
Geoinformatica (2011) 15:665–697
DOI 10.1007/s10707-010-0119-y

Spatial skyline queries: exact and approximation
algorithms

Mu-Woong Lee · Wanbin Son · Hee-Kap Ahn ·
Seung-won Hwang

Received: 15 March 2010 / Revised: 28 August 2010 /
Accepted: 18 November 2010 / Published online: 4 December 2010
© Springer Science+Business Media, LLC 2010

Abstract As more data-intensive applications emerge, advanced retrieval semantics,
such as ranking and skylines, have attracted the attention of researchers. Geographic
information systems are a good example of an application using a massive amount of
spatial data. Our goal is to efficiently support exact and approximate skyline queries
over massive spatial datasets. A spatial skyline query, consisting of multiple query
points, retrieves data points that are not father than any other data points, from
all query points. To achieve this goal, we present a simple and efficient algorithm
that computes the correct results, also propose a fast approximation algorithm that
returns a desirable subset of the skyline results. In addition, we propose a continuous
query algorithm to trace changes of skyline points while a query point moves. To
validate the effectiveness and efficiency of our algorithm, we provide an extensive
empirical comparison between our algorithms and the best known spatial skyline
algorithms from several perspectives.

Keywords Spatial databases · Skyline queries

M.-W. Lee · W. Son · H.-K. Ahn · S.-w. Hwang (B)
Department of Computer Science and Engineering,
Pohang University of Science and Technology, Pohang, Republic of Korea
e-mail: swhwang@postech.ac.kr

M.-W. Lee
e-mail: sigliel@postech.ac.kr

W. Son
e-mail: mnbiny@postech.ac.kr

H.-K. Ahn
e-mail: heekap@postech.ac.kr

666 Geoinformatica (2011) 15:665–697

1 Introduction

Since the advent of data-intensive applications, advanced query semantics, that
enable efficient and intelligent access to large scale datasets, have been an active
study area. Geographic information systems (GISs) are a good example of this type
of application, and it aims to support efficient access to massive spatial datasets, as
Example 1 illustrates.

Example 1 Consider a hotel search scenario for a business trip to San Francisco,
where the user marks two locations of interest, e.g., a conference venue and an
airport, as Fig. 1a illustrates. Given these two query locations, one option is to
identify hotels that are close to both locations. To better illustrate this problem,
Fig. 1b rearranges the hotels with respect to the distance to each query point. From
this figure, we can claim that hotel H3 is more desirable than H10, because H3 is
closer to both query points than H10 is. This kind of advanced retrieval, based on
ranking the hotels using the aggregate distance to the given query points, or based
on finding spatial skyline hotels, will enable intelligent access to the underlying hotel
datasets.

In this paper, we study skyline queries [1–5] to identify objects that are “not
dominated” by any other objects. Specifically, we focus on finding spatial skyline
objects [6] that are not “spatially dominated” by any other objects, i.e., no other
object is closer to all of the given query points simultaneously. For instance, in Fig. 1b,
H3 is a skyline object, while H10 is dominated by H3 and does not qualify as a skyline
object.

Skyline queries have gained a lot attention lately, as formulating the queries is
a highly intuitive process, compared to ranking where users need to identify the
ideal distance functions to minimize. However, most existing skyline algorithms
have not been designed with spatial data in mind and thus do not consider the
spatial relationships between objects. To apply existing algorithms for general skyline
queries to our problem, we generally need to transform the given location data into
the distance data, as illustrated in Fig. 1. However, owing to the dynamic nature of

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10 Airport

Venue

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Distance to the airport

D
is

ta
n

ce
 t

o
 t

h
e

co
n

fe
re

n
ce

 v
en

u
e

H1
H2

H3

H4

H5

H6

H7

H8

H9

H10

(a) Location (b) Distance

Fig. 1 Hotel search scenario

Geoinformatica (2011) 15:665–697 667

transformed data, the algorithms require to transform all data in advance, for each
different query.

Our goal is to efficiently support skyline queries on spatial data, without such
transformation. Sharifzadeh and Shahabi [6] first studied this problem, and they
presented two algorithms for the problem, B2S2 and VS2. Their experiments show
that VS2 outperforms B2S2, however, we claim that VS2 may fail to identify the
correct results. Sharifzadeh et al. [7] lately fixed this incompleteness and proposed
a new version of VS2, however, it is computationally expensive than the former
algorithm. In contrast, we propose an algorithm for the problem that can identify
the exact results in O(|P|(|S| log |CH(Q)| + log |P|)) time, for a given set P of data
points, a set Q of query points, a set S of spatial skyline points, and the convex hull
of Q, denoted by CH(Q).

We also propose an efficient approximation algorithm that retrieves a subset of
the exact results at a significantly lower cost, i.e., O((|S| + |CH(Q)|) log |P|). Our
proposed algorithm controls the quality of the approximate results by approximating
the “most representative” [8] subset.

Furthermore, by extending the approximation algorithm, we propose a continuous
algorithm to trace changes of skyline points, for a case of one query point moves. In
a real world application scenario of using a mobile devise to establish a query, we can
assume that we know the movement of one query point, the query inquirer himself.
To efficiently support this scenario, we devise an algorithm tracing changes of skyline
results while one query point moves in one direction, without computing the whole
results repeatedly.

Our contributions can be summarized as follows:

– We study the spatial skyline query processing problem, that enables intelligent
and efficient access to massive spatial datasets.

– We show that the best known algorithm is incomplete in the sense that it may
not return all the skyline points.

– We propose exact and approximate spatial skyline query processing algorithms.
We analyze the complexity of the proposed algorithms and the quality of the
results.

– We extend our approximation algorithm to trace skyline changes, for a case of
one query point moves in one direction.

– We extensively evaluate our framework using synthetic and real-life data and
validate its effectiveness and efficiency.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief survey of related work. In Section 3, we observe the drawbacks of the
best known algorithms, and propose new exact and approximation algorithms in
Section 4 and Section 5 respectively. We propose a continuous algorithm tracing
skyline changes in Section 6. Section 7 discusses the details of our implementation
of the algorithms. In Section 8, we report on our evaluation results, and finally this
paper is concluded in Section 9.

2 Related work

This section provides a brief survey of research work related to (1) skyline query
processing, and (2) spatial query processing.

668 Geoinformatica (2011) 15:665–697

2.1 Skyline computation

Skyline queries were first studied as maximal vectors [1]. Later, Börzsönyi
et al. [2] introduced skyline queries for database applications. A number of different
algorithms for skyline computation have been proposed, including progressive sky-
line computation using auxiliary structures [3], the nearest neighbor algorithm for
skyline query processing [9], the branch and bound skyline (BBS) algorithm [4],
the sort-filter-skyline (SFS) algorithm that leverages pre-sorted lists [5], and the
linear elimination-sort for skyline (LESS) algorithm with an attractive average-case
asymptotic complexity [10]. Recently, there have been an active research effort to
address the “curse of dimensionality” problem for skyline queries [8, 11, 12] using
the inherent properties of skyline points including skyline frequency, k-dominant
skylines, and k-representative skylines. Meanwhile, for a case of when values change
due to the movement of data objects, some research works for tracing skyline
changes were proposed [13, 14]. These works exploit spatio-temporal coherence
in the changes to further enhance skyline query processing. All of the attempts,
however, have not considered the spatial dominance relationships between data
points.

2.2 Spatial query processing

The most extensively studied spatial query mechanism involves ranking the neigh-
boring points based on the distance to a single query point [15–17]. This line of
research also extensively studied the problem of continuous nearest neighbor query
processing on moving objects [18–21]. For multiple query points, Papadias et al. [22]
studied ranking by the “aggregate” distance, for a class of monotone functions
aggregating the distances to multiple query points. As these nearest neighbor queries
require a distance function, which is often cumbersome to define, another line of
research studied skyline query semantics which does not require any distance func-
tions. For a spatial skyline query with a single query point, Huang and Jensen [23]
studied the problem of finding spatial locations that are not dominated in respect to
the network distance to the query point. For this type of query with multiple query
points, Sharifzadeh and Shahabi [6] proposed two algorithms that identify the skyline
locations for the given query points such that no other location is closer to all of the
query points. While the proposed solution enables intelligent access to spatial data,
we later show that the solution proposed in [6] is incorrect. Sharifzadeh et al. [7]
later proposed a new version of VS2 resolving the incompleteness of the former
VS2, however, this new algorithm is computationally expensive more than the former
algorithm.

3 Preliminaries

In this section, we introduce some fundamental geometric concepts and define the
problem of spatial skyline queries. Then we discuss how the known algorithm fails to
identify exact answers.

Geoinformatica (2011) 15:665–697 669

Fig. 2 Convex hull of a point set P

3.1 Convex hull

A point set S on a plane is convex if and only if for every two points p, q ∈ S
the whole line segment pq is contained in S. The convex hull CH(S) of a set S is
the intersection of all convex sets that contain S [24]. The upper chain of CH(S) is
the part of the boundary of CH(S) from the leftmost point to the rightmost point in
a clockwise order. The lower chain is the part of the boundary of CH(S) from the
leftmost point to the rightmost point in a counterclockwise order (Fig. 2).

3.2 Voronoi diagram and Delaunay graph

For a set P of n distinct points on the plane, the Voronoi diagram of P, denoted by
Vor(P), is the subdivision of the plane into n cells [24]. Each cell contains only one
point of P, which is called the generator of the cell. Any point q within a cell is closer
to the generator of the cell than any other generator. The Delaunay graph of a point
set P is the dual graph of the Voronoi diagram of P [24]. The two points of P have
an edge in the Delaunay graph if and only if the Voronoi cells of these points share
an edge in Vor(P) (Fig. 3).

3.3 Spatial skyline queries

In the spatial skyline query problem, we are given two point sets: one is a set P
of data points, and the other is a set Q of query points. The points in P and Q
have d-dimensional coordinate attributes in R

d space. The distance function d(p, q)

returns the Euclidean distance between a pair of points p and q, which obeys the

Fig. 3 Voronoi diagram and Delaunay graphs of a point set P

670 Geoinformatica (2011) 15:665–697

triangle inequality. We now formally define the spatial skyline query problem, using
the following notions.

Definition 1 We say that p1 spatially dominates p2 if and only if d(p1, q) ≤ d(p2, q)

for every q ∈ Q, and d(p1, q′) < d(p2, q′) for some q′ ∈ Q.

Definition 2 A point p ∈ P is a spatial skyline point with respect to Q if and only if
p is not spatially dominated by any other point of P.

The goal of the problem is to retrieve all the spatial skyline points from P with
respect to Q. We denote S as the set of spatial skyline points of P.

3.4 Existing approaches

Though a lot of work on skyline queries has been published in the literature, little is
known about skyline queries for spatial data. Recently, Sharifzadeh and Shahabi [6]
studied the spatial skyline query problem and proposed two algorithms that compute
S: the Branch-and-Bound Spatial Skyline algorithm (B2S2) and the Voronoi-based
Spatial Skyline algorithm (VS2).

In VS2, they employed two well-known geometric structures, the Voronoi diagram
of P and the convex hull of Q, and claimed that these structures reflect the spatial
dominance to some extent, and therefore the algorithm efficiently computes S. In
fact, their experiments show that VS2 outperforms B2S2, and VS2 is considered to be
the most efficient solution so far. Figure 4 shows the pseudo-code of VS2 [6].

VS2, however, may fail to find all the spatial skyline points.
To verify VS2, the authors claimed that, for some p ∈ P, if all its Voronoi

neighbors and all their Voronoi neighbors are spatially dominated by other points,
p is not a spatial skyline. Therefore VS2 simply marks p as dominated and does not
consider it afterwards. However, this is not necessarily true.

Fig. 4 Pseudo-code of VS2 [6]
for close comparison purposes

Geoinformatica (2011) 15:665–697 671

Fig. 5 VS2 fails to find p2
even though p2 is a spatial
skyline point

Figure 5 shows a counter example to their claim. There are 3 query points
(q0, q1, q2) and 9 data points. Note that all the data points, except for three (p0, p1

and p2), are spatially dominated by p0 or p1. This means that, all the Voronoi neigh-
bors of p2 are spatially dominated, and VS2 thus simply marks p2 as “dominated”
and does not consider it again. However, p2 is a spatial skyline point, as the bisector
�⊥(p1, p2) of p1 and p2, i.e., a perpendicular line to the line segment pq, intersects
CH(Q). This implies that there is a query point (q2) closer to p2 and therefore p2 is
not spatially dominated by p1, as we discuss more formally in Lemma 3. Similarly, p2

is not spatially dominated by p0, because �⊥(p0, p2) intersects CH(Q). Since every
bisecting line of p2 and other points intersects CH(Q), we conclude that p2 is a spatial
skyline point.

This observation suggests that if CH(Q) has a long edge, it is likely that VS2 would
fail. Figure 6a illustrates a failure case for 300 randomly generated data points, with a

Fig. 6 Failure case of VS2 for 300 randomly generated data points

672 Geoinformatica (2011) 15:665–697

Fig. 7 A point can have
many neighbors

query point set of four points, where VS2 fails to find a skyline point below this edge.
Figure 6b provides a closer look at the missing skyline point.

Moreover, the asymptotic time complexity analysis of VS2 is incorrect. The
authors assumed implicitly that VS2 tests only O(|S|) points and claimed that it
finds S in time O(|S|2|CH(Q)| + √|P|). However, a skyline point p can have at most
O(|P|) Voronoi neighbors that are all spatially dominated by p, as Fig. 7 illustrates.
Since it also calls |P| heap operations during the iteration, each of which takes log |P|,
the correct worst-case time complexity of VS2 must be O(|P|(|S||CH(Q)| + log |P|)).

Sharifzadeh et al. [7] lately fixed their own fault and proposed a new version of
VS2. To distinguish, we denote the former algorithm as VS2c, and the new algorithm
as VS2j. However, VS2j shows lower performance than VS2c, in the term of query
execution time. Figure 8 shows the pseudo-code of VS2j [7].

VS2j maintains a minheap H containing data entries to be processed later. VS2j
repeatedly processes and removes the top entry in H, until H becomes empty.
When processing the top entry p in H, VS2j tests each Voronoi neighbor p′ of p
to determine that p′ is needed to be inserted to H (lines 15 and 16). This test is done
by testing that the Voronoi cell V(p′) of p′ is not dominated by any known skyline
results, that is, V(p′) is not completely inside the union of dominance regions of all

Fig. 8 Pseudo-code of VS2j [7]
for close comparison purposes

Geoinformatica (2011) 15:665–697 673

currently known possible skyline points (definite skyline points S(Q) and skyline
candidates HS discovered so far). Testing V(p′) thus involves many intersection tests
between V(p′) and the dominance region of each possible skyline point. Though VS2j
uses a heuristic approach to reduce the cost of each test, the number of tests may
become very large as we empirically show in Section 8. This makes VS2j inefficient.

4 Exact algorithm

We first propose a progressive algorithm for the spatial skyline problem, that
retrieves all the spatial skyline points of P with respect to Q, and then in Section 7.4,
we improve this algorithm by combining it with our approximation algorithm, which
is proposed in Section 5.

4.1 Properties of spatial skylines

We assume the dimensionality d of the data and query points is d = 2 for now, which
can be extended to an arbitrary dimension (as we discuss in Section 9). Before we
explain our algorithms, we first discuss some properties of spatial skylines that will
be used later on. The following lemmas, though formulated in our spatial setting, are
generally true for skyline processing and we omit the proofs.

Lemma 1 (Contraposition of Definition 1) p1 does not spatially dominate p2 if and
only if either d(p1, q) > d(p2, q) for some q ∈ Q, or d(p1, q) = d(p2, q) for every
q ∈ Q.

Lemma 2 (Transitivity) Let p1, p2 and p3 be three data points. If p1 spatially domi-
nates p2 and p2 spatially dominates p3, then p1 spatially dominates p3.

We now move on to discuss how to use these properties to reduce (1) the time
required for each dominance test, i.e., to check if one data point is spatially dominated
by another one, and (2) the number of dominance tests needed to produce the
desired result.

4.2 Efficient spatial dominance test

Sharifzadeh and Shahabi [6] showed that we can determine the spatial dominance by
using just the convex hull of Q instead of all the query points in Q: If p ∈ P is not
dominated by any other point in P with respect to the vertices of CH(Q), then p is a
spatial skyline point. In addition, we can interpret this property in a geometric setting
as follows.

Lemma 3 The bisector of two data points intersects the interior of CH(Q) if and only
if they do not spatially dominate each other.

Proof If the bisector of two data points intersects the interior of CH(Q), then for
each of the data points, there exists a vertex of CH(Q) closer to it than the other.
For example, in Fig. 9, the bisector of p1 and p2 intersects CH(Q), so at least one

674 Geoinformatica (2011) 15:665–697

Fig. 9 CH(Q) intersects the
bisector of two data points

query point is closer to one of the data points than the other. Therefore, they do
not dominate each other. If the bisector does not intersect the interior of CH(Q),
all the vertices of CH(Q) (and therefore all the query points) are closer to one data
point than the other. This means that one data point spatially dominates the other
point. ��

As we can determine whether a line intersects the convex hull or not in
O(log |CH(Q)|) time by using a binary search technique, the dominance test can be
done in the same time.

Lemma 4 When CH(Q) is given, the dominance test for a pair of data points can be
done in O(log |CH(Q)|) time.

4.3 Bounding the number of dominance tests

To make the algorithm faster, we need to reduce the number of dominance tests. To
improve the speed, for some vertex q of CH(Q), we keep the sorted list A of all the
data points in an ascending order of distance from q. With this list, we can determine
that, if a data point p1 is located before p2 in A, then p2 does not spatially dominate
p1 using Lemma 1. In addition, together with Lemma 2, if data points p1 and p2 are
located before p3 in A, and p1 spatially dominates p2, then we do not need to test p3

with p2. Therefore, it is sufficient to perform the dominance test on p only with the
spatial skyline points that are located before p in A, as we formally state below.

Lemma 5 For a data point p, if we have the set of all spatial skyline points located
before p in A, we can determine whether p is a spatial skyline or not by O(|S|)
dominance tests.

If there are two data points that are the same distance from q, we can break the
tie by computing the distances from another vertex of CH(Q). Since no two points
have the same distance from the three vertices of CH(Q), we only need to do this for
at most three times.

Geoinformatica (2011) 15:665–697 675

We now present our proposed algorithm that retrieves all the spatial skyline
points. As we will see, the algorithm is surprisingly simple and easy to follow.

Algorithm ExactSkyline
Input: P, Q
Output: S
1. initialize the array A and the list S
2. compute CH(Q)

3. A ←the distances from a vertex q of CH(Q) to every data point
4. sort A in an ascending order
5. for i ← 0 to |P| − 1
6. do if A[i] is not spatially dominated by S
7. then insert A[i] to S
8. return S

We now analyze the time complexity of ExactSkyline. In line 2, the convex hull
can be constructed in O(|Q| log |Q|) time [24]. Line 3 takes O(|P|) time and the
sorting in line 4 can be done in O(|P| log |P|) time. In line 6, we perform the dom-
inance test O(|S|) times, each of which takes O(log |CH(Q)|) time. As the for loop
contained in lines 5–7 repeats |P| times, the entire loop takes O(|P||S|| log |CH(Q)|)
time. Since |Q| < |P| in most realistic skyline queries, the total time complexity
is O(|P|(|S| log |CH(Q)| + log |P|)). In contrast, if we naively adopt an existing
algorithm, i.e., SFS [5], by transforming P as illustrated in Fig. 1, the total time
complexity is O(|P|(|S||Q| + log |P|)).

5 Approximation

In this section, we discuss how to quickly compute a “desirable” subset of the skyline
results, as quite often (1) it is too expensive to compute all the skyline results or
(2) there are too many skyline results to be helpful [10, 25]. To achieve this goal,
we first discuss how to define a desirable subset of skyline results, based on a
metric studied in previous research (Section 5.1), and then present an approximation
algorithm to compute a desirable subset (Section 5.3).

5.1 Desirability property

As we introduced in Section 2, skyline result sets are often too large, which provided
the motivation for research efforts to reduce the results into a subset with high
“desirability". In particular, the following two metrics, which have complementary
strengths, have been widely adopted.

– Nearest skylines: One way to quantify the desirability is to favor skyline points
that have the smallest aggregate distance to the query points [22]. This aggre-
gation can represent various user-specific needs. For instance, a spatial skyline
query retrieving the hotels close to three query points of interest, e.g., an airport,
a conference venue, and a park, may rank the results by the weighted sum of the
distance to the points, with a high weight on important query locations.

676 Geoinformatica (2011) 15:665–697

– Representative skylines: While the above metric enables personalization based
on the user-specific needs represented in the aggregation function, it is often
non-trivial for end-users to articulate the ideal aggregation function for them-
selves. Another approach is to identify the subset that is “commonly desirable.”
Specifically, Lin et al. [8] studied how to select a subset of size k that maximizes
the total number of points dominated by at least one of these skyline points.

In this paper, we focus on the second metric, as the strength of skyline queries,
i.e., not requiring users to specify any ranking function, can be preserved with this
metric. However, this metric [8] was not previously studied in the context of spatial
dominance, and a basic adoption of the algorithm proposed in the literature [8] for
our problem incurs a prohibitive cost. We first briefly describe this basic adoption as
a baseline approach and then discuss how we can simplify the goal for a restricted
problem scenario, which serves as an efficient approximation for general problem
settings (as we empirically evaluate in Section 8).

5.1.1 Baseline

A spatial skyline query problem with |Q| query points can be transformed into a
classical skyline query problem by transforming each data point into |Q| numerical
attributes representing the distance to each of the |Q| query points, just like the
transformation from Fig. 1a to Fig. 1b. With this transformation, the skyline results in
|Q|-dimensional space are identical to the spatial skyline points. Given this set P′ of
transformed data points, and skyline points S′ in the transformed dataset, we denote
as D(Si) the set of points that are dominated by some subset of the skyline points
Si ⊆ S′ with size k, i.e., |Si| = k. With this notation, our goal is to find a subset Si of
the skyline set S′ that maximizes D(Si) :

Sapprox = argmax
Si⊆S′

D(Si) (1)

However, this basic adoption is proved to be NP-hard for |Q| ≥ 3 [8].

5.2 Our approximation

To reduce the high computational overhead, we devise an approximation which
does not require data transformation as in the baseline approach. In contrast to the
baseline approach, we keep the data in the original spatial domain and develop a
solution to take advantage of the spatial locality of the data. Specifically, we simplify
the goal in Eq. 1 for a restricted problem scenario with the following assumption:

Assumption 1 (Uniformity) We assume that the data points are uniformly distributed.
Based on this assumption, our goal is to f ind a subset of skyline points that maximizes
the “number” of points dominated by the subset, and can then be reformulated
as f inding the set that maximizes the “volume” (or “area” in our two-dimensional
examples) dominated by the subset.

Based on the uniformity assumption, the goal of approximate skyline processing
is to identify a skyline subset that maximizes the volume of the union of “dominated

Geoinformatica (2011) 15:665–697 677

Fig. 10 All points in the shaded region are dominated by p with respect to three query points
q1, q2, and q3

regions” of each skyline point. Figure 10 illustrates this type of region for a skyline
point p, with respect to CH(Q) of three query points, q1, q2, and q3. All points in
the dominated region, the shaded region in Fig. 10, are dominated by p, as they are
always father than p from all query points.

Specifically, we draw m circles (hyper-spheres in higher dimensional spaces) for
m query points, using each query point as a center, such that the given skyline point
p lies on the circumference of all such circles. Any point inside these circles is not
“dominated” by p, as it is closer to at least one query point compared to p. We can
thus reformulate our goal statement as, a skyline subset that maximizes the volume
of the union of dominated regions, i.e., the shaded area of Fig. 10.

Sapprox = argmax
Si⊆S

∪p∈Si (U − unionvolume(p)) (2)

where the unionvolume(p) represents the union volume of the d circles with p on
each of the circumferences, and U denotes the entire data space.

However, optimizing the above goal function in Eq. 2 is inherently complex, as
this type of union region has a complex boundary. Figure 11 illustrates the union
region for five query points and S with four skyline points. We thus approximate our
objective function into a simpler form, that approximates the union of the dominated
regions as the sum of these types of regions, i.e., the sumvolume.

Assumption 2 (Sumvolume) We approximate the union volume of the dominated
regions as the sum volume of these types of regions, where sumvolume(p) upper

678 Geoinformatica (2011) 15:665–697

Fig. 11 Dominated regions
for sample skylines

bounds unionvolume(p). Then this approximation function can be reformulated as
a function to f ind a skyline subset that minimizes the sum of sumvolume.

Sapprox = argmax
Si⊆S

∑

p∈Si

(U − sumvolume(p))

= argminSi⊆S

∑

p∈Si

sumvolume(p) (3)

With this approximation, if we draw contour lines of sumvolume, each contour line
is simplified into a convex set, as formally shown in Lemma 6. To illustrate, Fig. 12
shows several conour lines of sumvolume from a convex hull. A contour line of a
given function, i.e., sumvolume in this case, is a curve connecting all points that have
the same constant function value.

Lemma 6 For any f ixed constant c, let

M(c) = {x | sumvolume(x) ≤ c}.
Then M(c) is a convex set.

Proof The Euclidean distance from a query point q = (q1, . . . , qd) in CH(Q) to any
point x = (x1, . . . , xd) is defined as:

d(q, x) =
√

(q1 − x1)2 + . . . + (qd − xd)2.

Fig. 12 Several contour lines
(dotted curves) of sumvolume
from a convex hull

Geoinformatica (2011) 15:665–697 679

This function graph is convex, because the set of points lying above the graph is
convex. The volume of a sphere with radius r = d(q, x) is cdrd in R

d space, where cd

is a positive constant that is determined by d. As the power of a convex function is
also convex [26], the volume function of the sphere is convex. It is also well known
that the sum of two convex functions is also convex [26]. Since sumvolume(x) is the
sum of all the dominated regions defined by query points of CH(Q) to x, the function
graph of sumvolume is also convex. ��

Furthermore, these types of contour lines are guaranteed not to intersect each
other, as illustrated in Fig. 12, which we formally prove below.

Lemma 7 For two distinct sumvolume values, their contour lines do not intersect.

Proof by contradiction Let c and c′ be two distinct sumvolume values. Assume that
the contour lines of c and c′ intersect at some point x. Then the sumvolume(x) is c,
because x is a point on the contour line of c. Also the sumvolume(x) is c′, because x
is a point on the contour line of c′. As c and c′ are distinct, this is a contradiction. ��

What Fig. 12 suggests is that (a) a sumvolume is minimized at a point lying inside
the convex hull and (b) it monotonically increases for skyline points that are farther
from the minimum point. Based on this observation, our proposed algorithm finds a
set of “seed" skyline points around the minimum point. Specifically, these are skyline
points (a) within the query convex hull and (b) in the Voronoi cells intersecting
the boundary of the convex hull. Another desirable property, in addition to a low
sumvolume value, is that these points are guaranteed to be skyline points [6].

Theorem 1 (Seed Skyline) For a given set P of data points and a set Q of query points,
if the Voronoi cell V(p) of p ∈ P intersects with the boundary of CH(Q) or CH(Q)

contains V(p), then p is a skyline point [6].

5.3 Approximation algorithm

We now present an efficient algorithm to identify the seed skylines, as the “desirable”
skyline points to maximize our approximate objective function. To retrieve the points
in the subset efficiently, we first find a Voronoi cell that contains a vertex of CH(Q)

by using a typical point location query [24] on Vor(P). From this Voronoi cell,
we follow the edges of CH(Q) and find the Voronoi cells that intersect the edges
(Fig. 13a). Then we find Voronoi cells that lie inside CH(Q) (Fig. 13b) by traversing
the Delaunay graph [24].

Our approximation algorithm works as follows. Let ei = (qi, qi+1) denote the i-th
edge along the boundary of CH(Q).

Note that, we can compute CH(Q) and Vor(P) in O(|Q| log |Q|) time (line 2)
and in O(|P| log |P|) time (line 3), respectively, and locate the Voronoi cell V(p)

containing the query point q0 in O(log |P|) time by the point location query on
Vor(P) (line 4).

To find all the Voronoi cells intersecting an edge e0 = (q0, q1) in line 6, we first
compute the intersection r of e0 with the boundary of V(p) (illustrated in Fig. 14),
which can be done in O(log |P|) time using a binary search because V(p) is a convex

680 Geoinformatica (2011) 15:665–697

(a) Cells intersecting the edges of (Q) (b) Cells lying inside (Q)

Fig. 13 Voronoi cells of seed skylines. Dashed polygons denote CH(Q)

polygon and since we store its edges sorted along the boundary, as we discuss in
Section 7.1. Because r lies on a boundary edge shared by two neighboring Voronoi
cells, we can get a pointer to the neighboring Voronoi cell V(p′) in a constant time
from the Delaunay graph. We repeat this until we reach the other endpoint q1. Then
we proceed to the next convex hull edge e1 = (q1, q2) and repeat the above process
until we find all the Voronoi cells that intersect the boundary of CH(Q).

Algorithm ApproximateSkyline
Input: P, Q
Output: Sapprox

1. initialize Sapprox

2. compute CH(Q)

3. compute Vor(P)

4. find a Voronoi cell V(p) containing q0

5. for i ← 0 to |CH(Q)| − 1
6. find all the Voronoi cells V(p) intersecting ei and insert p to Sapprox

7. find all the Voronoi cells V(p) lying in CH(Q) by traversing the Delaunay graph
and insert p into Sapprox

8. return Sapprox

Fig. 14 Two Voronoi cells
share an intersection

p

r

p'

e0

Geoinformatica (2011) 15:665–697 681

Note that a Voronoi cell may contain an edge of CH(Q) in its interior or it may
intersect several edges of CH(Q). The number of intersection tests is thus bounded
by the larger of O(|S|) and O(|CH(Q)|), i.e., at most O(|S| + |CH(Q)|). By combin-
ing the number and cost of intersection tests, the overall worst-case time complexity
becomes O((|S| + |CH(Q)|) log |P|). Traversing a Delaunay graph can be done in
O(|S|) time (line 7). Therefore, the total time complexity of ApproximateSkyline is
O((|S| + |CH(Q)|) log |P|) if CH(Q) and Vor(P) are given.

6 Continuous approximate spatial skyline algorithm

In this section, we consider a variation of the problem where one query point m
moves along a line while all the other query points remain stationery. Then, during
the movement, some data points may change their status. The objective is to figure
out for each data point when it becomes a seed skyline and when it becomes a non-
seed skyline.

Let Qm := Q \ {m}. Without loss of generality, we assume that m moves along
a horizontal line. For a nonnegative real value t, let mt := m + (t, 0), that is, the
movement of m by t along the x-axis, and let Ht := CH(Qm ∪ {mt}). While mt moves
to the right, some seed skyline point may become a non-seed skyline point, and
some non-seed skyline point may become a seed skyline point. However, once a seed
skyline point s becomes a non-seed skyline point at t, it remains as a non-seed skyline
point for any t′ > t as stated in the following Lemma 8.

Lemma 8 Once a seed skyline point s becomes a non-seed skyline point, it cannot
become a seed skyline point again.

Proof Assume that s becomes a non-seed skyline at time t′.
By definition of seed skylines, Ht′ does not intersect the Voronoi region Vs of

s. Since both Ht′ and Vs are convex, there is a line � that separates them by the
separation theorem [27].

It is not difficult to see that mt lies in the closed halfplane determined by �

containing Vs for t < t′ but lies in the other open halfplane for all t ≥ t′. Since mt

moves along a line, for all t ≥ t′, it does not cross � again and therefore Ht ∩ Vs = φ.
��

6.1 Events

Without loss of generality, we assume that mt moves from t = 0 to t = 1. Since mt

moves along a line, CH(Q ∪ {m1}) = ⋃
0≤t≤1 Ht. We call a data point p a candidate if

p is a seed skyline point for the query set Qm ∪ {mt} for some 0 ≤ t ≤ 1. Let St denote
the set of seed skyline points at time t, and S := ⋃

0≤t≤1 St. Note that S is the set of all
candidates.

The algorithm starts with computing the set S. This can be done by computing
all seed skyline points for the query set Q ∪ {m1}. At the same time, we also find
S0 and S1. If a point p belongs to both S0 and S1, then p is a seed skyline point for
any 0 ≤ t ≤ 1 by Lemma 8. Therefore we only need to determine when each point in
S \ (S0 ∩ S1) becomes a seed skyline point or a non-seed skyline point. To compute

682 Geoinformatica (2011) 15:665–697

Fig. 15 Three different cases
of shape changes of Ht where
the gray convex hull is H0 0 1

0 1

0 1

(a) (b)

(c)

b

this efficiently, we consider three different cases of shape changes of Ht: Ht changes
while mt moves along the segment m0m1.

– case 1: m1 ∈ H0 (Fig. 15a).
– case 2: m1 /∈ H0 and the line defined by m0 and m1 intersects the interior of H0

(Fig. 15b).
– case 3: m1 /∈ H0 and the line defined by m0 and m1 does not intersect the interior

of H0 (Fig. 15c).

6.1.1 Convex hull events

While we move mt, there are different types of events at which the combinatorial
structure of Ht changes. Let a denote the smallest t that mt is in CH(Qm) and b
denote the largest t that mt is in H0. Clearly, b is always defined and 0 ≤ b ≤ 1.
However, a may not be defined in the interval 0 ≤ t ≤ 1. If a is defined within the
interval, a < b .

For case 1, if m0 is not a vertex of H0, then H0 remains the same for 0 ≤ t ≤ 1, so
there is nothing to do in this case. Now assume that m0 is a vertex of H0. This implies
that m0 /∈ CH(Qm). If m1 ∈ CH(Qm), a is defined such that ma is the intersection of
the segment m0m1 and CH(Qm). So there is an event at t = a. Otherwise, a is not
defined. Furthermore, we define another type of events. There is an event at t if a
supporting line of CH(Qm) crosses m0ma.

For case 2, b is always defined. If m0 is a vertex of H0, we consider the segment
m0mb and define events as for case 1. We define an event at t = b where the segment

Fig. 16 Events where the
combinatorial structure
of Ht changes

0 1a b

(Qm)

mmmm

Geoinformatica (2011) 15:665–697 683

m0m1 crosses an edge of H0 at mb . We also define the following events in the interval
b < t < 1: there is an event at t if a supporting line of CH(Qm) crosses mb m1 at mt.

For case 3, we define an event at t if a supporting line of CH(Qm) crosses m0m1.
Figure 16 illustrates all three cases of events. The gray region is CH(Qm). Two

points ma and mb are events at t = a and at t = b , respectively. Three small squares
on m0m1 are events where a supporting line of CH(Qm) intersects m0ma or mb m1.

Consider the set of all event points, excluding ma and mb . We connect each event
point in the set to the closer vertex of its corresponding edge of CH(Qm). For m0 and
m1, we connect them by line segments to vertices of CH(Qm) where the segments are
tangent to CH(Qm). Then we get a set of triangles as shown in Fig. 16. Consider a
triangle. The base of the triangle is defined by two event points, say mi and m j (i < j),
and we denote the triangle by di. While mt moves from t = i to t = j, the moving edge
of Ht inside the triangle incident to mt either adds area to Ht or removes area from
Ht. If it adds area to Ht, then it is called an increasing triangle. Otherwise it is called
a decreasing triangle.

For simplicity of presentation, we consider triangles that lie above m0m1 only from
now on. The triangles lying below m0m1 can be handled analogously. We have the
following two lemmas, which are straightforward because all event points are on
a line.

Lemma 9 If a triangle d j is increasing, then CH(d j ∪ {m0}) contains all increasing
triangles di with i < j. Moreover, CH(d j ∪ {m0}) ∩ dk = φ for every increasing triangle
with k > j.

Lemma 10 If a triangle d j is decreasing, then CH(d j ∪ {m1}) contains all decreasing
triangles dk with j < k. Moreover, CH(d j ∪ {m1}) ∩ di = φ for every increasing triangle
with i < j.

6.2 Seed skyline algorithm for a moving query

We sort the increasing triangles lying above m0m1 in the order of their base sides
along m0m1. We also sort the decreasing triangles lying above m0m1 analogously.

Let p a point that belongs to S \ (S0 ∩ S1). Then p belongs to either S0 \ S1 or
S \ S0. In both cases, we need to find for each p the smallest t where p is a seed
skyline, or the largest t where p is a seed skyline, or both. At such t, Ht is tangent to
V(p). Specifically, a moving edge of Ht crosses a vertex of V(p) or the moving vertex
mt of Ht crosses an edge of V(p) at such t.

We first handle the case that p ∈ S0 \ S1. This means that p is a seed skyline at
t = 0, but p is not a seed skyline at t = 1. Our goal is to find the largest t where p is a
seed skyline. To do this we test whether m0m1 intersect V(p). If it does, let t′ be such
that mt′ is the last intersection point. Then we find the last triangle d that intersects
V(p) among decreasing triangles lying above m0m1. By Lemma 10, this can be done
using binary search. Within d, we find the vertex of V(p) where a moving edge of Ht

becomes tangent to V(p). This can also be done by binary searching on the vertices
of V(p) that lie in d, because V(p) is convex. Let t′′ be such that an edge of Ht′′ is
tangent to V(p) within d. Note that there may be no such t′′, and if this is the case we
set t′′ = 0. Then max{t′, t′′} is the largest t where p is a seed skyline.

684 Geoinformatica (2011) 15:665–697

Consider now the second case that p ∈ S \ S0. This means that p is not a seed
skyline at t = 0, but p becomes a seed skyline at some t > 0. Possibly, it may become
a non-seed skyline again later. Our goal is to find the smallest t where p is a seed
skyline and, if exists, the largest t where p is a seed skyline. To do this we test whether
m0m1 intersects V(p). If it does, let t′ be such that mt′ is the first intersection point.
Then we find the first triangle d that intersects V(p) among increasing triangles lying
above m0m1. By Lemma 9, this can be done by binary searching. Within d, we find
the vertex of V(p) where a moving edge of Ht becomes tangent to V(p) for the first
time, as for the first case. Let t′′ be such that an edge of Ht′′ is tangent to V(p) within
d for the first time. Note that there may be no such t′′, and if this is the case we
set t′′ = 1. Then min{t′, t′′} is the smallest t where p is a seed skyline. As mentioned
earlier, p may become a non-seed skyline again later. If this is the case, we need to
find the largest t where p is a seed skyline. This can be handled as for the first case.

Now we analyse the time complexity of the algorithm. Computing S, S0 and S1

takes O((|S| + |Q|) log |P|) time. Once computing CH(Qm) in O(|Q| log |Q|) time,
we can find the the intersection of m0m1 with CH(Qm) in O(log |CH(Qm)|) time.
Then increasing and decreasing triangles can be constructed in time O(|CH(Qm)|),
by traversing the edges of CH(Qm) along its boundary and computing the in-
tersection points of their supporting lines with m0m1. This gives sorted lists
of increasing and decreasing triangles. Binary searching on a list of triangles
takes O(log |CH(Qm)| · log |V(p)|) time for a candidate p ∈ S, so in total O(|S| ·
log |CH(Qm)| · log |P|) time for all candidates in S. Within a triangle, binary search on
the vertices of V(p) can be done in O(log |V(p)|) time for p, so in total O(|S| · log |P|)
time for all candidates in S. The intersection of V(p) and m0m1 can also be done in
O(log |V(p)|) time for p, so in total O(|S| · log |P|) time for all candidates in S.

In the worst case O(|V(p)|) = O(|P|), so the total time complexity for our
algorithm is O((|S| log |CH(Qm)| + |Q|) log |P|).

7 Implementation

In this section, we discuss the implementation details of the proposed algorithms,
including how to compute and store the Voronoi diagram (Section 7.1) and the query
convex hull (Section 7.2) to optimize the implementation of our proposed algorithms.

7.1 Voronoi diagram

First, we discuss how we construct the Voronoi diagram and the Delaunay graph for
the data points. As both structures have been studied extensively, many algorithms
and implementations are already available, including ‘Qhull’ [28] which we adopt for
our implementation. However, it is challenging to store the resulting diagram and
graph in such a way that the spatial skyline query computation can be optimized. To
achieve the goal, we store the Voronoi cells and Delaunay graph edges as follows:

– cells: As each Voronoi cell is a convex region, we take advantage of the convexity
and store the vertices of each cell in an increasing angular order from one point,
which preserves the adjacency of vertex pairs in the cell.

Geoinformatica (2011) 15:665–697 685

– edges: Every edge of a Voronoi cell is shared by a neighboring Voronoi cell. To
represent the Delaunay graph, for each edge vivi+1, from a vertex vi of a Voronoi
cell, we need to store the pointer to the neighboring cell that share the edge.

Using this structure, we can exploit the convexity of a Voronoi region and the
Delaunay graph discussed above, by reading only one Voronoi cell block from the
file. To find a specific Voronoi cell block, we maintain a file pointer for each Voronoi
cell block.

7.2 Convex hull

To compute the convex hull CH(Q), we use Graham’s scan algorithm [24]. By using
a binary search technique, the dominance test can be done in O(log |CH(Q)|) time,
as discussed in Lemma 4. We implement the test as follows.

Remember that we denote the bisector of two data points, p1 and p2, by
�⊥(p1, p2). As discussed in Section 4.2, we can determine the dominance of two data
points by testing whether �⊥(p1, p2) intersects CH(Q) or not. If �⊥(p1, p2) intersects
CH(Q), at least one vertex of the upper chain of CH(Q) lies above �⊥(p1, p2), and
one vertex of the lower chain of CH(Q) lies below �⊥(p1, p2) (Fig. 9). Let ei and
ei+1 be two edges of the upper chain that share a vertex qi such that �⊥(p1, p2) has
a slope in between the maximum and the minimum of the slopes of ei and ei+1. If
�⊥(p1, p2) intersects CH(Q), then qi lies strictly above �⊥(p1, p2) by convexity of
CH(Q). We can use a similar argument for the lower chain of CH(Q). Because the
upper and the lower chain of CH(Q) is sorted in the increasing order of the slopes
of the edges, we can find these two vertices by using a binary search on the slopes
of edges. After finding these two vertices in O(log |CH(Q)|), we can determine the
dominance in constant time. When CH(Q) is small, a linear search may outperform
a binary search, and we use a linear search in this case.

7.3 VS2c and VS2j

As baselines to compare with our proposed algorithms, we use both VS2c [6]
and VS2j [7]. We implement the algorithms using the same implementation of the
R∗-tree [29] and the Voronoi diagram we use to implement our proposed algorithms,
to ensure fairness in empirical comparisons. To construct the convex hull, we use the
same implementation as for our proposed algorithms, except that, to accommodate
the complexity O(|CH(Q)|) dominance test discussed in the papers proposing the
both algorithms [6, 7], we use a linear scan.

In our implementation, an R∗-tree is used to find the closest point to one query
point. The leaves of the R∗-tree contain Voronoi cells that are each packed by MBRs,
so that we can easily obtain candidate Voronoi cells containing a query point.

However, as shown in Section 3.4, VS2c may fail to find all the spatial skyline
points in some cases. Our implementation of VS2c is revamped to eliminate these
cases. Specifically, we remove one condition. For some p ∈ P, if all its Voronoi
neighbors and all their Voronoi neighbors are spatially dominated by other points,
then the original VS2c does not test p ∈ P, but we implement VS2c to test this point
to find all skyline points.

686 Geoinformatica (2011) 15:665–697

7.4 Exact spatial skyline (ES)

Our implementation of the exact algorithm does not strictly follow Algorithm Exact-
Skyline. Instead, it works in a hybrid manner involving Algorithms ExactSkyline and
ApproximateSkyline to further reduce the computational cost.

7.4.1 Bypassing the dominance tests using the Voronoi diagram

By combining Algorithms ExactSkyline and ApproximateSkyline, we can retrieve all
of the spatial skyline points more efficiently than with ExactSkyline alone. Instead of
testing the dominance for all data points, we can find seed skylines using Approxi-
mateSkyline efficiently, and then find the other skyline points using ExactSkyline. We
present the combined EnhancedExactSkyline algorithm that results from this idea as
follows:

Algorithm EnhancedExactSkyline Input: P, Q
Output: S
1. initialize the array A and the list S
2. compute CH(Q)

3. S ←ApproximateSkyline(P, Q)

4. A ←the distances from a vertex q of CH(Q) to every data point
5. sort A in an ascending order
6. for i ← 0 to |P| − 1
7. do if A[i] is not in S
8. then if A[i] is not spatially dominated by S
9. then insert A[i] to S
10. return S

The asymptotic time complexity of EnhancedExactSkyline is the same as that of
ExactSkyline. In practice, however, by bypassing the dominance test for the seed
skylines, it performs much better than ExactSkyline.

Consequently, ES works as follows. First, it computes the Voronoi cells intersect-
ing the boundary of the query convex hull and finds all the Voronoi cells lying in
the convex hull by traversing the Delaunay graph. In this process, we restrict the
search region for the rest of the skyline points to the bounding box containing |Q|
circles for |Q| query points (Fig. 10). More precisely, we set the bounding box as the
intersection of all bounding boxes defined by the skyline subset found so far. After
that, we get a list of the candidates in this bounding box by using the R∗-tree. We sort
the list in an ascending order of the candidates’ distances to a query point and process
them one by one in this order. When we find a new skyline point, we reduce the size
of the bounding box by taking the intersection of the current bounding box with the
bounding box of this new skyline point. During the process, if some candidate point
is not contained in the bounding box then we can simply skip the dominance test.

7.5 Approximate spatial skyline (AS)

We implement ApproximateSkyline as follows. We first precompute the Voronoi
diagram and the Delaunay graph of the data points. We then store them in the form
of the file mentioned in Section 7.1. We use the R∗-tree to find the point closest to one

Geoinformatica (2011) 15:665–697 687

query point. As we only need to see each Voronoi cell at most once while traversing
the Delaunay graph of data points, we read it from the file when it is required and
deallocate it from memory after passing it by. After finding all the Voronoi cells
intersected by the boundary of CH(Q), as discussed in Section 5.3, we find all the
Voronoi cells lying in CH(Q) by using a breadth-first search on the Delaunay graph.

7.6 Continuous approximate spatial skyline (CAS)

We also implement the continuous approximate spatial skyline algorithm, CAS,
proposed in Section 6. Our implementation of CAS is mostly based on that of AS,
as CAS uses AS as its substructure.

8 Experiments

In this section, we outline our experimental settings, and present evaluation results
to validate the efficiency and effectiveness of our framework. We compare our
algorithms for exact spatial skylining and approximate spatial skylining with VS2c
and VS2j, and we also evaluate our continuous approximation algorithm CAS. As
datasets, we use both synthetic datasets and a real dataset of points of interest (POI)
in California.1 We carried out our experiments on a Pentium IV PC running on Linux
with a Pentium IV 3.2 GHz CPU and 1 GB of memory, and all the algorithms were
coded in C++.

8.1 Experiment settings

8.1.1 Synthetic dataset

A synthetic dataset contains up to one million uniformly distributed random loca-
tions in a 2D space. The space of the datasets is limited to the unit space, i.e., the
upper and lower bound of all points are 0 and 1 for each dimension, respectively.
Specifically, we use five synthetic datasets with 50 K, 100 K, 200 K, 500 K, and 1 M
uniformly distributed points.

Using the synthetic datasets, we investigate the effect of the number of points in
a query |Q|, distribution of the points in a query σ , and dataset cardinality |P|. The
parameters used in the experiments are summarized in Table 1.

The queries are generated using the following steps: (1) We randomly generate
a reference point then (2) generate the query points, normally distributed around
the reference. Specifically, we generate points that are normally distributed, with the
mean as the reference point and the deviation (distance from the reference) as a user-
specified parameter σ , which varies between 0.02 and 0.10. That is, high σ produces
points scattered over a wide area, low σ produces points clustered in a small area.
Each query consists of up to 40 points to test scalability, though queries of a small
number of points may useful in practice. We generate one hundred queries for each
setting and measured the average execution times of all algorithms.

1Available at http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

688 Geoinformatica (2011) 15:665–697

Table 1 Parameters used for synthetic datasets

Parameter Setting (default value is underlined)

Dimensionality 2
Dataset cardinality 50 K, 100 K, 200 K, 500 K, 1 M
The number of points in a query 3, 5, 10, 15, 20, 40
Standard deviation of points in a query 0.02, 0.04, 0.06, 0.08, 0.10

8.1.2 POI dataset

We also validate our proposed framework using a real-life dataset. Specifically, we
use a POI dataset, which consists of 104,770 locations with 63 different categories in
California. Figure 17 shows the characteristics of this POI dataset.

For this POI dataset, we investigate the effect of |Q| and σ . We generate the
queries similarly, by randomly picking one data point as a reference point and
generating query points to be normally distributed around the reference point, in
the same way we generate queries for synthetic datasets. The reason we pick the
reference point from the data points, instead of generating a random point, is to
avoid generating queries to regions with no data points (such as the blank regions in
Fig. 17). We generate one hundred queries for each setting, by varying the number
of query points in a range from 3 to 40 and a standard deviation between 0.02 to 0.10,
just as in our synthetic data point generation.

8.2 Efficiency of ES and AS

We first validate the efficiency of ES and AS, over varying values of |P|, |Q|, and σ .
Figure 18a and b show the effect of dataset cardinality on the query execution time,
and the number of dominance tests.

In Fig. 18a, our proposed algorithm ES outperforms both VS2c and VS2j. Pre-
cisely, ES performs up to 80 times faster than VS2j. Meanwhile, our approximation
algorithm AS outperforms ES several times. In a similar fashion to this, in Fig. 18b,
ES performs a significantly smaller number of dominance tests than VS2c does,

Fig. 17 10,000 sampled
points from the California’s
POI dataset

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Geoinformatica (2011) 15:665–697 689

100K 500K 1M
10

-2

10
-1

10
0

10
1

10
2

of data

T
im

e
(s

)

VS2j VS2c ES AS

50K 100K 200K 500K 1M
0

1

2

3

x 10
7

of data

of

 d
om

in
an

ce
 te

st
s

VS2j
VS2c
ES

100K 500K 1M
10

5

10
6

10
7

10
8

10
9

of data

of

 d
om

in
an

ce
 te

st
s

Voronoi cell test
Point test

(a) Execution time (b) Dominance tests (c) Dominance tests of VS2j

Fig. 18 Effect of the dataset cardinality for synthetic datasets

by bypassing dominance tests for skyline points whose Voronoi cells intersect the
boundary of CH(Q). This type of saving is more prominent between skyline points,
as the number of the dominance tests for skyline points is significantly higher. Note
that AS is not reported in the graph, as it does not perform any dominance test.

We can also observe from Fig. 18b that VS2j performs a slightly smaller number of
dominance tests than VS2c does. For VS2j in Fig. 18b, we only report the number of
spatial dominance tests for data points, except the tests for Voronoi cells discussed
in Section 3.4. Meanwhile, Fig. 18c shows the number of spatial dominance tests for
data points as well as Voronoi cells, performed by VS2j. As shown in Fig. 18c, VS2j
performs a hundred-fold larger number of tests for Voronoi cells, than data points.
Even though a spatial dominance test for a Voronoi cell is not quite expensive than
for a point, this large number of tests incurs low performance of VS2j, as reported in
Fig. 18a.

Figure 19 shows the effect of |Q| on the query execution time, and the number
of dominance tests. We observe similar trends as those shown in Fig. 18, except that
the execution time and the number of dominance tests scale more gracefully over
increasing |Q| values. This can be explained by the fact that all four algorithms use
CH(Q), instead of Q itself, the size of which grows much more gradually than that
of Q. For instance, even when |Q| doubles, the size of the convex hull may not change
much, if the deviation σ stays the same. Observe that, AS scales much gracefully over
|Q|, by eliminating the dominance tests.

Figure 20 shows the influence of σ . In a similar fashion to previous results, ES
and AS significantly outperform VS2c and VS2j in terms of execution time and

3 5 10 15 20 40
10

-1

10
0

10
1

10
2

of points in a query

T
im

e
(s

)

VS2j VS2c ES AS

3 5 10 15 20 40
0

1

2

3

x 10
7

of points in a query

of

 d
om

in
an

ce
 te

st
s

VS2j
VS2c
ES

3 5 10 15 20 40
10

6

10
7

10
8

10
9

of points in a query

of

 d
om

in
an

ce
 te

st
s

Voronoi cell test
Point test

(a) Execution time (b) Dominance tests (c) Dominance tests of VS2 j

Fig. 19 Effect of the number of query points for synthetic datasets

690 Geoinformatica (2011) 15:665–697

0.02 0.04 0.06 0.08 0.10
10

-1

10
-0

10
1

10
2

10
3

σ

T
im

e
(s

)

VS2j VS2c ES AS

0.02 0.04 0.06 0.08 0.10
0

1

2

3 x 10
8

σ

of

 d
om

in
an

ce
 te

st
s

VS2j
VS2c
ES

0.02 0.04 0.06 0.08 0.10
10

6

10
7

10
8

10
9

10
10

σ

of

 d
om

in
an

ce
 te

st
s

Voronoi cell test
Point test

(a) Execution time (b) Dominance tests (c) Dominance tests of VS2j

Fig. 20 Effect of σ of a query for synthetic datasets

dominance tests. In this case, however, we note that the execution time is more
sensitive to σ . The number of dominance tests increases much faster as σ increases,
than |Q|, because the size of CH(Q) may increase quadratically as σ increases. For
example, when σ increases from 0.04 to 0.08 (two-fold), the circle area containing
the points within the 95% confidence interval increases four-fold (i.e., quadratically)
and so does the area of CH(Q) (and the points within it). As these types of points
are guaranteed to be skyline points, this observation suggests a reason for why the
number of dominant tests increases faster.

In other words, it also can be explained by imagining a transformed |CH(Q)|-
dimensional space, where |CH(Q)| means the number of vertices of CH(Q), and
attribute values are distances from the vertices. Then the transformed data tend to be
“anti-correlated,” as σ increases. For skyline query processing, anti-correlation neg-
atively affects the overall performance, because the size of skyline results increases
considerably. Meanwhile, the performance gaps between AS and others increase
faster as σ increases, because AS eliminates the dominance tests that increase
exponentially over σ .

We perform the same set of experiments on the POI dataset, varying the size of the
query and σ , as displayed in Figs. 21 and 22, respectively. Our observations of these
evaluations are consistent with the corresponding evaluation for synthetic datasets.

3 5 10 15 20 40
10

-2

10
-1

10
0

10
1

10
2

of points in a query

T
im

e
(s

)

VS2j VS2c ES AS

3 5 10 15 20 40
0

5

10

15 x 10
6

of points in a query

of

 d
om

in
an

ce
 te

st
s

VS2j
VS2c
ES

3 5 10 15 20 40
10

6

10
7

10
8

10
9

of points in a query

of

 d
om

in
an

ce
 te

st
s

Voronoi cell test
Point test

(a)Execution time (b) Dominance tests (c) Dominance tests of VS2 j

Fig. 21 Effect of the number of query points for the POI dataset

Geoinformatica (2011) 15:665–697 691

0.02 0.04 0.06 0.08 0.10
10

-2

10
-1

10
0

10
1

10
2

σ

T
im

e
(s

)

VS2j VS2c ES AS

0.02 0.04 0.06 0.08 0.10
0

2

4

6

x 10
7

σ

of

 d
om

in
an

ce
 te

st
s

VS2j
VS2c
ES

0.02 0.04 0.06 0.08 0.10
10

6

10
7

10
8

10
9

σ

of

 d
om

in
an

ce
 te

st
s

Voronoi cell test
Point test

(a) Execution time (b) Dominance tests (c) Dominance tests of VS2j

Fig. 22 Effect of σ of a query for the POI dataset

8.3 Effectiveness of AS

In this section, we validate the effectiveness of AS, which is the most efficient
algorithm of the four algorithms in our efficiency evaluation discussed in Section 8.2.

To quantify the quality of the approximate results, we first compared the results
of ES and AS in Figs. 23 and 24. Recall that, the results from AS are guaranteed to
be skyline points. From the figures, we can observe that AS identifies 91.9% of the
skyline points on average, with a much lower computational cost than ES.

Secondly, we compared the results of AS with the k most representative skyline
points maximizing Eq. 1, which were obtained by setting k as the number of results
from our approximation algorithm. Due to the computational overhead of computing
these k representative skyline points, we only conducted small scale experiments on
the approximation quality of our algorithm. In this set of experiments, we evaluated
15 queries with three query points on a dataset containing 10 thousand randomly
generated points. Five queries for each were generated to acquire 20, 25, or 30 skyline
results. Table 2 shows the results of these experiments. Precision was computed as

Precision = |optimal sub-skyline ∩ approximate skyline|
|approximate skyline| .

Recall is identical to precision as |optimal sub-skyline| = |approximate skyline| = k.

50K 100K 200K 500K 1M
0

1K

2K

3K

4K

5K

of data

of

 s
pa

tia
l s

ky
lin

e
po

in
ts

ES
AS

3 5 10 15 20 40
0

2K

4K

6K

of points in a query

of

 s
pa

tia
l s

ky
lin

e
po

in
ts

ES
AS

0.02 0.04 0.06 0.08 0.10
0

4K

8K

12K

14K

of

 s
pa

tia
l s

ky
lin

e
po

in
ts

ES
AS

(a) (b) (c)

Fig. 23 Quality of approximate skylines in synthetic datasets

692 Geoinformatica (2011) 15:665–697

Fig. 24 Quality of
approximate skylines
in the POI dataset

3 5 10 15 20 40
0

1K

2K

3K

4K

of points in a query

of

 s
pa

tia
l s

ky
lin

e
po

in
ts

ES
AS

0.02 0.04 0.06 0.08 0.10
0

2K

4K

6K

8K

σ

of

 s
pa

tia
l s

ky
lin

e
po

in
ts

ES
AS

(a) (b)

8.4 Efficiency of CAS

To validate the efficiency of CAS, we perform a set of experiments over varying
speed |vq| of a query point. For this set of experiments, the initial locations of queries
are generated using the same process used for generating queries for synthetic data
in Section 8.1. For each setting of |vq|, we generate one hundred queries consisting
of 10 points for each, and σ = 0.04. For each query, we pick a point to move, and
randomly choose the direction of the point picked. Then the speed of the point is set
to |vq|. We assume that all queries expire after a unit time, that is, the point moves |vq|
length in the chosen direction. |vq| varies between 0.01 and 0.05. Figure 25 reports the
execution time and the number of skyline changes over varying |vq|, using a synthetic
dataset.

Figure 25a shows the time for finding initial skyline points, the skyline points at
the time when the query is established, as well as the time for tracing all skyline
changes until the query expires. Figure 25b shows the average number of skyline
changes for each setting. To combine the both results, Fig. 25c shows the average
time to handle one skyline change. The average time is computed both including
and excluding the time for finding initial skyline points. Observe from the figure
that, CAS is not sensitive to |vq|, which suggests that CAS would be robust to fast
moving queries, or long query life-times, i.e., query points moves long distance until

Table 2 Approximation
effectiveness

|skyline| k = |approximate skyline| Precision (recall)

20 10 1.000
13 1.000
14 1.000
16 1.000
17 1.000

25 11 0.727
16 1.000
17 1.000
21 0.952
21 1.000

30 17 0.882
18 0.889
21 0.905
21 0.952
23 1.000

Geoinformatica (2011) 15:665–697 693

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

Query point speed

T
im

e
(s

)

Finding initial skylines
Tracing skyline changes

q # of changes
0.01 82.50
0.02 184.51
0.03 285.13
0.04 374.83
0.05 533.66

0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5 x 10
–3

Query point speed

T
im

e
(s

)

w/ initial skyline search
w/o initial skyline search

(a) Time to trace all changes (b) Number of changes (c)Time per one change

Fig. 25 Efficiency of CAS over varying speed of a query point. 500 K points synthetic dataset

the queries expire. In addition, when |vq| = 0.05, CAS only took twice longer time in
total than the time for finding initial skyline points, though the skyline results change
more than 500 times. To put it simply, to obtain the same results of CAS using only
AS, we need to execute AS more than 500 times. This suggests that CAS is hundreds-
fold efficient than a naive adoption of AS, i.e., executing AS whenever the skyline
results may change.

We also perform the same set of experiments on the POI dataset, and Fig. 26
reports the results. For these experiments, the initial locations of queries are gener-
ated in the same way used for the POI dataset in Section 8.1, and the movements of
queries are decided in the way as we do for the synthetic dataset. Our observation of
this evaluation is roughly consistent with the evaluation for the synthetic dataset.

Compared to Fig. 25, the time for finding initial skylines takes a relatively smaller
portion in Fig. 26a. The reason is that the cardinality of the POI dataset is fairly
smaller than that of the synthetic dataset used in Fig. 25. This leads to reduce the
time for finding initial skylines considerably, however, the time for tracing skyline
changes has not changed much because skyline changes still occur frequently, like
the case of the synthetic data.

0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

Query point speed

T
im

e
(s

)

Finding initial skylines
Tracing skyline changes

q # of changes
0.01 59.70
0.02 99.81
0.03 184.11
0.04 220.52
0.05 414.33

0.01 0.02 0.03 0.04 0.05
0

1

2

3 x 10
–3

Query point speed

T
im

e
(s

)

w/ initial skyline search
w/o initial skyline search

(a) Time to trace all changes (b)Number of changes (c) Time per one change

Fig. 26 Efficiency of CAS over varying speed of a query point. POI dataset

694 Geoinformatica (2011) 15:665–697

9 Conclusion and discussion

We have studied spatial skyline query processing and presented an efficient and
correct algorithm. We showed that our algorithm can identify the correct result in

O(|P|(|S| log |CH(Q)| + log |P|))
time. We also developed an approximation algorithm, and extended the approxi-
mation algorithm to trace skyline changes while a query point moves. Lastly, we
empirically validated our proposed algorithms. Our exact spatial skyline algorithm,
ES, outperforms VS2j, up to nearly a hundred-fold.

So far we have assumed that the points lie in 2-dimensional space, and shown
how to efficiently retrieve the spatial skyline points using some geometric structures
such as the convex hull and the Voronoi diagram of points in the plane. We will
now turn our attention to higher dimensional skyline queries. All the definitions,
lemmas, and algorithms described in this paper generalize for higher dimensions:
For a set of n points in a d-dimensional space, the Voronoi diagram of the points has
�(n�d/2�) combinatorial complexity [30] and can be computed in O(n log n + n�d/2�)
time [31–33]. The convex hull of those points has �(n�d/2�) combinatorial complexity
(by the so-called Upper Bound Theorem) and can be computed in �(n�d/2�) expected
time [24]. The dominance test, which the intersection query of a line with a convex
polygon used in Section 4.2, can be generalized for higher dimensions, as an intersec-
tion query of a hyperplane with a convex polyhedron in higher dimensions. Similarly,
the intersection of an edge with the Voronoi diagram can also be generalized as the
intersection of a d − 1-face with the Voronoi diagram in d-dimensional space.

Acknowledgement This research was supported by the National IT Industry Promotion Agency
(NIPA) under the program of Software Engineering Technologies Development.

References

1. Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors. J ACM
22(4):469–476

2. Börzsönyi S, Kossmann D, Stocker K (2001) The skyline operator. In: ICDE ’01: Proceedings of
the 17th international conference on data engineering. Washington, DC, USA. IEEE Computer
Society, New York, pp 421–430

3. Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline computation. In: VLDB ’01:
Proceedings of the 27th international conference on very large data bases. San Francisco, CA,
USA. Morgan Kaufmann, San Mateo, pp 301–310

4. Papadias D, Tao Y, Fu G, Seeger B (2003) An optimal and progressive algorithm for skyline
queries. In: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on
management of data. New York, NY, USA. ACM, New York, pp 467–478

5. Chomicki J, Godfery P, Gryz J, Liang D (2003) Skyline with presorting. In: ICDE ’03: Proceed-
ings of the 19th international conference on data engineering. IEEE Computer Society, New
York, pp 717–816

6. Sharifzadeh M, Shahabi C (2006) The spatial skyline queries. In: VLDB ’06: Proceedings of the
32nd international conference on very large data bases. VLDB Endowment, pp 751–762

7. Sharifzadeh M, Shahabi C, Kazemi L (2009) Processing spatial skyline queries in both vector
spaces and spatial network databases. ACM Trans Database Syst 34(3):1–45

8. Lin X, Yuan Y, Zhang Q, Zhang Y (2007) Selecting stars: the k most representative skyline
operator. In: ICDE ’07: Proceedings of the 23rd international conference on data engineering,
pp 86–95

Geoinformatica (2011) 15:665–697 695

9. Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the sky: an online algorithm for skyline
queries. In: VLDB ’02: Proceedings of the 28th international conference on very large data bases.
VLDB Endowment, pp 275–286

10. Godfrey P, Shipley R, Gryz J (2005) Maximal vector computation in large data sets. In VLDB ’05:
Proceedings of the 31st international conference on very large data bases. VLDB Endowment,
pp 229–240

11. Chan CY, Jagadish HV, Tan K-L, Tung AKH, Zhang Z (2006) On high dimensional skylines.
In: EDBT ’06: Proceedings of the 10th international conference on extending database technol-
ogy, pp 478–495

12. Chan C-Y, Jagadish HV, Tan K-L, Tung AKH, Zhang Z (2006) Finding k-dominant skylines in
high dimensional space. In: SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international
conference on management of data. New York, NY, USA. ACM, New York, pp 503–514

13. Huang Z, Lu H, Ooi BC, Tung AKH (2006) Continuous skyline queries for moving objects.
IEEE Trans Knowl Data Eng 18(12):1645–1658

14. Lee M-W, Hwang S-w (2009) Continuous skylining on volatile moving data. In: ICDE ’09:
Proceedings of the 2009 IEEE international conference on data engineering. Washington, DC,
USA. IEEE Computer Society, New York, pp 1568–1575

15. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. SIGMOD Rec 24(2):
71–79

16. Berchtold S, Böhm C, Keim DA, Kriegel H-P (1997) A cost model for nearest neighbor search
in high-dimensional data space. In: PODS ’97: Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on principles of database systems. New York, NY, USA. ACM,
New York, pp 78–86

17. Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaning-
ful? In: ICDT ’99: Proceedings of the 7th international conference on database theory. London,
UK. Springer, Berlin, pp 217–235

18. Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query point. In: SSTD ’01:
Proceedings of the 7th international symposium on advances in spatial and temporal databases.
London, UK. Springer, Berlin, pp 79–96

19. Benetis R, Jensen CS, Karciauskas G, Saltenis S (2002) Nearest neighbor and reverse nearest
neighbor queries for moving objects. In: IDEAS ’02: Proceedings of the 2002 international
symposium on database engineering & applications. Washington, DC, USA. IEEE Computer
Society, New York, pp 44–53

20. Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: VLDB ’02: Pro-
ceedings of the 28th international conference on very large data bases. VLDB Endowment,
pp 287–298

21. Raptopoulou K, Papadopoulos AN, Manolopoulos Y (2003) Fast nearest-neighbor query
processing in moving-object databases. Geoinformatica 7(2):113–137

22. Papadias D, Tao Y, Mouratidis K, Hui CK (2005) Aggregate nearest neighbor queries in spatial
databases. ACM Trans Database Syst 30(2):529–576

23. Huang X, Jensen CS (2004) In-route skyline querying for location-based services. In: Proceedings
of the international workshop on web and wireless geographical information systems (W2GIS),
pp 120–135

24. de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry: algorithms
and applications, 3rd edn. Springer, Berlin

25. Bentley JL, Kung HT, Schkolnick M, Thompson CD (1978) On the average number of maxima
in a set of vectors and applications. J ACM 25(4):536–543

26. Rockafellar RT (1996) Convex analysis. Princeton University Press, Princeton
27. Matoušek J (2002) Lectures on discrete geometry. Springer, Berlin
28. Barber B (1995) Qhull code for convex hull, delaunay triangulation, voronoi diagram, and

halfspace intersection about a point. http://www.qhull.org/
29. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust

access method for points and rectangles. SIGMOD Rec 19(2):322–331
30. Klee V (1980) On the complexity of d-dimensional Voronoi diagrams. Arch Math 34:75–80
31. Chazelle B (1991) An optimal convex hull algorithm and new results on cuttings (extended

abstract). In: SFCS ’91: Proceedings of the 32nd annual symposium on foundations of computer
science. Washington, DC, USA. IEEE Computer Society, New York, pp 29–38

32. Clarkson KL, Shor PW (1989) Applications of random sampling in computational geometry, II.
Discrete Comput Geom 4(5):387–421

33. Seidel R (1991) Small-dimensional linear programming and convex hulls made easy. Discrete
Comput Geom 6(5):423–434

http://www.qhull.org/

696 Geoinformatica (2011) 15:665–697

Mu-Woong Lee is a Ph.D. candidate student in the Department of Computer Science and
Engineering at POSTECH, Korea.

Wanbin Son is a Ph.D. candidate student in the Department of Computer Science and Engineering
at POSTECH, Korea.

Hee-Kap Ahn is an assistant professor in the Department of Computer Science and Engineering at
POSTECH, Korea.

Geoinformatica (2011) 15:665–697 697

Seung-won Hwang is an assistant professor in the Department of Computer Science and Engineering
at POSTECH, Korea.

	Spatial skyline queries: exact and approximation algorithms
	Abstract
	Introduction
	Related work
	Skyline computationQ2
	Spatial query processingQ2

	Preliminaries
	Convex hull
	Voronoi diagram and Delaunay graph
	Spatial skyline queries
	Existing approaches

	Exact algorithm
	Properties of spatial skylines
	Efficient spatial dominance test
	Bounding the number of dominance tests

	Approximation
	Desirability property
	BaselineQ2

	Our approximationQ2
	Approximation algorithmQ2

	Continuous approximate spatial skyline algorithm
	Events
	Convex hull eventsQ2

	Seed skyline algorithm for a moving query

	Implementation
	Voronoi diagram
	Convex hull
	VS2c and VS2j
	Exact spatial skyline (ES)
	Bypassing the dominance tests using the Voronoi diagramQ2

	Approximate spatial skyline (AS)
	Continuous approximate spatial skyline (CAS)

	Experiments
	Experiment settings
	Synthetic datasetQ2
	POI datasetQ2

	Efficiency of ES and AS
	Effectiveness of AS
	Efficiency of CAS

	Conclusion and discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

