
The SB-index and the HSB-index: efficient indices
for spatial data warehouses

Thiago Luís Lopes Siqueira & Cristina Dutra de Aguiar Ciferri &
Valéria Cesário Times & Ricardo Rodrigues Ciferri

Received: 6 April 2010 /Revised: 18 February 2011
Accepted: 4 May 2011 /Published online: 14 June 2011
Springer Science+Business Media, LLC 2011

Abstract Spatial data warehouses (SDWs) allow for spatial analysis together with
analytical multidimensional queries over huge volumes of data. The challenge is to retrieve
data related to ad hoc spatial query windows according to spatial predicates, avoiding the
high cost of joining large tables. Therefore, mechanisms to provide efficient query
processing over SDWs are essential. In this paper, we propose two efficient indices for
SDW: the SB-index and the HSB-index. The proposed indices share the following
characteristics. They enable multidimensional queries with spatial predicate for SDW and
also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate
and transform it into a conventional one, which can be evaluated together with other
conventional predicates by accessing a star-join Bitmap index. While the SB-index has a
sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial

Geoinformatica (2012) 16:165–205
DOI 10.1007/s10707-011-0128-5

T. L. L. Siqueira
São Carlos Campus, São Paulo Federal Institute of Education, Science and Technology (IFSP),
Rodovia Washington Luis, Km 235, 13.565-905 São Carlos, SP, Brazil
e-mail: prof.thiago@cefetsp.br

T. L. L. Siqueira : R. R. Ciferri (*)
Computer Science Department, Federal University of São Carlos (UFSCar),
Rodovia Washington Luis, Km 235, P.O. Box 676, 13.565-905 São Carlos, SP, Brazil
e-mail: ricardo@dc.ufscar.br

C. D. A. Ciferri
Computer Science Department, University of São Paulo at São Carlos (USP),
Av. do Trabalhador São-Carlense, 400, P.O. Box 668, 13.560-970 São Carlos, SP, Brazil
e-mail: cdac@icmc.usp.br

V. C. Times
Informatics Center, Federal University of Pernambuco (UFPE), Av. Jornalista Anibal Fernandes,
50.740-560 Recife, PE, Brazil
e-mail: vct@cin.ufpe.br

objects clustering and a specialized buffer-pool to decrease the number of disk accesses.
The advantages of the SB-index and the HSB-index over the DBMS resources for SDW
indexing (i.e. star-join computation and materialized views) were investigated through
performance tests, which issued roll-up operations extended with containment and
intersection range queries. The performance results showed that improvements ranged
from 68% up to 99% over both the star-join computation and the materialized view.
Furthermore, the proposed indices proved to be very compact, adding only less than
1% to the storage requirements. Therefore, both the SB-index and the HSB-index are
excellent choices for SDW indexing. Choosing between the SB-index and the HSB-
index mainly depends on the query selectivity of spatial predicates. While low query
selectivity benefits the HSB-index, the SB-index provides better performance for higher
query selectivity.

Keywords Spatial data warehouse . Indices . Bitmap index .

Spatial on-line analytical processing . Spatial drill-down and roll-up operations

1 Introduction

A spatial data warehouse (SDW) is a multidimensional database that inherits and combines
capabilities and characteristics from the data warehouse (DW), the geographic information
system (GIS) and the on-line analytical processing (OLAP) to explore the decision-making
process [1–4]. Like a conventional DW, a SDW is a subject-oriented, integrated, time-
variant, voluminous and non-volatile database. Similar to a GIS, a SDW stores spatial data
(e.g. vector geometries) and descriptive attributes, and also supports spatial analysis and ad
hoc rectangular query windows in query processing. Furthermore, spatial OLAP (SOLAP)
tools provide analytical multidimensional queries based on spatial predicates that mostly
run over the SDW [5].

A conventional DW is often implemented in relational databases through a star
schema [6], which is composed of fact and dimension tables. Fact tables store numeric
measures of interest, while dimension tables contain attributes that contextualize these
measures. Frequently, attributes of a dimension table are related with other attributes of
the same dimension table through hierarchies, which specify different levels of
granularity and data aggregation. For instance, suppose a DW of an application that
represents historical data relating to orders and sales of a corporation [35]. Suppose also a
multidimensional view “revenue by customer by part by supplier by date”. In this DW,
Lineorder is a fact table that contains the numeric measure of interest revenue, while
Customer, Part, Supplier and Date are dimension tables. An example of hierarchy in the
dimension table Supplier is (region) � (nation) � (city) � (address), where address is the
attribute of the lowest granularity level, and region is the attribute of the highest
granularity level. The � operator imposes a partial ordering on the attributes, specifying
that one aggregation of higher granularity can be determined using data from another
aggregation of lower granularity [7]. For instance, (nation) can be determined from (city).
In a conventional DW, the domain of the attributes region, nation, city and address are
alphanumeric.

Differently from a conventional DW, a SDW stores spatial data as specific attributes in
dimension tables or as measures in fact tables [1, 2, 4, 8, 9]. Therefore, instead of storing
alphanumeric values for regions, nations, cities and addresses, a spatial dimension table
Supplier represents the values of its geographic attributes region_geo, nation_geo, city_geo

166 Geoinformatica (2012) 16:165–205

and s_address_geo as points, lines and polygons. In a SDW, the suffix _geo refers to spatial
attributes that store geometries. Furthermore, in a SDW, hierarchies may be defined also over
spatial attributes of one or more spatial dimension tables. A predefined spatial hierarchy is a
1:N association among higher and lower granularity spatial attributes that is determined by a
spatial relationship, such as (region_geo) � (nation_geo) � (city_geo) � (s_address_geo),
where the spatial relationship is containment [3, 12]. Regarding this example of predefined
spatial hierarchy, it states that a given address is inside of only a specific city, a given city is
inside of only a specific nation, and a given nation is inside of only a specific region.
Therefore, for instance, the measure lo_revenue of a nation is calculated by summing the
lo_revenue of each city inside of this nation.

Spatial hierarchies are a core aspect in the SDW design since they enable the processing
of drill-down and roll-up operations extended with containment and intersection range
queries [5–8, 12–15]. While drill-down operations analyze increasingly less aggregated
data, roll-up operations, on the other hand, analyze increasingly more aggregated data. An
example of a spatial and multidimensional query is “find out the total revenue earned by
suppliers whose addresses are inside a rectangular window”. This query defines a
topological relationship and a spatial ad hoc spatial query window that was not previously
stored in dimension tables. Another query may be issued to roll-up to the city granularity
level by using a larger spatial query window that intersects the cities where the suppliers are
located.

Regarding SOLAP query processing, the challenge in SDW is to retrieve data
related to ad hoc spatial query windows, avoiding the high cost of joining large fact
tables with dimension tables. Although several methods have been proposed in the
literature to enhance the query processing performance in DW and SDW, such as view
materialization [7, 9, 11, 16], vertical and horizontal fragmentation of dimension and fact
tables [17–19], data partitioning aiming at parallel processing [20, 21] and also indices
[10, 22–28], there is a lack of efficient SDW indices to support predefined spatial
hierarchies, to deal with multidimensionality in SDW, and to perform spatial drill-down
and roll-up operations. This issue motivates the development of new indices for SDW
that enable these features.

In this paper, we propose two efficient indices for SDW: the Spatial Bitmap Index (SB-
index) and the Hierarchical Spatial Bitmap Index (HSB-index). The SB-index has a
sequential and compact data structure based on the Projection index [29], whose entries
point to a star-join Bitmap index [25]. On the other hand, the HSB-index reuses the
clustering technique of a tree-based spatial index in order to group spatial objects, thus
enabling pruning.

Other major characteristics of the proposed SB-index and HSB-index are described as
follows.

& They efficiently support analytical multidimensional queries based on spatial predicates.
To comply with this goal, both the SB-index and the HSB-index compute the spatial
predicate at first, and then transform the spatial predicate answer into a conventional
predicate that can be solved by accessing a star-join Bitmap index. This proposed
strategy avoids costly star-join operations between fact tables and dimension tables,
providing better performance to SOLAP queries.

& They focus on predefined spatial hierarchies. A predefined spatial hierarchy in the SDW
determines the existence of one SB-index (or HSB-index) per granularity level of the
spatial hierarchy. This index organization takes advantage of the 1:N association among
higher and lower granularity spatial attributes, benefiting the processing of drill-down

Geoinformatica (2012) 16:165–205 167

and roll-up operations extended with the spatial predicates intersection and containment
range queries.

& They may be applied to process SOLAP queries based on different query selectivity of
spatial predicates. On the one hand, the HSB-index must be used when the query
requires that only few spatial objects be processed, since its hierarchical organization
ensures that only a subset of the spatial objects will be analyzed in query processing. On
the other hand, the SB-index should be used mainly when the query requires that a
greater number of spatial objects be processed. In this situation, the sequential scan
provided by the SB-index is the most appropriate technique for SOLAP query
processing.

A preliminary version of the SB-index was presented in [22–24]. Here, we extend these
works additionally describing the algorithms of the SB-index for building and query
processing. We also evaluate the performance of this index over strictly non-redundant
SDW schemas. Furthermore, we introduce the novel HSB-index and detail its data
structure, buffering, building and query processing. Moreover, we carry out novel
performance tests to evaluate the characteristics of the SB-index and the HSB-index, such
as the impact of the increase in query selectivity, the benefits of embedding a buffer-pool in
the HSB-index, the influence of the disk page size and of the buffer-pool size, the
processing of uninterrupted roll-up operations with overlapping spatial query windows, the
individual analysis on processing spatial and conventional predicates using the proposed
indices, and the influence of different spatial data types on the performance of the SB-index
and the HSB-index.

This paper is organized as follows. Section 2 describes concepts that are essential to
understand the proposed indices. Sections 3 and 4 introduce the main contributions of this
paper: the SB-index and the HSB-index, respectively. Each proposed index is described in
terms of its data structure, building and query processing. Section 5 validates the proposed
indices through performance tests, Section 6 surveys related work, and Section 7 concludes
the paper.

2 Theoretical foundation

In this section, we describe concepts related to the SB-index and the HSB-index proposals.
Section 2.1 details a hybrid SDW schema, Section 2.2 summarizes the R-tree, the R*-tree
and the GiST spatial indices, and Section 2.3 surveys the Projection and the star-join
Bitmap indices.

2.1 Spatial data warehouse

SDWs store spatial data as specific attributes in dimension tables or as measures in fact
tables. Figure 1 illustrates a hybrid SDW schema [1, 22–24], which is a star schema
extended to additionally store spatial dimension tables aiming at processing SOLAP
queries. In Fig. 1, Customer, Supplier, Part and Date are conventional dimension tables
that store only alphanumeric redundant data, while C_Address, S_Address, City, Nation
and Region are spatial dimension tables that are stored separately according to the
granularity level to avoid spatial data redundancy. Also, there are two predefined spatial
hierarchies: (i) (region_geo) � (nation_geo) � (city_geo) � (c_address_geo) for
customers; and (ii) (region_geo) � (nation_geo) � (city_geo) � (s_address_geo) for

168 Geoinformatica (2012) 16:165–205

suppliers. As described in Section 1, attributes with the suffix _geo are spatial attributes
that store geometries, and a predefined spatial hierarchy specifies that a given geometry in
a lower spatial granularity attribute is contained by a single geometry in a higher spatial
granularity attribute. Finally, the hybrid SDW schema allows the processing of star-join
operations, which are operations that require several joins among the fact table and the
dimension tables.

The hybrid SDW schema shown in Fig. 1 is considered as a running example
throughout the paper. Note that the hybrid and the snowflake [6] schemas are different,
since the former does not normalize the spatial hierarchies. Note also that our work is not
based on redundant SDW schemas, which are schemas that store spatial data together
with descriptive data in conventional dimensions. According to recent research results,
although hybrid SDW schemas add new join costs to SOLAP queries, they require less
storage space and determine lower SOLAP query response time than those observed in
redundant SDW schemas [22, 23]. Therefore, hybrid schemas are more appropriate to
SDW.

2.2 Spatial indices

The spatial indices related to our work are the R-tree, the R*-tree and the GiST. The R-tree
[38] is a spatial access method that supports range queries in the Euclidean space and is
commonly implemented by DBMSs (database management systems) to index spatial

c_custkey
c_address

c_address_fk
c_city

c_city_fk
c_nation

c_nation_fk
c_region

c_region_fk
...

Customer

lo_orderkey
lo_linenumber

lo_partkey
lo_suppkey

lo_orderdate
lo_commitdate

...

lo_custkey
lo_revenue
lo_quantity

Lineorder

s_suppkey
s_address

s_address_fk
s_city

s_city_fk
s_nation

s_nation_fk
s_region

s_region_fk
...

Supplier

p_partkey
p_brand1

...

Part
d_datekey

d_date
...

Date

c_address_pk
c_address_geo

C_Address
s_address_pk

s_address_geo

S_Address
city_pk

city_geo

City

nation_pk
nation_geo

Nation

region_pk
region_geo

Region

Fig. 1 The hybrid SDW schema

Geoinformatica (2012) 16:165–205 169

objects stored in the secondary memory. The R-tree stores MBRs (minimum bounding
rectangles) of the spatial objects instead of the original objects. Its hierarchical data
structure, with non-leaf and leaf nodes, is responsible for pruning the index traversal. Also,
its insertion algorithm allocates new spatial objects into leaf nodes, aiming at minimizing
the total coverage of each non-leaf node entry. The goal is to reduce the possibility of
intersection between non-leaf nodes’ MBRs and the spatial query window during query
processing, thus avoiding the undesirable ramification of the tree traversal during the
search.

The R*-tree [40] improves the R-tree insertion algorithm according to the criteria of
coverage, overlap, margin and storage, rather than only applying the criterion of
reducing the coverage as the R-tree does. While the overlap criterion aims at
minimizing the intersection area of the MBRs, the margin criterion is used to minimize
the perimeter of the MBRs, and the storage criterion is used to maximize the occupation
rate of the structure nodes. Analyzing these criteria during the insertion guarantees to
the R*-tree a better space partitioning and, consequently, a better search performance
than the R-tree.

The Generalized Search Tree (GiST) [39] is aimed at supporting an extensible set of
queries and data types that can unify and generalize the behavior of different search
trees. Because of this flexibility, some DBMSs have implemented the GiST to
efficiently index and retrieve conventional and complex data for different queries.
Since the GiST is built on a spatial attribute, it has the same characteristics of the R-tree
and the R*-tree.

In this paper, we use the R-tree and the GiST to index spatial attributes in order to
improve SOLAP query performance over star-join computation and materialized views.
Also, in the performance tests, we use the R*-tree to implement one of the components of
the proposed HSB-index.

2.3 The projection and the star-join bitmap indices

Consider X as an attribute of a relation R. The Projection Index over X is a sequence of
values for X extracted from R and sorted by the row number [29]. The basic Bitmap index
[29, 30] associates one bit-vector to each distinct value v of the indexed attribute X. The
bit-vectors maintain as many bits as the number of records found in the relation R. If for
the k-th record of the relation R we have that X = v, then the k-th bit of the bit-vector
associated to v has the value of one. Otherwise the k-th bit has the value of zero. The
attribute cardinality, |X|, is the number of distinct values of X and determines the number
of bit-vectors.

The Bitmap index is used in conventional DW to avoid the star-join computation.
To this end, a star-join Bitmap index is built on the attribute Z of the dimension table
to indicate the set of rows in the fact table to be joined with a given value of Z. For
instance, Fig. 2 shows data from a conventional DW star schema (Fig. 2a,c), a
Projection index defined on the attribute s_nation (Fig. 2b) and bit-vectors from a star-
join Bitmap index defined on the attribute s_address (Fig. 2d). Although s_address is
not involved in the star-join, it is possible to index this attribute by a star-join Bitmap
index since there is a 1:1 relationship between s_suppkey and s_address, and s_suppkey
is referenced by lo_suppkey. Consider that a query asking for s_address = ‘D’ has been
issued. Instead of joining the fact table Lineorder with the dimension table Supplier, it is
only necessary to verify the tuples that have the value of one in the bit-vector of the
address ‘D’.

170 Geoinformatica (2012) 16:165–205

Star-join Bitmap indices allow the quick processing of bit-wise logical operations. On
the one hand, it is possible to index attributes of higher granularity from attributes of lower
granularity using OR operations. For instance, executing a bit-wise OR with the bit-vectors
for s_address = ‘D’ and s_address = ‘E’ produces the bit-vector for s_nation = ‘Algeria’,
since (s_nation) � (s_city) � (s_address). Figure 2e shows the star-join Bitmap index
defined on the attribute s_nation. On the other hand, it is also possible to provide efficient
query processing using AND operations. For instance, suppose that a query asking for
s_nation = ‘Algeria’ and s_address = ‘D’ has been issued. In order to answer this query, a
bit-wise AND operation is carried out involving the bit-vectors of the requested values for
s_nation and s_address.

Bit-wise logical operations provide efficient query processing even when the number of
involved bit-vectors is high. As a result, the performance of the Bitmap index is not
drastically affected by the number of indexed dimensions. Therefore, the Bitmap index is
frequently used to index warehouse data [30, 42, 43]. On the other hand, high cardinality
has been seen as one of the Bitmap index’ main drawback. However, even with very high
cardinality, the Bitmap index can provide acceptable response time and storage utilization,
since three techniques have been proposed to efficiently overcome this limitation:
compression [32], binning [33] and encoding [34].

In this paper, the Projection index was used as a basis for the SB-index, while the
star-join Bitmap index was used as a basis for both the SB-index and the HSB-index
proposals.

3 The SB-index

In this section, we introduce our first proposal of index for SDW: the Spatial Bitmap Index
(SB-index), which focuses on predefined spatial hierarchies and enables the Bitmap index

s_suppkey s_address s_city s_nation s_region s_nation
1 A Vietnam 2 Vietnam Asia Vietnam
2 B France 5 France Europe France
3 C Romania 2 Romania Europe Romania
4 D Algeria 6 Algeria Africa Algeria
5 E Algeria 0 Algeria Africa Algeria

a) Dimension table: Supplier b) Projection index

lo_suppkey lo_custkey lo_revenue A B C D E V
ie

tn
am

Fr
an

ce

R
om

an
ia

A
lg

er
ia

1 235 20785 1 0 0 0 0 1 0 0 0
1 512 166751 1 0 0 0 0 1 0 0 0
2 512 252145 0 1 0 0 0 0 1 0 0
3 235 197451 0 0 1 0 0 0 0 1 0
3 512 152389 0 0 1 0 0 0 0 1 0
3 106 217410 0 0 1 0 0 0 0 1 0
4 235 200489 0 0 0 1 0 0 0 0 1
5 106 182877 0 0 0 0 1 0 0 0 1

c) Fact table: Lineorder d)Star-join Bitmap index
on s_address

e) Star-join Bitmap index
on s_nation

Fig. 2 Fragment of data, Projection and star-join Bitmap indices

Geoinformatica (2012) 16:165–205 171

to be used in SDW. The SB-index is an adapted Projection index on the primary key of the
spatial dimension table. A core aspect of the SB-index design is that it computes the spatial
predicate and transforms it into a conventional one, which can be evaluated together with
other conventional predicates. As a result, queries can be answered using a star-join Bitmap
index, avoiding star-join operations. Therefore, the SB-index is able to process roll-up and
drill-down operations extended with spatial predicates such as intersection and containment
range queries.

This section is organized as follows. Section 3.1 describes the SB-index data structure,
Section 3.2 details the operation of building the SB-index, and Section 3.3 focuses on
SOLAP query processing using the SB-index.

3.1 Data structure

In the SB-index data structure, each entry is of the sbitvector (spatial bit-vector) data type,
which is composed of a key value and a MBR. The key value references the spatial
dimension table’s primary key and also identifies the spatial object represented by the
corresponding MBR. Furthermore, the key value is an integer, which represents an
adequate choice for primary keys as DWs have surrogate keys. Four coordinates (i.e. four
double precision numbers) represent the MBR: Xmin, Ymin, Xmax and Ymax. As a result,
the size of one sbitvector entry, denoted as s, is given by the following expression: s = size
of (integer) + 4 * size of (double).

A definition for the SB-index is given in Definition 1, assuming the existence of the
sbitvector data type and the star-join Bitmap index.

Definition 1 (SB-Index): A SB-index is an array of sbitvector type, whose i-th entry
points to the i-th bit-vector of the star-join Bitmap index built over the spatial
dimension table’s primary key. Also, the SB-index is persistently maintained on
secondary storage (i.e. disk) together with the star-join Bitmap index. A predefined
spatial hierarchy in the SDW determines the existence of one SB-index per granularity
level of the spatial hierarchy.

In order to illustrate the SB-index data structure, consider the SDW schema given in
Fig. 1 and the dataset shown in Fig. 3. City is a spatial dimension table containing the

city_pk

Spatial
dimension table

1
2
3
4

K

1
2
3

1,000,000

1

2

4
3

Conventional
dimension table

City

Supplier

Fact table

Lineorder
lo_suppkey

...

...

...

...

...

...

...

...
...

1

3
3

1,000,000

1,000,000

1
2

join
joincity_geo

s_city_fks_suppkey ...
...
...
...

...

...
2,265 ...

Fig. 3 The spatial dimension table City, the dimension table Supplier and the fact table Lineorder

172 Geoinformatica (2012) 16:165–205

spatial attribute city_geo and the primary key city_pk. For instance, city_pk = 1 is
associated to s_suppkey = 3 and lo_suppkey = 3. Therefore, SB-index[0] maintains the
key value 1 and the MBR of the spatial object identified by city_pk=1, as shown in
Fig. 4. Furthermore, B is the star-join Bitmap index defined over the attribute city_pk of
the dimension table City to indicate the set of rows in the fact table to be joined with a
given value of city_pk. The bit-vector pointed to by B[0] specifies the tuples in the fact
table where city_pk = 1. Thus, accessing the bit-vector related to SB-index[0] just
requires using the offset 0 to read B, i.e. B[0]. Consequently, SB-index[0] implicitly
points to the bit-vector referenced by B[0].

3.2 The building operation

The building operation of the SB-index is performed as described in the BuildSBindex
algorithm (Algorithm 1). In line 1, it is required a connection to the spatial database that
maintains the SDW and issued a SQL query that: (i) selects the primary key and the
spatial attributes from the spatial dimension table; (ii) sorts the query results in ascending
order based on the primary key; and (iii) obtains the MBR of the spatial objects using
proper DBMS functions. For each row retrieved from the spatial database, the key value
and the corresponding MBR are copied to one entry of sbitvector type into an array in the
main memory (lines 4 to 13). When this array becomes full, it is written to a disk page of
the SB-index (line 15). Further, some unused bytes U are left in the SB-index (line 16).
Since the entries are sorted by the spatial object identifiers, the SB-index is also sorted by
the primary key. Therefore, SB-index[i] refers to the star-join Bitmap index B[i]. The
actions in lines 4 to 17 are performed until there are no more retrieved rows to be copied.
Finally, the star-join Bitmap index, whose entries refer to the SB-index entries, is built
(lines 19 and 20).

Fig. 4 The SB-index data structure

Geoinformatica (2012) 16:165–205 173

The SB-index leaves some unused bytes U between different disk pages to avoid
fragmented entries, thus not requiring two disk accesses to obtain a single entry.
Furthermore, the size of U is usually very small. For instance, in the SB-index, every disk
page has a fixed size and both the memory-resident array and each disk page have L
entries, where L is the maximum number of sbitvector entries that can be stored in one
disk page. Suppose that the size s of a sbitvector entry is equal to 36 bytes (one integer of
4 bytes and four double precision numbers of 8 bytes each) and that a disk page has 4 KB.
Thus, L is equal to 113 entries (4096 div 36) and the array size is 4068 bytes (113 * 36).
In this case, the size of U is only 28 bytes (4096–4068).

Table 1 Parameters of the SB-index building algorithm

Parameter Description

L The maximum number of sbitvector entries that a disk page can hold.

U The unused amount of bytes of a disk page.

idx The SB-index file.

T A spatial dimension table.

pk The primary key of the spatial dimension table T.

sa A spatial attribute of the spatial dimension table T (i.e. the geometry).

174 Geoinformatica (2012) 16:165–205

3.3 Query processing

A typical SOLAP query has spatial and conventional predicates. The SB-index evaluates
the spatial predicates in two phases, as shown in Fig. 5. The first phase filters candidates
that are possible answers (steps 1 to 3), while the second phase refines these candidates by
determining which ones are answers and by producing conventional predicates to them
(steps 3 to 5). Then, the SB-index evaluates all the conventional predicates, i.e. the
produced predicates plus the original conventional query predicates, by using a star-join
Bitmap index.

The SearchSBindex algorithm (Algorithm 2) details query processing with the SB-index.
In lines 3 to 11, all possible answers to the spatial predicate are collected as follows. During the
scan on the SB-index file, one disk page is read at a time, and its content is copied into an array
in the main memory (lines 4 and 5). After fulfilling this array, a sequential scan is performed on
it. For each entry, the MBR is tested against the spatial predicate based on its query window
(line 7). If this test evaluates to true, the corresponding primary key value is collected (line 8).
After scanning every page of the file, a collection of candidates is found, i.e. a collection of
primary key values whose spatial objects may satisfy the query spatial predicate.

In lines 13 to 16, the SearchSBindex algorithm checks which candidates can really be
seen as answers. This refinement requires the access to the spatial dimension table using
each candidate primary key value to fetch the whole geometry of the spatial object. Then,
these objects are tested against the spatial predicate using proper DBMS functions (line 14).
If this test evaluates to true, the corresponding primary key value is used to compose a new
conventional predicate, i.e. it is concatenated to a new conventional predicate string (line
15). Here, the SB-index transforms the spatial predicate into a conventional predicate.
When the new conventional predicate string becomes ready, it is concatenated to the

DISK
DATABASEMAIN

MEMORY

2. Scan 4. Refinement

[0]

[1]

[2]

[L-1]

PK Geometry
1

2
3

4

100000

Spatial
dimension table

[3]

[L-2]

Candidates
1, 9 “ WHERE

ORPK = 1
PK = 9 ”

1. Read

Answers
Copy

temporary array
with entries of type

sbitvector

[0]

[1]

[2]

[L-1]

[3]

[L-2]
1

59

256

4078

MAIN
MEMORY

3. Collection 5. Result
MAIN

MEMORY

U {

FIRST PHASE SECOND PHASE

SB-index file

Fig. 5 The SB-index query processing

Geoinformatica (2012) 16:165–205 175

SOLAP query string (line 17). Both the new conventional predicate and the SOLAP query
are memory-resident strings. The result is a rewritten query, which is executed by accessing
a star-join Bitmap index to produce the final query answer (line 18).

In order to illustrate the SB-index query processing, suppose that the query of Fig. 6a is
executed on the SDW given in Fig. 1. The bold spatial predicate in Fig. 6a evaluates the
intersection between the cities and an ad hoc spatial query window QW. The SB-index
processes this query as follows. The cities identified by the primary key values 1, 5, 9, 256
and 4078 are considered as candidates (first phase of Fig. 5). Then, only the cities 1 and 9
are considered as answers, and the new conventional predicate is “where city_pk=1 OR
city_pk=9” (second phase of Fig. 5). This predicate is appended to the query as shown in
Fig. 6b. Several clauses of the rewritten query have been omitted in Fig. 6b, since they are
not processed by the star-join Bitmap index, which is responsible for solving the rewritten
query.

Table 2 Parameters of the SB-index query processing algorithm

Parameter Description

idx The SB-index file.

L The maximum number of sbitvector entries that a disk page can hold.

R A spatial relationship.

QW An ad hoc spatial query window.

T A spatial dimension table.

pk The primary key for the spatial dimension table T.

sa A spatial attribute of the spatial dimension table T (i.e. the geometry).

query The query to be rewritten.

answer The final set of query answers.

176 Geoinformatica (2012) 16:165–205

4 The HSB-index

In this section, we introduce our second index proposal for SDW: the Hierarchical Spatial
Bitmap Index (HSB-index). The motivations for the HSB-index proposal are given as
follows. The previous SB-index enables the Bitmap index in SDW and, as will be shown in
Section 5, it produces much better SOLAP query response times than the star-join
computation and materialized views available in current database technologies. However, it
is important to recognize that:

& Since the SB-index is conceptually an array stored on disk, a sequential scan is
necessary to test every entry of the SB-index against a given ad hoc spatial query
window.

& Every query of a certain granularity level requires a fixed number of disk accesses to
traverse the SB-index, since the sequential scan must visit all disk pages, leading to a
linear complexity denoted by O(n).

& There is not an efficient method to reuse the SB-index entries that were fetched during
the processing of previous queries to avoid unnecessary disk accesses.

& The SB-index is not able to cluster spatial objects. Consequently, for example, if the
ad hoc spatial query window stands on the west, the entries that represent spatial
objects from the west, and also from the east, south and north are tested against the
spatial query window. Ideally, only the entries from the west and nearby should be
tested.

The aforementioned issues have motivated us to improve the SB-index data structure to
enhance its capabilities, mainly when SOLAP queries require fetching only few spatial
objects.

For this purpose, we propose the new HSB-index, whose advantages rely on reducing
disk accesses by hierarchically clustering spatial objects. The HSB-index provides the same
functionalities as the SB-index. However, the HSB-index replaces the SB-index’ sequential
scan by using hierarchical pruning techniques, ensuring that only a subset of the entries are
analyzed in SOLAP query processing. This results in a smaller number of disk accesses.
Furthermore, the HSB-index also manages a buffer-pool to temporarily store disk pages in
the main memory, decreasing even more the number of disk accesses during SOLAP query
processing.

This section is organized as follows. The HSB-index is described in Sections 4.1 to
4.4, which focus on its data structure, buffering, building and query processing,
respectively.

SELECT SUM (lo_revenue), d_year , p_brand1
FROM lineord er, date, part, supplier, city
WHERE lo_or derdate = d_datekey

AND lo_partkey = p_par tkey
AND lo_ suppkey = s_suppkey
AND p_brand1 = ‘MFGR#2239’
AND intersects (city_geo, QW)

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

SELECT SUM (lo_revenue), d_year, p_brand1
WHERE p_brand1 = ‘MFGR#2239’

AND (city_pk = 1 OR city_pk = 9)

a) SQL query issued to the SDW. b) Query rewritten by the SB-index.

Fig. 6 An example of spatial predicate replacement made by the SB-index

Geoinformatica (2012) 16:165–205 177

4.1 Data structure

The first component of the HSB-index is a disk resident spatial index that has a tree
organization and hierarchically clusters spatial objects based on their MBRs. The leaf
nodes of the spatial index extend the sbitvector data type (Section 3.1), enabling the
access to the star-join Bitmap index. No further adaption in the internal nodes of the
spatial index is required and, as a result, the HSB-index can use any tree-based spatial
index with its corresponding clustering technique. The second component of the HSB-
index is a disk resident star-join Bitmap index defined over the primary key attribute of
the spatial dimension table. A definition for the HSB-index is given in Definition 2.

Definition 2 (HSB-index): A HSB-index has a tree-based spatial index, such that each entry
of a leaf node points to a given bit-vector of a star-join Bitmap index. Also, we have that:

(i) A spatial dimension table maintains all the spatial objects being indexed by a HSB-
index.

(ii) In the HSB-index, each entry of a leaf node is a triple < mbr, pk, ptr > where
mbr is the n-dimensional MBR of the spatial object identified by the primary key
value pk and ptr points to a bit-vector that refers to pk, where n=2 represents two-
dimensional spatial objects, n=3 represents three-dimensional spatial objects, and so
on.

(iii) The star-join Bitmap index is defined over the primary key attribute of the spatial
dimension table.

(iv) Both the spatial index and the star-join Bitmap index are persistently stored on disk.
(v) Each internal and leaf node of the HSB-index occupies one disk page.
(vi) A predefined spatial hierarchy in the SDW determines the existence of one HSB-

index per granularity level of the spatial hierarchy.

Figure 7 shows the design of the HSB-index for the dataset shown in Fig. 3. Spatial
objects of the dimension table City (Fig. 7a) are represented by their MBRs (Fig. 7b),
which compose the spatial index data structure and reuse its clustering algorithm
(Fig. 7c). Instead of just reusing the spatial index, the HSB-index also contains a pointer
to a bit-vector in each leaf node entry (Fig. 7d). Therefore, a spatial object is identified by
a key value, represented by a MBR, and is also associated with a set of tuples through a
bit-vector. For example, the polygon identified by the key value 1 (Fig. 7a) is
approximated to R1 (Fig. 7b) and clustered by region M1 in the spatial index (Fig. 7c).
Furthermore, R1 is held in an entry of a leaf node and associated with a specific bit-vector
(Fig. 7d), whose first and second bits (i.e. value 1) indicate that the first and the second
tuples of the fact table reference the polygon with key value 1.

4.2 Buffering the HSB-index

Aiming at reusing previous index entries already fetched in spatial roll-up and drill-
down operations and therefore avoiding unnecessary disk accesses, we have adapted
the HSB-index to encompass a specialized buffer-pool, which is described in
Definition 3.

Definition 3 (buffer-pool): The buffer-pool of the HSB-index consists of an array used
to temporarily store disk pages in the main memory. It is a finite set of fixed-size disk

178 Geoinformatica (2012) 16:165–205

pages, having each of them the same size and the same structure as the HSB-index disk
pages.

The tree-based spatial index of the HSB-index, called diskSpatialIndex, persistently
stores all the nodes of the HSB-index and contains P disk pages of size c. In order to
comply with Definition 3, it is necessary to use a strategy to allocate the diskSpatialIndex
nodes in the main memory. For this purpose, the HSB-index also makes use of the
following components (Fig. 8):

& The partial tree-based spatial index that is stored in a buffer-pool in the main memory,
and is called bufferSpatialIndex. It stores temporarily a subset of the diskSpatialIndex
nodes and contains p disk pages of size c, where p < P.

& A buffer manager resident in the main memory.

Additional characteristics of the bufferSpatialIndex are as follows. It can be adjusted
to occupy a certain amount of the main memory, according to the number of disk pages
used by the diskSpatialIndex: 5% to 30% are values that usually provide good
performance to process SOLAP queries as will be shown in Section 5. Particularly in
the HSB-index design, the bufferSpatialIndex size refers to a percentage of the estimated

a) Spatial objects b) MBRs

d) The HSB-index for the spatial dimension table City

c) Spatial index

Fig. 7 The HSB-index design

Geoinformatica (2012) 16:165–205 179

number of disk pages that the diskSpatialIndex should have. For instance, if the
diskSpatialIndex stores 100 disk pages, the bufferSpatialIndex set to 30% will maintain
exactly 30 disk pages.

Note that the bufferSpatialIndex is a specialized buffer-pool and, therefore, differs from
the operating system buffer-pool and from the DBMS buffer-pool because it stores only
disk pages of the HSB-index. Conversely, the operating system and DBMS buffer-pools
may store disk pages from different indices and programs, which compete to use the buffer.
Another differential introduced by using a specialized buffer-pool is that it may be designed
to use a hierarchical replacement policy based on the disk page level (e.g. hierarchical tree-
based LRU). In this case, the replacement policy may choose to replace a leaf node, instead
of replacing nodes from upper levels.

Figure 8 shows the components of the HSB-index and the interaction among them. In this
figure, besides the aforementioned components of the HSB-index, there are two additional
components to support query processing. The first is a collection of possible answers to the
spatial predicate of a query, i.e. a collection of candidates, which is stored in the main
memory. The second is the range query algorithm used to evaluate the spatial predicate.

4.3 The building operation

The BuildHSBindex algorithm (Algorithm 3) works as follows. In line 1, the DBMS
extracts the primary key values and the MBRs of the corresponding spatial objects from a
spatial dimension table. Also, in line 2, the index file is created according to the page size
(in bytes) and the bufferSpatialIndex is set to a given capacity of disk pages (e.g. 5% of the
diskSpatialIndex). Then, the InsertionAlgorithm inserts the extracted input data in lines 3 to
6. After the insertion, the index file is closed in line 7. Finally, lines 8 and 9 build the star-
join Bitmap index whose entries refer to the spatial index entries.

Note that the InsertionAlgorithm is not a specific algorithm provided by the HSB-index.
Conversely, it is the insertion algorithm of the spatial index used to hierarchically cluster
the spatial objects. For instance, if the HSB-index uses the R*-tree to cluster the objects,
then the insertion algorithm of the R*-tree is used to insert the extracted data. The only

page 0

page 1

page 2

page 3

...
page P-1

...

...

...

...

...

page 0

page 1

...
page p-1

...

...

...

buffer manager

bufferSpatialIndex

pages

...

1 2 3 K

pages

diskSpatialIndex star-join Bitmap index

range query
algorithm

entries

candidates

PK

HSB-index entry

MAIN MEMORY DISK

query

......

0
0
0

0
0 0 0

0 0 0

00

0 0

1

1
1

1
1

1 0
00

0

HSB-index

Fig. 8 Components of the HSB-index

180 Geoinformatica (2012) 16:165–205

difference refers to the fact that, to be used by the HSB-index, the algorithm must reuse the
sbitvector data type in the leaf nodes entries.

4.4 Query processing

Query processing with the HSB-index is similar to query processing with the SB-index.
One difference is that the latter evaluates the spatial predicate in the filter phase
through a full sequential scan in the index, while the former prunes index entries by
clustering spatial objects using a hierarchical spatial index. Another difference refers to
the fact that the HSB-index also decreases the query processing cost by additionally
using a specialized buffer-pool.

The SearchHSBindex algorithm (Algorithm 4) works as follows. In line 1, the
SearchTree routine executes a range query algorithm to determine the entries whose
MBRs satisfy the spatial relationship with a given ad hoc spatial query window. First, the
buffer manager fetches MBRs for a given disk page in the bufferSpatialIndex, aiming at
avoiding unnecessary disk accesses. Only if the disk page is not found, the buffer
manager fetches the diskSpatialIndex and transparently exchanges pages between the
bufferSpatialIndex and the diskSpatialIndex using any page replacement policy, such as
the LRU policy or a hierarchical tree-based LRU. As a result, the SearchTree routine
generates a set of entries from the leaf nodes whose MBRs satisfy the spatial relationship.
Each primary key value of this set is added to the collection of candidates, which is stored
in the main memory (lines 3 to 5). The remaining actions performed by the SearchHSBindex

Table 3 Parameters of the HSB-index building algorithm

Parameter Description

idx The diskSpatialIndex file.

T A spatial dimension table.

pk The primary key for the spatial dimension table T.

sa A spatial attribute of the spatial dimension table T (i.e. the geometry).

pagesize The disk page size in bytes.

bufferpoolsize The bufferSpatialIndex size in bytes.

Geoinformatica (2012) 16:165–205 181

algorithm (lines 6 to 13) are similar to those performed by the SearchSBindex algorithm in
lines 13 to 18, as described in Section 3.3.

Note that, similarly to the discussion regarding the InsertionAlgorithm in Section 4.3,
the SearchTree algorithm is not a specific algorithm provided by the HSB-index. In fact,
it is the search algorithm of the spatial index used to prune the index traversal.

5 Performance evaluation

In this section, we present and discuss the results that point out the remarkable performance
of the SB-index and the HSB-index to process SOLAP queries. We focus on roll-up and
drill-down operations extended with containment and intersection spatial predicates, which
use ad hoc spatial query windows to retrieve spatial objects that are organized through
predefined spatial hierarchies. In the performance tests, we investigate several issues, as
described as follows.

Table 4 Parameters of the HSB-index search algorithm

Parameters Description

bufferSpatialIndex The memory-resident buffer-pool of the HSB-index.

diskSpatialIndex The disk-resident HSB-index.

R A spatial relationship.

QW An ad hoc spatial query window.

T A spatial dimension table.

pk The primary key for the spatial dimension table T.

sa A spatial attribute of the spatial dimension table T.

query The query to be rewritten.

answer The final set of query answers.

182 Geoinformatica (2012) 16:165–205

& We compare the performance of the proposed indices against the current technology of
DBMS and also investigate the SB-index and the HSB-index performance on
processing spatial and conventional predicates separately. We address both the
processing of a single spatial query window and the processing of two spatial query
windows. The obtained results are discussed in Section 5.2.

& We investigate the advantages of introducing a specialized buffer-pool into the HSB-
index, as described in Section 5.3.

& We evaluate the influence of increasing the HSB-index’ buffer-pool size and the SB-
index’ and the HSB-index’ disk page size, as described in Section 5.4.

& We analyze the impact of increasing the selectivity of the spatial predicate on the
performance of the SB-index and the HSB-index. To this end, we issued SOLAP
queries that retrieved increasing number of spatial objects. The obtained results are
discussed in Section 5.5.

& We evaluate the influence of different spatial data types on the performance of the SB-
index and the HSB-index. In this sense, we used datasets storing more complex objects,
such as lines and multipolygons, as described in Section 5.6.

Before presenting the results, we provide in Section 5.1 details on the experimental setup
used in our performance evaluation.

5.1 Experimental setup

In this section, we describe the experimental setup that was used to evaluate the
performance of the proposed SB-index and HSB-index indices. We detail the characteristics
of the datasets and the materialized views, introduce the concept of query selectivity, define
disjoint and overlapping spatial query windows, describe the workload, and describe the
hardware and software platforms.

Regarding the datasets, we adapted the Star Schema Benchmark (SSB) [35], which is
derived from the TPC-H benchmark (http://www.tpc.org/tpch), to support SDW analysis,
since the spatial information of the SSB is strictly alphanumeric and maintained in the
dimension tables Supplier and Customer. The DS10 dataset was created based on the
SDW schema shown in Fig. 1. Our adaptions preserved alphanumeric data and created
two predefined spatial hierarchies based on the conventional ones: (i) (region_geo) �
(nation_geo) � (city_geo) � (c_address_geo) for customers; and (ii) (region_geo) �
(nation_geo) � (city_geo) � (s_address_geo) for suppliers. According to [9], Supplier
and Customer are spatial-to-spatial dimensions since the primitive level and all of its
high-level generalized data are spatial, i.e. all of them store vector geometries.
Furthermore, as stated in [1, 22, 24], SDW spatial data must not be redundant and
should be shared whenever is possible. Thus, Supplier and Customer shared city, nation
and region locations but had individual addresses. Also, attributes c_address_geo and
s_address_geo were disjoint.

The DS10 dataset data generation was based on the SSB scale factor 10 and produced
599,862,140 tuples in the fact table, 50 distinct regions, 250 nations, 2,500 cities, 1,000,000
supplier addresses and 3,000,000 customer addresses. We generated 5 nations per region,
10 cities per nation and a certain quantity of addresses per city that ranged from 349 to 455.
Cities, nations and regions were represented by polygons, while addresses were represented
by points. The polygons were collected from the Tiger/Line (http://www.census.gov/geo/
www/tiger), while the points were synthetic data. The DS10 dataset occupied 113 GB.
Figure 9 exemplifies its spatial data distribution for city, nation and region.

Geoinformatica (2012) 16:165–205 183

http://www.tpc.org/tpch
http://www.census.gov/geo/www/tiger
http://www.census.gov/geo/www/tiger

We also created two materialized views, the MVQ23 and the MVQ33, to answer specific
SSB queries adapted with spatial predicate. Figure 10 shows how the MVQ23 was built and
its schema. Similarly, Fig. 11 shows how the MVQ33 was built and its schema. While the
MVQ23 referenced each spatial dimension table once, the MVQ33 did it twice at the City,
Nation and Region levels since it referred to both customers and suppliers locations. Both
materialized views avoided spatial data redundancy and join operations involving
conventional dimension tables. MVQ23’s data volume was 65 GB, while MVQ33’s
volume was 53.5 GB. Considering that the MVQ23 has nearly six hundred million tuples,
in order to efficiently fetch p_brand1 = ‘MFGR#2239’, we built a B-tree on its attribute
p_brand1. We also analyzed the need to build such index for the MVQ33 on the attribute
d_year, but concluded that this index did not improve the performance of this materialized
view.

Regarding the queries, we define in this paper that the selectivity is the percentage of the
number of spatial objects that are retrieved by a query. A low selectivity means that few
spatial objects are retrieved, while a high selectivity means that more spatial objects are
retrieved by the query. Another aspects related to queries in our tests are spatial query
windows and query types.

Aiming at evaluating the spatial predicate of a SOLAP query and the SB-index and
HSB-index capabilities, we designed spatial query windows, which were quadratic,

Fig. 9 The DS10 dataset spatial distribution

CREATE TABLE MVQ23 AS
SELECT sum(lo_revenue), s_address_fk,
s_city_fk, s_nation_fk, s_region_fk, d_year,
p_brand 1
FROM lineorder, part, supplier , date
WHERE lo_suppkey= s_suppkey AND

lo_orderdate = d_datekey AND
lo_partkey = p_partkey

GROUP BY s_address_fk, s_city_fk,
s_nation_fk, s_region_fk, d_year, p_brand1

a) Building the MVQ23 b) The MVQ23 schema

lo_revenue
s_address_fk

s_city_fk
s_nation_fk
s_region_fk
p_brand1

d_year

MVQ23
s_address_pk

s_address_geo

S_Address
city_pk

city_geo

City

nation_pk
nation_geo

Nation
region_pk

region_geo

Region

Fig. 10 The MVQ23 materialized view

184 Geoinformatica (2012) 16:165–205

correlated with the spatial data, and considered ad hoc because their rectangles were not
previously stored in any spatial dimension table. A spatial roll-up operation required a set of
four spatial query windows, each one associated to a given granularity level (i.e. the
Address, City, Nation or Region granularity level) and had a specific size (i.e. the lower the
granularity, the smaller the spatial query window). We defined two different types of spatial
query windows: disjoint and overlapping. The difference between these two types of query
windows is related to the fact that overlapping spatial query windows allow for reusing
cached data during query processing and therefore can be used to evaluate the efficiency of
a specialized buffer-pool in the HSB-index.

Disjoint spatial query windows were created according to the following description.
Their centroids were distinct supplier addresses. To create them, initially, one supplier
address was randomly chosen to be the centroid of the address query window. Then, city,
nation and region query windows were produced according to Fig. 12a. The next centroid
for the address query window was chosen assuring that the new query windows would not
overlap any one of the previously created query windows.

On the other hand, overlapping spatial query windows were built as follows. Firstly, one
supplier address was chosen to be the centroid of an address query window. Then, city,

CREATE TABLE MVQ33 AS
SELECT SUM(lo_revenue), c_address_fk,

s_address_fk, c_city_fk, s_city_fk,
c_nation_fk, s_nation_fk,
s_region_fk, c_region_fk, d_year

FROM lineorder, customer, supplier, date
WHERE lo_custkey = c_custkey AND

lo_suppkey = s_suppkey AND
lo_orderdate = d_datekey

GROUP BY c_address_fk, s_address_fk,
c_city_fk, s_city_fk, c_nation_fk,
s_nation_fk, s_region_fk,
c_region_fk, d_year

a)Building the MVQ33 b) The MVQ33 schema

lo_revenue
c_address_fk
s_address_fk

c_city_fk
s_city_fk

c_nation_fk
s_nation_fk
c_region_fk
s_region_fk

d_year

MVQ33
c_address_pk

c_address_geo

C_Address

s_address_pk
s_address_geo

S_Address

city_pk
city_geo

City

nation_pk
nation_geo

Nation

region_pk
region_geo

Region

Fig. 11 The MVQ33 materialized view

Query windows: QWA - Address QWC - City QWN - Nation QWR - Region (omitted)

a) Disjoint query windows b) Overlapping query windows

Fig. 12 Disjoint and overlapping ad hoc spatial query windows for distinct granularity levels

Geoinformatica (2012) 16:165–205 185

nation and region query windows were built similarly to the address query windows
(continuous-line query windows in Fig. 12b). The next address query window centroid was
not a supplier address, but any point inside the previous address query window. Further,
city, nation and region query windows were generated similarly (dashed-line query
windows in Fig. 12b). As a result, new address query windows overlapped the previous
ones, as well as the city, nation and region query windows did.

For both disjoint and overlapping spatial query windows, addresses were evaluated
with containment range queries and their spatial query windows covered 0.001% of the
extent. The City, Nation and Region levels were evaluated with intersection range queries and
their spatial query windows covered 0.05%, 0.1% and 1% of the extent, respectively. All
queries issued over the DS10 dataset and over the MVQ23 and the MVQ33 materialized views
presented low query selectivity for the spatial predicate. For instance, less than 200 addresses
were retrieved per spatial query window at the Address level, considering that there were 1
million supplier addresses and 3 million customer addresses.

The workload for the DS10 dataset was based on the query Q2.3 of the SSB, as shown
in Fig. 13. We replaced the underlined conventional predicate with spatial predicates
involving the ad hoc spatial query windows represented by QWA, QWC, QWN and QWR,
as illustrated in Fig. 12. The windows’ extents allowed the aggregation of data in different
spatial granularity levels, i.e. the application of spatial roll-up and drill-down operations. In
fact, a complete spatial roll-up operation started with the query with containment spatial
predicate at the Address level, and continued with other three queries that comprised
intersection spatial predicate at the City, Nation and Region levels, exactly in this order. When
issued over the DS10 dataset, each query required three join operations among the conventional
dimension tables and the fact table, one join operation with a spatial dimension table, one
conventional predicate computation and one spatial predicate processing.

The workload for the MVQ23 was designed according to Fig. 14, which shows how a
complete spatial roll-up operation was performed. These queries avoided joining the
conventional dimension tables, but they required one join operation related to the
corresponding spatial dimension table, which prevented the spatial data redundancy and
the high cost of storing redundant geometries.

SELECT SUM (lo_revenue), d_year, p_brand1
FROM lineorder, date, part, supplier
WHERE

lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_brand1 = ‘MFGR#2239’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND s_region = ‘EUROPE’

AND WITHIN (Address, QW)

AND INTERSECTS (City, QWc)

AND INTERSECTS (Nation, QW)

AND INTERSECTS (Region, QW)

A

N

R

R
O

L
L

-U
P

N
W

O
D-

L
LI

R
D

Fig. 13 Roll-up and drill-down operations for the DS10 dataset

SELECT SUM (lo_revenue), d_year, p_brand1
FROM MVQ23
WHERE

AND p_brand1 = ‘MFGR#2239’

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

AND s_region = ‘EUROPE’

AND WITHIN (Address, QW)

AND INTERSECTS (City, QWc)

AND INTERSECTS (Nation, QW)

AND INTERSECTS (Region, QW)

A

N

R

R
O

L
L

-U
P

N
W

O
D-

L
LI

R
D

Fig. 14 Roll-up and drill-down operations for the MVQ23 materialized view

186 Geoinformatica (2012) 16:165–205

On the other hand, the workload for the MVQ33 was based on the query Q3.3 of the
SSB, as shown in Fig. 15, and consisted of spatial roll-up and spatial drill-down operations
with two ad hoc spatial query windows, which added one more spatial predicate to be
processed and an extra high join cost. Basically, this query retrieved “the revenue per year
per brand for suppliers of an area A1 to the customers of an area A2”. The same granularity
level was used for both customers and suppliers simultaneously. The containment spatial
predicate was used at the Address level while the intersection predicate was used at the City,
Nation and Region levels. Two joins were necessary to fetch the spatial objects required by the
two query windows. MVQ33 also avoided joining conventional dimension tables.

The performance tests were carried out on a computer with a 3.2 GHz Pentium D
processor, 8 GB of main memory, a 7200 RPM SATA 750 GB hard disk with 32 MB of
cache, Linux CentOS 5.2, PostgreSQL 8.2.5 and PostGIS 1.3.3. We chose the PostgreSQL/
PostGIS DBMS because it is an efficient open source software that follows standard
specifications for spatial data. We employed FastBit version 0.9.2b as the Bitmap software
to implement the star-join Bitmap index and to process the conventional predicates, since it
has proven to efficiently implement Bitmap indices, and it is a Free Software as well [36,
37]. Specifically in this paper, FastBit used only the WAH compression method [32].

Both the SB-index and the HSB-index were implemented in C/C++. Regarding the
HSB-index, we employed the R*-tree [40] as the diskSpatialIndex, the R*-tree’s
insertion algorithm as the BuildHSBindex algorithm, and also the R*-tree’s search
algorithm as the SearchHSBindex algorithm. We chose the R*-tree because it improves
the R-tree insertion algorithm with the coverage, overlap, margin and storage criteria,
providing a better space partitioning and consequently a better search performance. The
R*-tree has a maximum and a minimum number of entries, denoted by M (i.e. disk page
size) and given by m=40% of M, respectively. The percentage used in the m parameter
was chosen according to the results described in [40]. Furthermore, we applied the close
reinsert strategy in the insertion algorithm of the R*-tree to avoid overlapping. For
exchanging pages between the bufferSpatialIndex and the diskSpatialIndex, we adopted
the LRU page replacement policy. The disk page sizes of the SB-index and the HSB-
index were set to 4 KB, and the bufferSpatialIndex was set to 5%, except for the sections
that specifically investigate these parameters.

5.2 Comparing the DBMS resources and the proposed indices

In this section, we compare our proposed indices with current DBMS resources for
answering SOLAP queries. Section 5.2.1 focuses on the processing of a single disjoint
spatial query window, while Section 5.2.2 investigates more complex queries, which
require the processing of two disjoint spatial query windows.

SELECT c_region, s_region, d_year,
SUM (lo_revenue) AS revenue

FROM MVQ33
WHERE

GROUP BY c_region, s_region, d_year
ORDER BY

s_region = ‘EUROPE’
AND c_region = ‘AMERICA’

c_region, s_region, d_year

WITHIN (S_Address, QW)

AND INTERSECTS (City, QWc)

AND INTERSECTS (Nation, QW)

AND INTERSECTS (Region, QW)

A

AND WITHIN (C_Address, QW ’)

INTERSECTS (City, QWc)
’

INTERSECTS (Nation, QW)
’

INTERSECTS (Region, QW)
’

A

N

N

R

R

R
O

L
L

-U
P

N
W

O
D-

L
LI

R
D

Fig. 15 Roll-up and drill-down operations for the MVQ33 materialized view

Geoinformatica (2012) 16:165–205 187

5.2.1 Using a single disjoint spatial query window

This section compares the query processing performance of the SB-index and the HSB-
index with the resources currently available in DBMSs for SDW indexing. Regarding the
DBMS resources, we implemented four configurations, as described as follows.

& Configuration C1: the star-join computation using the R-tree on the spatial attributes
over the DS10 dataset.

& Configuration C2: query processing over the MVQ23 materialized view using the R-
tree on the spatial attributes.

& Configuration C3: the star-join computation using the GiST on the spatial attributes
over the DS10 dataset.

& Configuration C4: query processing over the MVQ23 materialized view using the GiST
on the spatial attributes.

Both the R-tree and the GiST are implemented by the DBMS, and were used in our
performance evaluation to improve the spatial predicate processing performance. We issued
5 spatial roll-up operations, taking the average of the measurements for each granularity
level. The system cache was flushed at the end of each operation.

Figure 16 shows the elapsed times collected while running the experiments for
configurations C1 to C4. According to the performance results, the attribute granularity
affected the query processing over the DS10 dataset. For instance, the Region level queries
took 1,186 seconds in configuration C1, while the Address level queries took 21,763
seconds for the same configuration. There was a high increase of almost 1,735%. This trend
was also observed for the MVQ23 materialized view. For instance, the increase was of
305% in configuration C4.

As expected, using the MVQ23 materialized view instead of the DS10 dataset drastically
decreased the query response time, since the MVQ23 avoids joins and uses a B-tree on the
attribute p_brand1. The time reduction ranged from 85% at the Region level to 96% at the
Address level, independently of using the R-tree or the GiST. The experiments also showed
that there was an insignificant difference between the use of the R-tree and the GiST, for
both the DS10 dataset and the MVQ23.

Finally, independently of the attribute granularity, the performance results showed that
the aforementioned configurations were very expensive and provided unacceptable query
response times.

Regarding the experiments using the SB-index and the HSB-index, we issued queries
only over the DS10 dataset. Table 5 shows the total elapsed time spent by the HSB-index

Fig. 16 Performance results of
configurations C1, C2, C3 and
C4. The performance results are
shown in log scale for better
visualization

C1 C2 C3 C41.0

10.0

100.0

1,000.0

10,000.0

100,000.0 Address

City

Nation

Region

)s(e
mit

des pal
E

188 Geoinformatica (2012) 16:165–205

and the SB-index, and compares the performance of the HSB-index with the SB-index and
the best result obtained by configurations C1, C2, C3 or C4. The time reduction columns
report these comparisons.

The SB-index and the HSB-index greatly overcame the best results obtained by
configurations C1 and C3 (i.e. star-join computation), since the time reduction ranged from
95% to 99%. The time reduction of the proposed indices over the best results achieved by
configurations C2 and C4 (i.e. materialized view)were also impressive, ranging from 68% up to
93%. Therefore, we conclude that using the SB-index or the HSB-index instead of computing
the star-join or creating materialized views provided much lower query response time.

Comparing the SB-index with the HSB-index, Table 5 also shows that the total elapsed
time spent by the HSB-index was almost the same as that of the SB-index with a very small
performance gain ranging from 0.68% to 1.19%. The similarity between the results of the
proposed indices is due to the fact that the cost to manipulate the conventional predicate
was much higher than the cost to process the spatial predicate, i.e. two orders of magnitude
greater, as shown in the column FastBit in Table 6.

Regarding only the cost to process the spatial predicate, our results demonstrated
that the HSB-index greatly overcame the SB-index, as shown in Table 6. The low query
selectivity for the spatial predicate benefited the HSB-index: the reduction provided by
the HSB-index over the SB-index ranged from 27% up to 70%. For instance, as stated in
Section 5.1, this low query selectivity retrieved less than 200 addresses over 1 million
addresses. Therefore, we conclude that the hierarchical data structure of the HSB-index and
its capability of pruning index entries required less time to process the spatial predicate than
the sequential scan of the SB-index when few spatial objects were processed.

Figure 17 compares the performance results to build the SB-index and the HSB-index.
As both the SB-index and the HSB-index required a star-join Bitmap index that was
constructed under FastBit software and took 3,532.57 seconds, we show in Fig. 17 only the

Table 5 Total elapsed time for the SB-index, HSB-index and comparisons

SB-index (s) HSB-index (s) HSB-index Time Reduction

C1 or C3 C2 or C4 SB-index

Address 40.832978 40.555110 99.82% 94.02% 0.68%

City 52.379771 52.167719 95.59% 68.96% 0.40%

Nation 38.467938 38.009189 96.79% 77.21% 1.19%

Region 32.791074 32.513888 97.25% 80.49% 0.85%

Table 6 Performance results for processing the spatial and the conventional predicates

Spatial predicate Conventional predicate

SB-index (s) HSB-index (s) Time Reduction FastBit (s)

Address 0.393210 0.115342 70.67% 40.439768

City 0.774435 0.562383 27.38% 51.605336

Nation 1.115122 0.656373 41.14% 37.352816

Region 0.760018 0.482831 37.47% 32.031057

Geoinformatica (2012) 16:165–205 189

elapsed time to build the sequential file for the SB-index and the elapsed time to build the
diskSpatialIndex for the HSB-index. We measured the performance for all the granularity
levels. Except for the Address level, the elapsed time to build the HSB-index was clearly
shorter than the time to build the SB-index. In fact, the higher cardinality of the Address
granularity level benefited the construction of the sequential file used by the SB-index and
impaired the routines to build the HSB-index.

Considering that the star-join Bitmap index for the DS10 dataset occupied 64 GB, the
inclusion of our indices required low additions to the storage requirements (Table 7).
Although the HSB-index occupied about 50% more space on disk than the SB-index, it
added only at most 0.077% to storage requirements. The small sizes of the SB-index and
the HSB-index are another advantage that reinforces their utilization in SDWs.

5.2.2 Using two disjoint spatial query windows

An interesting issue arises when the user requires more than one spatial query window to
fetch spatial objects, as it may demand more join operations and spatial predicates to be
computed. Therefore, we investigate in this section the performance of the SB-index and
the HSB-index considering these more complex queries. We compare the proposed indices
with the MVQ33 materialized view. Regarding this view, we indexed each of its spatial
attributes with an R-tree to speed up the spatial predicate processing. Note that, from now
on, we do not consider the star-join computation in our evaluation since it provided lower
performance than materialized views to process SOLAP queries, as described in
Section 5.2.1. In the tests, we performed five roll-up operations, and collected the average
elapsed time.

Table 8 shows the elapsed times spent by the SB-index, the HSB-index and the MVQ33
materialized view. It also shows the time reduction provided by the HSB-index over the

Fig. 17 Elapsed time to build the
SB-index and the HSB-index.
The performance results are
shown in log scale for better
visualization

Table 7 Sizes of the SB-index and the HSB-index for the DS10 dataset

Address City Nation Region

SB-index 34.5 MB 96 KB 16 KB 8 KB

HSB-index 50.6 MB 144 KB 24 KB 8 KB

190 Geoinformatica (2012) 16:165–205

SB-index, as well as the performance gain of the proposed indices over the MVQ33
materialized view. Compared with the MVQ33, our indices obtained outstanding results,
with a time reduction varying from 92% to 99%. We conclude that our indices greatly
outperformed the current DBMS resources also while processing more complex queries,
such as those that require the processing of two spatial query windows.

Comparing the SB-index with the HSB-index, the performance results showed that the
HSB-index overcame the SB-index by providing a significant time reduction of 46% at the
Address level, which imposed a very low selectivity query. On the other hand, at the City,
Nation and Region levels the difference between the SB-index and the HSB-index was
unexpressive. This is due the fact that the query selectivity increased as the cardinality
became smaller.

Considering that a SOLAP query is composed of spatial and conventional predicates, a
deeper analysis on the elapsed time spent by the proposed indices to compute each one of
them is given in Table 9. Regarding each granularity level, each predicate was examined
according to its percentage of the total elapsed time. Both the SB-index and the HSB-index
processed the spatial predicates in less than 1% of the total elapsed time at the City, Nation
and Region levels. Furthermore, the obtained results were very similar. Conversely, these
interesting findings were not observed at the Address level, which has the highest
cardinality. At this level, the cost to process the spatial predicate using the HSB-index was
13% of the total elapsed time, while using the SB-index this cost was 55% of the total
elapsed time. We conclude that the hierarchical structure of the HSB-index benefited the
spatial predicate computation at the Address level when compared with the sequential scan
performed by the SB-index.

Table 8 Comparing the HSB-index, the SB-index and the MVQ33 materialized view

HSB-index
(s)

SB-index
(s)

MVQ33 (s) Time Reduction (%)

HSB-index vs.
SB-index

HSB-index vs.
MVQ33

SB-index vs.
MVQ33

Address 2.653380 4.941398 2176.796584 46.30% 99.88% 99.77%

City 147.564586 147.699792 2180.571846 0.09% 93.23% 93.23%

Nation 154.552928 155.097352 2180.241769 0.35% 92.91% 92.89%

Region 158.141973 158.444147 2166.572934 0.19% 92.70% 92.69%

Table 9 The cost to process spatial and conventional predicates using our proposed indices

HSB-index SB-index

Spatial predicates Conventional predicates Spatial predicates Conventional predicates

Address 13.66% 86.34% 55.33% 44.67%

City 0.58% 99.42% 0.60% 99.40%

Nation 0.93% 99.07% 0.93% 99.07%

Region 0.77% 99.23% 0.77% 99.23%

Geoinformatica (2012) 16:165–205 191

5.3 Investigating the advantages of the specialized buffer-pool

In this section, we investigate the advantages of introducing a specialized buffer-pool (i.e.
the bufferSpatialIndex) into the HSB-index. Section 5.3.1 compares the HSB-index with
current DBMS resources for answering SOLAP queries, while Section 5.3.2 compares the
buffered HSB-index with the bufferless SB-index.

5.3.1 Comparing the HSB-index with materialized views

In this section, we investigate the performance of the HSB-index against the MVQ23
materialized view, and also analyze if the system cache (i.e. buffers of the operating system,
the DBMS and the hard disk) aids spatial roll-up operation processing as well as the
bufferSpatialIndex does for the HSB-index. We focus on uninterrupted spatial roll-up
operations processing with overlapping spatial query windows. The term uninterrupted
refers to the fact that the system cache is not flushed after each roll-up operation, so a
subsequent operation may use cached data from a previous operation. As for the HSB-
index, the term overlapping spatial query windows refers to the fact that, before the first
query is processed, the bufferSpatialIndex is empty, but in the remaining queries this
component tends to contain relevant entries that are used to answer subsequent queries, thus
reducing disk accesses.

In the tests, we issued 10 uninterrupted spatial roll-up operations. We gathered the
elapsed time to process only the first spatial roll-up operation and the average elapsed time
to process the subsequent nine spatial roll-up operations. Each roll-up operation
encompassed queries issued over the Address, City, Nation and Region levels.

The performance results are reported in Table 10, where the time reduction column
shows how much faster uninterrupted spatial roll-up operations using the HSB-index over
the DS10 dataset were than uninterrupted spatial roll-up operations using the DBMS over
the MVQ23 materialized view. The HSB-index impressively outperformed the DBMS,
although the DBMS used the MVQ23 materialized view, whose size is almost half of the
size of the DS10 dataset. The first spatial roll-up operation using the HSB-index executed
quite faster and provided a time reduction of 85%, while the second to the tenth spatial roll-
up operations provided a great time reduction of 91%.

The system cache aided the DBMS using the MVQ23 materialized view to
execute the spatial roll-up operations, since the time reduction was of 43% between
the processing of the first roll-up operation and the processing of the nine
subsequent ones. However, embedding a small size specialized buffer-pool in the
HSB-index produced a more impressive time reduction, of 65%, between the first
roll-up operation and the remaining ones. This is an improvement of 22% over the
system cache performance.

Based on the performance tests described in this section, we conclude that the buffered
HSB-index is an excellent choice for SDW indexing, specifically when executing
uninterrupted spatial roll-up operations with overlapping spatial query windows.

Table 10 DBMS and the HSB-index executing ten roll-up operations sequentially

Roll-up MVQ23 with R-tree (s) HSB-index (s) Time reduction (%)

1st 1,186.734604 170.369645 85.64

2nd to 10th 671.893342 58.958536 91.23

192 Geoinformatica (2012) 16:165–205

5.3.2 Comparing the buffered HSB-index with the bufferless SB-index

In this section, we compare the performance of the bufferless SB-index and the buffered
HSB-index specifically in the spatial filter phase. Note that, differently from Sections 5.2
and 5.3.1, in which we analyzed the complete query processing performance (i.e.
processing of both spatial and conventional predicates), from now on we investigate only
the performance of the spatial filter phase, aiming at assessing our indices for their
efficiency to process the spatial predicate of SOLAP queries. In the tests, we issued 10
uninterrupted spatial roll-up operations using overlapping spatial query windows.

Table 11 compares the performance of the bufferless SB-index and the buffered HSB-
index. It shows the elapsed time for the first query, as well as the average elapsed time spent
in the execution of the other nine queries. The absence of a buffer-pool for the SB-index
indicated that the time spent by the first query was similar to that spent by the subsequent
nine queries. As for the HSB-index, the first query was not aided by the bufferSpatialIndex,
while the subsequent queries were. Therefore, the HSB-index showed a remarkable
improvement in the processing of the 2nd to 10th queries when compared with the first
query at the Address and City levels, which have higher cardinalities. At the Nation and
Region levels, which have lower cardinalities, the overhead of the bufferSpatialIndex
impaired the HSB-index performance. Table 11 also shows how faster the HSB-index was
than the SB-index in the Time reduction column.

Based on the results described in this section, we concluded that introducing a
specialized buffer-pool into the HSB-index is a positive design characteristic.

5.4 Investigating the indices parameters

In this section, we evaluate the influence of modifying the values of the indices parameters
on their performance. Section 5.4.1 investigates the influence of the bufferSpatialIndex size
in the performance of the HSB-index, while Section 5.4.2 focuses on the impact of different
disk page sizes in the performance of both the SB-index and the HSB-index.

5.4.1 Investigating the influence of the buffer-pool size

In this section, we evaluate the HSB-index by investigating the influence of increasing
bufferSpatialIndex sizes, as follows: 7.5%, 15%, 30%, 45% and 60%. We focused on
verifying at which point a larger bufferSpatialIndex minimizes disk accesses so that the

Table 11 Results for the SB-index and the HSB-index with buffer-pool of 7.5% for the first and the
subsequent nine queries, according to different granularity levels

Level Query SB-index (s) HSB-index (s) Time reduction (%)

Address 1st 0.584209 0.128196 78.06

2nd to 10th 0.487470 0.002988 99.39

City 1st 0.228349 0.004655 97.96

2nd to 10th 0.228309 0.000083 99.96

Nation 1st 0.499640 0.000053 99.99

2nd to 10th 0.505050 0.000056 99.99

Region 1st 0.284220 0.000020 99.99

2nd to 10th 0.319578 0.000023 99.99

Geoinformatica (2012) 16:165–205 193

spatial filter becomes faster. In the tests, we issued 10 uninterrupted spatial roll-up
operations using overlapping spatial query windows.

Figure 18 shows the performance results for each granularity level. As there were few
spatial objects at the Region level, the increase in the size of the bufferSpatialIndex did
not introduce any performance gain (Fig. 18b). The result obtained with the smallest size
was very close to the result gathered with the largest size. The Nation level has also a
small cardinality, but the bufferSpatialIndex sizes of 45% and 60% outperformed the
smaller bufferSpatialIndex sizes (Fig. 18b). For instance, the size of 45% imposed a time
reduction of 30.35% over the size of 7.5%. On the other hand, both the sizes of 45% and of 60%
provided the same elapsed time. Therefore, the bufferSpatialIndex size of 45% limited the
performance gains at the Nation level. At the City level, there were 10 times more polygons
than at the Nation level. However, according to Fig. 18a, the smallest bufferSpatialIndex size
was enough to provide the shorter elapsed time. At the Address level, which has the highest
cardinality and stores points, the best performance was obtained with the intermediate
bufferSpatialIndex size of 30%. Also, using larger sizes than 30% did not improve the query
processing performance at the Address level, as shown in Fig. 18a.

Based on the results described in this section, we conclude that the increase in the
bufferSpatialIndex size influenced the HSB-index query processing when indexing
attributes with higher cardinalities. A remarkable result obtained with our tests is that the
HSB-index had a good performance even with the smallest bufferSpatialIndex size.
Therefore, we also conclude that the HSB-index in general did not require a specialized
buffer-pool larger than 30% to efficiently process SOLAP queries.

5.4.2 Investigating the influence of disk page size

In this section, we investigate the influence of the disk page size in the spatial filter phase
for both the SB-index and the HSB-index. There are three properties of our indices that
motivate this investigation. Firstly, larger page sizes assure that each page holds more
entries, and therefore fewer pages must be accessed on disk and copied to the main
memory. Furthermore, for the HSB-index, there is a threshold that limits query processing
improvements, as these improvements just occur if few disk accesses are performed and
overcome the cost of transferring false hits from disk to the main memory. Finally, varying

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
7.5% 15% 35% 45% 60%

s(e
mit

despal
E

)

Address City

0.00007

0.00006

0.00005

0.00004

0.00003

0.00002

0.00001

0
7.5% 30%15% 45% 60%

Nation Regiona b

Fig. 18 Elapsed times in seconds for increasing buffer-pool sizes at different granularity levels

194 Geoinformatica (2012) 16:165–205

the disk page size influences the clustering of objects in the HSB-index and, consequently,
the node occupation rate.

In the performance tests described in this section, the experimental setup was almost the
same as that described in Section 5.1. The difference is that we used five increasing disk pages
sizes for both the SB-index and the HSB-index, as follows: 512 bytes, 1 KB, 4 KB, 8 KB and
16 KB. Recall that we also used overlapping spatial query windows in this experiment.

Figure 19 shows the average elapsed time spent by the SB-index and the HSB-index at
the Address, City, Nation and Region granularity levels. Comparing the SB-index and the
HSB-index, the results showed that the HSB-index performed better than the SB-index at
all the granularity levels and for all the disk page sizes.

Regarding the SB-index, the increase in the disk page size did not greatly improve its
performance at the Address level, since the evaluation of points for containment predicate
was very fast despite the high cardinality of this level. For all the remaining levels, which
store polygons and have lower cardinality than the Address level, the impact was very high.
At the Nation and Region levels, the results showed that the larger the disk page size, the
better the SB-index performance. For these levels, one disk page of 16 KB stored the entire

512 bytes 1 KB 4 KB 8 KB 16 KB
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5

0.45

E
la

ps
ed

 t
im

e
(s

)

SB-index HSB-index

1 KB 4 KB 8 KB 16 KB512 bytes
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SB-index HSB-index

E
la

ps
ed

 t
im

e
(s

)

1 KB 4 KB 8 KB 16 KB512 bytes
0

0.1

0.2

0.3

0.7

0.6

0.4

0.5

SB-index HSB-index

E
la

ps
ed

 t
im

e
(s

)

1 KB 4 KB 8 KB 16 KB512 bytes

E
la

ps
ed

 t
im

e
(s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
SB-index HSB-index

a b

c d

Fig. 19 Performance results for increasing disk page sizes at different granularity levels

Geoinformatica (2012) 16:165–205 195

index, which was exchanged from disk to the main memory only once. On the other hand,
the larger the disk page size, the worst the SB-index performance at the City level. For this
level, transferring false hits from disk to the main memory was costly for larger disk pages.

Concerning the HSB-index, Table 12 provides an accurate visualization of the elapsed
time spent by this index. As can be noted in this table, the disk page size drastically
affected the HSB-index performance at all the granularity levels. The best performance at
the Address level, which stores points and has the highest cardinality, was obtained with
the largest disk page size. The results showed that as the disk page size increased, the
elapsed time decreased. For the remaining three levels, which store polygons and have
lower cardinality than the Address level, the HSB-index achieved better results using
smaller disk page sizes, especially 1 KB and 4 KB. As the HSB-index clusters MBRs to
enable pruning, smaller page sizes determined a better performance.

The results described in this section evidenced that attribute cardinality and geometry
type (i.e. point or polygon) are important issues to be taken into account when determining
the disk page size of both the SB-index and the HSB-index.

5.5 Investigating the influence of the query selectivity

Differently from all previous performance tests that considered spatial query windows with
a fixed size, in this section we analyze how spatial query windows with increasing sizes
influence the performance of the SB-index and the HSB-index in the spatial filter phase,
specifically at the Address level that has the highest cardinality.

The spatial query windows previously used contained less than 200 objects, which lead
to a very low query selectivity. On the other hand, in this section, spatial query windows
were designed to contain more objects and to provide a higher selectivity, i.e. they were
designed to increase the number of spatial objects retrieved. In the tests, we issued five ad
hoc disjoint spatial query windows that retrieved increasing number of spatial objects,
which varied from less than 200 objects up to 10,000 objects. After each query, the system
cache was properly flushed. Figure 20 details the results.

Considering that the SB-index performs a sequential scan to filter spatial objects, it
was expected a constant elapsed time. However, it is possible to note that the greater
the number of retrieved objects, the longer the elapsed time spent by the SB-index to
process the spatial filter. The main factor that impaired the sequential scan of the SB-
index was the task of collecting primary key values. The greater the number of
candidates, the greater the number of primary key values collected in the main memory,
which caused an overhead. On the other hand, the elapsed time did not show an abrupt
increase rate.

Table 12 Performance results for the HSB-index using increasing disk page sizes

Disk page size Address City Nation Region

512 bytes 0.179943 0.010388 0.000042 0.000027

1 KB 0.118366 0.005256 0.000033 0.000024

4 KB 0.115342 0.008621 0.000156 0.000019

8 KB 0.082581 0.015967 0.000049 0.000030

16 KB 0.077466 0.019425 0.000063 0.000051

Difference between the shortest
and the longest elapsed time

132% 269% 372% 168%

196 Geoinformatica (2012) 16:165–205

The same factor that affected the SB-index performance should also impair the HSB-index
spatial filter processing. But, there was a more relevant issue related to the HSB-index
performance losses. Since the HSB-index has a tree-based structure, the search algorithm
prunes the tree traversal whenever possible. However, when the traversal includes
ramifications, the number of disk accesses increases, thus introducing additional overhead. In
Fig. 20, it is possible to observe that these factors drastically decreased the HSB-index
performance in the spatial filter phase. In fact, the SB-index overcame the HSB-index for
queries that retrieved more than 5,000 objects.

Comparing the performance results described in this section with those described in
previous sections, we conclude that queries that required only a few objects to be processed
benefitted the HSB-index against the SB-index. On the other hand, queries that required a
higher number of spatial objects to be processed benefitted the SB-index.

5.6 Investigating the influence of the spatial data type

In this section, we investigate the influence of the spatial data type on the performance of the
SB-index and the HSB-index in the spatial filter phase. We evaluated the Address level, which
has 1,000,000 objects, using points, lines and multipolygons. Similarly to the data generation
described in Section 5.1, here we also used synthetic points and obtained the geometries of
lines and multipolygons from the Tiger/Line real dataset (http://www.census.gov/geo/www/
tiger). We issued five queries with exactly the same selectivity for each spatial data type, i.e.
each query retrieved less than 200 objects, and used the spatial predicate containment
considering disjoint spatial query windows. After each query, we flushed the system cache.

Figure 21 shows the average elapsed time spent by the SB-index and the HSB-index to
process each data type. Using points as spatial objects, the HSB-index outperformed the
SB-index. On the other hand, the SB-index outperformed the HSB-index using lines or
multipolygons as spatial objects. Although the tree-based HSB-index is able to prune the
tree traversal, this strategy was not efficient for lines and multipolygons, whose geometries
introduced dead space in the MBR representation and lead to an overlapping of the HSB-
index intermediate nodes. Therefore, the sequential scan provided by the SB-index was
more advantageous than the pruning of the HSB-index for these two data types.

Analyzing each proposed index separately, the results show that the time spent by the SB-
indexwas almost the same for points, lines andmultipolygons. Therefore, the spatial data type did
not affect this index. This is due the fact that the SB-index performs sequential scan. Conversely,
the spatial data type did impair the performance of the HSB-index, as previously discussed.

Fig. 20 The performance of the
SB-index and the HSB-index
according to increasing query
selectivity in the spatial filter
phase

Geoinformatica (2012) 16:165–205 197

http://www.census.gov/geo/www/tiger
http://www.census.gov/geo/www/tiger

6 Related work

The Bitmap index has been applied successfully in conventional DWs to improve OLAP query
processing, as it avoids join operations among the fact table and the dimension tables and
because multidimensionality is not an obstacle. Therefore, it has been a focus of interest for
both researchers and commercial DBMSs [25, 29–31, 41, 42]. Furthermore, new
functionalities have been proposed for it, such as binning, encoding and compression
techniques [32–34, 36, 37]. Other related proposals focus on organizing hierarchically
Bitmap indices for indexing dimensional data [43, 44]. However, these proposals do not
investigate how the Bitmap index should handle spatial data, which is the objective of the
indices proposed in this paper. In fact, the Bitmap index is not designed to support spatial
hierarchies, spatial predicates and SOLAP queries such as spatial roll-up and drill-down
operations.

In [27], the authors state the need for indices to efficiently answer spatial statistical
queries that require repeated computation of neighborhood relationships. For this purpose,
they introduce the SJELI and the SJALI indices, which are self-join indices that speed up
queries that aim at discovering spatial instance clusters and hotspots for different
granularity levels. However, the authors do not discuss the need for joining tables and
computing spatial and conventional predicates in drill-down and roll-up operations over
SDWs. On the other hand, the proposed SB-index and HSB-index focus on predefined
spatial hierarchies, taking advantage of the 1:N association among higher and lower
granularity spatial attributes and, therefore, benefiting the processing of drill-down and roll-
up operations extended with the spatial predicates intersection and containment.

Other indices for spatio-temporal DW are the R-MVB, the STCAT, and a Bitmap index
for distributed environments [20]. They are appropriate for parallel processing and depend
on the use of a specific load-balancing algorithm that defines the participation of every
node in query processing. These indices differ from the indices proposed in this paper since
they do not specify how spatial hierarchies should be handled and, therefore, how spatial
drill-down and roll-up operations should be carried out. That is, similarly to the SJELI and
the SJALI indices, the indices proposed in [20] do not offer functionalities to deal with
predefined spatial hierarchies, which is one of the main characteristics of the SB-index and
the HSB-index.

Fig. 21 Performance results for
using different spatial data types

198 Geoinformatica (2012) 16:165–205

There is a specific index in the literature addressed for multidimensional queries with
spatial predicate in SDW, called the aR-tree [10], which reuses the R-tree’s partitioning
method. Each entry of the aR-tree maintains a MBR, the aggregation function value for all
the spatial objects enclosed by this MBR, a pointer to the node that maintain these objects,
and an array that stores the aggregation function values for attributes defined in
conventional dimensions. Visiting higher or lower levels of the tree, progressively, provide
spatial roll-up and drill-down operations by ascending or descending the tree levels,
respectively. But the aR-tree differs from our proposed indices on its purpose. While the
SB-index and the HSB-index focus on predefined spatial hierarchies, the aR-tree is aimed
at another type of hierarchy, which is called ad hoc spatial hierarchy in this paper.

In a predefined spatial hierarchy, the association among higher and lower granularity
spatial attributes is well known at design time, and the SDW schema is properly organized
to support this hierarchy, as described in Section 1. For instance, suppose that the cities
illustrated in Fig. 22a report the quantity of an arbitrary part sold by a certain supplier. In
this figure, each color in gray scale indicates that the city is located in a specific nation.
Considering a predefined spatial hierarchy (nation_geo) � (city_geo), a roll-up operation
would aggregate the measures as shown in Fig. 22b, that is, considering that each city is
inside one nation.

On the other hand, in an ad hoc spatial hierarchy, the spatial objects are stored such that
the spatial hierarchies are not known at design time nor the spatial dimension tables are

Quantity per nationb)Quantity per citya)

Quantity per MBRd)Clusters of citiesc)

500

250

500

300 800

Fig. 22 Spatial roll-up operations according to predefined and ad hoc spatial hierarchies

Geoinformatica (2012) 16:165–205 199

organized to support them. As a result, the hierarchy is obtained through building a spatial
index that clusters the spatial objects maintained by the lowest granularity level attribute.
The spatial objects referenced by the leaf nodes of the index are considered at the lowest
level of granularity, while the parent nodes are considered at a higher level. Note that the
entries in leaf nodes reference spatial objects that are really stored in the SDW, while the
entries in internal nodes contain MBRs that are created by the spatial index and are not
stored in the SDW.

For instance, Fig. 22c,d show a roll-up operation that aggregates the lowest
granularity level attribute that corresponds to the leaf nodes into non-leaf nodes.
Although the cities remain shaded in Fig. 22c, the ad hoc spatial hierarchy does not
consider the existence of nations. There is still a relationship of 1:N among each MBR of
Fig. 22d and the spatial objects, but these MBRs were built by applying the clustering
algorithm of a spatial index, such as the R-tree (as the aR-tree does). Clearly, the aggregated
measure values in Fig. 22d differ from those values in Fig. 22b. Also, the areas of the MBRs
are different from the areas of the nations. Furthermore, the number of MBRs is not the same
number of nations, and these MBRs do not exist in the SDW. As a result, measures of cities
from different nations may be aggregated considering a given MBR, but this aggregation will
not consider and respect the hierarchies between nations and cities.

Based on the aforementioned discussion, it is possible to note that there are substantial
differences between predefined and ad hoc spatial hierarchies and also between the roll-up
and drill-down operations that they define. These hierarchies should not be misused or
mixed, since they are strongly linked to distinct domains of SDW. Therefore, index
structures designed for ad hoc spatial hierarchies are not able to perform the roll-up and
drill-down operations outlined by predefined spatial hierarchies. This is an important
difference between the aR-tree and the SB-index and HSB-index.

An extension of the aR-tree is the aRB-tree [28], which is a spatio-temporal DW index
that comprises an aR-tree where each entry points to a B-tree that maintains the historical
aggregation values for the MBR in the corresponding entry. The spatial predicates are
answered by the aR-tree, while temporal predicates are answered by the B-tree. Therefore,
comparing the SB-index and the HSB-index with the aRB-tree, the same differences
previously discussed for the aR-tree also apply to the aRB-tree.

Finally, our approach is also related to reusing consolidated resources offered by
commercial DBMSs to efficiently support analytical multidimensional queries based
on spatial predicates. In detail, the SB-index and the HSB-index have two layers, a
spatial filter and the star-join Bitmap index. The spatial filter layer is used to handle
the spatial predicate, and is a sequential file in the SB-index and any tree-based spatial
index with its corresponding clustering technique in the HSB-index. Although commercial
DBMSs provide resources to process queries over DWs and geographic data, they do not
consider them in the same set. Conversely, in this paper, we propose two data structures based
on the star-join Bitmap index and on a spatial index and show how these resources can be
coupled to provide good SOLAP query performance. Furthermore, the proposed indices are
aimed at offering support to drill-down and roll-up operations over spatial data, which is a
feature not supported by commercial DBMSs.

7 Conclusions and future work

In this paper, we proposed two indices for spatial data warehouses (SDWs): the SB-
index and the HSB-index. Both of them share the following characteristics: (i) they

200 Geoinformatica (2012) 16:165–205

enable multidimensional queries with spatial predicate for SDW; (ii) they support
predefined spatial hierarchies; (iii) they introduce the use of the Bitmap index in SDW,
inheriting all the Bitmap index’ advantages; (iv) they compute the spatial predicate and
transform it into a conventional one, which can be evaluated together with other
conventional predicates by accessing a star-join Bitmap index; and (v) they require a
reduced amount of storage space.

Our indices corroborated the idea that an efficient spatial filter followed by
processing a star-join Bitmap index is a good choice to speed up SOLAP queries in
SDW. The SB-index is an adapted Projection index on the primary key of the spatial
dimension table, which was designed as a sequential file whose entries store a key
value and a MBR. It performs a sequential scan to filter the spatial objects. On the
other hand, the HSB-index replaces the SB-index’ sequential scan by a hierarchical data
structure to cluster spatial objects, thus pruning index entries and reducing the number
of disk accesses. The HSB-index also manages a specialized buffer-pool to decrease
even more the number of disk accesses.

The advantages introduced by the SB-index and the HSB-index were analyzed
through performance tests aimed at investigating their efficiency, characteristics and
applicability. The results showed that both the proposed indices were very efficient
compared with typical DBMS resources to process spatial drill-down and roll-up
operations. Comparisons among the SB-index, the HSB-index, the star-join computation
and the use of materialized views demonstrated that the performance gain of our indices
ranged from 95% to 99% over the star-join computation, and was of at least 68% over
materialized views. These results were obtained for queries with different complexities, i.e. we
investigated the processing of a single spatial query window, the processing of two spatial query
windows, and the processing of uninterrupted spatial roll-up operations.

Regarding the characteristics of the SB-index and the HSB-index, they were evaluated
considering using a specialized buffer-pool, increasing buffer-pool sizes and different disk
pages sizes. The performance results demonstrated that introducing a specialized buffer-
pool into the HSB-index is a positive design characteristic. The results also showed that
increasing the buffer-pool size influenced the performance of the HSB-index when indexing
attributes with high cardinality, and evidenced that the HSB-index in general did not require
a buffer-pool larger than 30% to efficiently process SOLAP queries. Furthermore, the
results demonstrated that the attribute cardinality and the geometry type of the objects are
important issues to be taken into account when choosing the disk page size of the proposed
indices

Choosing between the SB-index and the HSB-index in terms of their applicability
strongly depends on the query selectivity of the spatial predicates. The HSB-index should
be used when the query requires that only few spatial objects be processed. On the other
hand, the SB-index should be used mainly when the query requires that a greater number of
spatial objects be processed.

We are currently extending the SB-index and the HSB-index to perform spatial drill-
across operations, i.e. we are extending the proposed indices to support analytical
multidimensional queries involving both drill-across and drill-down/roll-up operations
based on spatial predicates. We are also investigating the applicability of the proposed
indices over spatial joins. Furthermore, both the SB-index and the HSB-index need update
policies that are beyond the scope of this paper. These policies consist of an important
future work to enhance the scalability of the proposed indices. Another future work refers to
the use of our approach to solve multidimensional spatial queries based on the computation
of spatial measures.

Geoinformatica (2012) 16:165–205 201

Acknowledgments This work has been supported by the following Brazilian research agencies: FAPESP,
CAPES, CNPq, INEP, and FINEP. The first and the last authors thank the support of the Web-PIDE Project
in the context of the Observatory of the Education of the Brazilian Government. The second author’s work
has been funded by FAPESP under the Grant 2009/06052-7. The work carried by the third author was
supported by funds from the CNPq under the Grant 479018/2009-0.

References

1. Mateus RC, Times VC, Siqueira TL, Ciferri RR, Ciferri CDA (2010) How does the spatial data
redundancy affect query performance in geographic data warehouses? Journal of Information and Data
Management 1:519–534

2. Sampaio MC, Sousa AG, Baptista CS (2006) Towards a logical multidimensional model for spatial data
warehousing and OLAP, Proceedings of the 9th ACM International Workshop on Data warehousing and
OLAP, New York, NY, USA: ACM, pp. 83–90

3. Malinowski E, Zimányi E (2007) Logical representation of a conceptual model for spatial data
warehouses. Geoinformatica 11:431–457

4. Bimonte S, Tchounikine A, Miquel M (2005) Towards a spatial multidimensional model. Proceedings of the
8th ACM International Workshop on Data Warehousing and OLAP, New York, NY, USA: ACM, pp. 39–46

5. Rivest S, Bédard Y, Proulx M, Nadeau M, Hubert F, Pastor J (2005) SOLAP technology: merging
business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis
of data. ISPRS J Photogramm Remote Sens 60:17–33

6. Kimball R, Ross M (2002) The data warehouse toolkit: the complete guide to dimensional modeling.
Wiley, New York

7. Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. SIGMOD Rec
25:205–216

8. Malinowski E, Zimányi E (2008) Advanced data warehouse design: from conventional to spatial and
temporal applications (Data-centric systems and applications). Springer

9. Stefanovic N, Han J, Koperski K (2000) Object-Based Selective Materialization for Efficient
Implementation of Spatial Data Cubes. IEEE Trans Knowl Data Eng 12:938–958

10. Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient OLAP Operations in spatial data warehouses.
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases.
Springer-Verlag, London, pp 443–459

11. Rao F, Zhang L, Yu XL, Li Y, Chen Y (2003) Spatial hierarchy and OLAP-favored search in spatial data
warehouse. Proceedings of the 6th ACM International Workshop on Data Warehousing and OLAP.
ACM, New York, pp 48–55

12. Malinowski E, Zimányi E (2005) Spatial Hierarchies and Topological Relationships in the Spatial
MultiDimER Model. In: Jackson M, Nelson D, Stirk S (eds) British National Conference on Databases.
Springer, Sunderland, UK, pp. 17–28

13. Ruiz CV, Times VC (2009) A Taxonomy of SOLAP Operators, Proceedings of the 24th Brazilian
Symposium on Database. SBC, Porto Alegre, pp 151–165

14. Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30:170–231
15. Pourabbas E, Rafanelli M (1999) Characterization of hierarchies and some operators in OLAP

environment, Proceedings of the 2nd ACM International Workshop on Data Warehousing and OLAP.
ACM, New York, pp 54–59

16. Baikousi E, Vassiliadis P (2009) View usability and safety for the answering of top-k queries via
materialized views, Proceeding of the ACM 12th International Workshop on Data Warehousing and
OLAP. ACM, New York, pp 97–104

17. Golfarelli M, Maniezzo V, Rizzi S (2004) Materialization of fragmented views in multidimensional
databases. Data Knowl Eng 49:325–351

18. Ciferri CD, Ciferri RR, Forlani DT, Traina AJ, Souza FF (2007) Horizontal fragmentation as a technique
to improve the performance of drill-down and roll-up queries, Proceedings of the 2007 ACM
Symposium on Applied computing. ACM, New York, pp 494–499

19. Bellatreche L, Woameno KY (2009) Dimension table driven approach to referential partition relational
data warehouses, Proceeding of the ACM 12th International Workshop on Data Warehousing and OLAP.
ACM, New York, pp 9–16

20. Gorawski M, Gorawski M (2006) Balanced Spatio-Temporal Data Warehouse with R-MVB, STCAT and
BITMAP Indexes”, Proceedings of the 5th International Symposium on Parallel Computing in Electrical
Engineering. Washington, IEEE Computer Society, pp 43–48

202 Geoinformatica (2012) 16:165–205

21. Wehrle P, Miquel M, Tchounikine A (2007) A grid services-oriented architecture for efficient operation
of distributed data warehouses on globus, Proceedings of the 21st International Conference on Advanced
Networking and Applications. IEEE Computer Society, Washington, pp 994–999

22. Siqueira TL, Ciferri RR, Ciferri CD, Times VC (2008) Investigating the effects of spatial data
redundancy in query performance over geographical data warehouses, Proceedings of the 10th Brazilian
Symposium on Geoinformatics. SBC, Rio de Janeiro, pp 1–12

23. Siqueira TL, Ciferri RR, Times VC, Ciferri CD (2009) A spatial bitmap-based index for geographical
data warehouses, Proceedings of the 24th ACM Symposium on Applied Computing. ACM, New York,
pp 1336–1342

24. Siqueira TL, Ciferri CD, Times VC, Oliveira AG, Ciferri RR (2009) The impact of spatial data
redundancy on SOLAP query performance. J Braz Comput Soc 15:19–34

25. O’Neil P, Graefe G (1995) Multi-table joins through bitmapped join indices. SIGMOD Rec 24:8–11
26. Jürgens M, Lenz H (1999) Tree based indexes vs. Bitmap indexes: a performance study,

Proceedings of the 1st International Workshop on Design and Management of Data Warehouses.
CEUR-WS.org, Heidelberg, pp. 14–15

27. Mohan P, Wilson RE, Shekhar S, George B, Levine N, Celik M (2008) Should SDBMS support a join
index?: a case study from CrimeStat, Proceedings of the 16th International Conference on Advances in
Geographic Information Systems. ACM, New York, pp 1–10

28. Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-temporal data warehouses, Proceedings of the
18th International Conference on Data Engineering. IEEE Computer Society, Washington, pp 166–175

29. O'Neil P, Quass D (1997) Improved query performance with variant indexes, Proceedings of the 1997
ACM SIGMOD International Conference on Management of data. New York, ACM, pp 38–49

30. Stockinger K, Wu K (2006) Bitmap Indices for Data Warehouses. In: Wrembel R, Koncilia C (eds) Data
Warehouses and OLAP. IRM Press, pp. 157–178

31. Chen L (2009) Curse of dimensionality. Encyclopedia of database systems. Springer, pp. 545–546
32. Wu K, Otoo EJ, Shoshani A (2006) Optimizing bitmap indices with efficient compression. ACM Trans

Database Syst 31:1–38
33. Wu K, Stockinger K, Shoshani A (2008) Breaking the curse of cardinality on bitmap indexes. In:

Ludäscher B, Mamoulis N (eds) Scientific and statistical database management conference. Springer,
Hong Kong, pp. 348–365

34. Chan C, Ioannidis YE (1999) An efficient bitmap encoding scheme for selection queries, Proceedings of
the 1999 ACM SIGMOD International Conference on Management of data. ACM, New York, pp 215–
226

35. O’Neil P, O’Neil E, Chen X, Revilak S (2009) The Star Schema Benchmark and Augmented Fact Table
Indexing, Proceedings of the 1st Transaction Processing Performance Council Technology Conference.
Springer LNCS 5895, Lyon, pp. 237–252

36. Wu K, Ahern S, Bethel EW, Chen J, Childs H, Cormier-Michel E, Geddes C, Gu J, Hagen H, Hamann
B, Koegler W, Lauret J, Meredith J, Messmer P, Otoo E, Perevoztchikov V, Poskanzer A, Prabhat, Rübel
O, Shoshani A, Sim A, Stockinger K, Weber G, Zhang W (2009) FastBit: interactively searching
massive data. J Phys Conf Ser 180:12053

37. O’Neil E, O’Neil P, Wu K (2007) Bitmap index design choices and their performance implications,
Proceedings of the 11th International Database Engineering and Applications Symposium. IEEE
Computer Society, Washington, pp 72–84

38. Guttman A (1984) R-trees: a dynamic index structure for spatial searching, Proceedings of the 1984
ACM SIGMOD International Conference on Management of Data. ACM, New York, pp 47–57

39. Aoki PM (1997) Generalizing “Search” in generalized search trees, Proceedings of the 14th International
Conference on Data Engineering. IEE Computer Society, Washington, pp 380–389

40. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access
method for points and rectangles. SIGMOD Rec 19:322–331

41. Bellatreche L, Boukhalfa K (2010) Yet Another Algorithms for Selecting Bitmap Join Indexes,
Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery,
Springer LNCS 6263, Bilbao, pp 105–116

42. Morales T, Rich K (2009) Oracle database reference, 11 g Release 1, Oracle Corporation. Available at
http://www.oracle.com/pls/db111/homepage

43. Chmiel J, Morzy T, Wrembel R (2009) HOBI: Hierarchically Organized Bitmap Index for Indexing
Dimensional Data, Proceedings of the 11th International Conference on Data Warehousing and
Knowledge Discovery, Springer LNCS 5691, pp. 87–98

44. Morzy M, Morzy T, Nanopoulos A, Manolopoulos Y (2003) Hierarchical Bitmap Index: an efficient and
scalable indexing technique for set-valued attributes, Proceedings of the 7th East European Conference
on Advances in Databases and Information Systems, Springer LNCS 2798, pp. 236–252

Geoinformatica (2012) 16:165–205 203

http://www.oracle.com/pls/db111/homepage

Thiago Luís Lopes Siqueira received the BSc degree in computer science from the State University of São
Paulo, Brazil, in 2006. In 2009, he received the MSc degree in computer science from the Federal University
of São Carlos. He is currently a PhD student at the Federal University of São Carlos, and also an assistant
professor in the São Paulo Federal Institute of Education, Science and Technology in São Carlos, Brazil. His
research interests include data warehousing, geographical information systems and spatial databases.

Cristina Dutra de Aguiar Ciferri received the BSc degree in computer science from the Federal University
of São Carlos, Brazil, in 1992. In 1995, she received the MSc degree in computer science from the State
University of Campinas, Brazil. She obtained her PhD degree in 2002 in computer science from the Federal
University of Pernambuco, Brazil. She is currently an assistant professor in the Computer Science
Department at the University of São Paulo in São Carlos, Brazil. Her research interests include data
warehousing, geographical information systems, spatial databases, heterogeneous and distributed databases,
data provenance and bioinformatics.

204 Geoinformatica (2012) 16:165–205

Valéria Cesário Times received the BSc degree in statistics from the Catholic University of Pernambuco,
Brazil, in 1991. In 1994, she received the MSc degree in computer science from the Federal University of
Pernambuco, Brazil. She obtained her PhD degree in computer science in 1999 from University of Leeds,
United Kingdom. She is currently an assistant professor in the Informatics Center at the Federal University of
Pernambuco, Brazil. Her research interests include data warehousing, geographical information systems,
spatial databases, mobile object databases, autonomous databases and advanced database applications.

Ricardo Rodrigues Ciferri received the BSc degree in computer science from the Federal University of São
Carlos, Brazil, in 1992. In 1995, he received the MSc degree in computer science from the State University
of Campinas, Brazil. He obtained his PhD degree in 2002 in computer science from the Federal University of
Pernambuco, Brazil. He is currently an assistant professor in the Computer Science Department at the
Federal University of São Carlos, Brazil. His research interests include data warehousing, geographical
information systems, spatial databases, bioinformatics and biological databases.

Geoinformatica (2012) 16:165–205 205

	The SB-index and the HSB-index: efficient indices for spatial data warehouses
	Abstract
	Introduction
	Theoretical foundation
	Spatial data warehouse
	Spatial indices
	The projection and the star-join bitmap indices

	The SB-index
	Data structure
	The building operation
	Query processing

	The HSB-index
	Data structure
	Buffering the HSB-index
	The building operation
	Query processing

	Performance evaluation
	Experimental setup
	Comparing the DBMS resources and the proposed indices
	Using a single disjoint spatial query window
	Using two disjoint spatial query windows

	Investigating the advantages of the specialized buffer-pool
	Comparing the HSB-index with materialized views
	Comparing the buffered HSB-index with the bufferless SB-index

	Investigating the indices parameters
	Investigating the influence of the buffer-pool size
	Investigating the influence of disk page size

	Investigating the influence of the query selectivity
	Investigating the influence of the spatial data type

	Related work
	Conclusions and future work
	References

