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Abstract The shapes of our cities change very frequently. These changes have to be
reflected in data sets representing urban objects. However, it must be assured that frequent
updates do not affect geometric-topological consistency. This important aspect of spatial
data quality guarantees essential assumptions on which users and applications of 3D city
models rely: viz. that objects do not intersect, overlap or penetrate mutually, or completely
cover one another. This raises the question how to guarantee that geometric-topological
consistency is preserved when data sets are updated. Hence, there is a certain risk that plans
and decisions which are based on these data sets are erroneous and that the tremendous
efforts spent for data acquisition and updates become vain. In this paper, we solve this
problem by presenting efficient transaction rules for updating 3D city models. These rules
guarantee that geometric-topological consistency is preserved (Safety) and allow for the
generation of arbitrary consistent 3D city models (Completeness). Safety as well as
completeness is proven with mathematical rigor, guaranteeing the reliability of our method.
Our method is applicable to 3D city models, which define—besides the terrain surface—
complex spatial objects like buildings with rooms and storeys as interior structures, as well
as bridges and tunnels. Those objects are represented as aggregations of solids, and their
surfaces are complex from a topology point of view. 3D GIS models like CityGML, which
are widely used to represent cities, provide the means to define semantics, geometry and
topology, but do not address the problem of maintaining consistency. Hence, our approach
complements CityGML.
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1 Introduction

The shapes of our cities change with a very high frequency. For transportation objects
alone, it is estimated that 10–15% of all objects change every year. In populous areas,
changes of about 40% of all objects are observed [34]. For 3D city models in general, these
figures will be higher. These changes of urban objects have to be reflected in data sets
representing cities, for example in vehicle navigation data, land use data or 3D city models.
The quality of plans and decisions such as route planning or noise control planning, highly
depends on the up-to-datedness of data. On the other hand, it must be avoided that updates
affect spatial data quality [18]. If this last requirement is not met, the tremendous efforts
spent for data acquisition and updates will be in vain and the return of investment would be
questionable.

An important aspect of spatial data quality is geometric-topological consistency [12, 15,
22], which guarantees many important real world assumptions users have about their spatial
data. Examples for such assumptions are that objects do not intersect, overlap or penetrate
mutually, or completely cover one another, e.g. rooms and buildings. The topic of this paper
is a method for updating three-dimensional spatial data sets, guaranteeing that geometric-
topological consistency once given is preserved in a reliable way. The method consists of a
set of transaction rules for updating 3D city models.

Consistency checking has static and dynamic aspects. The static aspect deals with
methods to check whether a spatial dataset as a whole is consistent. In [15] and [14], we
have presented axioms fulfilling that task efficiently and reliably. The transaction rules
presented in this paper cover the dynamic aspects of consistency checking. Updates of data
sets (the insertion of a building or a bridge, for example, or the deletion of a building)
typically have local effects. Hence, globally checking local changes would be sufficient
with regard to correctness, but not in terms of efficiency. Transaction rules, which emerged
from the field of active databases [38], locally check local updates, by restricting the axioms
to that part of the data set which is actually affected by the changes. Furthermore,
incomplete update requests are completed in a consistent way and inconsistent updates are
rejected.

The transaction rules are based on a specific consistency notion which is given by the
concept of a geometrical-topological 3D city model, or in short, 3D city model [15].
Section 2 will introduce this model, which is sufficiently general to cover most common 3D
GIS models [28, 33] or 3D city models, in particular those represented in CityGML [9, 24].
The model integrates surfaces that represent the terrain and the outer hull of buildings with
solids or aggregations of solids that model volume objects (buildings, for example) or
interior structures (rooms or other building parts). Other spatial objects covered by the
model are bridges, tunnels or arcades, which are different from a topological point of view.
Those objects are mathematically captured by the notion of a handle. The rules can insert or
delete arbitrary handles in order to insert or delete objects like tunnels, bridges and arcades.

The focus of the transaction rules, presented in this paper, is set on topology and
geometry. Semantic aspects, such as the object type (residential building or industrial
building, for example), or attributes (like the year of construction or the owner’s name) are
dealt with in semantic models like CityGML. CityGML is an OGC standard for the
definition of the semantical, geometrical and topological aspects of cities but does not
address the problem of maintaining consistency. Hence, our approach complements
CityGML.

A crucial property of transaction rules is that consistency is preserved for arbitrary
applications of the rule. Such rules are called safe. Another important property is the
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usability and flexibility of the rules in the sense that each (consistent) 3D city model can be
generated and deleted by application of the rules. Such a set is called complete. All rules
presented in this paper are safe and the whole set is complete. Both properties are proven
mathematically.

The set of rules, introduced in this paper, extends and generalizes earlier work which
covers the 2D case [11]. Some approaches provide transaction rules for surfaces embedded
in 3D [8, 28], particularly the well-known Euler Operators [28] and its application to GIS
[35]. This approach has been extended to solid models [3]. However, these approaches do
not guarantee consistency between geometry and topology. More details will be provided in
Section 5.

The contribution of this paper is the provision of rules for updating complex 3D city
models which are represented in formats like CityGML. The rules maintain the consistency
of these models in a reliable way (safety). At the same time, the rules provide the flexibility
to realize any consistent update (completeness). The rules allow for complex updates in 3D
City models, including aggregated objects like buildings and topologically complex objects
like tunnels and bridges.

The difficult problems solved in this paper are mainly caused by handles in different
respects: Regarding the safety of the rules, the occurrence of handles may cause non-
manifold boundaries even if constructing non-handle objects. This phenomenon is not
obvious. Furthermore, handles entail difficulties proving that any 3D model can be
generated by the rules (completeness): Due to the occurrence of handles, there are
consistent 3D models which cannot be generated in a straightforward way by any rules
maintaining consistency. More details about the solutions of both problems can be found in
Sections 3.2 and 3.3.

The rest of this paper is organized as follows: The second section presents the notion of
consistency for surfaces and 3D city models which provides the base of the rules.
Consistency is specified declaratively as well as axiomatically. Furthermore, the relation to
CityGML is discussed. The transaction rules are introduced in the third section. After an
outline, the rules for updating 3D city models are given in detail. First, rules which split and
merge solids and hereby preserve the number of handles are introduced. To insert or delete
handles, an extended version of the rules is provided. The safety of each of the rules is
proven formally, as well as the completeness of the whole set. After presenting a concept
for the implementation of the rules on top of a spatial data base in Section 4, Section 5
recalls related work on static and dynamic consistency checking in GIS. This paper ends
with concluding remarks and a discussion of open questions and further work.
Mathematical definitions that are used in the paper are provided in Appendix A.

2 Consistency of 3D city models

Three-dimensional city models can be viewed as the composition of two types of
components: first, composition of solids and aggregations of solids which model volume
objects like buildings and their interior structure, and second composition of surfaces
representing the terrain that surrounds objects like buildings. Since each solid is bounded
by a closed surface, the atomic entity of a 3D city model is a (composed) surface, which is
either closed (bounding solids) or not closed (representing the terrain). These surfaces may
have handles in order to represent tunnels and bridges. The next subsection will shortly
introduce the components of 3D city models (surfaces, solids and aggregations of solids).
An axiomatic characterisation of those models providing an effective and efficient
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procedure to check consistency is given in subsection 2.3. Standard definitions and
notations from graph theory [19] to mathematical topology [1, 2, 20, 28] are being used. A
definition of the most important concepts can be found in Appendix A.

2.1 3D city models

For modelling the terrain, special surfaces, called 2.8D maps [12], are suitable. A 2.8D map
is a connected cell complex embedded in 3D space that is single 2-manifold.1 A 2.8D map
can be imagined as a cloth draped over the terrain, including man-made objects like
buildings. In contrast to 2.5D terrain models [31], a 2.8D map allows for vertical walls and
overhangs. A special, unbounded face Out surrounds the bounded faces of the map. This
face extends to infinity, since it surrounds all other faces, edges and vertices. In contrast to
all other faces, Out does not have to be planar. Figure 1 depicts the outer hull of a saddle
roof building (walls, roof) as an example for a 2.8D map. It contains vertical walls and
overhangs (roof overhangs, for example).

Volume objects are modelled by solids [21, 28]. A solid is bounded by a single closed
composite surface [21]. A closed composite surface is a connected cell complex consisting of
0-, 1- and 2-cells and being topologically equivalent to a sphere, i.e. is a closed 2-manifold.
Since solids are bounded by a single connected 2-manifold surface (exterior shell), enclaves
(‘solids in solids’) which are represented by interior shells [21] are excluded.

A closed composite surface is a structure similar to a 2.8D map. Both concepts differ
from each other only by the existence of the unbounded face Out, which is missing in
closed composite surfaces. Instead, a closed composite surface encloses an object
completely.

The integration of a 2.8D map (terrain, outer hull of buildings) with solids and
aggregations of solids (volume objects) defines a 3D city model [15]. A 3D city model is a
three dimensional, connected cell complex, with the additional property that all solids cover
the space completely: it forms a three-dimensional tessellation of space. Hence, unwanted
voids like for example inside buildings, are avoided. A simple example for a 3D city model
is given in Fig. 2: Two saddle roof buildings, one of them with a neighbouring garage, are
integrated in the terrain (grey face Out).

In order to achieve a complete space coverage, two special solids are introduced: an air
solid representing the air mass, and an earth solid representing the earth’s mass. The air
solid and the earth solid are partially bounded by a 2.8D map. Again, due to the
connectedness of the model, enclaves are not allowed.

Figure 3 depicts a cross profile of a 3D city model: the air solid is bounded partially by a
2.8D map representing the terrain and the outer hull of two buildings, including a tunnel.
The earth solid models again the terrain including the tunnel and the outer hull of the cellars
of both buildings.

Partially bounded solids in some sense generalize the 2D concept of the unbounded faceOut to
3D. The aim is the same in both cases: to achieve a complete coverage of the plane/the 3D space.

2.2 Relation to CityGML

The concept of a 3D city model presented in this paper has been particularly designed to
represent CityGML data sets [9]. CityGML covers buildings and other constructions as well
as the terrain in different Levels of Detail (LoD). The other constructions embrace bridges

1 See Appendix A for a definition of (connected) cell complexes and 2-manifolds.
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and tunnels, which currently are represented by generic concepts. A semantic character-
ization will presumably be provided in the next version 1.1 of CityGML. In LoD1 to LoD3,
buildings are geometrically represented either by a single solid or—in the case of
distinguishable building parts with different height or semantical attributes—by an
aggregation of solids. Each building part is represented by a solid. The outer hull of that
aggregation forms again a solid, which represents the building. Hence, buildings in LoD1 to
LoD3 can be represented by 3D city models. For LoD4, which is concerned with interior
structures like rooms or staircases, there are several modelling options. In the simple case, a
building (or a building part) is an aggregation of solid rooms (c.f. Fig. 4a and b). Walls and
slabs are represented by surfaces in that case. In more detailed models, walls and slabs are
volume objects. Since each room must be accessible from outside and from other rooms,
doors or windows must connect rooms to the exterior hull and doors must connect rooms
with other rooms. Hence, doors must be represented by solids that are incident to both room
solids (c.f. Fig. 4c and d) and windows must be represented by solids that connect room
solids and the air solid. Alternatively, doors can be represented by a surface. In that case,
both solids have to be enlarged in order to touch. An example is the modified scene in
Fig. 4c and d, where s1 and s4 (as well as s2 and s5) are merged to a single room solid by
omitting the rectangular surface separating both solids. In any case, a building where all
rooms are connected by doors and staircases can be represented by an aggregation of solids,
where each solid is bounded by a single closed composite surface (exterior shell). However,
as stated in the last section, some standards (e.g., [21] or [33]) allow for the representation
of solids which have interior shells. Such interior shells enclose other solids completely, but
there is no connection or access to those solids. An example is depicted in Fig. 4e and f:
The enclosing solid s3 has two interior shells, which coincide with the exterior hulls of s1
and s2. Although LoD4 in principle covers such models, such a representation is not

Fig. 2 Simple example for a 3D city model. The left building consists of six bounded solids, the right one of
seven. In addition, there is an air solid and an earth solid. Both are partially bounded by 2.8D maps

Fig. 1 Example of a 2.8D map
modelling the outer hull (wall,
roof surfaces) of a saddle roof
building and the surrounding
terrain. The map is depicted from
below. The face Out (not shown)
extends the terrain face to infinity
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adequate since reachability and accessibility, which are crucial for indoor navigation, robot
navigation [39] or escape route determination [27] as applications of indoor models, are not
supported. Hence, such representations are outside the scope of 3D city models discussed in
this paper (solids have exterior shells only but no interior shells). All other LoD 4 models,
as well as LoD1–LoD3, can be represented by 3D city models.2

2.3 Axioms for 3D city models

The mathematical definition of 3D city models given in Section 2.1 doesn’t provide an effective
and efficient method to check consistency. In [15] and [14], we have defined so called axioms
as an alternative mathematical formalization of 3D city models. In [12] we provide
corresponding axioms for 2.8D maps. These axioms are complete (each violation of the
definition is detected by the axioms), correct (each violation of the axioms is in fact an error)
and efficient. In particular, the test whether two solids penetrate, which is very elaborate and
expensive from an algorithmic and running time point of view, is not necessary. This property
has already been implied by other axioms which can be checked in a much cheaper way.

The systems of axioms for 3D city models is composed of three parts. First, axioms for
2.8D maps referring to the consistency of a single 2.8D map are defined (see Table 1).
Second, axioms for closed composite surfaces are given. These differ slightly from the
axioms for 2.8D maps: Axiom S11 is replaced by axiom

S'11: Each face is bounded

since there are no unbounded faces in a closed composite surface. Furthermore,
axiom S13 can be omitted for closed composite surfaces since that property is
already implied by the other axioms. For details see [15] or [14].3

Third, axioms for 3D city models, i.e., the (space covering) aggregation of solids and
their integration into the terrain surface, are defined (see Table 2). The axioms M1, M2 and
M3 refer to the axioms for 2.8D maps and closed composite surfaces (Table 1) and induce
the application of these axioms to well defined surface components of the 3D city model: to
the boundary of the air solid (M1), to the boundary of the earth solid (M2) and to the

3 In [15], surfaces without handles are considered. We have extended the axioms to surfaces with handles in
[14].

Fig. 3 Sketch of a cross profile of a geometric-topological 3D city model. Each bounded solid is bounded
by a single closed composite surface and each of the two partially bounded solids is (partially) bounded by a
2.8D map

2 This is true as far as solid models are concerned. Purely areal or line objects (roof overhangs, antennas, for
example) currently are not in the scope of the model, see section 6.
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boundary of each bounded solid (M3). The application of these axioms is restricted to the
vertices, edges and faces of the corresponding surface component. Consider axiom S7 (two
incident faces for each edge) as an example. The validity of this axiom can be checked with
regard to a solid boundary, whereas it is not valid with regard to all faces of a 3D city model
(an edge can have more than two incident faces).

The axioms M4 and M5 refer to all vertices, edges and faces of the space covering
model.

As consistency notion that underlies the transaction rules, the declarative mathematical
definition is as suitable as the equivalent axiomatic characterization. In this paper, both
concepts are used.

Fig. 4 Representation of interior building structures (LoD4 in CityGML) by 3D city models, case of a building
solid composed of two room solids s1 and s2. a, b Solid is aggregation of s1 and s2. c, d walls and slabs are
modeled as solid (s3), and s1 and s2 are connected by doors (solids s4 and s5). e, f solids s1 and s2 are enclaves in
solid s3 and not accessible from outside. b, d and f provide lateral views of the models in a, c and e
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3 Transaction rules

The axioms for 3D city models check consistency of a dataset as a whole. From an
efficiency point of view, it is too expensive to completely check the consistency of the a
data set once more in total after an update. To guarantee that an update does not violate
consistency, we now introduce so called transaction rules. These rules are in some sense a
specific version of the axioms, which are tailored for a specific update operation and restrict
the checks locally to the region or space that is affected by the update. All rules presented in
this section are safe and complete for 2.8D maps and 3D city models. Hence, consistency is
preserved and all allowed modifications are realisable. We first describe the structure of the
rules.

A transaction rule consists of three parts: transaction, condition, and action. The
transaction part is the header of the rule. It describes the operation that the rule performs,
the input and the effect of the rule. The condition part plays the role of a guard [36]. It
specifies the conditions under which the action part transforms the input of the rule (a
consistent data set and a surface to be added or deleted) to a new consistent state. If the
input of a rule does not yield a consistent state, the transaction will be rejected by the guard.
The action part is a sequence of actions performed in order to fulfill the user’s request.
These rules are in a sense similar to ‘Event-Condition-Action-rules’ (ECA-rules: On E if C
do A), which make up the main mechanism of active databases [38].

To specify the input of the transaction rules, the concept of a composite surface [21] is
required. It is similar to a closed composite surface but has one boundary which is a simple

Table 1 Complete and correct axioms for 2.8D maps [14, 15]

S1 Different vertices have different coordinates.

S2 Each vertex has at least two incident edges (vertex degree ≥2).
S3 Each vertex is surrounded by exactly one alternating sequence of edges and faces.

These faces do not penetrate pairwise. (Umbrella-Axiom).

S4 Each edge has exactly two distinct vertices as end points.

S5 Edges are straight line segments geometrically.

S6 Edges intersect only at common vertices (intersection-free edges).

S7 Each edge has exactly two distinct incident faces.

S8 Each face is bounded by exactly one simple cycle of edges.

S9 Bounded faces are planar.

S10 No point of an edge touches the interior of a face.

S11 There is exactly one unbounded face ‘OUT’.

S12 The underlying graph is connected.

S13 The map is orientable.

Table 2 Axioms for geometric-topological 3D city models, which are complete and correct

M1 The boundary of the air solid is a 2.8D map.

M2 The boundary of the earth solid is a 2.8D map.

M3 Each bounded solid is bounded by a closed composite surface.

M4 Each face delimits two solids on different sides.

M5 Each vertex and each edge is incident to at least one face.

M6 Besides the air and the earth solid, all solids are bounded.
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cycle. Hence, it does not enclose a volume. Unless stated otherwise, a composite surface
has exactly one boundary. In this paper, composite surfaces with two or more boundaries
are used for dealing with handles. However, each boundary is still a simple cycle, and all
boundaries are pairwise disjoint.

3.1 Outline of the rules

Following, an outline of the transaction rules for updating 3D city models is given. For
reasons of completeness, we first give rules for updating surfaces. Those rules have been
sketched in [13] and will be the topic of a subsequent paper [16]. The focus of the paper at
hand is set on rules for updating 3D city models. These rules will be described in detail.

The rules for surfaces are as follows:

TR1: Initial insertion of a surface
TR2: Final deletion of a surface
TR3: Splitting of a face
TR4: Merging of two faces
TR5: Changing the geometry of vertices
TR6: Replacing a composite surface
TR7: Insertion of a handle
TR8: Deletion of a handle

The first and the second rule are used only once to create/delete an initial model (a
surface that consists of one bounded face only). The rules TR3 and TR4 are used to
add or to delete faces. Rule TR5 changes the geometry of vertices (cf. Fig. 5a), and rule
TR6 replaces one composite surface by another (typically being more complex) with the
same boundary. For example, the footprint polygon of a building (as part of a larger
surface) is replaced by a composite surface representing the walls and the roof of the
building (cf. Fig. 5b). The rule may be used to add a roof to a building, or to add a
balcony, a dormer or a chimney to a roof, for example. Rule TR7 adds a handle to a
surface (cf. Fig. 5c). In contrast to TR6, the surface to be inserted has two boundaries and
touches the terrain surface in two simple cycles. Hence, two disjoint surfaces are replaced
by one single surface with two boundaries. TR8 is the inverse rule of TR7, since it
removes a handle from a surface. One surface with two boundaries is replaced by two
surfaces with one boundary.

Based on 2.8D maps or surfaces created by TR1 to TR8, 3D city models can be updated
by the following rules4:

TR9: Splitting a solid by inserting a composite surface
TR10: Merging two solids by deleting a composite surface
TR11: Splitting a solid by inserting multiple composite surfaces with multiple boundaries

(changing the number of handles)
TR12: Merging two solids by deleting multiple composite surfaces with multiple

boundaries (changing the number of handles)

4 The rules TR11 and TR12 presented in Gröger et al. [13] differ from the version discussed here. There are
two reasons for the reformulation: First, the new rules allow for explicit addition or removal of handle
objects, which was possible with the former version as well but required multiple rule applications. Besides
that semantic reason, the completeness proof (Section 3.3) can be presented in a more concise and elegant
way based on the modified version of TR11 and TR12.
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TR9 inserts a composite surface into a solid, which is part of a 3D city model, and splits
the solid into two solids (cf. Fig. 5d). Applications of TR9 cover the generation of a storey
by splitting a building’s hull into a storey solid and a solid representing the remaining
building part. Another application is the generation of a room by splitting a storey solid into
a room solid and a solid representing the remaining storey part. Furthermore, a roof, a
balcony or a chimney can be added to a building by applying TR9. In that case, the air
space solid is split into a balcony/roof/chimney solid and an updated, reduced air space
solid.

Rule TR10 is the inverse rule of TR9: it merges two neighbouring solids (see Fig. 5d).
This rule may be used to remove rooms, storeys, balconies, roofs or chimneys from a 3D
city model. The precondition for the application of TR10 is that the two solids share a
single composite surface (with one boundary).

The rules TR9 and TR10 cover the task of splitting or merging two solids when both
meet in a single composite surface with one boundary. In that case, the number of handles is
retained. If the number of handles shall be either reduced or increased, both these rules
won’t be sufficient. Consider for example the bridge in Fig. 5e. If the bridge as a whole
shall be removed, the composite surface representing the outer hull of the bridge has to be
removed, and the solid s representing the bridge and the airspace solid sair have to be
merged. However, s and sair meet in a composite surface with two boundaries (depicted
dotted in Fig. 5e). Hence, TR9 cannot be applied. A similar case is the ‘removal’ of a
handle by sealing the hole. For example, the number of handles in Fig. 5e can be decreased
by inserting a surface sealing the hole (c.f. Fig. 5f). If rule TR 8 is applied, only a single
surface is inserted. The result is that the hole is sealed, but the air solid is not longer
bounded by a 2-manifold: The inserted surface delimits the air solid on both sides. What is
needed to seal the hole is a rule that inserts two composite surfaces simultaneously.

The new rule that increases the number of handles (either by adding a handle or by
opening the holes of a handle) is TR11, and the new rule that decreases the number of
handles (either by deleting the handle or by sealing the holes of a handle) is TR12. Both
rules deal with surfaces that either have multiple boundaries or consist of multiple disjoint
surfaces. Hence, there is a clear distinction whether TR9/TR10 or TR11/TR12 are
applicable to split or to merge two solids: if both touch in a single composite surface with a
single boundary, TR9/TR10 are applied. If both touch either in more than one composite
surface (with an arbitrary number of boundaries) or in a single composite surface with more
than one boundary, TR11/TR12 are applied.

In Fig. 5, TR11 is used to insert two disjoint surfaces (depicted hatched, hatched
boundary) to seal the hole in the bridge, decreasing the number of handles (Fig. 5f based on
Fig. 5e). Likewise, TR11 is used to insert a bridge completely (with two boundaries, which
are depicted dotted), see Fig. 5e based on Fig. 5g. Inversely, TR12 is employed to open the
holes of a bridge (Fig. 5e based on Fig. 5f) or to delete the bridge completely (Fig. 5g based
on Fig. 5e).

The examples in Fig. 5e-g illustrate how to change the number of handles by splitting
the partially bounded air solid into a bounded solid and an updated air solid, or by merging
the air solid and a bounded solid. The rules can also be applied to two bounded solids, for
example to remove a pillar inside a room or to insert such a pillar. Illustrations of that case
will be given later in Section 3.2.2

�Fig. 5 Examples illustrating the transaction Rules a changing geometry of vertices (TR5). b replacing one
surface by another (TR6). c insertion/deletion of a Handle (TR7, TR8). d splitting/merging of solids (TR9,
TR10). e–g splitting/merging of solids, deleting/introducing a handle (TR11, TR12)
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In the rules discussed in the rest of this paper, two input structures, touching in one, two
or multiple simple cycles, will be considered. According to the well-known 4-intersection-
model [6] and its extension to 3D [40], touch means that both meet only in the simple cycle
and are disjoint everywhere else. We assume that the corresponding cycles in both
structures have been pre-processed and hence are identical with regard to topology and
geometry. We further assume that after both have been merged, duplicates are removed and
corresponding vertices and edges are connected to yield a cell complex. This mutual
adoption of the corresponding cycles can be performed by standard procedures. This topic
is not discussed any further in this paper.

By using the rules TR9 to TR12, any arbitrary 3D city model can be constructed, based on
the assumption that any surface can be generated by TR1 to TR8.Whereas the rules for surfaces
are presented in [16], we now will focus on the rules TR9 to TR12 for 3D city models.

3.2 Safe rules for updating 3D city models

As mentioned in the introduction of Section 3, the update of 3D city models can be reduced
to two operations: the splitting of a solid obtaining two solids and its reverse operation, the
merging of two neighbouring solids. The next subsection introduces the simple case where
one single surface with one boundary is inserted or deleted. The more complex case of
inserting or deleting multiple surfaces with multiple boundaries (where the number of
handles is changed) will be discussed afterwards.

3.2.1 Splitting and merging of solids (retaining the number of handles)

The rule TR9 splits a solid by the insertion of a single composite surface. The purpose of
the rule is versatile: It may be used to split a room into two rooms, to add a dormer, a
balcony or a cellar to a building, or to add a building to a terrain model. The applications
mentioned last are covered by the rule, since the air space is modelled as a solid. A new
bounded solid is split from this solid by inserting a composite surface. This new solid may
represent a dormer, a balcony or a building. In the case of a cellar, the earth solid is split
into a new bounded solid and an updated earth solid.

The rule is defined as follows:
Transaction Rule TR9: Splitting of a solid by inserting a composite surface

Transaction: Splitting a solid s of a 3D city model m by inserting a composite surface cs
Condition:

1. m is a 3D city model
2. cs is a composite surface with one boundary
3. The boundary of s and cs touch in a simple cycle c
4. At least one vertex, edge or face of cs is in the interior of s
5. c is a Jordan cycle with regard to the boundary of s
Action:

1. Merge m and cs, yielding m’
2. Create two new solids s1 and s2 in m’
3. For all faces in cs, set the reference of one side to s1 and of the other to s2
4. c partitions the faces in the boundary of s in two disjoint sets, F1 and F2. Let F1 be

the set on the s1-side of cs, and F2 the set on the s2-side. Replace in F1 the
reference to s by the reference to s1 and in F2 to s2
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The first condition just states that the rule is based on the assumption that the data set is
consistent before the update takes place. The geometry cs to be inserted must be a
composite surface with one boundary, which touches the solid to be split in a simple cycle.
To avoid that the ‘wrong side’ of the solid is split, it is stated explicitly that cs (at least one
vertex of cs) must be inside the solid. Condition 5 will be reasoned and explained later on
after the rule has been illustrated by giving two examples. The action part of the rule splits
the solid and restores topology.

Figure 6 depicts an example for the application of the rule. The solid s in b) is split into two
solids s1 and s2 (c) by inserting the composite surface cs (a). The boundaries of s and cs touch
in a simple cycle c (cond. 3). Since a face f of cs is inside s (cond. 4), the whole surface cs is
inside s. In the action part, the references of faces to s1 and s2 are set accordingly.

Fig. 6 Illustration of TR9: Split-
ting a solid (b) by inserting a
composite surface cs (dark grey,
a), yielding solids s1 and s2 (c)
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Note that touch means that cs and the boundary of s meet only in a simple cycle and are
disjoint everywhere else.

Figure 7 depicts another example for the application of TR9: A balcony is added to a
box-shaped building. The balcony, represented by a composite surface cs with one
boundary, touches the building in a simple cycle c (depicted hatched). The solid s to be
split is the partially bounded air solid. It is split into the balcony solid s1 and an updated
air solid s2.

Note that Cond. 4 of TR9 is necessary: a composite surface can touch the boundary of a
solid in a simple cycle without being located inside the solid. As a consequence, the wrong
solid is split. This is prevented by Cond. 4.

To recognize why Cond. 5 of the rule TR9 is required, regard the example in Fig. 8.
The solid s in a) (which may represent a room with a large pillar in the middle) should be
split by inserting a composite surface cs. This surface touches the boundary of s in a
simple cycle c (depicted hatched) and cs is inside s. Hence, the preconditions 1 to 4 of the
rule TR9 are fulfilled. However, cs does not split s into two solids (see Fig. 8b). Instead, a
singularity is introduced, since cs delimits the solid s on both sides (s has no longer a 2-
manifold boundary). The problem stems from the fact that the boundary of solid s has a
handle (s is topologically equivalent to a torus) and that the cycle c is involved in that
handle. On such surfaces, Jordan’s Curve Theorem [20], which implies the partitioning of
a surface into two parts by cutting out a simple cycle, is not valid. This problem has
recently been identified and solved in [14] by differentiating between Jordan cycles (see
cycle c in Fig. 6 as an example) and handle cycles (cycle c in Fig. 8b). Jordan cycles
partition a surface and are suitable for splitting solids, whereas handle cycles are not. An
efficient method of employing standard graph search algorithms for differentiating
between both types of cycles is also introduced in [14]. This method can be used to
implement Cond. 5 in TR9 preventing error cases that result from splitting solids along a
handle cycle.

Another error case detected by the precondition of the rule TR9 is given in Fig. 9. In
contrast to the error case discussed in the last paragraph, the solid s to be split is the air
solid. The surface to be inserted touches the boundary of s in a simple cycle. Due to the
tunnel, a non-manifold surface boundary of the air solid would be created. This is detected
by Cond. 5 of TR9, since c is a handle cycle.

Fig. 7 Example for the application of TR9: Adding a balcony to a building by inserting a composite surface
cs. The partially bounded air solid is split by cs in a bounded solid s1 and an updated air solid s2
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We now show that each application of TR9 preserves consistency:

Proposition 1 Transaction Rule TR9 is safe.

Proof First we have to show that in Action 4 the references to s1 and s2 can uniquely
be determined. The surface cs and the boundary of s touch in a simple cycle c (Cond 3),
c is a Jordan-Cycle with regard to the boundary of s (Cond. 5), and cs is inside s (Cond.
4). Hence, c partitions the boundary of s in two disjoint parts. The solid reference of the
faces in the first part is set to s1, and the solid reference of the faces in the second is set
to s2.

Now we have to show that Axioms M1 to M6 are valid for m’ under the
precondition that these axioms are valid for m. This is sufficient, due to the completeness
of the axioms [15]. Axioms M5 and M6 cannot be violated by the action part of the rule
and therefore are valid. Since the inserted surface cs is completely inside the solid s (this
is implied by Cond. 3 and 4), we can restrict our check to the space covered by s and the

Fig. 9 Error case: Insertion of
the surface cs (hatched) in the
model in (a) yields a solid (air
solid) with a non 2-manifold
boundary (b)

Fig. 8 Error case when inserting a composite surface cs by TR9. a initial situation: a box-shaped pillar
(depicted dark grey) inside a box-shaped solid s. This solid surrounding the pillar is a torus. b error case: a
surface cs (hatched, hatched boundary) has been inserted into solid s (touching the boundary of s in the
hatched cycle c), but s is not split by cs into two solids. cs delimits the same solid on both sides. Hence, the
boundary of the solid is not 2-manifold
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boundary of s, regardless of s being a partially bounded air or earth solid or a bounded
solid. Since s1 and s2 are new solids, and since all faces in cs delimit s1 on one and s2 on
the other side, axiom M4 is valid as well. To check axioms M1 to M3, we have to
consider the axioms S1 to S13 for s1 and s2. Whether the axioms for 2.8D maps or for
closed composite surfaces are relevant, depends on s: if s is bounded, so will be s1 and s2.
If s is only partially bounded, one of s1 and s2 will be also partially bounded, and the
other will be bounded. The axioms S1, S2, S4, S5, S9, S11, S’11 and S13 cannot be
violated by the transaction. The validity of the other axioms remains to be proven:

& Axiom S3: Since cs and the boundary of s touch in a simple cycle, there is no touch in a
single vertex, hence the axiom is valid.

& Axiom S8: This property is inherited by validity of the corresponding axiom for cs and
the boundary of s.

& Axioms S6 and S10: By definition, touch means that cs and the boundary of s do not
penetrate.

& Axiom S12: since cs and the boundary of s touch, both boundaries of s1 and s2 are
connected.

& Axiom S7: For the edges in s1 and s2 which are either in the interior of cs or which
have two incident faces with references to s in m, validity of Axiom S7 is inherited
from the validity of the axioms for s and for cs. The remaining edges in s1 or s2 are in
c. By construction, c partitions the faces in the boundary of s in two parts, one with
reference to s1 and one with reference to s2. Hence, each edge in c has two incident
faces. ■

The next rule TR10 is the inverse rule of TR9. It merges two solids by deleting a
composite surface which separates both solids:

Transaction Rule TR10: Merging two Solids

Transaction: Merging two solids s1 and s2 of a 3D city model m by deleting a
composite surface cs
Condition:

1. m is a 3D city model.
2. cs is a composite surface with one boundary
3. the structure where s1 and s2 touch is cs: cs = boundary(s1) ∩ boundary(s2)
4. s1 or s2 is a bounded solid
Action:

1. delete all faces, edges and vertices in cs besides the one in the boundary of cs,
yielding a model m’

2. replace in m’ all references to s1 or s2 by references to s

To illustrate the rule, the example in Fig. 6 is used again. The composite surface cs in c)
is deleted, and both solids s1 and s2 are merged (b). The balcony in Fig. 7b can be deleted
by TR10 as well. The balcony solid and the air solid are separated by the composite surface
cs (b). After deletion of cs, the air solid has been extended accordingly.

An error case for TR10 is depicted in Fig. 10. The air solid and a solid s are separated by a
composite surface cs (hatched). After deletion of cs, the four faces f1, f2, f3 and f4 remain. The
air solid has a non manifold boundary. This error is prevented by Cond. 3 of TR10, since the
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air solid and s touch in five faces, not only in cs which has been deleted. Hence, cs ≠
boundary(s1) ∩ boundary(s2) is valid.

A similar error case for TR10 is given in Fig. 11. Solid s2 and the air solid should be
merged by deleting the composite surface cs with boundary bcs. The result is a non-
manifold boundary of the air solid, due to edge e. Since cs ∪ {e} = boundary(s1) ∩
boundary(s2) holds, cs ≠ boundary(s1) ∩ boundary(s2) is implied: the intersection of both
boundaries is a non-manifold structure, due to edge e.

The following proposition states that TR10 preserves consistency:

Proposition 2 Transaction Rule TR10 is safe.

Proof We have to show that the structure m’, generated by the action part of the rule, is a
3D city model. We can safely restrict our considerations to the solids, faces, edges and
vertices in the boundary and interior of s1 and s2.

To check axioms M1 to M3, we have to show that Axioms S1 to S12 are valid for s1 and
for s2. Axioms S1, S5, S6, S8, S9, S10 cannot be violated by the transaction and are
therefore valid.

Fig. 10 Error case when removing
a composite surface cs (depicted
hatched) merging two solids (s and
the air solid). The resulting modi-
fied air solid has a non-manifold
boundary. This error case is pre-
vented by Cond. 3 of TR10

Fig. 11 Error case when deleting a composite surface (depicted hatched) in a the air solid has a non-
manifold boundary b Note that solid s2 and the air solid don’t touch in a composite surface
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& S2 (vertex has two edges): edges and vertices in the boundary of cs are not deleted by
construction.

& S3 (umbrella axiom): We can restrict the proof to vertices v in m’ which are in the
boundary bcs of cs. Other vertices are not affected by the transaction. Let the umbrella
of v in m be u1=e1 f1 e2 f2 e3 f3 … e1 for the boundary of s1 and u2=e1’ f1’ e2’ f2’ e3’
f3’… e1’ for the boundary of s2 (see Fig. 12 for example). We assume that both are
consistently oriented, i.e. that common sequences of vertices and faces have identical
order. Since s1 and s2 touch in a single composite surface cs with a single, simple cycle
as boundary (Cond. 2), a maximal subsequence u’1 of u1 and a subsequence u’2 of u2
exist and therefore u’1=u’2. The umbrellas are disjoint everywhere else. Let u’1=ei … ej
and u’2=e’k … e’l. Then the edges ei =e’k and ej =e’l are on the boundary bcs of cs. In
m’, both sequences u1 and u2 are merged and u1’ and u2’ (without the edges on the
boundary of cs) are deleted. The corresponding umbrella of v for s is e1 f1 e2 f2 .....
(e i=e’k) f’k+1 e’k+1 … e’l–1 f’l–1 (ej=e’l) fj+1 … e1, fulfilling axiom S3.

& S4 (edge has two vertices): Suppose there is an edge e which does not fulfill axiom S4.
Then one endpoint ve of e must be in the interior of cs, but e is not in the interior or
boundary of cs. Hence, e must be in the boundary of one of the solids s1 or s2, say s1, and
e must be in the boundary of another solid s3, s3≠s1 and s3≠s2 (if e is in the boundary of
s1 and s2, it would have been deleted). Hence, v is incident to three solids: s1, s2 and s3.
There must be an edge e’ incident to v, which is in the interior of cs (otherwise, s1 and s3
would touch in v in a non-manifold way). There must also be a face incident to e’ which
is in the interior of cs and which is in the boundary of s2 and of s3 (otherwise, s1 and s3
would touch in e’ in a non-manifold way). But in that case, e’ is in the boundary of cs.
This contradicts the assumption that v is not in the boundary of cs.

& S7 (edge has two different faces): Suppose there exists an edge e in m’ which has only one
incident face f (By deletion of faces, the number of incident faces cannot increase. Hence, we
safely can restrict our considerations to one incident face). Since the axioms were valid in m,
there is a face f’ which is incident to e, which was incident to s1 and s2 in m and which has
been deleted by the transaction. Hence, f is also in the common boundary of s1 and s2. But in
that case, f must have been deleted by the transaction rule, which is a contradiction.

& S11 (one unbounded face): Since a composite surface is bounded by definition, an
unbounded face cannot be deleted by the transaction rule.

& S12 (connectedness): The proof of connectedness of m’ is similar to the proof of axiom
S4. Suppose m’ is not connected. The composite surface cs has only one boundary
which is connected. Hence, there must be an edge e, which is not in the interior of cs,
but which has an endpoint in the interior of cs (which is deleted by the transaction). In
the proof of validity of S4 it has been shown that such an edge e cannot exist.

The proof of axiomM4 is similar to the proof of S7: If a face f delimits two identical solids,
then this solid must be s. Therefore, f delimits s1 and s2 in m. But then f must have been
deleted by the transaction, yielding a contradiction. M5 cannot be violated by TR10. Axiom
M6 is valid, since m’ still contains two partially bounded solids (Cond. 4). Only if both s1 and
s2 are partially bounded, the number of partially bounded faces will decrease. ■

3.2.2 Splitting and merging of solids (changing the number of handles)

The transaction rules, dealt with in the last section, generate or modify models where
the number of handles is not changed. This is due to the fact that a single composite
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surface with a single boundary is considered in the rules. For changing the number of
handles:

& multiple disjoint surfaces have to be deleted or inserted simultaneously, or
& one surface with multiple boundaries has to be deleted or inserted.

An example for the first case has already been presented in Fig. 5e and f, whereas in e)
and g) the second case has been illustrated.

Figure 13 shows another example: a pillar is added to a room s (a) by inserting a
composite surface cs with two boundaries, b1 and b2. Solid s is split in one solid s2
representing the pillar, and an updated room solid s1 (b). In Fig. 14a and b, a connecting
bridge between two simple buildings is added by inserting a composite surface with two
boundaries (depicted hatched). In that case, the air solid is split into a new solid s3 and an
updated air solid. An important precondition is that the two solids to be merged touch only
in composite surfaces with simple cycles as boundaries.

There are complex cases where multiple surfaces, each having multiple boundaries, have
to be deleted or inserted. Suppose, for example, having a room with multiple pillars. If each
pillar is represented by its own solid, each one will be removable by subsequently applying
the rule to merge two solids (by removing a single surface with two boundaries). However,

Fig. 13 Insertion of a pillar into a room: box-shaped room/solid s a is split by inserting the composite
surface cs (depicted hatched) with two boundaries b1 and b2 (thick lines) into s b The boundaries b1 and b2
are depicted as thick lines

Fig. 12 Illustration of the proof
of axiom S3 (Umbrella-Axiom)
in Proposition 2. Vertex v has one
umbrella for s1 (e1 f1 e2 f2 e3 f3 e4
f4 e1) and one for s2 (e’1 f’1 e’2 f’2
e’3 f’3 e’4 f’4 e’1). After merging
s1 and s2 to s, v has a single
umbrella (e1 f1 e2 f’1 e’1 f’4 e4 f4
e1) for s. The touching composite
surface and the edge e3 in cs are
shown hatched
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consider the case where all pillars are represented by the same solid by connecting all
pillars with structures above and below the room. In that case, a single pillar cannot be
removed. Hence, all pillars must be removed simultaneously, by a rule which deletes multiple
surfaces with multiple boundaries each. Our rules and the correctness and completeness results
cover that case.

The transaction rule for splitting a solid (changing the number of handles) is the
following:

Transaction Rule TR11: Splitting of a solid (reducing/increasing the number of
handles)

Transaction: Splitting a solid s of a 3D city model m in two solids s1 and s2 by inserting
multiple composite surfaces cs1, …, csk, where each csi may have multiple boundaries
Condition:

1. m is a 3D city model.
2. csi, 1≤ i≤k, are composite surfaces which are pairwise disjoint
3. Each csi and the boundary of s touch in a simple cycle.
4. At least one vertex, edge or face of each csi is in the interior of s
5. For each csi, each of both sides can be assigned uniquely a s1/s2-orientation, such

that each s1 (or s2)-side of a csi, can be connected with each other s1 (or s2)-side of
a csi, by the use of paths. These paths do not cross any csi

6. All boundaries of all csi are Jordan cycles with regard to boundary(s) ∪ cs1∪ ....
∪ csk.

Action:

1. Merge m and cs1,…, csk yielding m’
2. Create two new solids s1 and s2 in m’
3. Assign the references of faces in all csi to s1 or s2, according to the orientation in

Cond. 5.
4. The csi partition the faces in the boundary of s in two disjoint sets, F1 and F2. Let

F1 be the set on the s1-side of the csi, and F2 the set on the s2-side. Replace in F1

the reference to s by the reference to s1 and in F2 to s2.

The rule is a generalization of TR9: Instead of dealing with a single composite surface
cs, multiple surfaces csi, with multiple boundaries each are considered. The touching of cs

Fig. 14 Example for the insertion of a composite surface (light grey, hatched boundaries), splitting the air
solid and introducing a new solid s3

150 Geoinformatica (2012) 16:131–164



and the boundaries of s in a Jordan cycle is not sufficient for defining two new solids.
Instead, it has to be explicitly assured that each of the two solids is connected (Cond. 3) and
that both are separated (Cond. 6).

The following proposition states that the result of applying TR11 to a 3D city model is a
3D city model again:

Proposition 3 Transaction Rule TR11 is safe.

Proof The proof is a generalization of the proof for Proposition 1. Again we first have to
show that the surfaces csi partition s in two disjoint parts, s1 and s2. Due to Cond. 4, all csi
are inside s. According to Cond. 6, all cycles in the boundaries of all csi are Jordan-cycles,
i.e. each csi separates the space of s in at least two solids. Because of Cond. 5, there are
exactly two solids, s1 and s2, each of which is connected.

The proof of the validity of the axioms M1 to M6 and S1 to S13 can be conducted
analogously to the proof of Proposition 1. All propositions related to a single composite
surface are still valid for multiple, disjoint surfaces with multiple boundaries. ■

The last rule presented in this paper, TR12, is the inverse rule of TR11. It merges two
solids, changing the number of handles:

Transaction Rule TR12: Merging two solids, reducing/increasing the number of
handles

Transaction: Merging two solids s1 and s2 of a 3D city model m by deleting multiple
composite surfaces cs1, …, csk, where each csi may have multiple boundaries
Condition:

1. m is a 3D city model.
2. csi, 1≤ i≤k, are composite surfaces with multiple boundaries which are disjoint pairwise
3. The structure where s1 and s2 touch is the union of all csi: cs1∪ .... ∪ csk =

boundary(s1) ∩ boundary(s2)
4. s1 or s2 are bounded solids
5. The structure remains connected after deleting cs1∪ .... ∪ csk
Action:

1. Delete all faces, edges and vertices in each csi besides the one in the boundary of csi.
2. Replace all references of faces to s1 or s2 by references to s

To illustrate TR12, all examples for rule TR11 (splitting a solid) discussed in that section
are suitable. In Fig. 13b, the composite surface cs with two boundaries (depicted hatched) is
deleted and solids s1 and s2 are merged to a new solid s, representing a room without pillar.
In Fig. 14b, a composite surface with two boundaries (depicted hatched) is deleted. The air
solid and the solid s3 are merged to an updated air solid (a).

An error case for TR12 is illustrated in Fig. 15: If in a) the composite surface with two
boundaries (delimiting solid s3) is deleted, the resulting model (b) is not consistent. This is
due to the fact that the model is not connected. To be more precise, the 2.8D map partially
delimiting the air solid is not connected, violating axiom S12 for that 2.8D map. This error
is prevented by Cond. 5 of TR12.

Again we proof that consistency is maintained by rule TR12:

Proposition 4 Transaction Rule TR12 is safe.
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Proof This proof is a generalization of the proof of Proposition 2 and can be conducted
analogously. All propositions related to a single composite surface are still valid for
multiple, disjoint surfaces with multiple boundaries, only the proof of connectedness (S11)
depends on the connectedness of the boundary. But this property of the model is explicitly
stated in Cond. 5. ■

3.3 Completeness

We now prove that the rules TR9 to TR12 presented in the previous sections are complete,
i.e. that each arbitrary 3D city model can be constructed by subsequent rule applications.
We assume the completeness of the rules TR1 to TR8 for composite surfaces and 2.8D
maps, which will be the topic of a subsequent paper.

The completeness proof for 3D city models proceeds by induction on the number of
bounded solids. We will show that in each arbitrary 3D city model m, two solids can be
merged by applying rule TR10 or TR12. By inductive assumption, the claim holds for the
resulting model m’, and by applying the corresponding inverse transaction rule, it also holds
for m. This proof is based on the assumption that in each 3D city model there exists at least
one pair of solids which can be merged by TR10 or TR12, and accordingly be split by the
corresponding inverse rules. This is the case in typical models as they occur in practice.
However, pathological models without that property do exist: the merging of each pair of
neighbouring solids is blocked by a non-manifold structure shared by both of them. An
example for such a shared structure between only two solids has already been given in
Fig. 11a, where merging s2 and the air solid yields a non-manifold solid boundary. Dealing
with such pathological models is the crucial point in proving completeness of the
transaction rules.

For an impression of those pathological models where each merging of two solids is
blocked we describe briefly how to construct them: for each pair of solids touching in
at least one face (and hence being potential candidates for merging), an additional
touch in a single vertex or a single edge is introduced, by adding corresponding faces
to the solid boundary. This touch causes a non-manifold solid boundary of the merged
solid and hence the precondition of rule TR10 or TR12 prevents the application of the
rules. This touch in a vertex or edge mustn’t violate the requirement of each solid

Fig. 15 Error case for TR12: Deleting the composite surface with two boundaries (depicted hatched)
destroys connectivity (violation of axiom S13, detected and prevented by Cond. 5 of TR12)
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boundary having to be a 2-manifold. Hence, the touch must be surrounded or ‘masked’
by two other solids. Therefore, such a non-manifold edge or vertex must be incident to
at least four solids: two which are prevented from merging to two others to mask the
non-manifold touching. Figure 16 depicts a model where both merging s1 and the earth
solid as well as merging s2 and the earth solid are being blocked by a prism which
touches the earth solid in a vertex (depicted as large dot). Symmetrically, the merging of
s1/s2 with the air solid and the merging of s1 with s2 can be blocked by adding
corresponding prisms to solids.

The first step in proving completeness is to show that mutual blocking of merging solids
can be released by splitting and merging of faces, preserving the number of solids in the
model:

Proposition 5 Let s1 and s2 be two solids in a 3D city model m, which touch in at least one
composite surface. If s1 and s2 touch in a non-manifold way, i.e. if both touch in a graph
g1,2 which contains vertices and/or edges that are not part of a composite surface of g1,2,
then m can be transformed to a model m’ with the same number of solids, where two solids
s1’ and s2’ touch in composite surfaces only, i.e. in a manifold way.

Proof The main idea of the proof is to split one of both solids in such a way that a non-
manifold touch doesn’t exists any longer. The parts which are split are infinitesimally small,
even small enough to eliminate the touching in vertices or edges. The resulting small solids
are merged with another adjacent solid, not causing any additional non-manifold touch due
to the small size of the solids.

Fig. 16 3D city model where merging solid s1 or s2 with the earth solid is blocked by an additional touch in
a vertex, introduced by adding a prism. The merging of a pair of solids will not be possible if blocking prisms
between s1 or s2 and the earth solid as well as between s1 and s2 are added analogously. a Oblique view on
the model, b Frontal view on the model
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To be more precise, let g1,2 consist of d>0 connected components cc1,…, ccd. Each cci is
composed of at most one composite surface (perhaps with multiple boundaries), and additional
vertices and edges which are not part of a composite surface. Those sets are denoted by Vi and
Ei, 1≤i≤d. Note that the edges in Ei can form branching graphs or even cycles. We consider
each cci separately. The following steps are performed for each cci, 1≤i≤d:

We construct an infinitesimal small buffer around the vertices and edges in Vi and Ei on the
boundary of s1. From the edges and faces forming that buffer, we construct a new solid s’ by
generating new faces and closing the solid. The volume of s’ is infinitesimal small. Now s2 is
split by TR9 or by TR11 into s’ and the remaining part s2’ of s2. TR11 is used in the case that
the edges in Ei form a cycle, TR9 otherwise. In Fig. 17 two examples are depicted. A non-
manifold touch in a vertex in Vi is treated by splitting solid s2 in s and s2’ by inserting a
triangle. In b), a rectangle separates an edge from Ei, splitting a solid in s to s2’. The next step
is to merge s’ with one of the solids which on one hand is incident to an edge in Ei or a vertex
in Vi, and on the other hand is different from s1 or from s2. Such a solid must exist, since
otherwise a solid would have been bounded by a non manifold structure (see discussion
above). The resulting structure is a 3D city model (it is the result or the application of safe
transaction rules to 3D city models) which has the same number of solids as the initial model
and contains a pair (s1, s2’) of solids touching in composite surfaces only.

Since any non-manifold touch is eliminated by splitting s1, the new solid s1’ touches
other solids in composite surfaces only. The number of solids remains the same, since any
new solid resulting from splitting has been merged with another adjacent solid. ■

By means of Proposition 5 we now are able to proof that each 3D city model contains a
pair of solids which can be merged safely:

Proposition 6 In each 3D city model m with n+1 bounded solids (n>0), there exists a pair
(s1, s2) of solids which can be merged by application of the transaction rules, yielding a 3D
city model m’ with n bounded solids.

Proof Let s1 and s2 be two arbitrary solids in m which touch in at least one composite
surface. Such a pair must exist since each solid is bounded by a composite surface and the

Fig. 17 Illustration of healing a non-manifold touch in the proof of Proposition 5. a non-manifold touch in a
vertex, not connected to the composite surface (Figure is an amplification of Fig. 16a) b non-manifold touch
in an edge, connected to composite surface. c front view of two solids in (b)
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space is completely covered by solids. s1 and s2 touch in a graph g1,2. We have to
consider all possible cases for g1,2, reflecting all possible touching patterns of two solids
s1 and s2:

Case 1: g1,2 is exactly one composite surface with a single boundary.
In that case the precondition of TR10 is satisfied: s1 and s2 can be merged,

yielding a 3D city model with n bounded solids.
Case 2: g1,2 is the union of k composite surfaces, each having multiple boundaries.

We have to consider two subsidiary cases since rule TR12 can only be applied
if the resulting model remains connected after merging both solids:

Case 2.1: After merging s1 and s2 the model remains connected.
The preconditions of TR12 are fulfilled. Therefore, s1 and s2 can be

merged yielding a model with n bounded solids.
Case 2.2: The model is not connected after merging s1 and s2.

This case is more complicated, since the precondition of TR12 is not
satisfied by s1 and s2 and hence they cannot be merged. Suppose the
composite surfaces in g1,2 are deleted virtually. Then the 3D city model is
separated in at least two parts, say p1,…, pt (t>1). To illustrate this
separation, we refer to Fig. 15 where the deletion of s3 yields a separation in
two parts: one containing s4 and the other s1, s3 and the terrain surface. At
least one part pi must be isolated by construction and be completely inside
one of both solids, say s1 (in Fig. 15, pi is the solid s4 and s1 the air solid).
Choose one arbitrary solid spi in pi and assume that spi is the new solid to be
merged with s1, i.e. define s2 := spi. Consider again the three cases 1, 2, or 3
for the new pair (s1, s2), and repeat that process if Case 2.2 applies again.
Since the number of solids in pi strictly decreases in each step, due to the
partitioning of the model, this process must terminate. Hence, either Case 1
or Case 2.1 must apply in the end.

Case 3: g1,2 contains edges and/or vertices which are not part of a composite surface with
multiple boundaries (non-manifold touching).

According to Proposition 5, m can be transformed to a model m’ with two
solids s1’ and s2’ which touch in a manifold way, i.e. in a graph g1,2’ containing
only composite surfaces. Hence, the preconditions of case 1 or case 2 are met and
s1’ and s2’ are considered in one of the two cases (depending on the number of
composite surfaces and their boundaries). Note that the number of solids does not
change if Case 3 is applied.

In any case, the process terminates with either case 1 or case 2.1. In both cases, we get a
3D city model with n bounded solids. Since all possible cases of touching patterns of two
solids are considered, the proposition is proven. ■

Now all prerequisites for the completeness proof are available:

Proposition 7 The transaction rules TR9 to TR12 are complete for 3D city models.

Proof We have to show that arbitrary city models can be generated by application of the
rules TR9 to TR12. The proof proceeds by induction on the number n of bounded solids.
For the case n=1, the bounded solid s can be merged with either the air or the earth solid
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according to Proposition 6. The city model is reduced to a single 2.8D map, which can be
generated according to the completeness of rules TR1 to TR8 for surfaces. By applying the
inverse transaction rules to that 2.8D map, the model with one bounded solid s can be
generated.

As the inductive hypothesis we assume that the proposition holds for city models with n
bounded solids. Let mn+1 be an arbitrary city model with n+1 bounded solids. According to
Proposition 6, there exists a pair (s1, s2) of bounded solids in mn+1 which can be merged by
applications of the transaction rules. This yields a 3D city model mn’ with n bounded solids.
By the inductive hypothesis, the proposition is valid for mn’. By applying the sequence of
transaction rules, which are inverse to the one which transformed mn+1 to mn’, in reverse
order, we obtain mn+1. Hence, arbitrary models mn+1 can be generated by the transaction
rules TR9 to TR12. ■

4 Implementation issues

In this section we demonstrate that the rules presented in Section 3 can be mapped to the
operators and functions of a spatial relational database. Oracle Spatial Version 11 g [32] is
taken as example since it provides spatial data types for the representation of 3D objects as
well as spatial extensions of the query and data manipulation language SQL for the efficient
selection of spatial objects. The (proprietary) language PL/SQL extends SQL by procedural
concepts. The geometrical and topological aspects of 3D city models can be represented by
the following (spatial) relational schema, which is derived from the UML diagram for 3D
city models [15]. Since Oracle currently does not support 3D topology, the topological
relations have been represented by standard relational tables (see also [17]):

vertex(NUMBER Id, SDO_GEOMETRY coordinates)

edge(NUMBER id, NUMBER startVertex, NUMBER endVertex, 

SDO_GEOMETRY geom)

edgeFace(NUMBER edgeId, NUMBER eaceId)

face(NUMBER id, NUMBER leftSolidId, NUMBER rightSolidId,

SDO_GEOMETRY geom)

solid(NUMBER id, NUMBER isBounded, SDO_GEOMETRY geom)

An edge has a start vertex and an end vertex, and the table edgeFace relates the Ids of
the edges in the boundary of a face to the Ids of that face. A face delimits two solids and the
information whether a solid is bounded or not, is stored in the isBounded row of the solid
table. The geometry of vertices, edges, faces and solids is represented by the geometry data
type SDO_Geometry. These geometry attributes are to some degree redundant since they
can be derived from the vertex geometry to the topological relations. However, geometrical
queries are processed more efficiently by that representation.

The composite surface which is the input value of TR9 and 11 (and which is deleted in TR10
and 12) can be represented by aMulti Polygon being provided by the type SDO_GEOMETRY.
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As an example, we now are going to discuss how the transaction rule TR9 can be
implemented as PL/SQL module. The implementations of the other rules are similar:

1. create function TR9 (CS SDO_GEOMETRY, SolidID NUMBER)

2. return boolean 

3. is

4. SDO_GEOMETRY Cycle;

5. B1 BOOLEAN;

6. B2 BOOLEAN;

7. B3 BOOLEAN;

8. B4 BOOLEAN;

9. begin

10. B1 := isCompositeSurface(CS);

11. B2 := TouchInSimpleCycle(CS, SolidID, Cycle);

12. B3 := inInterior(CS, SolidID);

13. B4 := IsJordanCycle(Cycle, SolidID);

14. IF not B1 or not B2 or not B3 or not B4 

15. THEN return false; 

16. END IF;

17. merge(CS);

18. CreateSolid(SolidID, CS, NEWSolidID1, NEWSolidID2);

19. CreateCompositeSurface(CS, NEWSolidID1, NEWSolidID2);

20. UpdateReferences(SolidID,CS,NEWSolidID1, NEWSolidID2);

21. return true;

22. end;

The steps 10. to 16. correspond to the condition part of the rule, whereas the action part is
implemented by steps 17. to 20. Both condition and action parts again can be implemented
efficiently as PL/SQL procedures or functions. The condition in step 10 can be implemented by
use of the axioms in Table 1 (see [12]) and the condition in step 11 by geometrical database
operations (test for geometrical identity) and graph algorithms (simplicity of a cycle).
Topological database queries (SDO_INSIDE) implement the condition in step 12, whereas the
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procedure do discriminate Jordan and handle cycles [14] requires graph search methods,
which can be implemented in PL/SQL. The action part (steps 17–20) again can be realized by
PL/SQL statements that update the topology tables.

5 Related work

This section reviews related work on transaction rules for updates in GIS and on
consistency and validation methods for GIS data, which are the base of the rules.

Transaction rules for 2D GIS have been developed in Gröger et al. [11], Kufoniyi [25]
and Kufoniyi et al. [26], and for the special case of simplicial complexes (i.e., cell
complexes consisting of triangles) in Egenhofer et al. [5]. For 3D models, Euler Operators
[28] are used to construct surface models stepwise. However, Euler Operators only preserve
topological consistency and do not focus on geometric-topological consistency: the
geometry of objects is not considered and penetrations are not avoided explicitly. The
granularity of Euler operators is very fine in contrast to the rules presented in this paper.
Only single surfaces can be subject to an operation, not composite surfaces as in our case.
Hence, an error case involving handles which is prevented by the conditions of TR6 cannot
occur by applications of Euler operators.

In Gold [8] and Tse et al. [35], Euler Operators and GIS are coupled by applying the
operators to triangulations. For some operators, the granularity becomes much coarser:
There is, for example, one operator which inserts a handle. However, the handle must be
geometrically restricted to a prism. Hence, the rule does not provide the flexibility of our
TR7. The approach is restricted to triangulations, while our rules deal with planar faces of
arbitrary shape. Furthermore, it covers only surfaces, while our approach copes with 3D
models aggregating multiple solids. In [3] and [4], Euler operators are used to generate a
single solid model, whereas extended Euler operators are mentioned which are capable of
constructing models consisting of multiple solids. However, as it is the case with general
Euler operators, the focus is on topological consistency only, and no proofs of completeness
or correctness of the rules are provided.

The problem of consistency checking for 3D GIS has been addressed by several authors in
the last decades. The methods presented in [28] and [30] are restricted to single solids as
component of 3D models. However, not all violations of model assumptions are detected by
these methods. The approach by Molenaar [29] is more comprehensive. He introduces
conventions which check 3D models, but again this method provides necessary but not
sufficient conditions. The approaches in the context of Euler Operators [28] for surface
models and its application to GIS [8, 35] a do not provide general rules to check consistency.
The same is true for the extension of Euler operators to models with multiple solids [3, 4].
Consistency rules which check whether geometries are valid with regard to the language
GML 3 (being the base of CityGML and an implementation of ISO 19107 ‘Spatial Schema’
[21]) are provided in [23]. The rules for composite surfaces allow non-orientable surfaces like
the Möbius-strip (although non-orientable surfaces are excluded [21]) and non-manifold
composite surfaces, e.g., four surfaces touching in an edge. The rules for the consistency of a
single solid state that the interior should be connected but give no means how this condition
should be checked. Furthermore, the rules for composite solids (aggregations of solids) force
two solids which are part of a composite solid to have disjoint interiors and a connected
interior. Again, no effective method to check the last-mentioned condition is presented.
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6 Conclusions

In this paper, we have presented a set of transaction rules for updating 3D city models, which
preserve geometric-topological consistency in a reliable way. We prove that the rules maintain
consistency once given (safety), and that each consistent 3D city model can be generated by the
rules (completeness). Up to now, transaction rules for 3DGISwhich have been proven to be both
safe and complete with regard to geometric-topological consistency have not been given. The
rules target complex 3D city models [15] composed of surfaces representing the terrain and of
solids which are aggregated to build complex semantic objects like buildings consisting of
rooms and storeys. The rules allow for the construction and removal of handles representing
semantic objects like bridges, tunnels and arcades outside buildings or pillars inside rooms.

We identify an error case that may occur if handles are involved in a transaction. We
show that the classification of cycles in Jordan and handle cycles, which has been presented
in a recent paper [14], can be integrated in the transaction rules to avoid that error. There are
efficient algorithms employing standard methods from graph theory to discriminate both
types of cycles. The safety results in the paper are proven mathematically, guaranteeing the
reliability of our method. The completeness of the rules was difficult to prove. Again, the
reason was the occurrence of handles causing potential non-manifold boundaries and
therefore consistent models that cannot be generated by safe rules in a straightforward way.
Local geometric changes of infinitesimal small size were necessary to solve that problem.

The contribution of the paper is a set of transaction rules for 3D city models. The rules
are based on the axioms for 3D city models [12, 14, 15] and apply the method for
differentiating between handles and Jordan cycles [14]. They have roughly been sketched in
[13], where no details and no proofs of safety or completeness are given.

The next step will be the detailed description of transaction rules for surfaces (TR1 to TR8),
complementing the rules for 3D city models as well as the proof of the corresponding safety and
completeness results. This will be the topic of a subsequent paper which is in preparation [16].

Our approach currently deals with faces which are bounded by one exterior cycle. A
generalization will be the consideration of interior cycles of faces, forming holes or
enclaves in the face. This way the representation of free-standing buildings, for example,
without introducing so-called pseudo edges is made possible. As a consequence, we have to
deal with non-connected graphs, and our notion of reachability in (discrete) graphs has to
be extended by considering paths in the interior of a surface. Particularly the algorithm to
discriminate between handle and Jordan cycles hast to be adjusted accordingly.

This paper focuses on surfaces delimiting solids or representing the terrain (partially
delimiting the earth or air solid). Hence, a further extension of the model will be the
incorporation of lines (to represent objects like antennas) and of surfaces that do not delimit
a solid (to model roof overhangs, for example). Those cases will be handled by additional
axioms, allowing that particular surfaces delimit the same solid on both sides. Additional
transaction rules will be provided which insert, delete and modify such surfaces and lines.
This will be the topic of another paper.

CityGML has strongly influenced our 3D city model and the transaction rules. The
axioms and the rules are applicable to CityGML data sets and therefore assure its
consistency. Particularly indoor (Level-of-Detail 4) models correspond to our aggregations
of solids which represent interior rooms semantically (see Section 2.2). Line objects and
surfaces not delimiting a solid (e.g., roof overhangs), which can be modeled in CityGML,
are covered by the extension mentioned in the last paragraph.
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Based on the implementation concepts presented in Section 4, an additional step will be
the implementation of the rules in the context of a CityGML database [10, 17] on top of a
spatial database. Such a database establishes the core of a transactional Web Feature
Service (WFS-T) [37], that provides standardized access to data and a standardized way to
update data, as part of a sustainable spatial data infrastructure.
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Appendix A: Basic notions

In this paper we use standard notions from graph theory [19] to mathematical topology [1,
2, 20, 28]. In the following, we recapitulate the notions from mathematical topology which
are necessary for defining the concepts presented in the paper.

A.1 Topology: 2-manifolds, boundaries, and genus

A 2-manifold surface, which plays a decisive role in geometrical and topological modelling
[7, 21, 28–30], is a topological space where each point has a neighbourhood which is
topologically equivalent to an open two-dimensional disk [20]. Examples for 2-manifolds
are the open disk, the open cylinder surface, the hull of a cuboid, or the sphere. Figure 18
depicts the open disk (a) and the hull of a saddle roof building (b) as examples for 2-
manifolds, as well as three counterexamples: three rectangles meeting in a common edge
(c), the hull of two cuboids meeting in a common edge (d), and the hull of two saddle roof
buildings, where the roof of one buildings penetrates the wall of the other (e).

Another property of surfaces, which is also a topological invariant, is the number of
boundaries. An open disk has one boundary, whereas an open cylinder surface has two and
a sphere has zero boundaries (c.f. Fig. 19). Surfaces without boundaries are closed.5 They
enclose a volume completely and hence are used in geometrical modelling to represent the
boundary of solids [28, 30]. Some examples for a closed surface are the sphere, the hull of a
cuboid, or the hull of a saddle roof building (c.f. Figs. 18b and 19b).

The number of handles is another topological invariant of surfaces. Handles in surfaces are
used to model bridges, tunnels, arcades or similar phenomena. The number of handles of a
surface is given by its genus.6 The genus is defined as the maximal number of closed,
continuous, non self intersecting and mutually non-intersecting curves, the cutting of which
preserves the connectivity of the surface. A sphere, for example, has genus zero and hence no
handles, while the genus of a torus is one. It has one handle (see Fig. 20).

A.2 Cell complexes

The theory of cell complexes [20], a branch of Algebraic Topology, defines concepts for
aggregating primitive objects to more complex ones in a topologically clean manner. Hence,

6 This proposition is valid for connected, orientable surfaces. We assume that all surfaces discussed in this
paper have both properties.

5 Note that the term closed is overloaded: It may denote a surface with boundary where the boundary points
belong to the set (in contrast to open sets), or a surface which has no boundary at all. In this paper, the second
meaning is used.
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cell complexes are the base of many topological data models in GIS, CAD and Computer
Graphics [7, 21, 29, 33]. Primitives are nodes, edges, faces and solids, which are also called
0-cells, 1-cells, 2-cells and 3-cells. Each n-cell is bounded by (n-1)-cells, which are called the
boundary of the n-cell. A cell complex is an aggregation of cells where the following
condition holds true: The intersection of two cells in the cell complex is either empty or is a

a b

dc

e

Fig. 18 Examples for 2-manifold surfaces (a, b) and non 2-manifold surfaces (c–e)

a

c

b
Fig. 19 Surfaces with different
numbers of boundaries: a disk,
one boundary, b sphere: zero
boundaries, c cylinder surface: 2
boundaries
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cell which is part of the boundaries of both cells. Thus, cell complexes avoid overlapping
cells as well as penetrations of cells, and touching of cells is defined explicitly by commonly
shared boundaries. To exemplify the concept of cell complexes, Fig. 21 depicts a cell
complex consisting of two 2-cells (a) and one consisting of two 3-cells (b). The touching of
both cells is represented explicitly by a 1-cell and two 0-cells in a) and by a 2-cell (depicted in
dark colour), four 1-cells and four 0-cells (each depicted in light colour) in b).
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