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Abstract There is a significant commercial and research interest in location-based
web search engines. Given a number of search keywords and one or more locations
(geographical points) that a user is interested in, a location-based web search
retrieves and ranks the most textually and spatially relevant web pages. In this type
of search, both the spatial and textual information should be indexed. Currently, no
efficient index structure exists that can handle both the spatial and textual aspects
of data simultaneously and accurately. Existing approaches either index space and
text separately or use inefficient hybrid index structures with poor performance
and inaccurate results. Moreover, most of these approaches cannot accurately rank
web-pages based on a combination of space and text and are not easy to integrate
into existing search engines. In this paper, we propose a new index structure called
Spatial-Keyword Inverted File for Points to handle point-based indexing of web
documents in an integrated/efficient manner. To seamlessly find and rank relevant
documents, we develop a new distance measure called spatial tf-idf. We propose four
variants of spatial-keyword relevance scores and two algorithms to perform top-k
searches. As verified by experiments, our proposed techniques outperform existing
index structures in terms of search performance and accuracy.
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1 Introduction

There is a large amount of location-based information generated and used by
many applications. The Internet is the most popular source of data with location-
specific information, such as documents describing events/news at certain locations,
Wikipedia pages containing spatial information and images with annotations and
information about the places they were taken. Users of such a web-based application
often need to query the system by providing requirements on a location as well
as keywords in order to find relevant documents, as illustrated by the following
example.

Suppose we have a collection of web objects (documents),1 and each object
contains some text/tags describing an event for a specific location. Web object
(document) can be a tweet, an online image or a video. We want to build a system to
allow users to search on these objects. Consider a user, Bob, who lives in the central
part of Los Angeles and likes to find parks having free concerts around his house.
He submits a query to the system with three keywords “park concert free”
and specifies “Central Los Angeles” as the location restriction. Figure 1a shows
the location of his query represented as a black circle. Our goal is to find the best
documents that are of interest to Bob.

Suppose there are six documents in the repository with locations close to the
Central Los Angeles. Figure 1a shows these locations represented as small triangles.
In addition, each document has text keywords in its content. Figure 1b shows the
frequencies of the three query keywords in these documents. We want to find the
most relevant results (documents) to the query. The result cannot be found with
a simple keyword-only query since none of the documents may have the actual
keywords “Central Los Angeles” or even “Los Angeles” in them.

In this paper, we show how to support spatial-keyword queries on documents
with spatial information. We demonstrate how to rank documents by seamlessly
combining spatial and textual features, in order to find highly relevant answers to
user queries. In our running example, an interesting question is how to measure the
relevance of a document to the query. Intuitively, a document could be of interest to
the user if it has at least one of the query keywords, and its location is close to the
location mentioned in the query. Document d6 may not be very relevant to the query,
since its location is far from the query location. The other five documents are all much
nearer to the query point, and thus could be potentially of more interest to the user.
Hence, we need to rank the documents since the user may only be interested in the
most relevant documents. However, it is not clear how to measure the relevance of
the documents to the user query. For example, it is clear that document d3 should
have a high relevance since its location is very close to the query location, and all
three query keywords appear in the document. However, it is not clear how relevant
d2 is to the query, since even though its location is near the query location, it does
not have two of the keywords (“concert free”). The other documents, d1, d4, and
d5, all have the three query keywords, but with different frequencies, and they are at
different distances to the query point.

In this paper, we present a ranking method that considers both the spatial
proximity of a document to a query and the frequencies of the query keywords in

1We use terms documents and objects interchangeably throughout this paper.
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(a) A query with keywords “park
concert free” and a location “Los
Angeles” (represented as a black circle).
Other points (represented as small triangles)
are documents’ locations.

(b) Documents with location information
and keyword frequencies.

Fig. 1 A spatial-keyword query on documents with location information

the document in order to compute a relevance score of the document to the query.
We present a new scoring mechanism to calculate the spatial relevance of a document
with respect to a query, and propose a method to combine the spatial relevance and
the textual relevance.

Given a proper ranking method for documents, a natural question is how to
efficiently index and search the location-specific documents. There are several
challenges to reach this goal. First, space and text are two totally different data
types requiring different index structures. For instance, conventional text engines
are set-oriented while location indexes are usually based on two-dimensional and
Euclidean spaces. Second, the ranking and search processes should not be separated.
Otherwise, the ranking process will rank all the candidate documents (instead of
only the relevant documents), rendering the query processing inefficient. Third, the
meaning of spatial relevance and textual relevance and a way to combine them using
the proposed index structure have to be defined accurately. Finally, it should be easy
to integrate the final index structure into existing search engines.

To solve the above problems, we propose a new hybrid index structure called
Spatial-Keyword Inverted File for Points (“SKIF-P” for short). SKIF-P is an inverted
file capable of indexing and searching both textual and spatial data in a similar,
integrated manner. With SKIF-P, the space is partitioned into a number of grid cells
and each cell is treated similar to a textual keyword. We describe the structure of
SKIF-P, and present two efficient algorithms for answering a ranking query using
SKIF-P.

A preliminary version of this work appeared in [1], where query and document
locations were represented as regions, and we proposed indexing and ranking
techniques for that setting. This paper builds on [1] and proposes new indexing and
ranking techniques for a setting in which query and document locations are two-
dimensional points. For most of the spatial information on the web, locations are
either directly specified as two-dimensional points (latitude, longitude) or can be
easily converted to that format. Examples of the former are most geo-tagged Web 2.0
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objets, such as geo-tagged micro-blogs (e.g. tweets2), geo-tagged images (e.g. Flickr3

images) and geo-tagged videos (e.g. Youtube4 videos). For the latter, almost all
documents (web-pages) containing some spatial information about different places—
such as news web-pages (e.g. NY-Times5), business listings (e.g. Yelp6) and check-in
objects (e.g. foursquare7)—can be geo-coded into two-dimensional geo coordinates
(latitude,longitude).8 In order to define and model the spatial relevance in this new
setting (when locations are points and relevance is based on proximity), we define
the concept of spatial decay and introduce several spatial decay functions. Using
the spatial decay functions enable us to define the spatial relevance and the spatial-
keyword relevance seamlessly and more naturally for the new setting.

Finally, we have conducted an extensive set of experiments to show the efficiency
and accuracy of our proposed approaches and the index structure. Using both the
real and synthetic datasets we performed a large number of experiments to evaluate
the performance of SKIF-P based on several different parameters. When possible,
we also compared the performance of SKIF-P with the best existing solutions. We
also conducted two separate user studies (based on the real datasets) to evaluate
the accuracy of our proposed approaches. Finally, we study the impact of different
SKIF-P parameters (e.g., number of cells, type of spatial decay function) on the
performance and accuracy of our system.

To summarize, we have the following contributions in this paper:

– We define the problem of ranking queries on documents with spatial and textual
information.

– We define a spatial decay function and its several variants, to be used seamlessly
in our proposed approaches.

– We develop a new scoring method called spatial tf-idf to compute the spatial
relevance of a document to a query, and combine both spatial relevance and
textual relevance for a query.

– We develop an efficient hybrid index structure for indexing both the spatial and
textual aspects of the documents. We present two algorithms for answering a
ranking query using the structure.

– We have conducted a comprehensive experimental evaluation on real and syn-
thetic datasets to show that our techniques can answer ranking queries efficiently
and accurately.

2http://www.twitter.com
3http://www.flickr.com
4http://www.youtube.com
5http://www.nytimes.com
6http://www.yelp.com.
7http://www.foursquare.com
8We have to note that although representing locations as points are the current representation of
choice on the web, it is not necessarily the most accurate one. For objects with spatial extents, the
most accurate presentation is probably a polygon representation. We focus on points in this paper
since 1) currently, spatial feature of most objects/documents on the web are represented as points,
and 2) we have already showed how to handle cases when the spatial feature is a region in our
previous work [1].

http://www.twitter.com
http://www.flickr.com
http://www.youtube.com
http://www.nytimes.com
http://www.yelp.com
http://www.foursquare.com
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The rest of the paper is organized as follows. Section 2 briefly studies the existing
index structures. Section 3 defines the problem discussed in this paper along with
some preliminary issues. In Section 4 we discuss the concept of spatial decay and
introduce several spatial decay functions. Section 5 introduces our ranking method
and its several variants. Section 6 presents SKIF-P and its algorithms. Section 7
evaluates our methods through extensive experiments. Finally, Section 8 concludes
the paper.

2 Related work

Existing index structures for handling the spatial-keyword queries can be categorized
into two broad groups: 1) individual index structures, and 2) hybrid index structures.
Individual index structures use one index for each set of features of the data (space
or text). The index structures of choice for the spatial data are usually grid, R*-tree
or quadtree. For text, inverted files are often used. Using separate index structures,
documents satisfying the textual part of the query and documents satisfying the
spatial part of the query are retrieved separately using the textual and spatial indexes,
respectively. The final result is the merging of the two result sets. An example of this
method is the inverted f ile and R*-tree double index presented in [2]. An improved
variation of this approach is to filter the results based on one feature first and then
use the second index structure on only those results generated from the first step and
not on the entire collection. The main problem with the above methods is the fact
that each one-feature search usually returns huge number of results.

Hybrid index structures combine the textual and spatial indexes into one index
structure. Two basic designs introduced in [2] are inverted f ile-R*-tree and R*-tree-
inverted f ile. Inverted f ile-R*-tree is essentially an inverted file on top of R*-trees.
With this structure, first the inverted file is built and then R*-trees are built on each
inverted list indexing the spatial features of the documents (objects) in the list. For
a given spatial-keyword query, the query keywords are filtered using the inverted
file and then R*-trees corresponding to those keywords are traversed to search/filter
based on the spatial features of the data. This structure performs well only when
the number of keywords is very small. Increase in the number of keywords results
in traversing multiple R-trees separately and combining the results from those tress,
which is very costly. R*-tree-inverted f ile is an R*-tree on top of inverted files. In this
structure, an R*-tree is first built for all the documents (objects) locations and then
inverted lists are generated for keywords appearing in leaf nodes of the tree. For a
given spatial-keyword query, R*-tree’s leaf nodes intersecting the query location are
retrieved first and then all the inverted lists corresponding to those keywords are
traversed. The main disadvantage of this method is in its spatial filtering step, which
usually generates many candidate objects.

Two other structures are those presented in [7] and [11]. Both these studies are
conceptually similar to the work in [2] with the main difference that they use grid as
their spatial index structure. Both also use inverted file as a textual index. With both
approaches, spatial and textual search processes are separated and query processing
require two stages. Although both approaches use one hybrid index but the spatial
and textual search processes are still separated. Both approaches discuss hybrid
(spatial and textual) relevance ranking in a very abstract (high level) form. Both
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fall short to provide a more detailed explanation of how they plan to implement
this ranking and how the proposed index structures are used to provide a hybrid
relevance ranking. Also, neither of the papers present any type of real experiments
(even in the simplest form) to provide and evaluate accuracy of any relevance
ranking schema. Also both approaches are based on AND semantics meaning that all
the keywords in the query should exist in each result. The main difference between
these two approaches ([7] and [11]) is that the focus of the work in [7] is more on
system (and algorithmic) issues (more specifically scaling to very large datasets and
high query load). Although the work in [11] is very different than what we propose
in this paper, as a future direction, the authors of [11] suggested a closer integra-
tion of textual and spatial indexing by using spatial cell identifiers as part of the
textual index.

Several improved hybrid index structures are introduced more recently. In [3]
a hybrid index structure called KR*-tree is proposed. KR*-tree extends R*-tree-
inverted file structure by augmenting each node of R-tree with the list of all the
keywords appearing in the objects of that subtree. At the query time, KR*-tree is
traversed and for each node, not only the spatial intersection with the query region
is checked but the node is also checked for the presence of the query keywords. The
result to the query are the objects contained in the query region that have all the
query keywords (AND semantics). KR*-tree is only good for spatial objects with
a small number of keywords. Moreover, KR*-tree cannot be used in the context of
location-based web search since documents in the web typically contain large number
of keywords. Also the textual relevance ranking (and therefore the spatial-keyword
relevance ranking) cannot be supported. Another hybrid index structure called IR2-
tree is presented in [4], which combines R-tree with signature files. With this method,
each node in R-tree is augmented with a signature representing the union of the
keywords (text) of the objects in the subtree rooted at that node. Similar to KR*-
tree, IR2-tree can identify the subtrees that do not contain the query keywords and
eliminate them from the search process early on. IR2-tree is more efficient than KR*-
tree since the auxiliary data structure augmented to each node is much smaller (and
more efficient) in the IR2-tree. Similar to the KR*-tree, input data here is a set of
spatial objects each associating with number of keywords. Using IR2-tree, the final
result set is a ranked list of objects containing all the query keywords in order of
their distances to the query point. IR2-tree performs better than index structures in
[2] and [3] but still has its own shortcomings. At times, the signature files are not able
to eliminate the objects not satisfying the query keywords (false hits). This results in
loading and reading more objects, which is costly. Furthermore, the performance gets
worse when the number of query keywords increases or when the final result is very
far from the query point. Another problem with IR2-tree is that the signature files
need to be loaded into memory each time a node is visited. Finally, since there is no
intuitive way to use signature files for the textual relevance ranking, IR2-tree cannot
really perform a meaningful ranking. In summary, none of the existing methods
mentioned here are designed to support the spatial-keyword relevance ranking. If
there is a ranking, it usually is based on the spatial relevance (either distance or
overlap). The existing methods use the AND semantics and hence cannot have the
results with the partial relevance (object with some but not all the keywords). Also,
none of the existing methods use both the spatial and textual aspect of the data
simultaneously and in the similar manner. At the best case, they use one feature
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for pruning the result set and one feature for the actual search (e.g. IR2-tree uses
signature files to prune the data based on the text and uses R-tree to do the actual
search). Finally, for all the mentioned methods there are inevitable cases when the
actual objects have to be read from the disk and be reevaluated. This happens when
the search is based on on feature (e.g. space in IR2-tree) and pruning on the other
feature (e.g. text in IR2-tree) is not able to prune all the non-qualified objects. In
this case, after reaching the candidate object using one feature (e.g. reaching a leaf
node in IR2-tree), the actual object has to be read and rechecked to see if it is
qualified based on the other feature (e.g. object’s textual description matches the
query keyword in IR2-tree). In other words, in existing methods the index structure
by itself is not sufficient for the query processing and access to the actual objects are
often needed.

Very recently another hybrid index structure called IR-tree is presented, which
also combines R-tree with the inverted files [10]. With this index structure, each node
of the R-tree is augmented with an inverted file for the objects contained in the sub-
tree rooted at that node. IR-tree is the most similar approach to our work since it
considers space and text together. IR-tree is a single index structure requiring only
one step to process the query. Also, IR-tree supports ranking of the documents based
on both the spatial and textual features (although not very accurately).

Nevertheless, there are some major problems with IR-tree. First, one inverted
file needs to be stored and possibly accessed for each node in the tree. For web
documents, the total number of documents and the total number of keywords are
very large, resulting in huge number of nodes in the tree and also large inverted
files for each node. During the search process, the application needs to load the
entire inverted file of each visited node into the memory, which causes extra I/Os.
Another problem with IR-tree is that during the search process, it often needs to
visit few nodes in the tree containing no relevant results. Finally, it is not clear that
whether ranking proposed in [10] is an accurate spatial-keyword relevance ranking
(see Section 7).

There are many other relevant topics such as approximate keyword search on
spatial data [19, 20], m-closest keywords (mCK) query (returns the closest objects
containing at least m keywords) [21], location-aware prestige-based text retrieval
(takes into account the inter-relationships among spatial objects) [24], extraction
of geographical information [8, 13], geo-coding of documents’ locations [12], and
geographic crawling [14]. In this paper, we only focus on index structures, relevance
ranking, and search algorithms for spatial-keyword queries.

3 Preliminaries

3.1 Problem definition

We assume a collection D = {d0,d1,...dn} of n documents (web pages). Each document
d is composed of a set of keywords Kd and a set of locations Ld. Each location is
represented by a two dimensional point. We use the document location to refer to Ld

in this paper.
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Spatial-keyword query A spatial-keyword query is defined as Q = 〈Kq, Lq〉, where
Lq is the spatial part of the query specified as one or more two dimensional points
and Kq is a set of keywords in the query.

Spatial relevance Spatial relevance between a document d and a query q is defined
based on the type of the spatial relationship that exists between Ld and Lq. In
[1], we studied the overlap relationship while query and document locations were
represented as regions (MBRs). Here, we focus on the proximity relationship, since
query and document locations are points. Subsequently, we define spatial relevance
as follows: A document d and a query q are spatially relevant if at least one of the
document’s locations is within threshold distance δ of one of the query’s locations,
i.e., distance(Lq, Ld) ≤ δ. Function distance can be any arbitrary distance function
such as Euclidian distance, Manhattan (block) distance or road-network distance.
The smaller the distance is, the more spatially relevant d and q are. We denote spatial
relevance of document d to query q by sRelq(d).

Textual relevance A document d is textually relevant to the query q if there exists
at least one keyword belonging to both d and q, i.e., Kq ∩ Kd �= ∅. The more
keywords q and d has in common, the more they are textually relevant. We represent
textual relevance of document d to query q by kRelq(d). See Section 3.2 for more
information regarding textual relevance.

Spatial-keyword relevance A document d is spatial-keyword relevant to the query q
if it is both spatially and textually relevant to the query q. Spatial-keyword relevance
can be defined by a monotonic scoring function F of textual and spatial relevances.
For example, F can be the weighted sum of the spatial and textual relevances:

Fq(d) =
{

α.sRelq(d) + (1 − α).kRelq(d) if sRelq(d) > 0 and kRelq(d) > 0

0 otherwise.

α is a parameter assigning relative weights to spatial and textual relevances. The
output of function Fq(d) is the spatial-keyword relevance score of document d and
query q, and is denoted by skRelq(d). In Section 5 we show in details how to calculate
spatial-keyword relevance using our proposed index.

Spatial-keyword search A spatial-keyword search identifies all the documents (web
pages) that are spatial-keyword relevant to q. The result is the top-k most spatial-
keyword relevant ranked documents sorted based on documents’ spatial-keyword
relevance scores. The parameter k is determined by the user.

3.2 Textual relevance

3.2.1 tf-idf Score

Existing textual (keyword) search engines use a similarity measure to rank and
identify potential (textual) relevant documents. In most keyword queries, a similarity
measure is determined by using the following important parameters:

– fd,k: the frequency of keyword k in document d
– max( fd,k): maximum value of fd,k over all the keywords in document d
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– fd,k: normalized fd,k, which is fd,k

max( fd,k)

– fk: the number of documents containing one or more occurrences of keyword k

Using these values, three monotonicity observations are enforced [5]: (1) less
weight is given to the terms that appear in many documents; (2) more weight is given
to the terms that appear many times in a document; and (3) less weight is given to
the documents that contain many terms. The first property is quantified by measuring
the inverse of frequency of keyword k among the documents in the collection. This
factor is called inverse document frequency or the idf score. The second property is
quantified by the raw frequency of keyword k inside a document d. This is called term
frequency or tf score, and it describes how well that keyword describes the contents of
the document [6, 9]. The third property is quantified by measuring the total number
of keywords in the document. This factor is called document length.

A simple and very common formula to calculate the similarity between a docu-
ment d and the query q is shown in Eq. 1.

wq,k = ln

(
1 + n

fk

)
; wd,k = ln(1 + fd,k);

Wd =
√∑

k

w2
d,k; Wq =

√∑
k

w2
q,k; Sq,d =

∑
k wd,k.wq,k

Wd.Wq
. (1)

Variable wd,k captures the tf score while variable wq,k captures the idf score. Wd

represents document length and Wq is query length (which can be neglected since it
is a constant for a given query). Finally, Sq,d is the similarity measure showing how
relevant document d and query q are. In this case (textual context) it is the same
as tRelq(d).

3.2.2 Inverted f iles

Inverted file is the most popular and very efficient data structure for textual query
evaluation. Inverted file is a collection of lists, one per keyword, recording the
identifiers of the documents containing that keyword [5]. An inverted file consists
of two major parts: vocabulary and inverted lists. The vocabulary stores for each
keyword k: a count fk showing number of documents containing k, and a pointer
to the corresponding inverted list. The second part of inverted file is a set of
inverted lists, each corresponding to a keyword. Each list stores for the corresponding
keyword k: identifiers d of documents containing k, and normalized frequencies
fd,k of term k in document d [5]. A complete inverted file for Example 1 is shown
in Fig. 2.

Fig. 2 Inverted file for Example 1 for each keyword k is composed of the keyword frequency ( fk)
and list of pairs, each composed of document id d and normalized keyword frequency fd,k
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4 Spatial decay

According to the first law of geography, “Everything is related to everything else, but
near things are more related than distant things.” [25]. Given a location (point), we
want to find those points that are more related to that location (point). We call the
given location(point) focal point and the resulting related locations relevant locations
to the focal point or relevant locations in short. The relevance of the relevant locations
to the focal point can vary from location to location. Therefore, there is a weight
assigned to each location. Weight of the focal point itself is always 1 while weight of
the non-relevant locations are always 0. Weight of all the other locations (relevant
locations) are more than 0 and less than or equal to 1. As we will show in Section 5, in
this paper we partition the space into grid cells. As a result, each location essentially
corresponds to one cell. In this context, relevant locations are the grid cells that are
relevant (more related) to the document location (although this can be generalized
to other cases and applications) and focal point is the document location.9 The larger
the weight, the more relevant is that cell to the document location. In this section, we
show how to find relevant cells to a given focal point and how to calculate the weight
of each relevant cell.

In evaluating locations around the focal point, it is common to give less importance
to locations (cells) which correspond to the farther locations from the focal point.
Intuitively, this reflects the first law of geography mentioned above: nearer locations
to the focal point are of more significance while the farther ones are of less
significance and can be assigned lower weight or ignored entirely. Several notions
of decay functions (and time decay functions) have been used in the literature
to capture such characteristics in different data (and temporal data) management
applications [22, 23]. Here, we apply and customize some of those functions in our
spatial setting and define several spatial decay functions to be used in our proposed
framework. We consider input items (ci), which describe all the cells in our setting.
We also have focal point F P as another input. F Pc represents the cell associated with
the focal point (focal points’s cell).

Definition 1 A decay function takes some information about the focal point F P and
the ith cell and returns a weight for this cell. We define a function w(i, F P) to be a
decay function if it satisfies the following properties:

1. w(i, F P) = 1 when ci = F Pc and 0 ≤ w(i, F P) ≤ 1 for all ci �= F Pc.
2. w is monotone non-increasing as distance between cells and F Pc increases:

distance(c j, F Pc) ≥ distance(ci, F Pc) ⇒ w( j, F P) ≤ w(i, F P).

3. w(i, F P) = 0 when distance(ci, F Pc) > δ. We call δ threshold value and is used
to prune the locations (points) that are not very related (relevant) to the focal
point.

In this paper, we focus on decay functions of a certain form: where the weight
of a cell can be written as a function of its distance dist, where the dist for cell i

9For simplicity, we assume that each document has only one location. Multiple locations can be easily
handled by using the same methods multiple times—once for each focal point.
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(ci �= F Pc) is simply dist = distance(ci, F Pc). Here and in all the other references in
this paper, distance can be any distance function in the metric space as long as it
satisfies the three main distance properties: 1) non-negativity: the distance between
distinct points is positive, 2) symmetry: the distance from x to y is the same as the
distance from y to x, and 3) triangle inequality: the distance from x to z via y is at least
as great as from x to z directly. Euclidian distance, block (Manhattan) distance and
road-network distance are valid examples of such a distance function (throughout
this paper, we will use the Euclidian distance function from the center of cells).

Definition 2 A spatial decay function is defined by a positive monotone non-
increasing function f () so that the weight of the ith cell to focal point F P is
given by:

w(i, F P) = f (distance(ci, F Pc))

f (distance(F Pc − F Pc))
= f (distance(ci, F Pc))

f (0)
(2)

The denominator in the equation is to normalize the weigh and make the first
property of Definition 1 valid. Different choices of function f generate several
interesting spatial decay functions. We study three of these decay functions here and
report the effect of each one in Section 7.

4.1 Windows decay

With the windows decay, all the cells whose distance from the focal point is less
than the threshold value δ are considered and more importantly are treated the
same (i.e., they have the same weight). Setting the “window size” parameter equal
to the threshold parameter δ, the function f (dist) = 1 for dist ≤ δ and f (dist) = 0 for
dist > δ (Fig. 3).

Fig. 3 Example of windows
decay with δ equal to 2 cells
(Euclidian) and focal point at
the center of the grid
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Fig. 4 Example of polynomial
decay with δ equal to 2 cells
(Euclidian) and focal point at
the center of the grid

4.2 Polynomial decay

Most often, treating cells (locations) as either relevant or not is not precise enough.
Most of the time, we need a more complicated and fuzzy weighting mechanism.
That is the reason polynomial and exponential decay functions are defined. Spatial
polynomial decay is defined as f (dist) = (dist + 1)−γ , for some γ > 0. Here, 1 is
added to dist to ensure that f (0) = 1. We can also write the equation as: f (a) =
exp(−γ ln(dist + 1)). f (dist) is still zero for dist > δ (Fig. 4).

Fig. 5 Example of exponential
decay with δ equal to 2 cells
(Euclidian) and focal point at
the center of the grid
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4.3 Exponential decay

Sometimes, polynomial decay is too slow (weight changes are not very significant)
and a faster decay function is needed. Spatial exponential decay is defined as
f (dist) = exp(−λ × dist) for λ > 0. Again, f (dist) is zero for dist > δ (Fig. 5).

5 Seamless spatial-keyword ranking

In this section, we define new scoring mechanism to calculate the spatial relevance
and spatial-keyword relevance scores. Following the same intuitions and concepts
used in regular (textual) searches, we define new concepts and parameters for spatial
data. Most notably, inspired by tf-idf in textual context, we define a new scoring
mechanism called spatial tf-idf for the spatial context. Using (textual) tf-idf scores
and spatial tf-idf scores, the spatial-keyword relevance is defined and can be used
to rank the documents based on both the spatial and textual aspects of the data,
simultaneously and efficiently. We discuss two different approaches to calculate the
spatial-keyword relevance using the spatial tf-idf score. Several variants of the final
similarity measure is also presented.

5.1 Spatial tf-idf

In order to be able to use the analogous ideas used in the regular tf-idf score, we need
to treat spatial data similar to textual data. Most importantly, we need to represent
space which is coherent and continuous in nature, as disjunct and set-oriented units
of data—similar to the textual keywords. Hence, we partition the space into grid cells
and assign unique identifiers to each cell. Therefore, each location in document can
be associated with a cell identifier. Since we are using proximity as our main spatial
query type, these cells are defined as the nearby cells to the document location. With
spatial tf-idf, the closeness of a cell with the document location is analogous to the
existence of a keyword in document with tf-idf. However, knowing the nearby cells
is not enough. We need to know how well a cell describes the spatial content of
the document. We use the distance between each cell and the document location
to provide a measure of how well that cell describes the document. Analogous to
frequency of keyword k in document d, we define frequency of cell c in document
d. We represent frequency of cell c in document d by fd,c and set its value equal to
the value of a spatial decay function (Definition 2 in Section 4) where focal point
F P is the document d’s location (Ld) and i is the index of cell c. The value of fd,c

is monotone non-increasing as the distance between the document location Ld and
the cell c increases. Similar to the frequency of a keyword which describes how
well the keyword describes the documents textual contents (Kd), the frequency of
a cell describes how well the cell describes the documents spatial contents (Ld).
The smaller the distance, the better this cell describes the document location and
vice-versa. Note that the different variations of the spatial decay function generate
different values for fd,c.

Now we can define the following parameters analogous to those of Section 3.2:

– fd,c: the frequency of cell c in document d
– max( fd,c): maximum value of fd,c over all the cells in document d
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– fd,c: normalized fd,c, which is fd,c

max( fd,c)

– fc: the number of documents containing one or more occurrences of cell c

Using the above parameters, we revisit three monotonicity properties discussed in
Section 3.2, this time in spatial context: (1) less weight is given to cells that appear
in many documents; (2) more weight is given to cells that are closer to the document
location; and (3) less weight is given to documents that contain many cells.

The first property is quantified by measuring the inverse of frequency of a cell
c among the documents in the collection. We call this spatial inverse document
frequency or idfs score. The second property is quantified by the frequency of cell
c in document d (as defined earlier). This is called spatial term frequency or t fs

score and describes how well that cell describes the document spatial contents (i.e.
Ld). The third property is quantified by measuring the total number of cells in the
document (remember that documents can have multiple locations). This factor is
called document spatial length.

Among the above properties, properties (2) and (3) are more intuitive. Property
(2) states that more weight should be given to the cells closer to the document
location. The smaller the distance, the better that cell describes the document
location. For example, in Fig. 6, cell c9 better describes the document d6 than cell
c8 and cell c8 better describes the document d6 than cell c3. Property (3) states that
less wight should be given to those documents whose locations cover more cells. As
we defined in our problem definition, each document can have multiple locations
and hence multiple cells will be associated with it. Assuming all the other parameters
are equal, a document with a smaller coverage (fewer number of cells) should get a
higher weight than a document with a larger coverage. Assume two documents one
containing locations of all the cities in the world and the other one containing only
one location (city). When searching for/near that city, the second document should
be assigned more weight since it is a better representative of the queried city/location
than the first document. This is analogous to the fact that in textual context, more
weight is given to the documents that contain fewer keywords.

Contrary to properties (2) and (3), property (1) is not very intuitive. It states that
less weight is given to the cells appearing in more documents. In the textual context,

Fig. 6 Example 1 on the grid Los Angeles Area 
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the idf score is a weighting factor determining the importance of each keyword
independent of the query. It assigns more weight to keywords appearing in fewer
documents, since those are more meaningful keywords. However, the definition of
meaningful cell is not very clear in the spatial context. A popular cell (location)—
a cell near to many documents—is a very meaningful cell for some users/applications,
while for some others, a distinctive cell (location)—cell near to few documents—
is more meaningful. In Example 1, one user may look for more popular locations for
parks while another user may be interested in a less crowded, more private location.
To cover both cases, we define spatial idf of cell c in two different ways: inverse of
frequency of a cell c among the documents (inverted idfs) and direct frequency of a
cell c among the documents (direct idfs).

5.2 Spatial-keyword relevance

In this section, we introduce two novel approaches for calculating spatial-keyword
relevance between a document d and a query q. With the single-score approach, one
similarity measure and one document length is used to combine the spatial relevance
and textual relevance into one equation. With the double-score approach, spatial
and textual relevance are calculated separately, using two document lengths, one
for each relevance. Thus a new spatial similarity measure analogous to the textual
similarity measure is defined. Both approaches can use the parameter α to assign
relative weights.

5.2.1 Single-score approach

After partitioning each document location to a set of cells, defining the spatial tf-idf
score and creating one document spatial length for each document location, the cells
are ready to be treated in a similar manner to the keywords. We define term as the
smallest unit of data describing each document which is either a keyword or a cell. If
we represent keywords associated with the document d by Kd and the cells associated
with the same document by Cd, then the set of terms associated with document d is
represented by Td and defined as follows: Td = Kd ∪ Cd.

Simply stated, the document’s terms are the union of the document’s keywords
and cells. For Instance, in Example 1: Td1 = {park,free,concert,c2} when δ = 0
or Td1 = {park,free,concert,c1,c2,c3,c5} when δ = 1 (see Figs. 1b and 6). In
order to be able to define a single similarity measure capturing both the textual and
spatial relevances, we define the following parameters:

– fd,t: the frequency of term t in document d
– fd,t: the normalized frequency of term t in document d
– ft: the number of documents containing occurrences of term t

where each parameter gets its value from the corresponding parameter in the space
or text domain (based on term type). For instance, value of fd,t is equal to fd,k when
term is keyword and to fd,c when term is cell. Having defined these new parameters,
we can now easily redefine Eq. 1, this time with terms instead of keywords. This is
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a new formulation capturing the keywords (textual relevance) and the cells (spatial
relevance) in a unified manner.

wq,t =
⎧⎨
⎩(1 − α). ln

(
1 + n

ft

)
if t is keyword

α.wq,c if t is a cell
;

wd,t =
{

(1 − α). ln(1 + fd,t) if t is keyword
α. ln(1 + fd,t) if t is cell

;

Ŵd =
√∑

t

w2
d,t; Ŵq =

√∑
t

w2
q,t;

Ŝq,d =
∑

t
wd,t.wq,t

Ŵd.Ŵq
. (3)

The variable wd,t captures the spatial-keyword term frequency score (t fsk). The
variable wq,t captures the spatial-keyword inverted document frequency (idfsk).
Parameter α is integrated into the weighting scheme to capture the weighted rele-
vance of space versus text. Ŵd represents spatial-keyword document length and Ŵq is
(spatial-keyword) query length. Finally, Ŝq,d is the similarity measure showing how
spatial-keyword relevant document d is to query q.

5.2.2 Double-score approach

In the single-score approach, keywords and cells are treated in exactly the same
manner. Keywords and cells tf and idf scores are used in one equation and one
similarity measure (Ŝq,d) using one document length (Ŵd) is used to calculate
the final relevance score. There might be cases when most of the documents in
the collection contain many locations but very few keywords (or the opposite).
In this situation, it is better to calculate the textual and spatial relevance scores
separately. Hence, we discuss another approach to calculate the similarity measure
between document d and query q in the spatial-keyword context. One can first
calculate the spatial relevance and the textual relevance of document d and query q
independently and then use an aggregation function to compute the overall spatial-
keyword relevance score. Using the spatial tf-idf parameters and the definitions, we
calculate the spatial similarity measure between document d and query q analogous
to the textual similarity measure as follows:

wq,c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

(
1 + n

fc

)
if inverted document frequency

ln

(
1 + fc

n

)
if direct document frequency

; wd,c = ln(1 + fd,c);

W ′
d =

√∑
c

w2
d,c; W ′

q =
√∑

c

w2
q,c;

S′
q,d =

∑
c wd,c.wq,c

W ′
d.W

′
q

. (4)
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where S′
q,d is the spatial similarity measure between document d and query q. This

value captures the spatial relevance sRelq(d) defined in Section 3.1.
After calculating the spatial relevance using the above equation and computing

the textual relevance using Eq. 1, the aggregation function F can be used to
calculate the final spatial-keyword relevance. More formally: skRelq(d) = α.S′

q,d +
(1 − α).Sq,d.

Variants We conclude this section by summarizing possible variants of the spatial-
keyword relevance score. We defined two different approaches to calculate the
spatial-keyword relevance scores. We also introduced two different ways to define
the spatial idf factor score. Combining our two main approaches with the two
definitions of the spatial idf score yields four different variants for our final similarity
measure:

1. Single-Score with Inverted document frequency (SSI)
Where skRelq(d) = Ŝq,d and wq,c = ln

(
1 + n

fc

)
2. Single-Score with Direct document frequency (SSD)

Where skRelq(d) = Ŝq,d and wq,c = ln
(
1 + fc

n

)
3. Double-Score with Inverted document frequency (DSI)

Where skRelq(d) = α.sRelq(d) + (1 − α).kRelq(d) and wq,c = ln
(
1 + n

fc

)
4. Double-Score with Direct document frequency (DSD)

Where skRelq(d) = α.sRelq(d) + (1 − α).kRelq(d) and wq,c = ln
(
1 + fc

n

)

6 Spatial-Keyword Inverted File

Spatial-Keyword Inverted File (SKIF-P) is an inverted file capable of indexing and
searching both the textual and spatial data in a similar, integrated manner using
a single data structure. In this section, we first describe the structure of SKIF-P
and the information it stores. Next, we show how spatial-keyword query evaluation
is performed using SKIF-P. Two algorithms corresponding to our two approaches
are presented. Finally, we discuss briefly how SKIF-P can be extended to more
general cases.

6.1 SKIF-P structure

Since SKIF-P is an inverted file, its structure is very similar to the structure of the
regular inverted files. SKIF-P consists of two parts: vocabulary and inverted lists.
The vocabulary contains all the terms in the system which includes all the (textual)
keywords and cells (cell identifiers). For each distinct term, three values are stored in
the vocabulary: 1) ft representing the number of the documents containing the term
t, 2) a pointer to the corresponding inverted list and 3) the type of the term t which
is used to help calculate the tf and idf scores. The second component of SKIF-P is a
set of inverted lists each corresponding to a term. For the corresponding term t, each
list stores the following values: identifiers of the documents containing term t and the
normalized frequencies of term t for each document d. The latter is represented by
fd,t. Figure 6 redraws the Example 1 on the grid and Fig. 7 shows the complete SKIF-
P for Example 1. To calculate the values of this example, we used a polynomial decay
function with γ = 1.8. Also we used Euclidian distance function with value of δ set
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Fig. 7 Spatial-keyword
inverted file for Example 1
(for δ = 0). The entry for each
term t is composed of the term
frequency ( ft) and list of pairs,
each composed of document id
d and normalized term
frequency fd,t

at 0 (since δ = 0, values of fd,t are all equal to 1. For other values of δ, the inverted
index and its values will be more complex).

6.2 Query processing

As discussed in Section 3.1, the spatial-keyword query consists of two parts: the query
keywords Kq and the query location Lq. To process spatial-keyword queries, we first
need to convert Lq to a set of cells Cq. Cq is the set of cells near the document
location Lq (calculated using spatial decay function and threshold parameter). After
calculating Cq, we define the set of terms associated with each query by Tq as follows:
Tq = Kq ∪ Cq.

Algorithms 1 and 2 show the algorithms to perform top-k spatial-keyword search
using SKIF-P for the single-score and the double-score approaches respectively.
Both the algorithms are very similar. Accumulators are used to store the partial
similarity scores. The main difference is that Algorithm 1 uses one accumulator
Ad while the Algorithm 2 uses two accumulators Ad and A′

d. After all the query
terms are processed, similarity scores Ŝq,d, Sq,d and S′

q,d are derived by dividing each
accumulator value by the corresponding value Ŵd, Wd and W ′

d respectively (first
one used in the single-score algorithm while the last two are used in double-score
algorithm). Finally, the k largest documents are identified and will be returned to
the user.

In the single-score approach (Algorithm 1), we assign one accumulator for each
document d which is denoted by Ad. Partial similarity scores are stored in these

Algorithm 1 top-k spatial-keyword search using SKIF-P, single-score approach
1: Allocate an accumulator Ad for each document d
2: Set Ad ← 0
3: for each query term t in q do
4: Calculate wq,t and fetch the inverted list for t
5: for each pair < d, fd,t > in the inverted list do
6: Calculate wd,t

7: Set Ad ← Ad + wq,t × wd,t

8: Read the array of Ŵd values
9: for each Ad > 0 do

10: Set Ŝd ← Ad ÷ Ŵd

11: Identify the k greatest Ŝd values and returns the corresponding documents
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Algorithm 2 top-k spatial-keyword search using SKIF-P, double-score approach
1: Allocate two accumulators Ad and A′

d for each document d
2: Set Ad ← 0
3: Set A′

d ← 0
4: for each query term t in q do
5: Calculate wq,t and fetch the inverted list for t
6: for each pair < d, fd,t > in the inverted list do
7: Calculate wd,t

8: if type of t is a keyword then
9: Set Ad ← Ad + wq,t × wd,t

10: else
11: Set A′

d ← A′
d + wq,t × wd,t

12: Read the array of Wd values
13: for each Ad > 0 do
14: Set Sd ← Ad ÷ Wd

15: Read the array of W ′
d values

16: for each A′
d > 0 do

17: Set S′
d ← A′

d ÷ W ′
d

18: if Ad > 0 then
19: Ŝd = α.S′

d + (1 − α).Sd

20: Identify the k greatest Ŝd values

accumulators. Initially, all the accumulators have a value of zero (e.g., similarity of
zero). The query terms are processed one at a time and for term t, the accumulator Ad

for each document d included in the t’s inverted list is increased by the contribution
of t to the similarity of d and q. After all query terms are processed, similarity scores
Ŝq,d are derived by dividing each accumulator value by the corresponding value Ŵd.
Finally, the k largest documents are identified and will be returned to the user.

In the double-score approach (Algorithm 2), two accumulators are assigned to
each document: Ad and A′

d. The partial textual similarity score is stored in Ad while
the partial spatial similarity score is stored in A′

d. Initially, both accumulators are
empty (zero score). Again, terms are processed one at a time and for each term t and
for each document d included in t’s inverted list, values of Ad and A′

d are increased
by the contribution of term t to the textual and spatial similarity of document d
and q, respectively. After processing all the query terms, spatial similarity scores
S′

q,d are calculated by dividing each A′
d to its corresponding W ′

d. In addition, textual
similarity scores Sq,d are computed by dividing the values of Ad accumulators to the
corresponding Wd values. Finally, for each document, if both similarity scores are
larger than zero, the final similarity score is calculated as the weighted sum of these
two scores.

Algorithms 1 and 2 present the general framework for query processing using
our proposed data structure and scoring methods. Since both algorithms are built
on top of inverted files, they can be easily improved and scaled using numerous
optimization techniques available for inverted files. Few techniques that can be
easily applied to SKIF-P are: accumulator thresholding [5], frequency-sorted indexes
and impact-ordered inverted lists [5] and various compression schemas [15]. Also
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existing frameworks to support distributed and parallel computing (e.g., map-reduce
framework) can be easily used for our algorithms. Since optimization of inverted files
is not our contribution, we do not discuss such optimizations here.

In summary, using our proposed approaches with SKIF-P, the relevance ranking is
based on both the space and text and partial relevance is also supported. The search
and ranking processes are combined together effectively and more importantly,
the spatial and textual aspects of data are handled simultaneously and in a similar
manner. SKIF-P by itself (with the addition of accumulators) is sufficient for the
query processing and extra access to the actual documents (objects) is not needed.

6.3 Generalization

In this section we briefly show how we can extend SKIF-P into more general cases.

Distributed architecture When a large number of documents is involved or when
the total number of keywords and/or locations is huge, it is more practical and
efficient to have a distributed system with many computers than just a single machine.
In our context, distribution means splitting the document collections and/or its
index structure (SKIF-P) across multiple machines and answering the queries by
synthesizing the results from various components. Two main architectures exist to
make a (inverted-index based) retrieval system distributed: document-distributed
architectures and term-distributed architectures [18]. Both designs can be easily
applied to our proposed approaches and index structure. With document-distributed
architecture, the document collection is partitioned into several sub-collections and
each sub-collection is assigned to a machine. No change is needed to use this
architecture for our proposed system. In term-distributed architecture, the index is
split into components by partitioning the vocabulary. With SKIF-P, since we treat
cells similar to keywords, we can also partition our vocabulary (cells and keywords)
into several components. More interestingly, we can take advantage of the fact that
nearby cells are usually queried together and hence partition the cells based on their
spatial proximity. In other words, each component contains cells for one specific area
of the geographical map. Obviously, this will improve the performance of the system
significantly (fewer partitions need to be retrieved and evaluated).

Weights When querying the system, there are two types of weights users may want
to manipulate: 1) assigning different weights to the spatial and textual relevance, and
2) assigning different weights to different terms in the query. For the first scenario, we
have used the parameter α in this paper. SKIF-P can also support assigning different
weights for different terms. There are several existing methods to solve this problem
for textual keywords. Since we are treating cells similar to keywords, those methods
can also be applied to the spatial cells. As one possible solution, we define query
term weights αq,k and αq,c as the weight of keyword k in query q and the weight of
cell c in query q, respectively. By multiplying wd,k and wd,c values by αq,k and αq,c,
respectively, query term weights are integrated into the relevance scores. This opens
up a wide possibility of sophisticated queries for a user. For instance, the user can
search for all the documents regarding “Andre Agassi” plus the following spatial
locations in the order of importance: New York, Paris, London and Sydney. This
query (which was never possible before) shows that the user is more interested in
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results regarding Andre Agassi history in the US OPEN (NY) than his results in the
French Open (Paris) and so on.

Leveraging existing search engines One of the most practical advantages of the
proposed approach is the fact that it can be integrated into the existing search engines
easily and seamlessly. Since the structure of SKIF-P is very similar to the structure
of the regular inverted files, the same techniques used in regular search engines
(built on inverted files) can be applied for our location-based search engine (built on
SKIF-P). Structure wise, the main difference is in using SKIF-P instead of the regular
inverted files. This essentially translates to using a larger vocabulary (combination of
cells and keywords instead of only keywords). Average size of inverted lists would
not change since it only depends on the total number of the documents and that is
fixed. This is very promising because the cost of existing search engines is dominated
by the cost of traversing the inverted lists and not the size of the vocabulary [26].
The easy integration of our approach into the existing search engines is not only
very beneficial for current search engines but also enables us to optimize SKIF-P
using a body of work that exists in this field. For example, compression techniques
are very popular for inverted files [5, 15]. Since the structure of the inverted lists
are identical with both SKIF-P and regular inverted files, no change is needed to
apply the same compression techniques on SKIF-P. More interestingly, some of
the optimization techniques seem to work better on SKIF-P. For instance, caching
is another technique used in existing search engines. It is trivial to see that with
SKIF-P, by caching the inverted lists for the cells nearby the current query cell, we
can improve the query performance significantly. It is very likely that nearby cells
queried together or very close to each other.

7 Experiments

In this section, we experimentally evaluate the performance and accuracy of SKIF-
P. Comparison is done with the most efficient proposed solutions: MIR2-tree [4] and
CDIR-tree [10] which are optimized versions of IR2-tree and IR-tree, respectively.

Our experiments are run on three datasets, two real datasets and one synthetic
dataset. Dataset properties are summarized in Table 1. DATASET1 is generated
from a real world online web application called Shoah Foundation Visual History
Archive (http://college.usc.edu/vhi/). Each document (testimony) is tagged with a
set of textual and spatial keywords describing the content of the testimony. In
preparing DATASET1, we extracted location names (spatial keywords) from all the
testimonies and geo-coded the location names into spatial points using Yahoo! Place-

Table 1 Dataset details

Dataset Total # of Average # of Total # Total # of
documents unique keywords of unique keywords

per document keywords

DATASET1 19,841 64 31,721 1,269,824
DATASET2 250,000 230 50,000 57,500,000
DATASET3 8,964 11 2,340 109,604

http://college.usc.edu/vhi
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maker.10 We run our experiments on all the documents in US. For DATASET1,
we partition the space into 100 km × 100 km cells. DATASET2 is generated
synthetically. A set of keywords (from 1 to 500) and one location (point) are
assigned randomly to each document. Space is partitioned into 40 × 40 cells. The
threshold value δ is set to 2 cells and we use polynomial decay function with gamma
set to 1.8 (standard value). Experiments with different cell sizes and also different
δ values are also performed and the results are shown later in this section. The
documents’ keywords and locations are uniformly distributed. Finally, DATASET3
is generated from some of the geo-tagged images from the online photo-sharing
website Flickr using Flickr API.11 We chose random (geo-tagged) documents inside
California. Again, each document (image) is tagged with a set of textual keywords
and one (point) location.

Each query contains 1 to 4 randomly generated keywords and one two-
dimensional point. Each query round consists of 100 queries. All three structures
are disk-resident and the page size is fixed at 4KB. MIR2-tree and CDIR-Tree
implementations are the same as in [4] and [10],12 respectively. Experiments were
run on a machine with an Intel Core2 Duo 3.16 GHz CPU and with 4GB main
memory.

7.1 Performance

First, we evaluate the performance of SKIF-P based on the most important metrics
(number of keywords, number of results and α) and compare the results with
both CDIR-tree and MIR2-tree. We use DATASET1 and DATASET2 for this
performance evaluation.13

Number of keywords With the first set of experiments, we evaluate the impact
of the number of keywords in each query |Kq| on the query cost. In this set of
experiments, we vary |Kq| from 1 to 4 while fixing k at 10 and α at 0.5. For each
method, we report the average query cost in processing each round. The results are
shown in Fig. 8a and b. For almost all the cases, SKIF-P outperforms both MIR2-tree
and CDIR-tree. While for all the approaches, the query cost increases as |Kq| grows,
the growth rate for SKIF-P is very marginal. While the I/O costs of CDIR-tree and
MIR2-tree increase by a factor of 15 and 8, respectively, SKIF-P’s query cost does
not even double when the number of keywords grows from 1 to 4. Both CDIR-tree
and MIR2-tree would perform even worse if |Kq| increase further. This is because
with IR2-tree, by increasing the number of keywords, fewer documents will contain
all the keywords and hence more documents need to be searched (this also increases
the number of false hits). With CDIR-tree, when query contains more keywords,
the textual relevance of the query to each node of CDIR-tree is very similar, which
makes the textual relevance pruning less effective. Therefore, both approaches need

10http://developer.yahoo.com/geo/placemaker/
11http://www.flickr.com/services/api/
12β = 0.1 and the number of clusters = 5.
13Since the results for DATASET1 and DATASET2 were very similar, we only report the results of
the larger dataset—DATASET2.

http://developer.yahoo.com/geo/placemaker
http://www.flickr.com/services/api/
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Fig. 8 Impact of |Kq| on
query cost
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to search larger and larger number of documents as |Kq| increases. On the other
hand, SKIF-P only searches for those documents containing the query keywords and
therefore required to be scored. As a result, the SKIF-P outperforms the other two
approaches even more significantly for a larger number of keywords.

Number of requested results(k) With the second set of experiments, we evaluate
the impact of the number of requested result k on the query performance. Again, we
report the average query cost for each round. |Kq| is fixed at two and α is fixed at
0.5 and k varies from 1 to 50. Figure 9a and b show the results for the search time
and number of accessed pages, respectively. The first observation is that for SKIF-P,
the query cost changes slightly as k increases. Since the average number of terms in
the query as well as k are small, only few disk pages in the inverted lists of the few
query terms are retrieved and processed. On the other hand, CDIR-Tree and MIR2-
tree perform worse as k grows since they have to access and process more entities in
their corresponding trees. The second observation is that while all three approaches
perform somehow similar for k from 1 to 10 (none is significantly superior to the
others), SKIF-P significantly outperforms the other two approaches for larger values
of k. The larger the value of k, the more significant is the difference between SKIF-P
and the other two approaches.

Alpha (α) In the third set of experiments, we study the impact of the parameter
α on the performance of SKIF-P and CDIR-tree (MIR2-tree does not support



586 Geoinformatica (2012) 16:563–596

Fig. 9 Impact of k on
query cost
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different weights for the textual and spatial relevances). As mentioned earlier, α

is the parameter that assigns relative weights to the textual and spatial relevances.
We fix |Kq| at two and k at 10. Figure 10a and b show the results. The important
observation is that the query cost for SKIF-P is weight-independent while CDIR-
tree performs very poorly when the spatial relevance is more important (large α).
Since CDIR-tree takes into account document similarity, it performs well when the
textual relevance is given higher importance and performs poorly when the spatial
relevance is given higher importance. On the contrary, SKIF-P performs well for all
the cases, since the query processing is the same for both keywords and space and is
not affected by the relative weights.

7.2 Performance: SKIF-P parameters

Next, we evaluate the performance of SKIF-P based on SKIF-P specific parameters:
number of cells and the threshold value δ. We use DATASET1 for this set of
experiments. Again, each query round consists of 100 queries. For each method, we
report the average query cost in processing each round.

Number of cells In the first set of experiments, we study the impact of changing
the number of cells on the performance of our system. In this set of experiments, we
change the grid resolution from 2*2 cells to 400*400 cells and report the performance
of SKIF-P. |Kq| is fixed at 2 and α is fixed at 0.5, k is fixed at 10 and δ is equal to two
cells. Figure 11a and b show the results for search time and number of pages accessed,
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Fig. 10 Impact of α on
query cost
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respectively. Both figures convey similar observations. The main observation is that
most often, when number of cells increase (cell sizes decrease) the performance of
the system improves. Smaller cells usually correspond to fewer documents in each
cell and hence less number of entries in each cell’s inverted list. This translates to
fewer number of IOs and hence less processing time for a fixed δ (fixed number of
cells are retrieved and processed for a fixed δ). In other words, larger cell sizes usually
lead to larger search regions and hence more documents need to be searched. Since
the number of cells is not the only factor affecting the performance, there may be
cases that the above argument does not hold (e.g., 40 × 40 case in Fig. 11a and b).
The query location, distribution of documents locations and also query’s keywords
and distribution of documents keywords may change this pattern.

Delta (δ) In the second set of experiments, we evaluate the impact of δ on the
performance of SKIF-P. Again, |Kq| is fixed at two and α is fixed at 0.5, k is fixed
at 10 and number of cells is 40 × 40. The results are shown in Fig. 12a and b. In both
figures, the main observation is that as expected both the number of IOs and also
processing time increase as δ increases. Increasing δ results in retrieval and processing
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Fig. 11 Impact of number of
cells on query cost
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of larger number of cells and hence larger number of disk IOs and subsequently
larger amount of processing time.

7.3 Accuracy

In this set of experiments, we evaluate the accuracy of our four proposed scoring
approaches. We used the real dataset of DATASET2. Since spatial-keyword rel-
evance ranking is new and no ground truth exists for our work, we conducted a
user study to evaluate the effectiveness of our ranking methods. To conduct the user
study, we utilized (and extended) the user study in [16] as our model and followed
a similar procedure. We randomly selected 15 queries from our query set and found
10 volunteers. For each query, each volunteer was shown 6 result rankings, each one
consisted of the top 10 results satisfying the query when the results were ranked
with one of these approaches: DSI, DSD, SSD, SSI, CDIR-tree and MIR2-tree. For
MIR2-tree, the relevance ranking is computed based on the distance of objects to the
query point (the shorter the distance, the more relevant) for all objects that contain
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Fig. 12 Impact of δ on
query cost
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all the query keywords. For CDIR-tree, results are ranked according to a ranking
function f (Dε, P(q.keywords|d)), where Dε is the Euclidian distance between query
q and document d’s location and P(q.keywords|d) is the probability of generating
query keywords (q.keywords) from the language models of the document d (for more
details, refer to Section 2.1 of [10]). Each volunteer was asked to select all documents
which were relevant to the query, in their opinion. They were not told how any of the
rankings were produced. We used R-precision [17] to evaluate the results of various
rankings. R-precision is defined as follows. Let a document be considered as relevant
if at leat 6 of the 10 volunteers choose it as relevant for the query. Let Rel be a
set that contains all such relevant documents and let |Rel| be the size of that set.
Then, the R-precision of each list is the fraction of the top |Rel| documents that are
deemed relevant. Hence, the higher the value of R-precision the more relevant the
corresponding ranking. The R-precision of the six ranking approaches for each test
query is shown in Table 2. We have also included the average R-precision for each
ranking method. The first important observation is that for the majority of cases, our
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Table 2 R-precision of various rankings

Query DSI DSD SSD SSI MIR2-tree CDIR

1 0.97 0.97 0.97 0.97 0.00 0.4
2 1.00 1.00 0.83 0.83 0.00 0.6
3 1.00 1.00 1.00 1.00 1.00 1
4 1.00 1.00 0.90 0.90 1.00 1
5 1.00 1.00 0.90 0.90 1.00 0.9
6 0.90 0.78 0.84 0.84 0.00 0.2
7 0.94 0.88 0.94 0.88 0.88 0.2
8 0.83 0.83 0.83 0.83 0.83 0.83
9 1.00 1.00 1.00 1.00 1.00 1
10 1.00 1.00 1.00 1.00 1.00 1
11 1.00 1.00 1.00 1.00 1.00 1
12 1.00 1.00 1.00 0.94 0.84 0.67
13 0.97 0.94 0.94 0.94 0.00 0.67
14 1.00 1.00 1.00 1.00 1.00 1
15 1.00 1.00 1.00 0.94 1.00 1

Average 0.97 0.959 0.943 0.931 0.703 0.764

four proposed approaches generate results with R-precision equals to one, i.e., lists
in which all the top |Rel| documents are relevant. The second observation is that the
average R-precision for the rankings generated by our approaches is substantially
higher than that of the other two rankings. For MIR2-tree, when a query contains
several keywords and no document in the collection includes all those keywords, the
ranked result set will be empty. However, in all of our approaches, a document with
only some of the query keywords (and having some spatial relevance to the query
location) will be considered as a relevant document. As we expected, this is consistent
with the evaluations received from the users. While CDIR-tree does not have such
a problem, it still returns some documents in its top results which are considered
not relevant by the majority of the users. For instance, there were cases in our user
study that documents containing none of the query keywords were among the top

Table 3 Ranking preferred
by users

Query Preferred by majority

1 DSI
2 DSI
3 DSI
4 DSI
5 DSI
6 DSD
7 DSI
8 SSD
9 SSD
10 DSD
11 SSD
12 DSI
13 DSI
14 MIR2-tree
15 DSI
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results while the majority of the users felt differently. In contrary to CDIR-tree, we
consider a document relevant if it is both spatially relevant and textually relevant (see
Section 3.1). This view is consistent with the result of the user study. Finally,
Table 3 shows the rankings (actual order) preferred by the majority of the users.
For nearly all the queries, a majority of the users preferred one of our proposed
scoring methods. These results, further confirms the effectiveness of our proposed
approaches.

7.4 Accuracy: SKIF-P parameters

In this section, we evaluate the impact of the threshold value δ and also the type
of the decay function on the accuracy of our system. We also use two new (and
standard) metrics to evaluate the accuracy: Precision at k and nDCG at k. We
used the real-world Flickr dataset (DATASET3). As explained earlier, this dataset
contains information about geo-tagged images on Flickr website. We started with a
set of 30,000 random images from Flickr. In the processing of this data, we removed
the images with no location and also removed any image outside California. After
these steps, the final dataset size was reduced to 8,964 documents (images). We
used SSI as our scoring mechanism (the other three have slightly better but almost
identical accuracy, see Table 2), and again we used a 40 × 40 grid of cells. Values
of gamma and lambda (for polynomial and exponentially decays, respectively) are
set to 1.8.

Approaches We ran our experiments for three decay functions discussed in
Section 4 and for three ranges of δ: short (0–1 cells), medium (2–5 cells) and large
(6–10 cells). The combination of the three values of δ and the three spatial decay
functions generates a total of 9 approaches.

Queries We generated a set of 15 queries from different keywords in DATASET3
and randomly assigned them a two-dimensional point in California.

Relevance assessment After computing top-5 results for each of our 15 queries using
all the 9 approaches, we ran a user study using Amazon Mechanical Turk.14 One
task (hit) was generated for each query. Each query was run using all 9 approaches
and top-5 results were returned for each approach. Then, all the results from all the
methods were combined together. A Google map mashup web-page with markers
representing these results (Flickr images) were generated. Also, query location (as
a separate marker on the map) alongside the query keywords were provided to
the workers. Workers could click on each marker and see the keywords associated
with that marker (image) as well. Workers could choose whether the result (marker
plus the keywords) is relevant or non-relevant. Workers could also add their com-
ments/explaination for each assessment. Each task (query assessment) was assessed
by ten workers. We used workers with HIT approval rate greater than or equal to 90
(meaning that more than 90% of their past assessments were correct). Each worker
was rewarded $0.04 by completion of each assessment. Overall, workers chose
relevant for 73% of the assessments and non-relevant for 27% of the assessments.

14https://www.mturk.com/

https://www.mturk.com/
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Table 4 Precision@k of various rankings

Decay function Average

Exponential Polynomial Windows

Delta (δ) Short 0.613 0.626 0.626 0.622
Medium 0.76 0.746 0.76 0.755
Long 0.733 0.746 0.68 0.72
Average 0.702 0.706 0.688

Metrics We evaluated the accuracy of the methods under comparison using two
standard metrics: precision at k and nDCG at k. In calculating precision at k, we
consider a document relevant if a majority of the workers assessed that document as
relevant and non-relevant otherwise. When computing nDCG at k, we consider the
average relevance given by the users to each document, interpreting relevant as score
1 and non-relevant as 0, respectively. The ideal ranking is calculated based on these
average relevance scores.

Results The results of our relevance assessments with k = 5 and using the nine
approaches using precision at k and nDCG at k are shown in Tables 4 and 5, respec-
tively. For the precision@5, the first observation is that all of the evaluated methods
generate accurate results (precision@5 larger than 0.6). The second observation is
that, the approaches with medium and large values of δ perform the search more
accurately. Smaller values of δ may lead to smaller number of results in the final
result set and hence smaller number of relevant results. On the other hand, larger
values of δ usually leads to more relevant results in the final result set. As you can see
in Table 4, the medium values of δ are slightly better than the large values of δ in our
experiments. This is because, for some cases (especially for windows decay function)
when value of δ is large and there are many relevant documents to the query, some
documents farther to the query location become relevant and end up in the final
result set. Some users do not consider these document relevant while others seem
to evaluate them as relevant. The final observation is that there is no one superior
decay type with regards to the different decay functions. All three generate fairly
similar and accurate results while the windows decay function generates a slightly
less accurate result set.

As for the nDCG@5, the first observation is that all the evaluated methods rank
the results very accurately (nDCG@5 larger than 0.8). In other words, the average
relevance values of the top-5 results (with their respected ranks) is very similar to
the relevance values of the best possible ranking. The second observation is that as
expected rankings improve when δ increases. Using smaller values of δ may lead

Table 5 nDCG@k of various rankings

Decay function Average

Exponential Polynomial Windows

Delta (δ) Short 0.812 0.811 0.812 0.812
Medium 0.913 0.917 0.913 0.915
Long 0.934 0.982 0.934 0.950
Average 0.886 0.904 0.886
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to missing some relevant results in the final result set (and ranking). On the other
hand, larger values of δ usually lessens the probability of missing relevant results
and hence the final ranking can be done on a larger set of relevant documents.
Hence, generating a more accurate (and complete) ranking. The last observation
is that although there is still no superior decay function among the decay functions,
the polynomial type generates more accurate rankings. Based on the users’ input,
it seems that the exponential decay is a little too fast of a decay for our setting and
users prefer the polynomial decay slightly more. As a conclusion, all the 9 approaches
generate accurate results and very accurate rankings while the accuracy improves for
larger δ values. All the other properties seem to be very similar (although slightly
different from case to case).

8 Conclusions

In this paper we introduced the problem of ranking the spatial and textual fea-
tures of web documents. We proposed new scoring methods to rank documents
by seamlessly combining their spatial and textual features. We also proposed an
efficient point-based index structure which handles the spatial and textual features
of data simultaneously and also supports the spatial-keyword relevance ranking. In
particular we introduced SKIF-P and showed how it is used to search and rank the
documents efficiently. We experimentally studied our methods, which proved its
superior performance and accuracy.
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