné dataset

thanks to them may be negligible. Execution time could even increased. Indeed, it depends
on the cost of testing the constraints compared to the cost saved by pruning patterns thanks
to constraints. Testing a constraint has a cost for the mining algorithm. For example, in
itemset mining, it is well known that checking the frequency constraint is a very important
part of execution time of mining algorithms. For that reason, many data mining researchers
worked on optimized data structures and algorithms for frequency computation. Our exper-
imentations show that the cost of our constraints is low whereas their impact is strong (i.e.
they prune lot of patterns). Only 37 basic constraints greatly impact extracted solutions
and performances. It even enables to analyze the data with much lower participation index
thresholds.

Impact of constraints on the mining algorithm doesn’t really depend on the type of
constraints. It depends on data and constraint parameters chosen by the expert. In our pro-
cess, constraints (type and parameters) are mainly defined by experts based on previously
found uninteresting co-locations. Since the mining algorithm extracts only most frequent co-
locations, constraints are defined based on frequent uninteresting patterns. Thus, they will
necessarily prune a relatively important number of informations in the next executions of the
mining algorithm, and they will have an important impact on performances and solutions.

5.4.2 Impact of the clustering-based visualization

In this subsection, we focus on the impact of our clustering-based visualization on execution
time. Indeed, visualization has also an impact on algorithm performances since we have to
do a clustering for each interesting co-location (only if its participation index is greater than
the threshold).

Figure 18 presents execution time with and without visualization. Experiments have been
done on the datasets studied in the previous section, with the same parameters. As shown
by this figure, mining co-locations and processing their visual representations is less perfor-
mant than co-location mining alone, which is normal since we have additional processing.
However, these performances still acceptable for experts (same order of magnitude) com-
pared to the value-added informations provided, especially if we take into consideration that
such data is rarely updated.

Figure 19 shows the number of co-locations extracted w.r.t. the number of spatial rep-
resentations displayed on the map using our approach. Except for Kwe Binyi dataset, the
number of spatial representations displayed is no more than three times the number of co-
locations. In other words, we have in average three spatial representations displayed for each
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Fig. 18 Execution time with and without visualization in previous experiments
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Fig. 20 Comparison of our clustering approach compared with a DBSCAN or a X-means post-processing

co-location. On Kwe Binyi dataset, this difference is more important because this dataset
is dense with lots of objects in a small area. If we consider that using a classical visual-
ization approach we would have to display all instances of each co-location, our approach
efficiently reduces informations displayed to experts. It only gives a summary, an overview,
of the spatial distribution of co-locations. For example, on Ouinné dataset with St dwithin

at 100m and a threshold at 0.6, we have in average 483 instances for each co-location (for a
total of 50 co-locations), whereas our approach displays in average 2 spatial patterns on the
map for each co-location (for a total of 105 patterns). In the same way, on Kwe Binyi dataset
with St intersects and a threshold at 0.6, we have in average 793 instances for each co-
location (for a total of 73 co-locations), whereas our approach displays in average 4 spatial
patterns on the map for each co-location (for a total of 298 patterns).

Finally, we compare our clustering approach to a “basic” clustering done in a post-
processing step (Fig. 20). More precisely, this post-processing partitions each table instance
after extraction of all co-locations. To cluster each table instance, we test two clustering
algorithms: DBSCAN [19] and X-means [47], provided in Weka [24]. Due to scalability
issues with the DBSCAN post-processing, we studied execution time on a subset of the Kwe
Binyi dataset. The first comparison with DBSCAN (left plot) shows that execution time
quickly increases with a DBSCAN post-processing. For example, execution time is 26740 s
for a participation index threshold at 0.5, whereas our approach takes only 236 s. The sec-
ond comparison with X-means (left plot) shows that the post-processing approach is only
a little faster than our approach for higher thresholds, while our approach is more efficient
with lower thresholds. This difference for higher thresholds is mainly due to the cost of our
pre-clustering of each feature instances. With the post-processing approach, this step is not
done. Co-locations of size 1 (i.e. single features) are not processed and displayed. Indeed,
these patterns are not interesting for experts since, by definition, their participation index
is always equal to 1. On the contrary, we have to process and store these clusters on single
features with our approach.

6 Conclusion

In this paper, we were interested in discovering and delivering more interesting co-location
patterns to experts. Integration of domain knowledge in the mining process combined with
an adapted visualization of mining results, is essential to provide useful and interpretable
knowledge to experts. This issue is especially important in domains manipulating spatial
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data, since experts are used to work with intuitive cartographic tools to store and visualize
their data.

In this context, we set the co-location mining problem in a more general pattern mining
framework. This framework allows to integrate domain knowledge in the mining algorithm.
Two types of constraints have been proposed: (i) constraints on features and themes; (ii)
spatial constraints on objects. These constraints lead to both more accurate information for
experts and efficient pruning during the mining phase.

In addition, we also propose a new visualization of co-locations integrated in GIS maps.
This cartographic representation shows the spatial distribution of co-locations, i.e. where
and how they are generally located. Their generation is done by integrating a new cluster-
ing algorithm in co-location mining. Thus, this paper extends the co-location concept with
additional spatial information, leading to a finer interpretation of the spatial correlations by
experts.

All these propositions have been integrated in a prototype based on PostGIS. Experimen-
tations have been done on two real geological datasets related to the problem of soil erosion.
Results have been validated by a domain expert which highlights a concrete added-value.

This work has several perspectives. The algorithm performance could be improved in
order to deal with more layers and more features. The development of dedicated data struc-
tures or new mining strategies are possible solutions. Investigations into specific constraints
in order to condense the set of co-locations could be also a good start. Finally, we plan to
test our prototype on other datasets dealing with other environmental problems.
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