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Abstract Polygons provide natural representations for many types of geospatial objects,
such as countries, buildings, and pollution hotspots. Thus, polygon-based data mining
techniques are particularly useful for mining geospatial datasets. In this paper, we propose
a polygon-based clustering and analysis framework for mining multiple geospatial datasets
that have inherently hidden relations. In this framework, polygons are first generated from
multiple geospatial point datasets by using a density-based contouring algorithm called
DCONTOUR. Next, a density-based clustering algorithm called Poly-SNN with novel
dissimilarity functions is employed to cluster polygons to create meta-clusters of polygons.
Finally, post-processing analysis techniques are proposed to extract interesting patterns and
user-guided summarized knowledge from meta-clusters. These techniques employ plug-in
reward functions that capture a domain expert’s notion of interestingness to guide the
extraction of knowledge from meta-clusters. The effectiveness of our framework is tested
in a real-world case study involving ozone pollution events in Texas. The experimental results
show that our framework can reveal interesting relationships between different ozone
hotspots represented by polygons; it can also identify interesting hidden relations between
ozone hotspots and several meteorological variables, such as outdoor temperature, solar
radiation, and wind speed.

Keywords Spatial data mining . Dissimilarity functions for polygons . Polygon clustering .

Polygon analysis . Mining related spatial datasets

1 Introduction

Tools that visualize and analyze geo-referenced datasets have gained importance in the last
decade, as can be evidenced by the increased popularity of products, such as Google Earth,
Microsoft Virtual Earth, and ArcGIS. Polygons play an important role in the analysis of geo-
referenced data as they provide a natural representation of geographical objects, such as countries,

Geoinformatica (2014) 18:569–594
DOI 10.1007/s10707-013-0190-2

S. Wang (*) : C. F. Eick
Department of Computer Science, University of Houston, Houston, TX 77204-3010, USA
e-mail: sujingwa@cs.uh.edu

C. F. Eick
e-mail: ceick@uh.edu



buildings, and pollution hotspots. Polygons can also serve as models for geospatial clusters, and
can model nested and overlapping clusters. Moreover, polygons have been studied thoroughly in
geometry and they are mathematically well understood. Furthermore, powerful software libraries
are available to manipulate, analyze, and quantify relationships between polygons. Spatial
extensions of popular database systems, such as ORACLE, PostGIS, and Microsoft SQL Server,
support polygon search and polygon manipulation in extended versions of SQL. However, past
and current data mining research has mostly ignored the capabilities that polygon analysis can
offer.

In general, polygon analysis is particularly useful to mine relationships among multiple
geospatial datasets, as it provides a useful tool to analyze discrepancies, progression, change,
and emergent events. Our work focus on clustering and analysis of polygons that have been
generated from multiple geospatial point datasets. In particular, the scope of a spatial cluster is
described by a polygon; point objects inside a polygon belong to the same spatial cluster, while
point objects outside of a polygon do not. Our framework provides computational methods to
create such spatial clusters from multiple geospatial point datasets. Multiple related geospatial
datasets contain a lot of overlapping polygons. Traditional distance functions and clustering
algorithms for data points would not work directly for such polygons. New distance functions
and clustering algorithm are proposed in this paper to cluster polygons and generate meta-
clusters. As there are usually a lot of meta-clusters containing multiple polygons, it is desirable
to have automated screening procedures to help domain experts to select clusters and meta-
clusters that they are interested in based on their domain-driven notion of “interestingness”.
Therefore, our framework provides post-processing techniques which mine the obtained meta-
clusters to extract interesting patterns and summarized knowledge based on a domain expert’s
notion of interestingness. The architecture of our framework will be introduced in Section 2.

This paper’s main contributions include:

& A new polygon-based framework for clustering and analyzing multiple spatial datasets is
presented.

& Novel distance functions to assess the similarity of overlapping polygons are proposed.
& A density-based clustering algorithm called Poly-SNN is introduced to cluster polygons.
& Two post-processing analysis techniques, which employ plug-in reward functions to

capture a domain expert’s notion of interestingness, are introduced to extract interesting
patterns and summarized knowledge from meta-clusters.

& Our work is evaluated in a challenging real-world case study involving ozone pollution
events in Houston metropolitan area.

The rest of the paper is organized as follows. Section 2 introduces the architecture of our
framework. Section 3 explains DCONTOUR algorithm. Distance functions and clustering
algorithms for overlapping polygons are discussed in Section 4. Section 5 presents post-
processing analysis techniques for finding interesting clusters. Section 6 evaluates our work
with case studies on ozone pollution events in Houston metropolitan area. Section 7
discusses the related work. Section 8 concludes our study.

2 Polygon-based clustering and analysis framework for mining geospatial datasets

In our framework, we first generate spatial clusters represented by polygons from multiple
geospatial point datasets. Both spatial clustering algorithms which directly derive polygon
from point datasets and approaches that initially obtain spatial clusters as sets of objects and
wrap a polygon around those objects can be used to obtain such spatial clusters. As the first
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type of algorithm is not very common, an algorithm called DCOUNTOUR will be intro-
duced for this purpose. In the second step, we introduce new distance functions called
Overlay distance and Hybrid distance to access the distance between overlapping polygons.
The Shared Nearest Neighbor algorithm (SNN) is generalized to cluster polygons. In the
third step, post-processing analysis techniques are provided to extract interesting patterns
and to provide summaries from meta-clusters based on a domain expert’s notion of “inter-
estingness”. A spatial cluster will be characterized by two things in our work: a polygon
which described the scope of a spatial cluster and a statistical summary based on all the
objects belonging to the same meta-clusters; the statistical summary usually contains mean
values and standard deviations of various non-spatial variables for the objects in the same
spatial cluster. Two particular post-processing techniques are proposed: First, a greedy
algorithm is developed to automatically select a set of interesting polygons from meta-
clusters to obtain a final clustering. Second, a screening procedure which uses plug-in
reward functions is introduced to automatically identify interesting meta-clusters which
has unexpected member distributions respect to a continuous non-spatial variable.

In summary, our framework is an integration of clustering algorithms, post-processing
analysis techniques, and visualization. The architecture of our framework is summarized in
Fig. 1. It consists of three steps:

Step 1: Apply DCONTOUR algorithm to collect/generate polygons which describe spatial
clusters from multiple geospatial point datasets.

Step 2: Use the Poly-SNN algorithm to create meta-clusters from the polygons that were
generated in step1.

Step 3: Extract interesting patterns and create summaries from the meta-clusters using post-
processing analysis techniques.

We use multiple ozone concentration datasets downloaded from TCEQ (Texas Commission on
Environmental Quality) website [20] as an example to further explain the three steps in our
framework. TCEQ uses a network of 44 ozone-monitoring stations in the Houston-Galveston area
which covers the geographical region within [−95.8070, -94.7870] longitude and [29.0108,
30.7440] latitude. It collects hourly ozone concentration data from each monitoring station and
publishes the data on its website. In step 1, we first apply a standard Kriging interpolation method
[8] to compute the ozone hourly concentrations on 20×27 grids that cover the Houston metropol-
itan area. Next, we feed the interpolation function into the DCONTOUR algorithm with a defined
threshold to create sets of polygons. Such polygons describe ozone pollution hotspots at each
hour—areas whose hourly ozone concentrations are above the input threshold. In step 2, we apply
Poly-SNN with Hybrid distance functions to cluster polygons and create meta-clusters, which are
clusters containing sets of similar polygons. In step 3, we propose several plug-in reward functions
to capture a domain expert’s notion of interestingness to guide the extraction of knowledge from
meta-clusters. In particular, an algorithm to generate a final clustering from meta-clusters is
proposed. Such a final clustering could help domain experts to clearly capture the dominant ozone
pollution hotspots and possible maximum range of ozone pollution events for Houston area.
Moreover, automated screening procedures to identify unusual meta-clusters are introduced.

3 DCONTOUR

DCONTOUR [6] is the first density-based clustering algorithm that uses contour lines to
determine cluster boundaries. Objects that are inside a contour polygon belong to the same
cluster. DCONTOUR operates on the top of supervised density functions.
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We assume that objects o∈O have the form ((x, y), z) where (x, y) is the location of object
o, and z denoted as z(o) in the following is the value of interestingness of object o. In general,
density estimation techniques employ influence functions that measure the influence of a
point o with respect to another point v. The overall influence of all data objects oi∈O for
1≤i≤n on a point v is measured by the density function ψO(v). Density estimation is called
supervised because in addition to density information based on the locations of objects, we
take the interestingness z(o) into consideration when measuring density. ψO(v) is defined as
follows:

=O vð Þ ¼
Xn

i¼1
f influence v; oið Þ ¼

Xn

i¼1
z oið Þe−

d v;oið Þ2
2σ2

The parameter σ determines how quickly the influence of oi on v decreases as the distance
between oi and v increases.

The pseudo code of DCONTOUR is given in Fig. 2.
Figure 3 gives an illustration on how to construct contour intersection points based on

density threshold equal to 4.5. For instance, when the right edge of the lower left cell is
considered, because 4.5 is between 4.1 and 5.5, a contour intersection point exists on this
edge; by interpolating between 4.1 and 5.5, a point on this edge is sampled and its density is
computed as 4.8. Because 4.8 is larger than d, we continue the binary search by sampling a
point south of this point. The binary search terminates if the density difference between a
sampled point and d is less than a threshold. All the blue points on Fig. 3 are the contour
intersection points b for density equal to 4.5. Finally, in step 4, we connect contour
intersection points b found on cell edges and continue this process on its neighboring cells
until a closed polygon is formed or both ends of the polyline reach the grid boundary. An
algorithm proposed by Cottafava, and Moli [4] is used to compute contour polygons.

DCONTOUR

Spatial Clusters

Poly-SNN

Meta Clusters

Post-processing

Reward Functions

Summaries and Interesting
Patterns

Notion of Interestingness

Geospatial Datasets Domain Experts

Fig. 1 The polygon-based clustering and analysis framework for mining geospatial datasets
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4 Distance functions and clustering algorithm for overlapping polygons

4.1 Distance functions for polygons

One unique characteristic of our work is that we have to cope with overlapping polygons.
We believe that considering polygon overlap is of critical importance for polygon-based
clustering of related geospatial datasets. Therefore, in addition to the Hausdorff distance, we
propose two novel distance functions: Overlay and Hybrid distance functions. We define a
polygon A as a sequence of points A=p1,…, pn, with point p1 being connected to the point pn
to close the polygon. Moreover, we assume that the boundary of a polygon does not cross
itself and polygons can have holes inside. Throughout the paper we use the term polygon to
refer to such polygons.

4.1.1 Hausdorff distance

The Hausdorff distance measures the distance between two point sets. It is the maximum distance
of a point in any set to the nearest point in the other set. Using the same notation as [23], let A and
B be two point sets, the Hausdorff distance DHausdorff(A,B) for the two sets is defined as:

DHausdorff A;Bð Þ ¼ max maxa∈Aminb∈Bd a; bð Þ;maxb∈Bmina∈Ad a; bð Þf g
where d(a,b) is the Euclidean distance between points a and b.

In order to use the Hausdorff distance for polygons, we have to determine how to
associate a point set with a polygon. One straight-forward solution is to define this point
set as the points that lie on the boundary of a polygon. However, computing the distance
between point sets that consist of unlimited number of points is considerably expensive. An
algorithm that solves this problem for trajectories has been proposed [8] and the same
technique can be applied to polygons.

4.1.2 Overlay distance

The overlay distance measures the distance between two polygons based on their degree of
overlap. The overlay distance DOverlay(A,B) between polygons A and B is defined as:

Doverlay A;Bð Þ ¼ 1−
area Intersection A;Bð Þð Þ

area Union A;Bð Þð Þ
where the function area(X) returns the area a polygon X covers. The overlay distance
subtracts the ratio of the size of intersection over size of union of two polygons from 1.
The overlay distance is 1 for pairs of non-overlapping polygons.

DCONTOUR Algorithm
Input: Density function o, density threshold d.
Output: Density polygons for density threshold d.
Step 1: Subdivide the space into D grid cells.
Step 2: Compute densities at grid intersection points by using density function o.
Step 3: Compute contour intersection points b on grid cell edges where o (b) = d

using binary search and interpolation.
Step 4: Compute contour polygons from contour intersection points.

ψ

ψ
ψ

Fig. 2 Pseudocode of DCONTOUR
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4.1.3 Hybrid distance

The hybrid distance function uses a linear combination of the Hausdorff distance and the
Overlay distance. Because the Overlay distance between two non-overlap polygons is
always 1, regardless of the actual location in space, using the Hausdorff distance can provide
more precise approximations of the distance between two non-overlap polygons. The hybrid
distance function is defined as:

DHybrid A;Bð Þ ¼ w� DOverlay A;Bð Þ þ 1−wð Þ � DHausdorff A;Bð Þ
where w is the weight factor associated with the Overlay distance function (1≥w≥0).

There are several distance functions [4, 8, 13, 14] proposed in the literature for spatial polygons.
However, none of them can cope with overlapping spatial polygons. Overlapping spatial polygons
play a very important role in analyzing multiple related spatial datasets in many application
domains. Failing to measure the degree of overlap will result in inadequate clustering results.

4.2 The Poly-SNN algorithm

The SNN (Shared Nearest Neighbors) algorithm [11] is a density-based clustering algorithm.
SNN clusters data as DBSCAN does, except that the number of nearest neighbors that two
points share is used to assess the similarity instead of the number of points being within the
radius ε of a particular point. In SNN, similarity between two points p1 and p2 is the number
of points they share among their k nearest neighbors as follows:

similarity p1; p2ð Þ ¼ size of NN p1ð Þ∩NN p2ð Þð Þ
where NN(pi) is the set of the k nearest neighbors of point pi.

SNN density of point p is defined as the sum of the similarities between point p and its k
nearest neighbors as follows:

density pð Þ ¼
Xk

i¼1
similarity p; pið Þ

where pi is the i
th nearest neighbor of point p.

1.3

4.6

4.4

3.0 4.1 2.8

3.4

2.8
3.7

4.3

4.8

4.9 4.0

5.5

4.8
4.3b

Fig. 3 Contour construction for density equal to 4.5
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After assessing the density of each point, SNN algorithm finds the core points (points
with an SNN density above an input threshold) and forms the clusters around the core points
like DBSCAN. Similar to DBSCAN, SNN is able to find clusters of different sizes, shapes,
and can handle noise in the dataset. Moreover, SNN copes better with high dimensional data
and deals well with datasets having varying densities. SNN algorithm has the ability to
discover clusters of arbitrary shapes and does not require the number of clusters to be
determined in advance.

Our Poly-SNN algorithm extends SNN to cluster polygons. The key component of Poly-
SNN is the calculation of polygon distances. We calculate the distances between all pairs of
polygons using the Hybrid distance function. Next, we identify the k nearest neighbors for
each polygon. Poly-SNN calculates the SNN density of each polygon using the k nearest
neighbors, and clusters the polygons around core polygons as described above. Figure 4 lists
the pseudocode of the Poly-SNN algorithm.

The proposed Poly-SNN algorithm is based on the well established density based
clustering algorithm SNN [11]. There are several advantages of using SNN as our reference
algorithm. First, it has the ability to find clusters in presence of outliers. Second, SNN is
capable of finding clusters of different shape, size, and density. Third, it works well for high
dimensional data. The experimental results and detail discussions in [11] show that SNN
perform better than traditional methods, such as K-means, DBSCAN, and CURE on a
variety of datasets.

5 Post-processing analysis techniques

5.1 Domain driven final clusterings generation methodology

In general, domain experts seek for clusters based on their domain-driven notion of “interest-
ingness”. Usually, domain experts’ interestingness is different from generic characteristics used
by traditional clustering algorithms; moreover, for a given dataset there usually are many
plausible clusterings whose value really has to be determined by domain experts. Finally, even
for the same domain expert, multiple clusterings are of value, e.g., clusterings at different levels
of granularity. A key idea of this work is to collect a large number of frequently overlapping
clusters organized in form of meta-clusters; final clusterings and other summaries are then
created from those meta-clusters based on a domain expert’s notion of interestingness.

To reflect what was discussed above, we assume that our final clustering generation
algorithms provide plug-in reward functions that capture a domain expert’s notion of
interestingness. The reward functions will be maximized during the final clustering gener-
ation procedure. Our methodology provides an alternative approach to the traditional
ensemble clustering by creating a more structured input for obtaining a final clustering, also
reducing algorithm complexity by restricting choices. We propose algorithms that create a
final clustering by selecting at most one cluster from each meta-cluster. Moreover, due to the
fact that polygons originated from multiple related datasets usually overlap a lot, we provide
an option for domain experts to restrict cluster overlap in the final clusterings. More
specifically, we develop algorithms that create the final clusterings from meta-clusters by
solving the following optimization problem:

Inputs:

1. A meta-clusteringM={X1,…, Xk}—at most one object will be selected from each meta-
cluster Xi (i=1,…k).
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2. The user provides the individual cluster reward function RewardU whose values are in
[0,∞).

3. A reward threshold θU —clusters with low rewards are not included in the final
clusterings.

4. A cluster distance threshold θd, which expresses to what extent the user would like to
tolerate cluster overlap.

5. A cluster distance function dist.

Find Z⊆X1∪…∪Xk that maximizes:

q Zð Þ ¼
X

c∈Z
rewardU cð Þ

subject to:

1. ∀ x ∈ Z ∀ x’∈ Z (x≠x’⇒Dist(x, x’) > θd)
2. ∀ x ∈ Z (RewardU (x) > θU)
3. ∀ x ∈ Z ∀ x’∈ Z ((x∈ Xi ∧ x’∈ Xk ∧ x≠x’)⇒ i ≠ k)

Our goal is to maximize the sum of the rewards of clusters represented by polygons that
have been selected from meta-clusters. Constraint 1 prevents two clusters which are spatially
too close to be included in the final clustering. Constraint 3 makes sure that at most one
cluster from each meta-cluster is selected.

Assuming that we have n meta-clusters, each meta-cluster contains an average of m
clusters (polygons), there are roughly (m+1)n final clusterings; For each meta-cluster, we can
either select one cluster for inclusion or we might decide not to take any cluster due to
violations of constraints 1 and 2. Constraint 2 is easy to handle by removing clusters below
reward threshold from the meta-clusters prior to running the final clusterings generation
algorithm.

Many different algorithms can be developed to solve this optimization problem. We are
currently investigating three algorithms:

& A greedy algorithm: A greedy algorithm that always selects the cluster with the highest
reward from the unprocessed meta-clusters whose inclusion in the final clusterings does
not violate constraints 1 and 2. If there are no such clusters left, no more clusters will be
added from the remaining meta-clusters to the final clusterings.

& An anytime backtracking algorithm: An anytime backtracking algorithm that explores
the choices in descending order of cluster rewards; every time a new final clustering is
obtained, the best solution found so far is potentially updated. If runtime expires, the
algorithm reports the best solution that have been identified.

& An evolutionary computing algorithm: It relies on integer chromosomal representations;
e.g., (1, 2, 3, 0) represents a solution where cluster 1 is selected from meta-clustering 1,
cluster 2 from meta-cluster 2,…, and no cluster is selected from meta-cluster 4.

Poly-SNN
Input: Contour polygons, k
Output: Clusters of polygon (Meta-clusters)
Step 1: Compute the similarity matrix of input contour polygons.
Step 2: For each polygon p, find its k nearest neighbors.
Step 3: For each polygon p, compute the SNN density.
Step 4: Find the core polygons.
Step 5: Form clusters from the core polygons.
Step 6: Mark all noise polygons.

Fig. 4 Pseudocode for POLY-SNN
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Traditional mutation and crossover operators are used to create new solutions, and a
simple repair approach is used to deal with violations of constraint 1.

The greedy algorithm is very fast (O(m×n)) but far from optimal, the backtracking
algorithm explores the complete search space (O(mn)) and—if not stopped earlier—finds
the optimal solution if n and m are not very large; however, the anytime backtracking
approach can be used for large values of m and n. Finally, the evolutionary computing
algorithm covers a middle ground, providing acceptable solutions that are found in medium
runtime. Figure 5 gives the pseudocode of the greedy algorithm.

As an example, we use the reciprocal of the area of each ozone polygon as the reward
function. This reward functions can help domain experts to identify potential ozone pollution
point sources and to analyze patterns at different levels of granularity when different
parameters are selected. First, all input meta-clusters generated by Poly-SNN are marked
unprocessed. The final clustering F is initialized to empty. The reward for each polygon (the
reciprocal of the area of the polygon) is computed. The user inputs reward threshold and
distance threshold, e.g., reward threshold equal to 10 and distance threshold equal to 0.5.
Next, polygon p with the highest reward from the unprocessed meta-clusters is selected,
compute the distances between p and all polygons in F, if all distances are greater than
distance threshold 0.5, put polygon p into F, and flag the meta-cluster Xi that polygon p
belongs to as processed. Otherwise, remove polygon p from the meta-cluster Xi. The
algorithm repeats until all the meta-clusters are flagged as processed. The output is the final
clustering F containing all selected polygons.

5.2 Finding interesting meta-clusters with respect to a continuous variable v

Our second post processing technique allows automatic screening of the obtained meta-
clusters for unexpected distributions. The main idea is to provide interestingness functions
that automatically identify meta-clusters whose member distribution with respect to a non-
spatial variable deviates significantly from its distribution in the whole dataset. We introduce
such an interestingness function that measures interestingness of a meta-cluster based on its
mean value and standard deviation of a non-spatial variable.

We assume a dataset D=(a1,…, an, v) and a meta-clustering M={X1, …, Xk} is given,
where v is a continuous variable which has been normalized using z-scores. Our goal is to
find contiguous clusters1 in the A={a1,…, an} - space2 which maximize the following
interestingness function:

Let Xi ∈2A be a cluster in the A-space
Let σ be the variance of v with respect in dataset D
Let σ(Xi) be the variance of variable v in a cluster Xi

Let mv(Xi) the mean value of variable v in a cluster Xi

Let t1≥0 a mean value reward threshold and t2≥1 be a variance reward threshold

We suggest using the following interestingness function φ to calculate the reward for
each cluster:

8 X ið Þ ¼ max 0; mv X ið Þj j−t1ð Þ � max 0;σ− σ X ið Þ � t2ð Þð Þ

1 Clusters whose reward with respect to the reward function is 0 are considered to be outliers
2 Finding clusters in subspaces of the A-variable space might also be interesting
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In general, only clusters, which satisfy |mv(c)|>t1 and σ(c)<σ/t2, will receive a reward
value; e.g., for t1=0.2 and t2=2 only clusters whose mean-value is below −0.2 or above +0.2
and whose variance is less than or equal to half of σ will receive a reward. In general clusters
whose mean value is significantly different from 0 and variance is low will receive the
highest rewards. We rank all clusters based on their reward and only report those whose
rewards are higher than the reward threshold specified by the domain expert.

The proposed interestingness function is just an example for identifying unusual clusters
with respect to a continuous variable—other useful interestingness functions can be pro-
posed. Similar interestingness functions can also be proposed for categorical variables.

6 Experimental evaluation

6.1 The ozone datasets

It has been reported by the American Lung Association [1] that Houston Metropolitan area is
the 7th worst ozone zone in the US. TCEQ is a state agency responsible for environmental
issues including the monitoring of environmental pollution in the Texas. TCEQ uses a
network of 44 ozone-monitoring stations in the Houston-Galveston area. The area covers
the geographical region within [−95.8070, -94.7870] west longitude and [29.0108, 30.7440]
north latitude. We downloaded hourly ozone concentration data between the timeframe of
April 1, 2009 at 1 a.m. to November 30, 2009 at 11 p.m. from TCEQ’s website. In addition
to the ozone concentrations, we also downloaded corresponding meteorology data including
wind speed, solar radiation, and outdoor temperature.

Ozone formation is a complicated chemical reaction. There are several control factors
involved:

& Sunlight measured by solar radiation is needed to produce ozone.
& High outdoor temperatures cause the ozone formation reaction to speed up.
& Wind transports ozone pollution from the source point.
& Time of Day: ozone levels can continue to rise all day long on a clear day, and then

decrease after sunset.

Solar radiation is measured in langleys per minute. A langley is a unit of energy per unit
area (1 gram-calorie/cm2) commonly employed in radiation measurements [20]. Outdoor
temperature is measured in Fahrenheit. Wind Speed is measured in miles per hour.

Basically, we generate polygons from original point datasets to capture ozone hotspots for
particular time slots in Houston area. Two polygon datasets are created by using

Greedy Algorithm
Input: Meta-clusters M ={X1, …, Xk }, Reward functions RewardU , Reward threshold U

Cluster Distance Function dist, Distance threshold d

Output: Final Clusterings F ={p1,…pn}
Step 1: Mark all meta-clusters Xi unprocessed, Initialize final clusterings F to empty.
Step 2: Compute the reward using RewardU for meta-clusters M and delete polygons whose rewards 

are less than the reward threshold U from meta-clusters M.
Step 3: Select the polygon p with the highest reward from the unprocessed meta-clusters M.
Step 4: Compute the distances distq between p and every q F, if all distq  >= d , put p into F, mark 

Xi (p Xi) processed; otherwise remove p from Xi; if Xi is empty, mark Xi as processed.
Step 5: Stop if all Xi are marked processed, otherwise go back to step 3.
Step 6: Output the final clusterings F.

Fig. 5 Pseudocode of the greedy algorithm
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DCONTOUR algorithm with two different density thresholds selected by domain experts.
The use of the density threshold 180 creates 255 polygons. These polygons represent areas
where the average one hour ozone concentration is above 80 ppb (parts per billion). The
density threshold 200 generates 162 polygons that have one hour ozone concentrations more
than 90 ppb. The current EAP ozone standard is based on an eight-hour average measure-
ment. In order to meet the standard, the eight-hour average ozone concentration has to be
less than 0.075 ppm (75 ppb). Therefore, we can consider these two polygon datasets
represent areas where the ozone level exceeds the EPA standard during that hour.

We evaluate our methodology in three case studies. The goal of the first case study is to
verify that our new distance functions and clustering algorithm for polygons can effectively
cluster overlapping polygons generated from multiple geospatial datasets. By analyzing
additional meteorological variables associated with polygons, such as outdoor temperature,
solar radiation, wind speed, and time of day, we can characterize each cluster and identify
interesting patterns associated with these hotspots.

In the second case study, we are interested in generating final clusterings that capture a
domain expert’s notion of interestingness by plugging in different reward functions. For
example, domain experts may interest in finding typical ozone pollution hotspots occurred
when the outdoor temperatures are extremely high. In order to summarize final clusterings,
the statistical results of three ozone pollution control variables are also provided.

In the third case study, we try to find interesting clusters with unexpected distributions
respect to a continuous non-spatial variable. A screening procedure and interestingness
function are proposed to assess the interestingness of the meta-clusters with respect to a
continuous variable. Meta-clusters are evaluated with respect to different continuous vari-
ables, such as solar radiation, wind speed, and outdoor temperature, respectively.

6.2 Case study 1: polygon clustering and analysis

An ozone polygon is a hotspot area that has ozone concentration above a certain threshold.
In order to generate polygons representing ozone pollution hotspots where ozone concen-
tration is above 90 ppb from original ozone concentration point datasets downloaded from
TCEQ’s website [20], we divide the Houston area into a 20×27 grid. The density function
discussed in Section 3 is used to compute the ozone concentrations at each grid intersection
point. Next, we compute contour intersection points b on grid cell edges where the density is
equal to 90 using binary search and interpolation. Finally, we compute the contour polygons
by connecting contour intersection points.

In this case study, we select the dataset with 162 polygons created by DCONTOUR with
density threshold equal to 200. These polygons represent areas with 1 hour ozone concen-
tration higher than 90 ppb. We then apply Poly-SNN clustering algorithm to find clusters of
ozone hotspots called meta-clusters. Figure 6 displays the result of 30 meta-clusters gener-
ated by Poly-SNN using the hybrid distance function and the number of nearest neighbor k
equal to 5. Out of 162 polygons, 30 % are considered as outliers by Poly-SNN. Polygons
marked by the same color belong to the same meta-cluster.

In general, by analyzing the meteorological characteristics of polygons domain experts
may find some interesting phenomena that could lead to further scientific investigation.
Therefore, we also compute some statistics of four meteorological variables involved in
ozone pollution events. Table 1 lists the statistical results of four meteorological variables
associated with the meta-clusterings displayed in Fig. 6.

As expected, meta-clusters shown in Fig. 6 is characterized by high outdoor temperature
(average of 90.6 and standard deviation of 5.3) and strong solar radiation (average of 0.8 and
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standard deviation of 0.4), which usually happens between 1 p.m. and 4 p.m.. Since the
standard deviation of the wind speed (1.9) compared with the average wind speed (6.1) is
nontrivial, the variance of the size of the polygons is significant in Fig. 6.

It is hard to visualize all meta-clusters in a single picture when clusters overlap a lot.
Figures 7 and 8 display eight out of 30 mete-clusters shown in Fig. 6. As expected, the
Hybrid distance function that employs both Overlay distance function and Hausdorff
distance function creates clusters of polygons that are similar in terms of shape, size and
location. Particularly, since we give more weights to the overlay distance function, the eight
meta-clusters in Figs. 7 and 8 overlap significantly. This case study prove that our Poly-SNN
clustering algorithm in conjunction with Hybrid distance function can effectively find
clusters of overlapping polygons with similar size, shape, and location.

Tables 2 and 3 list the mean and standard deviation of outdoor temperature, solar
radiation, wind speed, and time of day associated with eight meta-clusters shown in Figs. 7
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Fig. 6 Meta-clusters generated by Poly-SNN using the Hybrid distance function

Table 1 The statistical results for meta-clustering shown in Fig. 6

Mean Standard deviation Max Min

Temperature (°F) 90.6 5.3 102.8 78.6

Solar radiation (Langleys per min) 0.8 0.4 1.4 0.03

Wind speed (Miles per hour) 6.1 1.9 15.7 0.3

Time of day 2:30 p.m. 1.8 8 p.m. 10 a.m.

580 Geoinformatica (2014) 18:569–594



-95.8 -95.6 -95.4 -95.2 -95.0 -94.8

Longitude

30.4

30.2

30.0

29.8

29.6

29.4

29.2

29.0

L
at

itu
de

29

11

12

16

Fig. 7 Visualization of four meta-clusters (ID: 11, 12, 16, and 29) shown in Fig. 6
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Fig. 8 Visualization of four meta-clusters (ID: 2, 4, 10, and 27) shown in Fig. 6
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and 8. The solar radiation information related to clusters 2 and 4 are not available from
TCEQ’s website. Certainly, ozone formation is more complicated than only considering
those four control factors. However, our polygon-based methodology does have the capa-
bility of handling more non-spatial variables.

Based on Table 2, we can see that polygons in meta-clusters 11 and 12 are characterized
by high outdoor temperatures (98.8 and 99.1) compared with the entire dataset (90.6) and
strong solar radiations (0.9 and 0.9) compared with the entire dataset (0.8). The wind speeds
of cluster 11 and cluster 12 (5.2 and 4.9) are low compared with the mean value of entire
meta-clustering (6.1) so that the average size of the polygons in cluster 11 and cluster 12 are
relatively small compared with other polygons shown in Fig. 6. Also, Clusters 11 and 12 are
captured around 2 p.m.. The statistical results associated with Cluster 16 are very close to the
mean value of the entire dataset in Table 1.

Based on Table 3, cluster 10 has lower outdoor temperature (86.0), lower solar radiation
(0.7), and lower wind speed (4.8) compared with the mean values of the entire dataset in
Table 1. The average time of day for cluster 4 is about 4 p.m.. All those four lower
meteorological values contribute to smaller polygon sizes inside meta-cluster 4 in Fig. 8.

6.3 Case study 2: generation of domain driven final clusterings

In this case study, the greedy algorithm introduced in Section 5 is used to generate the
domain-driven final clusterings based on 30 meta-clusters shown in Fig. 6. We use several
reward functions to capture domain experts’ different notions of interestingness. The final

Table 2 The statistical results of meta-clustering shown in Fig. 7

Meta-Cluster ID 11 12 16 29

Temperature (°F) Mean 98.8 99.1 91.0 85.5

Variance 1.1 2.9 4.3 1.0

Solar radiation (Langleys per minute) Mean 0.9 0.9 0.7 0.7

Variance 0.3 0.3 0.3 0.5

Wind speed (Miles per hour) Mean 5.2 4.9 5.9 8.3

Variance 0.5 1.0 0.9 2.6

Time of day Mean 2 p.m. 2 p.m. 3 p.m. 12 p.m.

Variance 0.9 1.6 1.6 1.9

Table 3 The statistical results of meta-clustering shown in Fig. 8

Meta-Cluster ID 2 4 10 27

Temperature (°F) Mean 83.4 88.5 86.0 92.3

Variance 3.8 1.6 2.1 2.9

Solar radiation (Langleys per minute) Mean N/A N/A 0.7 0.6

Variance N/A N/A 0.0 0.3

Wind speed (Miles per hour) Mean 6.8 6.2 4.8 6.5

Variance 1.0 0.5 0.8 0.5

Time of day Mean 2 p.m. 1 p.m. 4 p.m. 3 p.m.

Variance 1.7 0.9 0.8 0.8
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clusterings with statistical results of meteorological data can be used to summarize what
characteristics the ozone hotspots in the same meta-clusters share.

The range of ozone pollution represented by the area of polygons is selected as the first
cluster reward function, which will help domain experts recognize the possible maximal
range of ozone pollution events in Houston area. By selecting different reward threshold and
distance threshold, different final clusterings could be generated. Figure 9 shows one final
clustering using reward threshold 0.04 and Hybrid distance threshold 0.5. There are 5
polygons in the final cluster. Table 4 shows the corresponding statistical results of meteo-
rological data. Since the standard deviations of these four variables are relatively small, we
will not discuss the standard deviation in this case study. Based on Table 4, polygons 21, 80,
and 150 cover larger area with higher outdoor temperature, high wind speed, and strong
solar radiation compared with polygons 13 and 125. Polygon 150 is interesting because it
has a hole inside. Our methodology can handle polygons with holes inside. Further analysis
could be done to help understand the formation of holes inside polygons.
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Fig. 9 Final clustering for area of polygon reward threshold 0.04 and hybrid distance threshold 0.5

Table 4 The mean of four meteorological variables for the final clustering shown in Fig. 9

Polygon ID 13 21 80 125 150

Temperature (°F) 79.0 86.4 89.1 84.1 88.9

Solar radiation (Langleys per minute) N/A 1.3 1.2 0.1 1.1

Wind speed (Miles per hour) 4.5 6.1 6.2 4.9 5.4

Time of day 6 p.m. 1 p.m. 2 p.m. 2 p.m. 12 p.m.
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The reciprocal of the area of each polygon is selected as the second reward function for
smaller granularity, which may be useful to identify the ozone pollution point sources and
enable the domain experts to analyze patterns at different levels of granularity. By decreasing
either the reward threshold or the distance threshold, we are able to get different final
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Fig. 10 Final clustering for the reciprocal of area reward threshold 10 and hybrid distance threshold 0.45

Table 5 The mean of four mete-
orological variables for the final
clustering shown in Fig. 10

Polygon ID Temperature
(°F)

Solar radiation
(Langleys per
minute)

Wind speed
(Miles per
hour)

Time of
day

11 81.4 N/A 6.3 4 p.m.

17 88.2 N/A 6.0 3 p.m.

18 N/A N/A N/A 4 p.m.

35 86.3 N/A 6.2 5 p.m.

42 N/A N/A N/A 1 p.m.

44 N/A N/A N/A 3 p.m.

74 N/A N/A N/A 4 p.m.

83 N/A N/A 5.9 10 a.m.

106 93.5 0.12 5.9 4 p.m.

107 94.4 1.2 4.6 11 a.m.

114 94.6 0.6 5.8 4 p.m.

128 86.4 0.1 5.4 5 p.m.

129 86.2 1.1 8.8 10 a.m.

148 N/A N/A N/A N/A
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clusterings. Figure 10 shows the final clustering with reward threshold set to 10 and distance
threshold set to 0.45. There are total 14 polygons in this final clustering. Table 5 lists the
corresponding statistical results of four meteorological variables. Some of the values are not
available in the original datasets downloaded from TCEQ’s website. All of those 14
polygons with relative smaller size occur either before 1 p.m. or after 4 p.m.. According
to Table 1, the average time of day for the entire dataset is 2:30 p.m. with a standard
deviation of 1.8. The time slot from 1 p.m. to 4 p.m. is definitely a major time period for
ozone formation which could change the range and the concentration density of ozone
pollution significantly. More analysis should be done specially for this time slot between 1
p.m. and 4 p.m..

Outdoor temperature, wind speed, and solar radiation also play very important roles in
ozone formation. We use average outdoor temperature associated with each polygon as the
third reward function. Figure 11 shows one final clustering with average outdoor tempera-
ture threshold equal to 90° F and hybrid distance threshold equal to 0.55. Figure 11 shows
the final clustering. The corresponding statistical results of the meteorological variables are
summarized in Table 6. Obviously, all the polygons with high temperatures occur during 2
p.m. to 4 p.m.. The lower the wind speed is, the smaller the area of the polygon is. For
example, polygon 67 has the lowest wind speed of 4.1 compared with all the other four

Fig. 11 Final clustering for average temperature reward threshold 90 and hybrid distance threshold 0.55

Table 6 The mean of four meteorological variables of the final clustering shown in Fig. 11

Polygon ID 54 67 89 101 105

Outdoor Temperature (°F) 100.3 102.8 92.4 99.4 94.5

Solar radiation (Langleys per minute) N/A 1.0 0.9 0.7 0.7

Wind speed (Miles per hour) 6.0 4.1 8.5 8.2 6.0

Time of day 2 p.m. 3 p.m. 3 p.m. 4 p.m. 3 p.m.
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polygons in Fig. 11, relative high outdoor temperature, and strong solar radiation; the area of
polygon 67 is still smaller than all the other four polygons shown in Fig. 11.

The solar radiation associated with each ozone hotspot is selected as the next reward
function. Figure 12 shows the final clustering for solar radiation threshold equal to 0.9 and
Hybrid distance threshold equal to 0.55. Table 7 lists the corresponding mean values of four
meteorological variables. Based on Table 7, strong solar radiation happens between 11 a.m.
and 1 p.m.. During that time period, the outdoor temperature is not relative high compared to
the entire datasets (90.6). Polygon 107 is the smallest due to the smallest wind speed (4.6)
even though it has the highest outdoor temperature (94.4) and stronger solar radiation (1.2).
Polygon 21 has the relative strong solar radiation (1.3), high wind speed (6.1), and relative
low outdoor temperature (86.4) compared with the other four polygons shown in Fig. 12.
However, the area of polygon 21 is still the largest one.

6.4 Case study 3: a screening procedure to identify interesting meta-clusters

For this case study, we use the dataset with 255 polygons generated by DCONTOUR with
density threshold 180. 21 meta-clusters are created by using Poly-SNN with hybrid distance
functions and k equal to four. 20 % of those polygons are considered as outliers by Poly-
SNN. We evaluate these meta-clusters with respect to continuous meteorological variables,
such as solar radiation, wind speed, and outdoor temperature, respectively. Meta-clusters

Fig. 12 Final clustering for solar radiation threshold 0.9 and hybrid distance threshold 0.55.

Table 7 The mean of four meteorological variables of the final clustering shown in Fig. 12

Polygon ID 21 78 85 107 130

Temperature (°F) 86.4 86.1 92.4 94.4 86.9

Solar Radiation (Langleys per minute) 1.3 1.4 1.3 1.2 1.1

Wind Speed (Miles per hour) 6.1 5.5 4.7 4.6 12.3

Time of day 1 p.m. 11 a.m. 11 a.m. 11 a.m. 12 a.m.
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with high rewards based on interestingness function φ discussed in Section 5.2 are
identified.

The statistical summaries for three meteorological variables for all datasets are listed in
Table 8. The average temperature is about 89 °F. The average solar radiation is about 0.8
langleys per minute. The average wind speed is about 5.9 miles per hour. Table 9 shows the
statistical results after Z-score normalization. All mean values become 0; all variances
become 1.

In this case study, the mean value threshold is set to 0.2, the variance threshold is set to 2,
and the interestingness reward threshold is set to 0.4. We are interested in finding meta-
clusters whose mean value is below −0.2 or above 0.2, whose variance is less than or equal
to half of the variance of the entire dataset, and whose interestingness reward is above 0.4.

We first select outdoor temperature. Three meta-clusters (3, 15, and 16) depicted in
Fig. 13 were selected by the post-processing procedure. Table 10 lists the normalized
outdoor temperature associated with each meta-cluster. Table 13 at the end of this section
lists the detail information of each polygon in the final meta-clusters. For example, Meta-
cluster 15 has five polygons; two out of five polygons were monitored at 1 p.m. and 2 p.m.
on May 4, 2009, the other three were monitored at 10 a.m., 11 a.m., and 12 p.m.,
respectively on June 7, 2009. Further investigation of meta-cluster 15 will help domain
experts better understand how the ozone pollution change over time.

In general, the highest levels of ozone concentration appear a few hours after the
maximum solar radiation. We pick solar radiation as our second continuous variable.
Figure 14 shows three selected meta-clusters with respect to solar radiation. Table 11 lists
the statistical results of the normalized solar radiation associated with each meta-cluster
shown in Fig. 14. Meta-cluster 5 was picked due to the very low value of solar radiation. It
contains five polygons monitored between 3 p.m. and 5 p.m. on five different dates
(5/4/2009, 5/29/2009, 6/7/2009, 8/15/2009, and 9/4/2009). Meta-cluster 15, however, is
picked up again in this case study due to its high value of solar radiation.

The higher levels of ozone concentration are associated with the greatest magnitude of
wind velocity. Figure 15 shows two final meta-clusters (2, 5) when the wind speed is
selected as the next continuous variable in calculating the interestingness reward. Table 12
lists the statistical results of the normalized wind speed of each meta-cluster shown in
Fig. 15. There are five polygons in meta-cluster 2; two out of five polygons were monitored
at 2 p.m. and 3 p.m. on November 13, 2009; the other three were monitored at 2 p.m., 3 p.m.,

Table 8 Statistical results for
meteorological variables Mean Variance Max Min

Temperature (°F) 89.0 35.5 102.8 71.6

Solar radiation (Langleys per minute) 0.8 0.1 1.4 0

Wind speed (Miles per hour) 5.9 2.8 12.3 2.5

Table 9 Statistical results for
meteorological variables after Z-
score normalization

Mean Variance Max Min

Temperature (°F) 0 1 2.3 −2.9
Solar radiation (Langleys per minute) 0 1 1.7 −2.1
Wind speed (Miles per hour) 0 1 3.8 −2.1
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and 4 p.m. on June 6, 2009. Figure 15 clearly shows the progression of the ozone pollution
events on those 2 days. Meta-cluster 5 is selected again due to high value of wind speed.

Table 13 lists the summarized meterology data for all polygons in the final meta-clusters
which were redflagged by our post-clustering analysis procedure in this case study. Some
meterology data are not available in the original datasets from TCEQ noted as N/A in
Table 13. Both meta-cluster 5 and meta-cluster 15 are reported twice in this case study with
respect to different meterology variables. Meta-cluster 5 has very low mean value of solar
radiation and relative high wind speed. Meta-cluster 15, however, has very high mean value
of solar radiation and relative low temperature. They locate at the same area. Under different
meterological conditions, the size of the ozone hotspots in meta-clusters 5 and 15 are
different. Futher analysis of the polygons in meta-clusters 5 and 15 may help domain experts
better understand how ozone hotspots change under different weather patterns over time.

7 Related work

Polygon generation for point datasets has been a research area in computational geometry,
computer graphics, computer vision, pattern recognition, and geographic information sci-
ence for many years. Convex hulls are the simplest way to enclose a set of points in a convex
polygon. However, convex hulls may contain large empty areas that are not desirable for
good representative polygons. A commercial algorithm, called Concave Hull [17], generates
tighter polygons by using a method that is similar to the “gift-wrapping algorithm” used for
generating convex hulls. It employs a k-th nearest neighbors approach to find the next point

Table 10 Statistical results of
outdoor temperature of the meta-
clusters shown in Fig. 13

Meta-Cluster ID Mean Variance Number of polygon

3 - 2.2 0.01 2

15 −0.7 0.09 5

16 1.6 0.11 3
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Fig. 13 Interesting meta-clusters
with respect to the outdoor
temperature
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in the polygon and creates a regular connected polygon unless the smoothness parameter k is
too large. However, pre-processing the dataset to remove outliers and detect subregions is
required for acceptable results. The Alpha shapes algorithm was introduced by Edelsbrunner
et al. [10] in 1983 to address those short comings and since then has been the most widely
used approach. The Alpha shapes algorithm uses Delaunay triangulation as the starting step
and creates a hull by using edges of the Delaunay triangulation. However, this hull is not
necessarily a closed polygon; most of the times the algorithm generates polylines, e.g. many
straight lines that may or may not form closed polygons. Thus, the Alpha shapes algorithm
requires post-processing for creating polygons out of the polylines. DCONTOUR [6] is the
only known algorithm which uses density contouring for generating polygonal boundaries of
a point set. DCONTOUR employs weighted influence function which uses a Gaussian
Kernel density function. DCONTOUR can generate separate, non-overlapping polygons
for each subregion in the dataset. It also works well in presence of outliers.

In [14], Joshi et al. propose a DBSCAN-style clustering algorithm for polygons. The
algorithm works by replacing point objects in the original DBSCAN algorithm with the
polygon objects. In [15], Joshi et al. introduce a dissimilarity function for clustering non-
overlapping polygons that considers both spatial and non-spatial variables. However, the
algorithms in [14, 15] do not cope with overlapping polgyons. Buchin et al. [4] propose a
polygonal time algorithm to compute the Fréchet distance between two polygons. Several
papers [2, 13] propose algorithms to compute the Hausdorff distance between polygons.
Sander et al. [19] propose GDBSCAN, an algorithm generalizing DBSCAN in two direc-
tions: First, generic object neighborhoods are supported instead of distance-based neighbor-
hoods. Second, it proposes other, more complicated measures to define the density of the
neighborhood of an object instead of simply counting the number objects within a given
radius of a query point.

Table 11 Statistical results of so-
lar radiation of the meta-clusters
shown in Fig. 14

Meta-Cluster ID Mean Variance Number of polygon

5 −0.9 0.20 5

15 1.1 0.13 5

21 1.0 0.04 3
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Fig. 14 Interesting meta-clusters
with respect to solar radiation
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Zeng et al. [22] propose a meta-clustering approach to obtain better clustering results by
comparing and selectively combining results of different clustering techniques. In [12]
Gionis et al. present clustering aggregation algorithms; the goal is to produce a single
clustering that minimizes the total number of disagreements among input clusterings. The
proposed algorithms apply the concept of correlation clustering [3]. Caruana et al. [5]
propose a mean to automatically create many diversity clusterings and then measures the
distance between the generated clusterings. Next, the hierarchical meta-clusters are created.
Finally an interactive interface is provided to allow users to choose the most appropriate
clustering from meta-clusters based on their preferences. In general, [5, 12, 22] perform
meta-clustering on a single dataset, whereas our proposed methodology uses meta-clustering
to analyze relationship between clusters from multiple related datasets.

Our work also relates to correspondence clustering, coupled clustering, and co-clustering
which all mine related datasets. Coupled clustering [16] is introduced to discover relation-
ships between two textual datasets by partitioning the datasets into corresponding clusters
where each cluster in one dataset is matched with its counterpart in the other dataset. Co-
clustering has been successfully used for applications in text mining [9], market-basket data
analysis, and bioinformatics [7]. In general, the co-clustering clusters two datasets with
different schemas by rearranging the datasets. The objects in two datasets are represented as
rows and columns of a dataset. Then, the co-clustering partitions rows and columns of the
data matrix and creates clusters which are subsets of the original matrix. Correspondence
clustering [18] is introduced by Rinsurongkawong et al. to cluster two or more spatial
datasets by maximizing cluster interestingness and correspondence between clusters. Cluster
interestingness and correspondence interestingness are captured in plug-in reward functions
and prototype-based clustering algorithms are proposed that cluster multiple datasets in
parallel. In conclusion, coupled clustering [16] and co-clustering [7, 9] are not designed for

Table 12 Statistical results of
wind speed of the meta-clusters
shown in Fig. 15

Meta-Cluster ID Mean Variance Number of polygon
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Fig. 15 Interesting meta-clusters
with respect to wind speed
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spatial data and they cluster point objects using traditional clustering algorithms. The
techniques introduced in correspondence clustering [18] are applicable to point objects in
the spatial space whereas this paper focuses on clustering spatial clusters that originate from
different, related datasets that are approximated using polygons.

We improve and extend previous work [6, 21] by introducing a new algorithm for finding
interesting meta-clusters with respect to a continuous variable V that capture a domain
expert’s interestingness. We integrate DCONTOUR [6] and Poly-SNN [21] into a polygonal
meta-clustering methodology. A set of experiments are conducted to demonstrate the
usefulness of these algorithms and to analyze some of their properties. We demonstrate
how the clustering tools in our framework can be applied to multiple related spatial datasets
and can help domain experts in answering interesting questions by visualizing and
conducting a statistical analysis of polygonal meta-clusters.

Table 13 Meteorology information for polygons of selected meta-clusters

Meta-Cluster
ID

Polygon
ID

Temperature
(°F)

Solar radiation
(Langleys per minute)

Wind speed
(Miles per hour)

Date Time of day

2 3 71.6 N/A 4.0 11/13/2009 2 p.m.

2 4 71.9 N/A 2.5 11/13/2009 3 p.m.

2 115 84.7 N/A 4.5 6/6/2009 2 p.m.

2 117 85.8 N/A 4.9 6/6/2009 3 p.m.

2 118 86.3 N/A 5.2 6/6/2009 4 p.m.

3 5 75.1 1.0 4.8 11/7/2009 12 p.m.

3 6 76.0 0.9 6.6 11/7/2009 1 p.m.

5 9 76.8 0.4 6.8 11/7/2009 3 p.m.

5 70 86.1 0.7 8.7 5/4/2009 4 p.m.

5 127 88.2 0.4 6.3 6/7/2009 5 p.m.

5 166 93.2 0.3 7.9 8/15/2009 5 p.m.

5 245 85.2 0.3 7.5 9/4/2009 4 p.m.

12 38 88.2 N/A 5.7 5/29/2009 2 p.m.

15 67 85.8 1.1 6.1 5/4/2009 1 p.m.

15 68 86.6 1.1 6.5 5/4/2009 2 p.m.

15 120 82.2 1.0 4.6 6/7/2009 10 a.m.

15 121 83.9 1.2 5.1 6/7/2009 11 a.m.

15 122 85.8 1.4 5.6 6/7/2009 12 p.m.

16 79 96.7 1.3 5.9 6/24/2009 1 p.m.

16 102 98.3 1.1 5.4 6/27/2009 1 p.m.

16 112 100.5 0.9 6.2 6/3/2009 3 p.m.

19 105 98.8 1.0 2.7 6/27/2009 3 p.m.

19 113 102.8 0.5 4.2 6/3/2009 4 p.m.

19 184 91.1 0.8 4.6 8/28/2009 3 p.m.

19 185 91.6 0.5 6.7 8/28/2009 4 p.m.

19 186 93.2 0.2 3.8 8/28/2009 5 p.m.

21 172 88.3 1.2 10.0 8/23/2009 1 p.m.

21 197 85.6 1.1 8.9 8/31/2009 10 a.m.

21 198 86.9 1.1 12.3 8/31/2009 11 a.m.
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8 Conclusion

Polygons are very useful to mine geospatial datasets as they provide a natural repre-
sentation for particular types of geospatial objects and provide a useful tool to analyze
discrepancies, progression, change, and emergent events. In this paper, we propose a
novel polygon-based clustering and analysis framework for mining multiple geospatial
datasets. We introduce a density-based contouring algorithm called DCONTOUR to
generate polygons from multiple geospatial point datasets. Several novel similarity
functions are proposed to assess the distances between overlapping polygons. A
density-based polygonal clustering algorithm called Poly-SNN is developed to cluster
polygons. A user-driven post-processing analysis procedure is introduced, which em-
ploy different plug-in reward functions capturing domain experts’ notion of interest-
ingness to extract interesting patterns and summaries from meta-clusters. Experiments
on multiple real-world geospatial datasets involving ozone pollution events in Houston
show that our methodology is effective and can reveal interesting relationships between
different ozone hotspots represented by polygons. Our framework can also identify
interesting hidden relations between ozone hotspots and several meteorological vari-
ables, such as outdoor temperatures, solar radiation, and wind speed. Moreover, our
framework has the capability for supporting various geospatial applications, such as
water pollution and urban evolution.

In general, our work has the capability to cluster overlapping polygons, and polygons
with holes inside. In today’s society, we are faced with analyzing an ever growing and
changing amount of data. It should be highlighted that our framework tries to turn the
information overload to our advantage by providing automated screening procedures. It
allows for high level views of the data to facilitate data analysis. One key idea of our work is
to use different plug-in reward functions to guide the knowledge extraction process, focusing
on the extraction of interesting patterns and summaries with respect to a domain expert’s
notion of interestingness. To the best of our knowledge, this is the first paper that proposes a
comprehensive methodology that relies on polygon clustering and analysis techniques to
mine multiple related geospatial datasets.

Our future work will focus on expanding the framework to incorporate additional novel
clustering techniques for geospatial objects, investigating novel change analysis techniques
that rely on spatial clustering to identify spatial and temporal changes with respect to spatial
data, and to refine and optimize our methodology for a broad range of applications.
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