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Abstract This paper describes an approach to using evolutionary algorithms for
reasoning about paths through network data. The paths investigated in the context of
this research are functional paths wherein the characteristics (e.g., path length, mor-
phology, location) of the path are integral to the objective purpose of the path. Using
two datasets of combined surface and road networks, the research demonstrates
how an evolutionary algorithm can be used to reason about functional paths. We
present the algorithm approach, the parameters and fitness function that drive the
functional aspects of the path, and an approach for using the algorithm to respond to
dynamic changes in the search space. The results of the search process are presented
in terms of the overall success based on the response of the search to variations
in the environment and through the use of an occupancy grid characterizing the
overall search process. The approach offers a great deal of flexibility over more
conventional heuristic path finding approaches and offers additional perspective on
dynamic network analysis.

Keywords Network analysis - Evolutionary algorithms - Functional paths -
Multicriteria shortest paths - Dynamic routing
1 Introduction

Research regarding shortest path problems and algorithms for solving shortest path
problems has figured prominently in a variety of application domains since Dijkstra’s
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algorithm was published in 1959 [12]. Dijkstra’s algorithm, A* [22], and related
algorithms for solving shortest path problems [3, 13] are very efficient (polynomial
time in the case of Dijkstra’s algorithm), but they are limited by a number of
constraints depending on the algorithm. Perhaps most significantly, these techniques
often require very specific tuning and selection with respect to the problems to
which they are applied [42]. In many instances, however, the combination of a novel
problem and mixed network structures are such that the “best” solution heuristic
may be ambiguous or unknown.

Recent research demonstrates the viability of evolutionary algorithms (EAs) for
shortest path (SP) problems where the problem formulation results in algorithmic
and approximation schemes that are prohibitively complicated [23, 29, 35]. In [35],
we characterize one example of this class of problems and how it arises when the
morphology of the path requires consideration as part of the optimization process.
The issue, highlighted in [25], is that optimal paths may not be comprised of optimal
subpaths. This is an important consideration. Unlike Dijkstra’s algorithm and other
dynamic programming techniques that rely on the Principle of Optimality, our
approach makes no such assumption. Problems in which paths may not be comprised
of optimal subpaths are often difficult to address with typical single objective shortest
path problem (SOSP) approaches because optimization must not only consider
cumulative edge cost but also morphological and other constraints placed on the
manner in which the path is allowed to use the underlying network. Using a priority-
based evolutionary algorithm (EA), we present an approach that allows us to search
the network space in a manner that considers the interplay of both path length and
path morphology in discovering high quality routes similar to the potential optima.

Another interesting challenge arises with SOSP algorithms when the graph on
which they are operating is dynamic. As with many of the specializations of tra-
ditional SOSP algorithms to multi-objective shortest path problems (MOSPs), the
specialization of SOSP algorithms to time varying problems tends to be specific to
the manner in which time varies on the network in question [31]. One advantage of
time-varying graphs is that time is directed. This is leveraged in [9] where shorter
hyperpaths are found (notably, in linear time) on time-expanded hypergraphs.
Again, however, the specialization is specific to the problem and the hypergraph
approach is intractable if constraints on route structure are imposed [9].

Evolutionary algorithms (EAs) offer an alternative to the highly specialized
implementations of typically used heuristics for solving both dynamic and mul-
tiobjective problems. In applying EAs to problems on dynamic and stochastic
networks, Davies and Lingras [10] demonstrate that evolutionary algorithms are
sufficiently flexible so as to allow reparameterization of the optimization process
as information changes within the search space. Evolutionary approaches offer an
additional characteristic in contrast to many traditional SOSP and MOSP algorithms
in that they can be used to present multiple candidate solutions. For example, Lup
and Srinivasan [26] demonstrate an approach to routing that considers both shortest
paths and shortest travel time. In this case, not only is the environment dynamic, but
the user is presented with multiple potential optima given the search space and is
thus equipped to make the best decision regarding their route given the current road
conditions.

The idea that the discovery of potentially optimal paths in dynamic environments
is a dynamic process is the motivation for this research. In this paper we present the
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idea that certain dynamic path optimization problems require a shift from thinking in
terms of shortest path analysis as a single solution problem. Instead, we propose that
these problems are more about the use of the search space as it relates to potential so-
lution optima. Given that the search space is fundamentally geographic, this implies
that the search results are about the use of geographic space and the manner in which
geographic space and geographic dynamics constrain or create potential optima.
We thus see the “answer” to these types of problems as a collection of multiple
potential optima. This idea becomes particularly important with the recognition that
path finding often occurs in dynamic environments and that this has the potential to
significantly modify the manner in which the search space (the network) is used.

With this research, we investigate how evolutionary approaches can be used to
understand the set of potential optima associated with traversal of a mixed network
space consisting of both transport features and terrain. We treat the environment
as dynamic through the addition of “avoidance points” during the search process
and illustrate how the evolutionary algorithm is adaptive in response to the changing
environment. The potential applications of this approach range from understanding
how an individual might move through space to avoid detection to understanding
how animals might respond to obstacles present in their migration corridors [2]. As
mentioned above, an important aspect of this research is that the approach results in
a better understanding of the search space rather than a single, heuristically driven
answer. This understanding can, in turn, be used in the creation of more efficient and
problem-specific variations on well known SP algorithms.

In the following sections, we begin by addressing issues associated with modeling
movement and the use of evolutionary approaches for modeling both static and
dynamic geographic environments. We then present the problem class associated
with this research and enumerate the general problem as well as specific examples.
In turn, we address the unique characteristics of our approach and the manner in
which we collect information regarding the algorithm performance during the course
of the search process. Finally, we present the experimental results and sample runs
on real data. We then conclude with comments on the potential of this approach to a
variety of problems and directions for future research.

2 Modeling dynamic phenomena

Modeling geographic dynamics is a challenging task at the forefront of research in
GIScience [41]. When the spectrum of models of dynamic phenomena are examined,
the different approaches to understanding and modeling movement and traversal
of geographic space generally fall into four categories. These include consideration
of constrained versus unconstrained analytic spaces and the difference between
understanding movement and traversal of space in a static context versus in a
dynamic context.

In addition to understanding the different categories of modeling dynamic phe-
nomena in geographic space, it is also useful to consider the representational
approaches that can be used to populate the modeling environment. In that represen-
tation and analysis are inextricably linked, we then address the analytical approaches
applied to these problems and, specifically, the role of evolutionary algorithms for
solving large problems associated with dynamic environments.
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2.1 Model classes

Differentiating constrained and unconstrained analytic spaces is relatively straight-
forward. Constrained spaces are typically limited to movement along a network or
graph and the set of potential positions are limited to positions along edges and nodes
in the network. If the network is geographically embedded (e.g., a road network),
then the set of potential geographic positions is limited by where the network exists in
geographic space. In contrast, unconstrained spaces are typically characterized with
a continuous raster representation. Because of the continuous nature, position in
the continuous space is limited only by the characteristics of the quanta defining the
space in relation to the rules associated with traversal of the space.

The distinction between static and dynamic models of movement or traversal
through space may be less intuitive than the distinction between constrained and
unconstrained spaces. Static models tend to be based on single solution heuristics
that globally consider the entire space and estimate paths through that space based
on the costs for movement characterized by the space and the algorithm (often
Dijkstra’s) for minimizing total path cost. The models are static in that a) the costs
for surface traversal are predetermined and unchanging, and b) the algorithms for
evaluating potential paths through the surface are state driven and do not consider
internal feedback or changing data. In contrast, dynamic models of movement not
only take into account the cost of traversing the analytic space, but can also take into
account changes in the values both of that space and in terms of internal feedbacks
associated with elements within the model itself. Given the contexts of constrained
and unconstrained spaces and static and dynamic models of movement, four possible
combinations arise.

2.1.1 Constrained-static

The idea that a network, geographically embedded or otherwise, is a constrained
representation of space is well established and has informed a variety of adaptations
of metrics from continuous space to network-constrained space [30, 39, 40].

Static, network-constrained movement models are commonplace with many net-
work routing problems falling into this category [14, 28]. While these latter models
do account for potentially different results depending on input parameters to the
models (e.g., time of day or next bus arrival) [33], the computation is fundamentally
state driven and deterministic in the sense that given the same input parameters, the
same results will be imputed.

2.1.2 Unconstrained-static

A common GIS analysis is where minimum cost paths are computed through a
cost surface where each quanta or unit in the cost surface has impedance or cost
associated with its traversal [18]. Analyses such as corridor analyses for exploring
alternative power line siting locations [5] to understanding elephant movement
between refuges [32] have long been part of this family of operations. Cost surfaces
and related analyses are flexible in that their representation is limited only by the
ability of the user to effectively combine costs in analytically meaningful ways. For
example, in [1], the authors combine a variety of landscape variables and develop
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an approach for characterizing the “effective cost” of landscape traversal in an
ecological context.

As with constrained-static models, unconstrained-static models are deterministic
and state driven. While the unconstrained representation allows for a greater set of
possible locations being identified by the model, these models typically do not have
any internal feedback mechanisms or method for responding to changes in conditions
characterizing the analytical space.

2.1.3 Constrained-dynamic

The combined advent of readily available GPS-based location information and
increased computational capacity led to the expansion of modeling to include
approaches that are more explicitly dynamic. Dynamic models facilitate a greatly
increased understanding of the ramifications of early work on spatio-temporal
movements of individuals in space [19]. As data streams and requisite database
technologies proliferated, many of Hégerstrand’s early ideas were extended and
used to inform understanding of a variety of moving entities within a database
context. These new approaches quickly exploited the idea that networks offered an
important constraint for managing dynamic datasets [34] and supporting effective
minimization of uncertainty given that objects constrained to networks had fewer
potential locations in which they could exist within a given amount of time [38].

Other constrained-dynamic models focus on using the network as a conduit over
which the movement of individual agents can be modeled and analyzed. In [7]
and [8], the authors illustrate how network-constrained microsimulation is a useful
tool for planning evacuation scenarios. In the case of these models, the network
constraint serves to reduce the number of potential interactions between agents and
simultaneously provides a clear relationship to real-world geography. In contrast to
the evacuation planning models, Colizza et al. [6] and Shaw et al. [36] demonstrate
how the network constraints of the international and national air transport network
can be used as a backdrop for modeling spread of disease over time.

Constrained-dynamic models of movement are very powerful inasmuch as the
constraints associated with the network representation are realistic to the modeling
scenario. When the constraints are realistic to the problem, they help to significantly
bound the search space. In addition, given that network structures have distinct
topological characteristics, these topological characteristics can often be exploited
as predictors for understanding the process the model supports (e.g., see [27] for an
example on the use of the network metric of information centrality for understanding
overall network dynamics).

2.1.4 Unconstrained-dynamic

The most flexible approach to modeling dynamic phenomena is an unconstrained
analytic space used in the context of dynamic modeling problems. It is important
to clarify that unconstrained does not imply an isotropic surface with no impedance,
but rather that the analytic space and corresponding representation is more field-like
than object or network-like.

One common example of unconstrained dynamic problems are agent-based mod-
els wherein individual agents traverse field data. The rules for each agent determine
the decisions made by the agent, and usually a stochastic component is introduced

@ Springer



358 Geoinformatica (2013) 17:353-385

to vary agent behavior within some appropriate bounds. As illustrated in [4], the
agents interact with other agents as well as the environment, and the cumulative set
of interactions is used to understand how agents (and by extension the real-world
entities they proxy) learn and respond to changes in their environment.

Alternatively, agent behavior can be used to understand how different portions
of the landscape become more or less important depending on the rules governing
agent behavior. In contrast to the above example where the focus is on understanding
how the agents accumulate knowledge over time, Hargrove et al. [21] illustrates how
agents can be used to travel the unconstrained landscape for purposes of finding high
intensity travel corridors. In this latter example, the agent analyzes the environment
and moves through the environment following a certain goal-seeking behavior. The
cumulative paths of the agents provide insight as to how the agents (and, again, the
real-world entities they proxy) might utilize different environmental configurations.

There are numerous complexities associated with the unconstrained-dynamic class
of models. These complexities range from issues regarding representation of the
analytic space to the nature and representation of the process and characteristics
of the dynamic phenomenon.

2.2 Representation and analysis in non-stationary environments

Given the spectrum of problem classes presented in the previous section, consid-
eration of representation of both the analytic space and process model is a very
important part of the modeling process. This consideration is particularly important
when considering dynamic or non-stationary data.

The intertwined nature of representation and analysis of non-stationary environ-
ments underscores the notion that data structures must be tailored to support specific
types of analyses. For example, the addition of time dependence to a representation
of a transportation network requires development of both an expressive approach to
capture the time varying nature of the environment as well as a data structure that
can be efficiently queried and analyzed [17].

The relationship between the analytic space and the analytic process is particularly
emphasized when evolutionary algorithms are used to model the dynamics associated
with the search space. In our previous work [35], we illustrate how functional paths
(paths which embody certain behavioral preferences) can be discovered using evo-
lutionary approaches. The resultant functional paths are a combination of the graph
representation, the manner in which the graph is used to initialize the evolutionary
algorithm, and the fitness function built into the algorithm itself. Similarly, in [10],
the authors illustrate how rerouting on graphs can be performed with a genetic
algorithm that, in essence, mimics the decision behavior of an individual moving
through space. In this example, the semi-stochastic nature of the individual’s decision
making process in traffic conditions is brought to bear in the initial population of the
GA. As traffic conditions change, the GA evolves, and the set of navigation con-
siderations change accordingly. In both the case of functional paths and navigating
through traffic, the results of the evolutionary-based analyses are dependent on the
combination of the representation of the analytic space and the behaviors embodied
in the analysis process itself.

These latter examples illustrate that while the classes of problems identified in
Section 2.1 serve as a useful framework for positioning a research question, certain
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modeling problems can be thought of as “composite” problems. These composite
problems share elements from two or more classes and, consequently, often intro-
duce new challenges to consider in terms of both representation and analysis.

3 Evolutionary approaches for modeling movement

For this research, we further refine our approach to understanding functional
paths as illustrated in [35]. We address the motivation for use of an evolutionary
approach, representational issues, and the dynamic nature of the model presented.
We then provide an overview of the technique and discuss its relationship with more
conventional approaches to shortest path routing.

3.1 Problem specification and motivation for using EAs

There are four factors that differentiate our problem from other shortest path
problems and support our motivation for the use of evolutionary algorithms.

First, our research is fundamentally about understanding the use of a network
space for a specific purpose. The combination of the representation of space and
the evolutionary algorithm capture this purpose and the corresponding behaviors.
In our motivating examples, the use of space and corresponding behaviors might
mimic an individual trying to surreptitiously cross a border using road and off-road
travel, or migrating animals trying to maintain paths through viable habitat while
avoiding roads or other anthropogenic features. The stochastic aspects of EAs allows
for a non-deterministic exploration of the search space that can be useful in a search
process where the exact basis for the entity behavior guiding the use of the space is
unknown.

The introduction of a stochastic component in the analysis process further un-
derscores the idea that the analysis of movement and potential behaviors cannot be
reduced to a single answer. As such, we treat the evolutionary search process as a
means to enumerate the search space. The more often locations within the search
space are visited, the more likely those locations are important to the behavior and
functional path in question.

Next, given our philosophical shift from treating the optimization as a single
solution problem to a mechanism supporting the enumeration of the search space, it
also becomes possible to leverage the evolutionary process to account for dynamics
or changes within the search space itself. As with [10], we take advantage of the
ability of the EA to adapt and respond to new information in the search space. The
combination of the enumeration of the search space and the evolutionary adaptation
to new information provides substantial insight on how behaviors might change given
specific interventions.

Finally, as with our earlier work, we see the behavioral aspect of the path search
process as exceeding the capabilities of greedy-based search algorithms. Unlike
single solution optima, the behavioral element of the search requires simultaneous
consideration of characteristics associated with the whole route as well as those
associated with more local subsets of the route. In that each individual created by the
EA is a fully specified path, both its global characteristics and its local characteristics
can be evaluated.
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3.2 Representation of analytic space

The evolutionary algorithm we propose is searching the analytic space for potential
paths. We thus elect to treat the representation of the analytic space generically as a
graph that may be composed of one or more system subgraphs. By system, we refer
to the individual networks that comprise an interconnected network space intended
to serve a specific functional purpose (e.g., a multimodal transport network). With
the graph structure and the EA, we can thus reason across a single network or a
network of networks that serve to collectively represent analytic space.

For each network, let G; = (V;, E;, W;) define an undirected graph characterizing
the network. Minimally, vertices must be spatially embedded (e.g., as in an air trans-
portation network or social network), but often vertices and edges are both spatially
embedded (e.g., as in a road network). Vertices V; thus represent » intersections or
end points (airports, road intersections) in graph i. Edges E; are a set of m undirected
segments that each connect two vertices.

For each G, € G, _;, E, and W, must be cardinal, and for each e € E,, w € W,
is the weight or cost associated with the individual of the edge. For the present
representation, the domain of W is not allowed to vary across networks and the units
of measure must therefore be consistent across G networks. There is also an ordered
set of k waypoints (py, ..., px). Path P through G is defined as the set of vertices that
start at the source node pj, hit the intermediary waypoints in order, and end at the
destination node py.

In keeping with the unconstrained class of models described in Section 2.1, an
approach is also required to represent continuous or field data in network terms.
An interesting aspect of continuous representations is that they are, in fact, reduced
to a network representation for analytic purposes. For any given cell in a raster
tessellation, that cell is functionally connected to its eight immediate neighbors. By
substituting the network of neighbors, a graph-based representation can easily be
constructed (Fig. 1a).

Once a surface tessellation is converted to a graph, it may be combined with
any other graph. Two approaches exist to combine multiple networks. The first
approach assumes G D G;_;, v C V, such that subset v are vertices that can be
connected by a new set of edges e. The alternative approach assumes equivalent
planar embedding across networks (i.e., the networks are embedded in the same
Euclidian space and share a common coordinate system). In this approach, the
networks are topologically planarized in such a manner that any location where an
edge from one network intersects an edge from another network, a new node is
added and the topology between the individual subgraphs becomes continuous based
on the shared geography (Fig. 1b).

In the examples that follow, we demonstrate both synthetic and real datasets. For
purposes of the present research we use the planarized approach to integrating data
as described above.

3.3 A dynamic, evolutionary approach
In contrast to algorithms that result in single solutions to problems, evolutionary

algorithms manage a population of individuals, with each individual representing
a potential solution. In each “generation” the most fit individuals are allowed to
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(@) (b)

Fig. 1 The relationship between raster and network representations. Note that points represent
intersections of edges in each network and thus nodes in the graph representation

have “children” through perturbation processes such as mutation and recombination.
Since the population size is constant, the most fit individuals are maintained while
less fit individuals are discarded. For each successive generation, the population
“evolves” to incorporate new characteristics that increase the overall fitness of
the individuals. The key design decisions in the use of EAs involve the form of
representation of the individuals, the particular perturbation operators used, and the
method for determining the fitness of a given individual. A nice feature of an EA is
that the initial population can be “seeded” by using a priori domain knowledge. We
take advantage of this feature in our work.

In this research, we build on our earlier work wherein the EA evaluates fitness
based on three factors: length, avoidance of obvious corridors, and proximity to
specific waypoints [35]. In addition to emphasizing paths through networks of
networks, we depart from our earlier work in three other ways. First, we generalize
both our representation and the initialization of the initial population. Second, rather
than avoiding specific waypoints along a defined path, we visit waypoints but include
additional “avoidance points” as a dynamic input that can be added during the eval-
uation process. Importantly, while we recognize that other algorithmic approaches
may be suitable for solving similar problems, we are specifically interested in both
the flexibility of the EA and the manner in which the EA search serves to explore
and enumerate the network space. We capture the course of this exploration as the
search result surface. In doing so, the search results offer a probabilistic perspective
on how the search space might be used in the context of the specific problem.

3.3.1 Representation

In evolutionary algorithms (EAs), a series of “genes” are combined to build an
individual. For this research, each gene represents a node in the combined network.

@ Springer



362 Geoinformatica (2013) 17:353-385

The alleles (values of the genes) of an individual encode a path through the network.
In that different paths may have different numbers of nodes, the individuals encode
variable length representations of potential paths. While there are numerous ap-
proaches for representing individuals ranging from permutation representations to
index encoding representations (where the value j of gene i indicates that the path
contains the edge (i,)), many became computationally infeasible with graphs of more
than 100 nodes.

In [35] we adopted a node priority representation as described by [15, 16]. An
elegant aspect of this representation is that a fixed-length representation can produce
paths of variable length. Coupled with a breadth-first search (BFS) to initialize the
population of individuals with feasible candidate paths, this approach allowed us to
handle graphs with hundreds of thousands (and millions) of nodes. One drawback of
this approach is that because the BFS is not reasoning about edge weights, the initial
population of the EA is seeded by the number of vertices (hops) in a path rather than
distance as a function of edge weight information. This works well when the variance
in edge weights is minimal. However, once the variance increases sufficiently, hop
distance biases the search towards favoring long hops. In networks with very different
node densities (urban versus rural versus a surface network, for example), the
tendency is to avoid paths that pass through the high node density areas.

In order to rectify this situation, we generalized our algorithm to include edge
weights. Figure 2 shows an undirected weighted graph with seven nodes. The edge
weights are indicated with the smaller font numbers. Now, however, the initial node
priorities (indicated with the larger font numbers) are the shortest weighted path
cost to the destination D. Let P; denote the priority of node i (not to be confused
with the waypoint p;). With our earlier representation, if the path is currently at
node i, then the next node j is the neighbor with the highest priority. In our new
representation we use a novel decoding mechanism—if at node i choose the node
argmin jen {| P; — (e; j + P))|}, where N; are the neighbors of node i and ¢; ; represents
the edge weight from node i to j. For example, suppose the path is currently at node
V in Fig. 2. Then node Y is next because Py — (ey,y + Py) =6 —(1+5) =0.

In contrast to the more conventional priority representation, our generalized ap-
proached prioritizes nodes in a manner that minimizes | P; — (e; ; + P;)|, as opposed
to looking for a value of zero. The reason for this decision will be made clear in the
next subsection. Although the initialization procedure produces values of zero, once

Fig. 2 Example of our
generalized node priority
representation
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the mutation operator changes the individual, this is unlikely to occur again, and the
best match is chosen.

Also in contrast to our original representation, real-valued edge weights are used
in lieu of simple hop counts. Because weights can be real-valued, our representation
is generalized such that the EA individual consists of k — 1 sets of real values
of length |V| (because there are k waypoints denoted py,..., px). Whereas the
first representation encoded the unweighted shortest path tree, this representation
encodes the weighted shortest path tree and can be computed in O(|E|log|V|)
time. The shortest path algorithm is run k — 1 times to initialize the node priorities.
First it is run with the assumption that p, is the first destination. This creates
the vertex priorities for the first leg. Then it is run for each succeeding waypoint.
Finally, it is run for the destination node pj. The algorithm that decodes the EA
individual to produce the feasible path switches from leg to leg as each waypoint is
hit.

3.4 Mutation

A very important aspect of the evolutionary process is the manner in which the
individual genes are perturbed. In the context of path discovery, the perturbation is
required to preserve the essential quality that any new path must reach its destination
while hitting each succeeding waypoint in turn.

Though evolutionary algorithms often employ some form of recombination [37],
in the context of path optimization, we find that mutation offers a sufficient vehicle to
drive the evolutionary process. The mutation process itself is quite simple. Recall that
the initial population contains individuals that can be decoded to paths that traverse
all waypoints and reach the destination. Mutation chooses one of the nodes on a
path with uniform probability. If that node has only one adjacent node, it must be
the source or destination. Otherwise the node has more than one adjacent node. The
mutation process then randomly selects two different adjacent nodes with uniform
probability and swaps the priorities associated with those two adjacent nodes. If this
perturbation breaks the path (creating a dead end while not reaching the destination,
or skipping a waypoint), the mutation is rejected and the priorities are returned to
their previous state. Otherwise, the mutation is accepted. As a consequence the EA
individuals always remain feasible.

As an example, consider Fig. 2 again. Suppose node V is chosen. Then the
priorities of nodes W and Y could be swapped. But now the next node from V is no
longer Y, but is in fact U, because that is the node that minimizes | P; — (e; ; + P))|.
Any mutations that yield paths that do not reach the destination and all waypoints in
order are rejected.

Interestingly, we experimented with other mutation operations that utilize more
domain knowledge. None worked as well as the simple mutation algorithm described
above. Alternatively, the various A-opt operators described in [24] for TSP would
appear to be potential candidates for mutation. However, there are two difficulties.
First, while our representation semantically encodes a path, is not syntactically a
path. The implementation of the A-opt operators are thus problematic (i.e., at the
node priority level, not the path level). Second, the operator is likely to produce
infeasible paths, due to the sparseness of our graphs (as opposed to the fully
connected TSP graphs). This problem only gets worse as path length increases.

@ Springer



364 Geoinformatica (2013) 17:353-385

3.5 Incorporating dynamics

In this paper the fitness landscape is modified each EA generation via the cumulative
addition of the aforementioned avoidance points. It is useful to visualize each EA
individual as representing the behavior of a moving agent (such as an individual
trying to cross a border, or an animal trying to move through its habitat). In this
context, avoidance points are nodes that individuals attempt to avoid and thus
influence the morphology of the path. In contrast to our earlier work [35], the
environment is now non-stationary and the addition of each avoidance point requires
re-computation of individual fitness for that generation. By adding a new avoidance
point during each generation, the population of individuals are under continual
pressure to adapt to the changing environment.

The rate at which avoidance points are added to the representation causes the
fitness landscape to change quite quickly. A consequence of this rapid change is that
the mutation operator required an additional modification. Instead of being applied
only once per individual, mutation is now applied far more often, namely, ten times
the number of nodes in the feasible path encoded by that individual. This allows each
individual to react more quickly to the changing environment by increasing the range
of possible states of fitness each individual can achieve in response to the avoidance
point. Also, longer paths are mutated more often, reflecting the increased complexity
of the path. The factor of ten was arrived at empirically, over numerous problems,
but can be modified as dictated by the problem.

3.6 Developing the fitness function

To calculate the fitness of an individual, the individual is first decoded into a path.
The fitness is determined by the total edge weight of the path combined with
functions characterizing the avoidance node and curvature preferences (both terms
will be defined below). Since total edge length is a quantity that should be minimized,
we utilize a minimizing EA. To be consistent, both avoidance and curvature are
defined as penalty functions that are also minimized during the search process.

3.6.1 Total edge cost

The total edge length L is simply the sum of the cost of the edges along the nodes of
the path. Due to the weighted shortest path pre-processing step and the restricted
mutation operator, the path is always guaranteed to reach the destination, while
hitting each waypoint in succession.

3.6.2 Computing the avoidance node penalty

Avoidance regions are defined by a region of radius d centered at the avoidance
node. Beyond this radius the avoidance node has no effect on the fitness of a path;
the avoidance region can thus be thought of in terms of the area an animal would
avoid around an anthropogenic feature, the area that might be visible from a guard
station, or the effective area of a sensor. The avoidance penalty Avoid is defined with
respect to the distance of a vertex in path P to each avoidance node (assuming the
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vertex is in the avoidance region). The following code is executed for each node in
the path:

Listing 1 Computation of avoidance node penalty.

for (1 = 1; 1 < number_of_avoidance_nodes; i++) {
if (distance (path_node, avoidance_node[i]) < d) {
avoidance_penalty = avoidance_penalty +

(d - distance (path_node, avoidance_node[i]));
}
}

If a vertex is too close to an avoidance node, a penalty that is proportional to
its closeness is computed. In that the number of avoidance nodes increases with
each generation, both the environment and individual fitness are also continuously
changing.

For purposes of the present research, we elect to use Euclidean distance for
the avoidance node penalty. This relies on the assumption that the network is
spatially embedded and that the network is reasonably dense. For example, border
patrol systems include acoustic and seismic sensors that are spatial in nature. Future
versions of this method shall utilize network distance, which shall also serve to extend
proximity concepts into non-spatial networks.

3.6.3 Managing the curvature penalty

As defined in [35], curvature is related to the shape of a plane curve. A straight
line has no curvature. In order to avoid obvious corridors in a graph we wanted
a mechanism for defining the desired curvature between two waypoints, and to
measure the curvature penalty when a node on the path does not match the desired
curvature. In this paper we will generalize our notion of curvature to network space
rather than Euclidean space, but a description of the Euclidean version is necessary
for clarity.

We use as inspiration the equation for an ellipse. Given two waypoints, we
consider these to be the foci p; and p;;; of an ellipse, with distance F between them.
However, an ellipse does not include a straight line from p; to p;;, which potentially
represents the shortest path from p; to p;+1. As a consequence we define a slightly
different class of curves (where ry and r, are the distances of a point from p; and p;;,
respectively):

ri+ro=kF

This equation is easy to understand intuitively. The constant k is constrained to be
greater or equal to one (k > 1). When k = 1 this represents the straight line between
the two foci. The interpretation of k is somewhat similar to that of a spring constant.
As k increases the curve bows out more, due to tension applied to the curve.

One difficulty, however, is that in a simple ellipse model where the two waypoints
are foci of the ellipse, a curve can extend beyond the bounds of the foci. We further
constrain our class of curves with r; < Fandr, < F. As a consequence r| + 1, < 2F,
and 1 < k < 2. The desired curve is the perimeter of the region shown in black in
Fig. 3.
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Fig. 3 Avoidance region with
F=200and k = 1.1

If a vertex lies within the black region in Fig. 3, a penalty is applied. Consider the
path from waypoint to waypoint, with nodes A, B, C, and D, as shown in Fig. 4.
What penalty should be assigned to node A, since it is within the black region?
Node A is closest to the left circular arc, so a reasonable penalty is ' — r,. Following
standard conventions for ellipses, r; is the distance of the node to the right-most foci
(waypoint). If node A moves to lie on the left circular arc, the penalty goes to 0. In a
similar fashion, the penalty for node D is F — r;. Node B is closest to the top portion
of the curve, and a reasonable penalty is kF — (r; + r;). Note that if B moves to the
curve perimeter, the penalty goes to 0. Finally, node C is outside the desired curve
perimeter and hence there is no penalty. Putting this all together, the penalty for a
vertexismin (F —r\, F —ry, kF — (ri + 1), if (r < F)A(ra < F) A(ry + 12 < kF).

The penalty for a path between two waypoints is thus the sum of the penalties
for each vertex along that path, divided by the number of vertices along the path (in
order to normalize the metric). The curvature penalty Curve for a path with multiple
waypoints is simply the average of the avoidance penalties for each leg.

One important issue is that minimizing the avoidance penalty often conflicts
directly with attempts to minimize total edge length. In other words, to “bow out”
more requires a longer path. This is the reason we assign a penalty of 0 to node
C. If the EA can pull that node back in a bit, while still remaining outside the

Fig. 4 A path from waypoint
to waypoint
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curved region, path length will diminish while curvature penalty will remain the same.
Ultimately we want the shortest path that lies just outside the curve perimeter.

Though the above emphasizes Euclidean distance, the approach makes no as-
sumptions about how distances are calculated. In this paper ry, r,, and F are all
computed using network distance, not Euclidean distance. Given this, what do we
expect when k is increased? First, barring any network information to the contrary,
we expect paths to increase both in terms of network length and in terms of the
number of nodes. More important, however, in the context of this paper, is how
k affects the search process itself. Intuition suggests that not only are more nodes
“hit” during the search process, but that the distribution of node hits becomes more
uniform as k increases. In turn, k essentially describes the amount of exploration
that an agent can take—higher k implies higher exploration. These concepts will be
defined precisely later in the paper.

3.6.4 Handling multiple waypoints

When there are multiple legs in the path, a mechanism is required for switching from
one leg in the path to the next. This is done when a vertex on a path is the destination
(waypoint) for that leg. Then that node becomes the source for the next leg of the
path, and the next set of node priorities are utilized in decoding this next leg. This
is equivalent to switching from one shortest path landscape to the next. Throughout
this paper, waypoint locations are predetermined and do not vary during the course
of the analysis.

3.6.5 Calculating fitness

To calculate the final fitness of an individual (path) we take the weighted sum of the
three individual components:

Fitness = o L + BCurve + y Avoid (1)

For this paper « = 1, 8 = 1000, and y = 10000. Since we are most interested in
avoidance, it is given the highest weight. Curvature also has high weight, in order to
help avoidance (longer paths may be able to avoid nodes more easily). Path length
becomes important when avoidance and curvature have been adequately solved by
the EA. Finally, the avoidance radius is d = 10.

3.7 Performance metrics

As previously stated, the shift to a dynamic problem space requires a shift in thinking
of optimization in terms of a single solution to thinking in terms of the range of
possible solutions. A dynamic search space necessarily entails the possibility that the
“optima” change as new information is considered.

To this end, four criteria serve as metrics for overall algorithm performance. The
first is simply the number of nodes hit by feasible paths during the course of a run of
the EA. The second is the total path length (edge cost) of the best individual found by
the EA. The third is the avoidance penalty. Finally, the fourth criteria complements
the first, by indicating the amount to which nodes within the graph serve as critical
components of complete paths. This last criteria is explained further below.

@ Springer



368 Geoinformatica (2013) 17:353-385

3.7.1 Occupancy-based characterization of search

As stated above, one metric of interest is the total number of nodes hit during the
whole search process (i.e., the number of nodes hit by the agents (individuals) in the
EA population). However, the distribution of nodes is also useful to monitor.

If we monitor the total number of times that each node is hit, and divide by
the total number of hits over all nodes, the result is a probability distribution
representing the overall occupancy of the nodes during the search. To compare this
distribution with the uniform distribution, we first considered using the Kullback—
Leibler divergence. Although the lower bound is 0.0, an upper bound is not defined,
and it is not a true metric since it is a non-symmetric measure. Furthermore, it is
not defined if the node distribution contains a zero (i.e., a node has never been
hit). An alternative is the “earth mover’s distance”, which is a measure of distance
between two probability distributions. Unfortunately, computation involves use of
the Hungarian algorithm, which is O(N?). For the number of nodes used in our
experiments, computation of this metric is not feasible.

Instead, we used a simple Euclidean distance metric. Consider two probability

distributions P and Q. The distance metric is ,/Zfi , (P — Q,»)z, where N is the
number of nodes in the graph. Let O be the uniform distribution. If the node
distribution P is uniform, then the Euclidean distance is zero. This represents an
agent that visits all nodes equally often. The maximum value of the metric can
be obtained by examining the distance of the “degenerate distribution” (which
has probability one at only one value) from the uniform distribution. In this case
Q={U/N,1/N,...,1/N),and P= (0,...,0,1,0,...,0). The distance metric is:

(o0 (-3))

Simplifying yields ,/ %, which quickly approaches one as N increases. This
represents an agent that never moves. Values closer to the maximum indicate that
the EA is focusing strongly on a small subset of nodes. Values closer to zero indicate
that the EA is focusing attention more uniformly over a larger set of nodes.

3.7.2 Influence of the curvature constant k

We are also interested in the curvature constant &, as it serves to indicate some behav-
ioral characteristics of an agent. When k = 1.0, the agent follows the most direct path
from source to destination. The agent does no exploration. As k increases, the agent
becomes more explorative, and hence more indirect. This reflects an agent more
concerned with being evasive, and not being caught by a sentry (or sensor) at one of
the avoidance nodes. In this situation the total path length becomes less important to
the agent. Hence, we will focus on the change in performance metrics as k changes.

4 Application and results

In our earlier work on single-network analysis [35], we developed simple lattice
datasets to support experimentation and used the Colorado road network provided
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by DIMACS [11] (with 435,666 vertices and 1,057,066 edges) to demonstrate the
effectiveness of the approach on real-world data. Here, we emphasize datasets
that integrate multiple networks using the data integration process discussed in
Section 3.2. As with the earlier work, two distinct datasets are used to support the
experiments in this section.

The first is a dataset created using a synthetically generated impedance surface
with an arbitrary set of edges representing low impedance “roads” through the
surface. The second dataset is based on a combination of real-world road data
from the El Paso-Juarez border region on the US-Mexico border combined with
an “exposure” surface that serves as a proxy for risk of discovery associated with
overland versus road-based travel.

In the following sections we describe the two datasets, the experimental design
and the results of the experimental runs on each dataset.

4.1 Synthetic dataset

The purpose of the synthetic dataset is to provide a basis for testing the ability of
the EA to traverse the network space taking into account the edge costs (i.e., the
penalty for overland versus on road travel) while simultaneously taking into account
the other optimization criteria (route morphology and avoidance penalties).

The synthetic dataset was created by generating a kernel density surface from a
series of points organized in space to have areas of varying high and low density.
Once the kernel density surface was created, the surface was converted to its cor-
responding surface network where density values become a multiplier to weight the
Euclidian distances associated with the surface network edges (using the procedure
described in Section 3.2).

Following the creation of the surface network, a series of synthetic “roads” were
digitized for the same geographic area. The roads extended slightly beyond the edges
of the terrain network to provide for locations to begin and end the routes associated
with the experimental scenarios. The intent of the road configuration was to provide
for a variety of routing scenarios involving traversal of roads as well as through high
and low impedance areas.

The synthetic roads and the surface network were integrated using the previously
mentioned topological join process. The end result is a dataset containing 44,530
nodes connected by 130,776 edges. These edges and nodes are then post-processed
and converted to a text-based adjacency list representation that can be read by the
EA data input routines. The synthetic dataset is shown in Fig. 5.

4.1.1 Experimental runs using the synthetic dataset

For the synthetic dataset we chose four specific problems, as shown in Fig. 6. These
test cases include problems that cover various portions of the synthetic dataset, entail
searches both along roads and though the surface network, and require searches
through both high and low impedance areas. Each of the four test cases consist of
paths with only one leg. For each case, the population size was 20, and the EA was
run for 100 generations.

To address the dynamic aspect for each problem, 80 avoidance nodes are chosen
randomly along the least cost path for that problem (shown in Fig. 6). By choosing
avoidance points along the shortest path, each additional avoidance point is likely

@ Springer



370 Geoinformatica (2013) 17:353-385

Fig. 5 The synthetic dataset.
Note that low impedances are
shown in darker tones, high
impedances in lighter tones

to force mutation of the path and the avoidance behavior of the algorithm is easily
observed. For the first 80 generations an avoidance node is added to the list of nodes
to be avoided each generation. In order to see whether the EA is “keeping up” with
the rate of change in the environment, it is run an additional 20 generations (from
generation 81 to 100) to see if it can improve the quality of the solutions.

For the experimental runs on the synthetic data, we varied value k from 1.00 to
1.08 in steps of 0.02. For each problem and value of k, the EA was run 50 times. This

(a) Problem 1 (b) Problem 2

(a) Problem 3 (d) Problem 4

Fig. 6 The four experiments evaluated on the synthetic dataset
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yielded 50 different sets of avoidance nodes for each problem, determined by a ran-
dom seed (that varied from one to 50). This means that, for a given problem and ran-
dom seed, the EA was run on a consistent set of avoidance nodes for each level of k.

4.1.2 Evaluation of results

It is useful to examine the dynamics of the EA as the experiment runs through 100
generations. For this we examine graphs of performance versus generation, for k =
1.02 and random seed 1 (these graphs are representative of typical behavior). The
performance of the algorithm and the dynamic response to the addition of avoidance
nodes is similar across Problems 1, 3 and 4. The characteristics of Problem 2 result
in a different bias during the search and, as such, we illustrate the dynamics using
illustrations of Problems 2 and 3.

The total path length of the best individual following the EA run for 100 gener-
ations illustrates some interesting characteristics of the algorithm (Fig. 7). Note that
the path length increases for Problem 3 (in order to avoid the increasing number
of avoidance nodes). This is not true for Problem 2 (we will see why this is the
case later). Note also that there is little change in performance after 80 generations,
when no more avoidance nodes are added. This indicates that the EA is keeping up
and does not appear to require more generations to further adapt to the changing
landscape.

Figure 8 shows the results for the avoidance penalty. Consider the search dynamics
illustrated by the two lines characterizing Problem 3 (Fig. 8b). The red line represents
the introduction of new avoidance nodes, resulting in a large increase in avoidance
penalty. The black line indicates the performance after the mutation operator has
been executed, indicating that mutation does a good job of driving the avoidance
penalty back down. To put into context of an applied problem, this means that the
addition of a new sentry or sensor disrupts the performance of the agent. However,
the agent adapts quickly and learns to avoid the new sensor. The left graph shows
a very different scenario. Only rarely do the new avoidance nodes disrupt behavior,
and the EA quickly drives the penalty back to zero.
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Fig. 7 Total path length following a 100 generation run of the EA, with k = 1.02
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Fig.8 Avoidance penalty as the EA runs for 100 generations

The key to understanding the difference between the two problems is illustrated
in Fig. 9. Again, consider the right graph. The black line indicates that the number
of nodes examined by the EA increases as the EA runs. The curve is necessarily
monotonically non-decreasing—once a node is hit, it can never be removed from the
pool of visited nodes. The red line indicates that these nodes hits become more and
more uniformly distributed over time, and this is consistent with our expectation.
However, Fig. 9a tells a different story. While the number of hit nodes increases, the
Euclidean distance from uniformity increases. This indicates that the EA has settled
on a subset of nodes and thus potential feasible paths to examine.

This result, though perhaps counterintuitive, can be understood by examining
the visual occupancy grid during the search. Figure 10a and b show the occupancy
scenarios for Problem 2 at the beginning and end of the search. What has happened
is clear. Immediately after the first avoidance node appears (the yellow dot), the EA
finds an alternative path that is completely different from the first shortest path. This
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Fig. 9 Node count and Euclidean distance as the EA runs for 100 generations
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(a) Problem 2 Initialization

(c) Problem 3 Initialization (d) Problem 3 Completion

Fig. 10 Initial and final occupancy grids for Problems 2 and 3. Higher probability is indicated with
lighter tones in the occupancy areas

new path almost never intersects the later avoidance nodes (except near the source
and destination). The EA focuses attention on the area around the new path and the
search emphasizes this path until its fruition.

In contrast, the third problem depicts more typical algorithm behavior. As avoid-
ance nodes are added, the discovered paths go “off road” to avoid them. The search
is always drawn back to the main road if possible, because that has least cost. If
there are too many avoidance nodes on the least cost path, and a reasonable off
road alternative is available, the EA will explore that possibility. The occupancy grid
shown in Fig. 10c and d illustrate the range of behavior changes exhibited by the
agents, as they attempt to avoid detection.

Experimental runs across multiples of k also prove reliable. Figure 11 show the
graphs of the performance metrics for the four problems as k is varied through each
experimental run. The previously characterized role of k holds—on average the total
path length increases and the number of nodes occupied increases with k. Also, the
occupancy grid becomes more uniform. In terms of avoidance, three of the four
problems were very easy to solve. However, Problem 4 was more interesting, with
the avoidance penalty smoothly decreasing with k.

The occupancy grid offers a useful diagnostic to understand Problem 4. In
examining the occupancy grid, it becomes evident that there is a horizontal sequence
of avoidance nodes that are difficult for the algorithm to route around (Fig. 12).
The horizontal sequence of avoidance nodes (as highlighted) is difficult to avoid
as there is no global pressure towards the gap in the center—success is a hit or
miss proposition given the nature of the algorithm. However, with a higher k, that

@ Springer



374 Geoinformatica (2013) 17:353-385
(a) Avoidance penalty as a function of k (b) Total edge cost as a function of k
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horizontal set can be avoided altogether. Note also that the top vertical set is much
easier to avoid with higher k. The number of nodes explored is much less when
k = 1.02 and the avoidance penalty is 50.12 (Fig. 12a) than when k = 1.08 and the
avoidance penalty is 3.04 (Fig. 12b).

Overall, the evolutionary algorithm performs as anticipated. Similarly, the re-
sponse to the avoidance point dynamics is systematic and appropriate. Given the
success with the synthetic dataset, we developed a much larger and more varied

dataset to simulate “real-world” scenarios.

Fig. 12 Search results with parameter relaxation
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4.2 The El Paso-Juarez dataset

Once our generalized EA was successfully executed on the synthetic dataset, we
constructed a larger, real-world dataset to provide for more realistic test scenarios.
Using the readily available Open Street Map open source road data [20], we began
by constructing a road network for the cross-border area of El Paso, Texas in the
United States and Ciudad Juarez, Chihuahua, Mexico.

The El Paso-Juarez dataset is intended to demonstrate scenarios that might in-
volve surreptitious crossing of the US-Mexico border and, consequently, movement
through Mexico and the United States (US) involving some combination of road and
overland travel. The conceptual model for this dataset is based on the premise that
areas of higher density roads represent greater risk for a traveler attempting to avoid
detection. Similarly, off-road travel near such areas represents greater risk than off-
road travel in more isolated areas.

To implement the above scenario we computed a line density surface based on the
US subset of the road data (Fig. 13). The surface was computed with a 5 km search
radius and at 250 m resolution. This search radius served two specific purposes: it
extended the overland travel surface associated with US roads into Mexico, and the
density estimator results in a surface that naturally decays in value with increasing
distance from roads. The former detail allows for scenarios where individuals might
travel via road while in Mexico then switch to overland travel as they approach the
border, the latter simply serves as a natural proxy for increasing risk near areas with
a greater density of roads.

In addition to using the line density surface to generate a surface network to
proxy risk of detection, for US roads we sampled the density surface to create a
cost multiplier. Whereas the cost associated with road travel in Mexico was 1:1 with
road network distance, costs to traverse roads in the US were computed as network
distance weighted by the average density of the cells traversed in the line density
surface. Also, for high density areas in the US, we eliminated the corresponding
edges from the surface network due to the improbability of using overland travel
in heavily populated areas.

The Mexico roads, US roads and subset surface network were then integrated via
the same procedure used to create the synthetic dataset. The final El Paso-Juarez
dataset consists of 187,129 nodes connected by 438,950 edges (see Fig. 14). As with

Fig. 13 The approach for
calculating line density. For L2 —
each cell, the total length of
the network falling within the == ey
search radius of that cell is - — |
/
1

divided by the area included \
in the search. For cell 1, line
density is computed as

cell 2, simply L3/7r? .

(L1+L2)/7r* whereas for
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Fig. 14 The El Paso-Juarez dataset. The US-Mexico border is shown as a grey band with a dot-dash
overlay. Again, note that low costs are shown in darker tones, high costs in lighter tones. The border
control areas associated with 100 avoidance points used in the experimental runs are shown in outline
along the border

the synthetic dataset, the final step in processing the integrated dataset required
conversion to the adjacency list representation used by the EA.

4.2.1 Experimental runs using the El Paso-Juarez dataset

As with the synthetic dataset, we identified four problems against which to evaluate
the developed algorithm (Fig. 15). The complexity was increased to two legs of travel
(one intermediary waypoint) for each problem. To address the avoidance aspect
of the problem, we identified 100 specific avoidance nodes for the El Paso-Juarez
scenarios and introduced a new avoidance node each generation. Again, the EA was
run for 100 generations.

The avoidance nodes were selected to cover a large portion of the overland border
area west of El Paso and Juarez as well as the more tightly controlled crossings
directly between the two cities. For all experiments the set of avoidance nodes is
the same, however, the order of insertion changes for each unique random seed. Due
to the larger size of these problems, the population size was reduced to two (without
noticeable change in performance) in order to increase computational speed.
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(a) Problem 1

(c) Problem 3 (d) Problem 4

Fig. 15 Four problems generated to test the EA on the El Paso-Juarez dataset. The shortest path
individual is shown for context

The four experimental problems were designed to address a variety of possible
dynamics in route behavior. The specific problems are hypothetical and designed to
simulate potential movement behaviors relative to a series of would-be surreptitious
objectives.

— Problem I: In this scenario, the route is initiated in the northeast quadrant of
the data, stops in the dense area to the north and west of El Paso, then heads
into Mexico and the southwest corner of the study area. This study illustrates the
extensive use of overland travel to avoid large traversals in the urban area and
to dodge the avoidance points that emerge at the border during the course of
successive generations.
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— Problem 2: This scenario starts in Mexico, stops in the high density area north
and west of downtown El Paso, then heads north and east. This scenario might
simulate the movement of contraband from Mexico into the United States with
an intervening drop point. The dynamics of this scenario illustrate how early
intervention along the border crossing influences behavior forward from that
point in time. The early intervention disrupts the optimal path and following
that disruption, finding an alternative route becomes much more difficult.

—  Problem 3: The third scenario is similar to Problem 2 in that it simulates the
would-be movement of contraband from Mexico into the United States. In this
scenario, the origin of the path is in Mexico at the southernmost extent of the
study area. Like the previous scenario, this scenario illustrates the pressure
associated with moving through the high density downtown area and the con-
sequences of early intervention along the border control points.

— Problem 4: The final scenario offers an alternative perspective and simulates
someone leaving the United States, acquiring contraband in Mexico and return-
ing to the United States. The scenario begins in downtown El Paso, moves into
downtown Juarez, then returns back into the United States and heads toward a
less developed area (e.g., a rendezvous point). Again, this simulation illustrates
how the establishment of intervention points near the logical border crossing
quickly affects potential route behavior.

The above problems include one scenario originating in the US and entering
Mexico (Problem 1), two scenarios originating in Mexico (Problems 2 and 3), and
one scenario that originates in the US and returns to the US passing through Mexico
(Problem 4). The four scenarios illustrate movement through the varied network
topologies, multiple encounters with avoidance points and movement through areas
where the border crossing is readily constrained versus more open areas.

In order to demonstrate algorithm consistency on the two differently structured
datasets, we repeat the sensitivity analysis to variation in parameter k. Consistent
with the experimental runs on the synthetic data, we varied value k from 1.00 to 1.08
in steps of 0.02. In order to test higher values of k, we also ran for & = 1.16. For each
El Paso-Juarez problem scenario and value of k, the EA was run 50 times. In contrast
to the synthetic scenarios, the avoidance points for the El Paso-Juarez scenarios are
deterministic and occur at the previously mentioned predetermined locations (shown
in Fig. 14). However, as mentioned earlier, the order of insertion of the avoidance
nodes into the network is random and depends on the random seed.

4.2.2 Evaluation of results

Due to the arguments presented earlier, we are using the EA due to its flexibility to
accommodate a problem that would need to be very tightly specified in the context
of a variety of alternative SP algorithms. As such, our focus on evaluation is not
on run time or big O performance but rather in terms of whether the EA shows
relatively consistent behavior and reliability for a variety of data. As such, we repeat
the use of metrics associated with total path length, avoidance penalty, node count,
and Euclidean distance.

In terms of path length, each of the experimental runs demonstrates a relatively
quick increase in path length (see Fig. 16). This is generally consistent with the
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Fig. 16 Total path length as the EA runs for 100 generations

synthetic data as the algorithm quickly departs from the initialized shortest path,
due to the introduction of the avoidance nodes. As more avoidance nodes are
introduced and the search becomes more difficult, there is a continual tension
between avoidance (by increasing path length) and minimizing path length, as “work
arounds” are found. Our results with respect to total edge cost, node count and node
distribution are consistent with the synthetic data—as k increases the path length and
number of nodes hit increases consistently. Also, the node hit distribution becomes
more and more uniform (we omit these graphs for the sake of brevity).

Analysis of the trends in avoidance penalty yields additional insight (Fig. 17). Both
Problems 3 and 4 have ideal shortest paths that require use of the tightly controlled
border area. In that these areas are blocked by avoidance points (the small cluster
in the southeast), the EA has a difficult time finding functional solutions via the
mutation operator. This is particularly problematic for Problem 3 wherein the border
control area is approached from Mexico and the EA is unable to find a solution in 100
generations (see Fig. 17c—the algorithm is unable to reduce the avoidance penalty).
In contrast, in a similar scenario but entering Mexico from the US (see Fig. 17d), the
greater degrees of freedom (i.e., higher road density and opportunity for overland
travel) allow the EA to occasionally find solutions that avoid the tightly controlled
border area altogether.
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Fig. 17 Avoidance penalty as the EA runs for 100 generations

This behavior can be seen clearly in the final occupancy graphs for the four
problems (Fig. 18). For the first two problems, the EA is able to discover the “gap”
between the two horizontal avoidance segments. The fourth problem can be solved
by taking a very wide detour to the southeast from the US into Mexico. However,
this detour is harder to find coming up from Mexico in the third problem, and the
path is unable to avoid the southeast cluster of avoidance nodes. In fact, due to the
lack of connections between the US and Mexico in this area, what our results indicate
is that the southeast cluster of avoidance nodes are extremely effective in terms of
inhibiting route options.

This results are emphasized in Fig. 19, which shows the avoidance penalty. The
first two problems are quite easy. The third problem is very difficult. No matter what
the value of k is, the EA is unable to find a path up from Mexico that totally avoids
the southeast avoidance nodes. The fourth problem, in contrast, has intermediary
difficulty. But this is not because the avoidance penalty is generally half that of the
third problem. It is because the EA can avoid the southeast nodes approximately
50% of the time (hence almost halving the penalty on average). Again, this is due
to the greater degrees of freedom that allows the EA to occasionally find the wide
detours (as can be seen in Figs. 17d and 18d).
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Fig. 18 Final occupancy grids for the four problems
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Although k appears not to have an overall dramatic effect on most problems, it
does appear to influence the ability of the EA to arrive at a solution for Problem
4. The effect is non-linear—this may be a function of the cost-based as opposed to
Euclidean nature of the graph. For this problem the value of k appears to affect the
probability that the EA can find the wide detour (from the worst value of 36% for
k = 1.02 to the best value of 50% for k = 1.04). Research is ongoing to understand
this dynamic.

5 Conclusion

This paper describes an approach using evolutionary algorithms to search and
enumerate geographic information. It details how evolutionary algorithms support
the idea of encapsulating “real-world” behaviors into the search process through the
use of parameters such as k£ and the curvature and avoidance penalties associated
with the fitness function. Four test scenarios run on each of two datasets demonstrate
the manner in which the algorithm uses the input parameters and the fitness function
to respond to a dynamic environment. In doing so, the presented research offers
several extensions to route finding algorithms associated with more typical single
objective shortest path problems.

While the presented scenarios involve the movement of a hypothetical human
agent through the environment, the approach is relevant to modeling other phe-
nomena. For example, the approach could easily be adapted to model potential
alternative traffic routes given disruption to a critical link in the transportation
infrastructure. Similarly, as mentioned in the text, the approach is also ideally suited
to model animal movement corridors and the potential impact of anthropogenic
features on the animal movement patterns.

Overall, the flexibility of our approach is underpinned by three critical concepts.
First, each of the test datasets represents a network of networks. While the test
datasets are currently comprised of networks that are geographically embedded,
there is no requirement that the networks be strictly spatial (e.g., a social network, a
financial network). Second, given that each generation of the evolutionary algorithm
encodes potentially feasible paths, we leverage this information rather than discard-
ing it in favor of the “best” potential path. Finally, the approach is fundamentally
dynamic; the dynamic response and adaptation of the feasible paths to the new
information for each generation offers significant flexibility over more heuristically
driven approaches.

In terms of future research, we are currently working in three areas. First, the shift
to multiple networks with different cost measures will require a shift to true multi-
objective optimization approaches. Second, given the possibility of multiple networks
with different cost variables, a more flexible approach to incorporate network
proximity in lieu of Euclidian distance for the avoidance function is required. Finally,
in order to make the approach relevant to a broader array of problems, we would like
to make the parameter set and the fitness function more modular (e.g., the ability to
drive the reasoning by flexibly specifying the parameters and fitness function relevant
to the particular problem). The flexibility of the evolutionary approach will support
these research goals. Overall, however, the demonstrated approach is flexible and
extends our thinking about reasoning on complex networks.
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