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Abstract Recently, several techniques have been proposed to protect the user
location privacy for location-based services in the Euclidean space. Applying these
techniques directly to the road network environment would lead to privacy leakage
and inefficient query processing. In this paper, we propose a new location anonymiza-
tion algorithm that is designed specifically for the road network environment. Our
algorithm relies on the commonly used concept of spatial cloaking, where a user
location is cloaked into a set of connected road segments of a minimum total length L
including at least K users. Our algorithm is “query-aware” as it takes into account the
query execution cost at a database server and the query quality, i.e., the number of
objects returned to users by the database server, during the location anonymization
process. In particular, we develop a new cost function that balances between the
query execution cost and the query quality. Then, we introduce two versions of
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our algorithm, namely, pure greedy and randomized greedy, that aim to minimize
the developed cost function and satisfy the user specified privacy requirements.
To accommodate intervals with a high workload, we introduce a shared execution
paradigm that boosts the scalability of our location anonymization algorithm and
the database server to support large numbers of queries received in a short time
period. Extensive experimental results show that our algorithms are more efficient
and scalable than the state-of-the-art technique, in terms of both query execution
cost and query quality. The results also show that our algorithms have very strong
resilience to two privacy attacks, namely, the replay attack and the center-of-cloaked-
area attack.

Keywords Location privacy · Shared execution · Location-based services ·
Spatial network databases · GIS

1 Introduction

Combining the functionality of map software, location-detection devices, wireless
communication, and database systems results in realizing location-based services as
commercial products and research prototypes. The main promise of location-based
services is to provide services for their users based on their locations. Location-
based services have become a major component in transportation applications (e.g.,
live traffic reports), personal mobile devices (e.g., finding nearby stores or friends),
advertising (e.g., sending e-coupons to nearby customers), and emergency control
(e.g., dispatching ambulance). Recently, it becomes apparent that location-based
services suffer from major privacy leakage where users have to disclose their private
location information to untrustworthy servers. As a result, several techniques have
been proposed to anonymize the user location information through false locations
(e.g., [15, 20, 34]), space transformation (e.g., [10, 19]), or spatial cloaking (e.g., [1–
3, 5–9, 11–14, 18, 24, 32, 33]). In this paper, we focus on the spatial cloaking
technique as it is the most commonly used technique and is applicable to various
problem settings (e.g., distributed/peer-to-peer environments [6, 7, 11, 12], sensor
networks [5, 14], trajectories [33], and continuous queries [3, 32]).

Unfortunately, almost all previously proposed location anonymization techniques
suffer from two main drawbacks: (1) The location anonymization process is designed
completely independent from the underlying query processor. As a result, some of
these techniques may end up anonymizing the user location to an extent where it is
either very inefficient to execute a location-based query as a large number of queries
need to be sent to the server [20] or specialized query processing techniques need to
be developed [4, 10, 18, 19, 24]. (2) All techniques are designed only for the Euclidean
space. Applying these techniques to the road network environment results in privacy
leakage. Figure 1a depicts such a case where user q needs to be four anonymous
with a cloaked area of at least four grid cells. The gray area represents the cloaked
area that could be provided by a location anonymization technique designed for the
Euclidean space (e.g., [1, 9, 13, 18, 24]). With such a cloaked area, an adversary knows
that the user can be anywhere in the gray area. Figure 1b shows the same example
with the drawing of the underlying road network. Since all the four users are in the
same road segment, an adversary can pinpoint the exact road segment of user q.
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Fig. 1 Spatial cloaking for the Euclidean space

Thus, the cloaked area violates the area privacy requirement, i.e., the user cannot be
anywhere in the cloaked area, as the user has to be in a single road segment only.

Although some location anonymization techniques have been proposed to pre-
serve the user location privacy for location-based services in road network environ-
ments [22, 25, 31], they have different limitations. One of these techniques assumes a
system-wide static K-anonymity level for all mobile users [25]. This assumption not
only degrades the quality of services for those mobile users whose desired privacy
requirements can be satisfied by smaller K values, but it also not realistic because
mobile users tend to have varying privacy requirements under different contexts or
on different types of objects of interest [9]. One of existing techniques relies on an
existing Euclidean-based anonymization technique to cloak the user location [22], so
it still suffers from the drawback of the Euclidean-based techniques. The other work
designs a new location anonymization algorithm that considers the query execution
cost, and it supports personalized K-anonymity privacy requirements and shared
execution [31], but the underlying basic star structure degrades the query processing
efficiency and the shared execution has not been fully utilized (i.e., the shared
execution is limited to the queries located on the same road segment).

In this paper, we overcome the above two main drawbacks by proposing a
new location anonymization algorithm that (a) is designed specifically for the road
network environment, and (b) not only aims to satisfy the user privacy requirements,
but it is also “query-aware” as it aims to balance between (1) the query execution cost
at a database server and (2) the query quality (i.e., a smaller set of objects returned
to the user indicates higher query quality). The main idea of our proposed “query-
aware” location anonymization technique is to blur a user location into a cloaked
set of connected road segments S such that S satisfies the user specified privacy
requirements, K-anonymity and minimum length L. The K-anonymity requirement
indicates that S must include at least K users while the minimum length L require-
ment indicates that the total length of all road segments in S must be at least L. As
the database server only knows about a cloaked segment set S as a user’s location
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information, it has to compute an answer set A that includes the exact query answer
should the user be anywhere within S. The smaller the size of the returned answer
set A, the better query quality the server will provide. Thus, the query quality is
measured by the size of the returned answer set. To achieve our goals, we design a
new objective cost function that encapsulates the query execution cost for both k-
nearest-neighbor and range queries with the query quality. Then, the objective of
our road network location anonymization algorithm boils down to finding a cloaked
set of road segments S that minimizes our developed objective cost function while
satisfying the user privacy requirements.

We present two versions of our proposed location anonymization algorithm. The
first version is a pure greedy approach where we repeatedly select road segments
to be included in a cloaked segment set S based on minimizing our developed
objective cost function. Although the pure greedy approach is simple and efficient, its
deterministic property would suffer from a reverse engineering attack, i.e., a replay
attack, where an adversary cracks the system to know the objective cost function and
the produced cloaked segment sets. To avoid such an attack, we propose another
version of our algorithm, termed randomized greedy approach, where we inject some
randomness into the greedy approach. To accommodate for cases of high workloads,
e.g., traffic congestions and rush hours, we propose a shared execution paradigm that
boosts the system scalability in terms of supporting large numbers of queries received
within a short time period. The main idea of the shared execution paradigm is to
maximize the number of shared road segments among the users’ cloaked segment
sets. By doing so, location-based queries at the shared road segments will be executed
only once for multiple queries. In general, the contributions of this paper can be
summarized as follows:

1. We design a new objective cost function that, for a given cloaked set of connected
road segments S, balances between (a) the query execution cost for k-nearest-
neighbor and range queries, and (b) the query quality in terms of the number of
false objects returned to the user (Section 4).

2. We propose two greedy approaches, namely, pure greedy and randomized
greedy, that aim to find a cloaked set of road segments S for a given user such
that (a) our developed cost function is minimized, and (b) the user privacy
requirements are satisfied in terms of K-anonymity and minimum length L
(Section 5).

3. We propose a shared execution paradigm that can be used in conjunction with
our two proposed greedy techniques to accommodate for cases where the server
is overloaded (Section 6).

4. We provide experimental evidence that our proposed algorithms effectively
resist to two privacy attacks, i.e., replay attack and center-of-cloaked-area attack,
and it is efficient and scalable for large numbers of users, queries, and objects,
and strict privacy requirements, while preserving the user location privacy in
road networks (Section 7).

The rest of this paper is organized as follows. Section 2 highlights related works.
Section 3 delineates our system model. Our query execution cost model is described
in Section 4. Section 5 presents our query-aware location anonymization algorithm.
The shared execution paradigm is described in Section 6. Section 7 describes two
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privacy attacks and gives the experimental results. Finally, Section 8 concludes this
paper.

2 Related works

Location anonymization Previous works in location anonymization can be clas-
sified into three categories: (1) False locations [15, 20, 34]. The basic idea is to send
either one or more fake locations that are related to the user location. (2) Space
transformation [10, 19]. The basic idea is to transform the location information into
another space where the spatial relationships among queries and data are encoded.
(3) Spatial cloaking [1–3, 5–9, 11–14, 18, 24, 32, 33, 35]. The main idea is to blur users’
locations into spatial regions that are guaranteed to satisfy the K-anonymity [29]
and/or minimum region area privacy requirements [2, 8, 24]. The spatial cloaking
technique has been applied to various problem settings that include distributed/peer-
to-peer environments [6, 7, 11, 12, 35], sensor networks [5, 14], trajectory data [33],
and continuous queries [3, 32]. Unfortunately, none of these works address the road
network environment nor consider the query processing cost, as the focus was mainly
on the Euclidean space and anonymizing user locations regardless of how difficult or
inefficient is the query processing. For example, some of these techniques require
special features to be developed at the query processor [4, 10, 18, 19, 24], while
others result in submitting several queries [20] or an incremental nearest-neighbor
query [34] to a database server, in order to get the query answer. To this end, our
proposed location anonymization algorithm not only considers the user personalized
privacy requirement, but it also takes in account the query execution cost during the
anonymization process.

Architecture model Based on whether a privacy-preserving technique requires a
third trusted party, termed location anonymizer, to be placed between the user
and the location-based database server, the related works can be classified into two
categories: (1) Anonymized queries [1, 3, 6, 7, 9, 13, 18, 22, 32, 33, 35]. In this category,
users’ locations have to go through a trusted location anonymizer that cloaks the user
or query location information into cloaked areas. In this case, the original query with
a point location is transformed to another query with a cloaked area. This trusted
third party model is commercially used in other fields, e.g., the Anonymizer1 for
anonymous web surfing and the PayPal2 for anonymous online payment. (2) No
anonymizer [10, 19, 34]. In this category, users can directly contact the database
server by utilizing space transformation [19], private information retrieval [10],
or anchor points [34]. All these query processing techniques for both categories
are totally independent of the anonymization process. Unfortunately, these works
consider only the Euclidean space, so they cannot address the case of privacy-
preserving query processing in road networks.

Location privacy in road networks Some privacy-preserving techniques have been
proposed to protect the user location privacy in road network environments [22, 23,

1Anonymizer. http://www.anonymizer.com.
2Paypal. http://www.paypal.com.

http://www.anonymizer.com
http://www.paypal.com
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25, 31]. Unfortunately, these works have different limitations. The work of [22] relies
solely on the Casper’s location anonymization algorithm [24], which is designed for
the Euclidean space, to blur a user location into a set of road segments that intersect
a cloaked area determined by the Casper’s algorithm. As a result, this work inherits
the drawbacks of the Euclidean location anonymization techniques. A hierarchical
structure is proposed for location anonymization in road networks [23]. However,
such a static hierarchical structure has a deterministic property for its cloaked areas,
so it suffers from a reverse engineering attack, e.g., a replay privacy attack [31].
To satisfy the reciprocity property, the work [25] assumes a system-wide static K-
anonymity level for all mobile users. This assumption has two major drawbacks [31]:
(1) It degrades the quality of services for the mobile users whose desired privacy can
be satisfied by smaller K values. (2) This assumption is not realistic because mobile
users tend to have different privacy requirements under different contexts and for
different types of objects of interest. Among these related works, the work of [31],
XStar, is closest to our work; however, it has some other limitations. (a) Given a road
network, XStar constructs a star network by grouping neighboring road segments
based on the estimated query execution and communication cost, such that each
node in the star network represents a star and has a degree of at least three. Since a
node in the star network may be very large, e.g., a star includes three long highways,
the underlying basic star structure will result in cloaked segment sets much larger
than necessary. Such larger cloaked segment sets not only lead to higher the query
execution overhead at a database server, but they also increase the size of candidate
lists returned to the user, and thus, the communication overhead also gets higher.
(b) In XStar, the extent of shared execution is limited, as it is only applied to queries
located on the same road segment. Thus, the concept of shared execution has not
been fully utilized.

Our work can distinguish itself from XStar, as (1) it does not rely any underlying
basic structure for location anonymization, which also considers the query execution
cost and the query quality, i.e., the candidate list size, and (2) it designs a more
effective shared execution paradigm, where queries are dynamically grouped to share
a set of cloaked segments without any pre-specified location limit. Experimental
evidence shows that our proposed algorithms with the shared execution paradigm
have more resilience to the replay privacy attack than the state-of-the-art technique,
i.e., XStar (Section 7).

3 System model

In this section, we give the preliminaries of this paper, and then describe the
underlying system architecture that consists of three main entities, mobile users,
location anonymizer, and location-based database server, and present the privacy
model of our system.

Preliminaries The proposed location anonymization algorithm mainly blurs a user’s
location into a cloaked set of road segments S that is defined as a set of connected
road segments where the requesting user is residing therein, such that S satisfies the
user specified privacy requirements. In a cloaked set S, a vertex v is a closed vertex
if all edges connected to v are included in S; otherwise, v is an open vertex. The
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underlying road network is modeled as a connected graph G = (V, E), where V is a
vertex set that represents the intersection and endpoints of the road segments, while
E is an edge set that represents the road segments.

Mobile users/privacy requirements Mobile users register with the system by spec-
ifying their personalized privacy requirements, i.e., K-anonymity and minimum
length L. K-anonymity privacy requirement indicates that the user wants to be K-
anonymous, i.e., indistinguishable among K users. The minimum length privacy
requirement L indicates that the minimum resolution of the blurred location infor-
mation, i.e., the total length of the road segments in S is at least L. Thus, a user’s
location must be blurred into a cloaked set S that contains at least K users and the
total length of the road segments in S is at least L. The minimum length privacy
requirement is particularly important in a dense area, where a large K-anonymity
level results in a cloaked segment set with only a few short road segments. In a special
case that a user is located in a very sensitive area, the user can specify a cloaked area
that is way beyond the sensitive area, and then the user’s location is blurred into a
set of connected road segments intersecting the cloaked area. We assume that this
special case rarely takes place, and in fact, our location anonymizer can easily deal
with it, so this special case is not the focus of this paper.

Location anonymizer The location anonymizer is a trusted third party placed
between mobile users and the location-based database server. We assume that the
location anonymizer is placed at some cellular service provider through which the
mobile users have access to location-based service providers. Furthermore, the
location anonymizer maintains an edge table that is a hash-table on edge ID [26]. For
each edge e, the tuple in the edge table stores (a) its endpoints, (b) its length, (c) the
set of edges connected to each of its endpoints, and (d) the list of objects currently
residing in e. Given n road segments in the underlying road network, m objects in the
system, and the maximum degree of an intersection of road segments d, the storage
complexity of the edge table is O(n × d + m). This is because each tuple stores at
most 2 × d adjacent edges and each of the m objects is stored by only one tuple. Ba-
sically, the location anonymizer blurs the location information of a user’s query into
a cloaked set of road segments S such that S satisfies the user’s privacy requirements.
While blurring the location information, the location anonymizer also removes any
user identity to ensure the pseudonymity of the location information [28]. Then, the
location anonymizer sends the anonymized query with the cloaked segment set to the
database server. After the location anonymizer receives a candidate list of answers
from the database server, it forwards the candidate list to the user. Finally, the user
computes an exact answer from the candidate list.

Location-based database server The location-based database server is placed at an
untrustworthy service provider and has the capacity to deal with private queries along
with cloaked sets of road segments. Since the private queries can be easily boiled
down to traditional k-nearest-neighbor and range queries (described in Section 4),
the query processor embedded inside the database server only needs to employ any
existing k-nearest-neighbor and range query algorithms designed for road networks
(e.g., [16, 21, 27]). Furthermore, the database server also maintains an edge table as
in the location anonymizer. Instead of returning an exact answer, the database server
returns a candidate list of answers that is guaranteed to contain the exact answer to
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the location anonymizer regardless of the exact user location within the given cloaked
segment set S.

Privacy model In our system, the users are required to be authenticated with the
location anonymizer and they behave as defined in our algorithm. Since our system
only preserves the user location privacy for snapshot location-based queries, we
assume that an adversary is unable to infer that some particular snapshot queries
are issued by the same user or track a particular user. This assumption is realistic,
as the location anonymizer can guarantee the pseudonymity of the location infor-
mation [28]. In other words, the output of the location anonymizer to the location-
based database server is only a set of road segments and a location-based query (e.g.,
a range or k-nearest-neighbor query) without any user identity. Furthermore, the
query can be issued by one user or a group of users formed by the shared execution
paradigm. We will also describe two attack models, namely, center-of-cloaked-area
attack and replay attack. For the replay privacy attack, we assume the worst scenario
where an adversary knows the users’ locations, but not their user identities, and the
location anonymization algorithm. Given a cloaked segment set of a user along with
a query, the adversary wants to employ the replay attack to find the road segment
that contains the query issuer or the center-of-cloaked-area attack to find the exact
location of the query. We will evaluate our system’s resilience to these two privacy
attacks through simulated experiments (Section 7).

4 Cost model for private queries

This section develops the cost model for both private k-nearest-neighbor (k-NN)
and range queries. This cost model will be used later by the location anonymizer
(Section 5) to find a cloaked set of road segments S that balances between minimizing
the developed cost function while satisfying the user specified privacy requirements.
Throughout this section, we use the following terminologies and assumptions: (a) We
assume only an existing spatio-temporal query processor embedded inside the data-
base server to deal with private k-NN and range queries. Thus, the query processor
can employ any existing k-NN and range query processing algorithms designed for
road networks (e.g., [16, 17, 21, 27]). (b) For any cloaked set of road segments S, we
define two functions Vo(S) and E(S) that return the number of open vertices (i.e.,
vertices where some of its connected edges are not included in S) and the number
of edges in S, respectively. (c) Without loss of generality, we assume that all k-NN
and range queries ask about the same type of target objects (e.g., gas stations, taxis,
or restaurants). There are T such target objects and R road segments in the system.
The information about the number of target objects is given by the database server
as hints. For all vertices and edges in the road network, d and l represent the average
degree of connectivity of a vertex v (i.e., the number of edges connected to v) and
the average edge length, respectively.

4.1 Private k-nearest-neighbor queries

A typical example of a k-nearest-neighbor (k-NN) query is “f ind the k nearest objects
of my location q = (x, y)”. However, with the anonymization process, the k-NN
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query is transformed to a private one, i.e., “f ind the k nearest objects of my location,
given that my location is somewhere in a cloaked set of road segments S”.

Algorithm An algorithm for a private k-NN query with a cloaked set of road
segments S will find a candidate list of answers where the exact answer of the original
query is guaranteed to be in the candidate list regardless of the actual user location
within S. To facilitate the development of the query cost model, given a cloaked set of
road segments S, we divide the query processing algorithm of private k-NN queries
into two steps: (1) Range Search Step. In this step, we mainly execute a traditional
range query of the form “f ind all target objects located within the road segments in
S” where we add all target objects within S to the candidate list. (2) External Search
Step. In this step, we mainly execute a traditional k-NN query at each open vertex in
S, i.e., “f ind the closest k target objects to a vertex v”, where we add the answers of
these queries to the candidate list.

Thus, the execution of one private k-NN query boils down to executing one
traditional range query and a set of traditional k-NN queries. Figure 2 depicts a
private k-NN query (k = 1), where the actual query location Q is represented as a
triangle located in edge v4v6. The cloaked segment set S of Q includes three edges
v3v4, v4v6, and v4v9, one closed vertex v4, and three open vertices v3, v6, and v9.
Figure 2a depicts the range search step, where we add all target objects of the three
edges in S, o3 to o7, to the candidate list. Figure 2b depicts the external search step,
where the nearest target object to each open vertex in S (enclosed in rectangles) is
added to the candidate list. The nearest target object of the open vertices v3, v6, and
v9 are o2, o7, and o8, respectively. As a result, the answer of the private k-NN query
is a candidate list that contains seven objects o2 to o8. Notice that the exact answer,
according to the exact location of Q, is o7 which is included in the candidate list.

Cost model The execution cost of a private k-NN query is the sum of the execution
cost of the range search and external search steps. We will present the cost in terms
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Fig. 2 Private k-nearest-neighbor query
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of the number of edges whose information is retrieved through the edge table data
structure as described in Section 3. For the range search step, we need to retrieve the
information (i.e., target objects) of all edges in S. This step results in a straightforward
cost of E(S), i.e., the number of edges in S. For the external search step, we will
first consider the cost of issuing a traditional k-NN query at one open vertex. For
simplicity, we assume a uniform distribution of the T target objects over all the road
segments R in the road network. Thus, we will need to search within R/T segments
to find one closest target object to an open vertex. To find k nearest target objects, we
need to retrieve the information of R/T × k road segments, as we do the same for
each open vertex in S. The total cost of the external search step is Vo(S) × R/T × k,
where Vo(S) represents the number of open vertices in S. Given a cloaked segment
set S, the query execution cost of a private k-NN query is:

CostPkNN(S, k) = E(S) + Vo(S) × R/T × k. (1)

Note that our proposed location anonymization does not have any assumption for the
distribution of target objects and road segments, so it can use any object distribution
model, which is either provided by the service provider or estimated by our system
if appropriate statistics can be collected from the service provider, and a more
sophisticated distribution model for road segments. However, the development of
these distribution models is out of the scope of this paper.

4.2 Private range queries

A typical example of a range query is “f ind all target objects within a network range
distance r of my location q = (x, y)”. However, with the anonymization process, the
range query is transformed into a private one, i.e., “f ind all target objects within a
network range distance r of my location, given that my location is somewhere in a
cloaked set of road segments S”.

Algorithm Similar to the case of private k-NN queries, an algorithm for a private
range query consists of two steps: (1) Range Search Step. The target objects residing
in the edges in S are added to the candidate list of answers. (2) External Search Step.
The target objects within a network range distance r from each open vertex in S
are added to the candidate list. Thus, a private range query boils down to Vo(S) + 1
traditional range queries.

Cost model The execution cost of the range search step of a private range query is
exactly the same as in the case of private k-NN queries, i.e., E(S). The execution cost
of the external search step is the sum of the cost of finding the target objects within a
network range distance r of each open vertex in S. For each open vertex in S, we need
to expand the search to �r/ l� edges in all directions where l is the average edge length.
Given that the average degree of connectivity of a vertex is d, then, approximately,
we need to search a total of �r/ l� × d road segments for each open vertex in S. Thus,
given a cloaked set of road segments S, the query execution cost of a private range
query is:

CostPRange(S, r) = E(S) + Vo(S) × �r/ l� × d. (2)
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5 Query-aware anonymization

As we have indicated earlier, there are two main factors that control the quality of
a cloaked set of road segments S, namely, the query execution cost and the query
quality. To realize the first factor, query execution cost, we will need to select S that
satisfies the user privacy requirements while minimizing the query cost models that
are developed in Section 4. On the other hand, to realize the second factor, the query
quality, we need to select S that satisfies the user privacy requirements and has the
number of users and length as close as possible to the anonymity K and minimum
length L privacy requirements, respectively. The main idea is that the shorter the
length of S, the smaller the size of the candidate list, and hence the better query
quality the query processor will provide.

In this section, we start by showing that realizing any of these two important
factors for S may significantly deteriorate the other factor (Section 5.1). Then, we
develop an objective cost function that aims to balance these two desired factors,
the query execution cost and the query quality (Section 5.2). Finally, we propose
two greedy-based anonymization approaches, namely, pure greedy and randomized
greedy, that aim to find a cloaked set of road segments S that minimizes our
developed objective cost function (Section 5.3).

5.1 Motivation: a trade-off between query execution cost and query quality

Figure 3 gives a trade-off between query execution cost and query quality for a
cloaked set of road segments S with privacy requirements K = 5 and L = 5. Each
edge in the road network has a pair (a, b), where a indicates the number of users in
that edge while b indicates the edge length. For example, the edge v1v3 has four users
and of length nine. Figure 3a gives a cloaked segment set Sq = {v2v3, v3v4, v4v6, v6v7}
that is optimal in terms of the query quality. In this case, Sq has the minimum
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Fig. 3 A trade-off between the query quality and the query execution cost
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possible length, i.e., Length(Sq) = 5, and the minimum possible number of users,
i.e., NumUser(Sq) = 5. In terms of the query execution cost, Sq has five open
vertices (enclosed in rectangles) and four edges (represented as black lines), i.e.,
Vo(Sq) = 5 and E(Sq) = 4. On the other hand, Fig. 3b gives a cloaked segment set
Sc = {v4v6, v4v9} that is optimal in terms of query execution cost as it is the one
that has the minimum possible number of open vertices, i.e., Vo(Sc) = 3, and edges,
i.e., E(Sc) = 2, while still satisfying the user privacy requirements. However, Sc may
result in very bad query quality as the total length of all road segments in Sc is 10
which is way above the minimum length L privacy requirement. Table 1 gives a
summary of the number of open vertices, the number of edges and the total segment
length of Sq and Sc.

From these examples, we can see that trying to find the optimal Sq, i.e., maximizing
the query quality, results in having five open vertices and four edges (Fig. 3a) which
is 66.7% (i.e., 5−3

3 × 100%) and 100% (i.e., 4−2
2 × 100%) worse than what we can

get from Sc (Fig. 3b). On the other hand, trying to find the optimal Sc that gives the
minimal query execution cost, i.e., the minimum possible number of open vertices and
edges, results in the total segment length of 10 (Fig. 3b) which is 100% ( 10−5

5 × 100%)
worse than what we can get from Sq (Fig. 3a). This raises the issue of finding an
objective cost function that balances between the query execution cost and the query
quality.

5.2 Objective cost function

As we have discussed in the previous section, we need an objective cost function
that balances between query execution cost and query quality. The query execution
cost is measured by the cost models described in Section 4. On the other hand, the
query quality is measured by the number of candidate target objects returned by a
database server given that the query location is within a cloaked set of road segments
S. In general, the number of candidate target objects returned to the user, i.e., the
query quality, is proportional to the total length of the road segments in S. Thus, the
objective cost function aims to find a cloaked segment set S, such that S not only
satisfies the user privacy requirements, but it also balances the query execution cost
and the total segment length (i.e., the query quality).

Based on these contradicting requirements, we distinguish between two cases
for the objective cost function based on whether a privacy requirement has sat-
isfied or not. For the K-anonymity privacy requirement, we consider two cases.
Case 1: When a current cloaked set of segments S has not yet satisfied this privacy
requirement, we should select some edges that contain more users to S. For example,
if adding edge ei or e j to S incurs the same query execution cost QCost(S) that
is computed by using the cost models described in Section 4, the objective cost
function should give a smaller cost to the edge containing more users; and thus, the
objective cost function adjusts QCost(S) by dividing it by a quality adjustment factor

Table 1 Two sample cloaked
segments sets Sq and Sc

No. of open No. of edges Total segment
vertices (Vo) (E) length

Sq 5 4 5
Sc 3 2 10
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NumUser(S)/K, where an edge with more users yields a larger quality adjustment
factor and NumUser(S)/K < 1 because the total number of users in S is less than K.
Note that NumUser(S) must be at least one because the firstly selected edge contains
the requesting user. Case 2: When a current cloaked set of segments S has satisfied
the K-privacy requirement, since further adding edges with more or less users to
S does not affect the query quality, i.e., the total length of the segments in S, the
objective cost function no longer considers the K-anonymity privacy requirement;
hence, the quality adjustment factor is set to one.

For the minimum length L privacy requirement, we also consider two cases.
Case 1: When a current cloaked set of segments S has not yet satisfied this privacy
requirement, we should select some longer edges to S. Similar to the K-anonymity
privacy requirement, the objective cost function adjusts QCost(S) by dividing it by
a quality adjustment factor Length(S)/L, where a longer edge yields a larger quality
adjustment factor and Length(S)/L < 1 because the total length of the road seg-
ments in S is less than L. Case 2: In case that the length privacy requirement has been
satisfied by a current cloaked set of segments S, the objective cost function gives a
larger value to longer edges, i.e., dividing QCost(S) by an inverse quality adjustment
factor L/Length(S), where a longer edge yields a smaller quality adjustment factor
and L/Length(S) > 1.

Since the quality adjustment factors of these two privacy requirements are nor-
malized to the corresponding privacy requirement, we can encapsulate them in our
objective cost function. Hence, the combined quality adjustment factors are:

QualityAdj(S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NumUser(S)

K × Length(S)

L , if NumUser(S)<K ∧ Length(S)<L;

NumUser(S)

K × L
Length(S)

, if NumUser(S)<K ∧ Length(S)≥L;

1 × Length(S)

L , if NumUser(S)≥K ∧ Length(S)<L;

1 × L
Length(S)

, if NumUser(S)≥K ∧ Length(S)≥L.

(3)
Therefore, for each edge ei, we consider a new potential cloaked set of road segments
S = S ∪ {ei}, and we calculate the objective cost Cost(S, Q) as:

Cost(S, Q) = QCost(S, Q)

QualityAdj(S)
, where (4)

QCost(S, Q) =
{

CostPkNN(S, k), if Q is a k-NN query;
CostPRange(S, r), if Q is a range query.

(5)

5.3 Greedy approaches

Trying to find the optimal set of cloaked road segments S that minimizes a certain
cost function would require an exhaustive search process. As the underlying appli-
cation of road network anonymization (e.g., location-based services) is a real-time
application in which it is crucial to efficiently process the anonymization and query
processing in a minimal time, we avoid trying to get an optimal set S. Instead, we use
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a greedy approach to minimize the objective cost function developed in Section 5.2.
In particular, we present two efficient greedy approaches, namely pure greedy and
randomized greedy approaches, that rely on the objective cost function designed for
balancing a trade-off between the query execution cost and the query quality.

5.3.1 Pure greedy approach

The idea of our greedy approach is to start from the road segment in which the
querying user is residing. If this road segment satisfies the user’s privacy require-
ments, we return it to a location-based database server as the cloaked road segment
S. Otherwise, we check all adjacent road segments of S and greedily pick the road
segment that minimizes the objective cost function. We keep adding these adjacent
road segments greedily to S until S satisfies the user privacy requirements. As the
objective cost function is heavily dependent on the underlying query execution cost
model, such approach may result in different S for different query types.

Algorithm 1 depicts the pseudo code of the pure greedy approach of our query-
aware location anonymization algorithm. The algorithm has two input parameters,
the identifier of the user U who issues the query and the issued query Q. The
algorithm starts by initializing a cloaked set of road segments S with the edge e that
includes the user U (Line 3 in Algorithm 1). If the current S does not satisfy U ’s
privacy requirements, i.e., U.K and U.L, we do the following three steps (Lines 4 to 8
in Algorithm 1): (1) We construct the set R that consists of all road segments that are
adjacent to some road segment in S. (2) For each road segment ei ∈ R, we calculate
the objective cost to decide whether ei should be added to S for the input query Q
based on the objective cost function designed in Section 5.2. Then, we choose the
best edge as the one that minimizes the objective cost function should it have been
added to S. (3) We add that best edge to the current cloaked set of road segments
S. We keep doing these three steps until S satisfies U ’s privacy requirements, i.e.,
NumUser(S) ≥ U.K and Length(S) ≥ U.L. In other words, the algorithm will put
additional segments to S if the total number of users in S is less than K or the
total length of the segments in S is less than L. Finally, we return S as the cloaked
segment set for the user U . It is important to note that S does satisfy the user privacy
requirements while it aims to minimize the query execution cost and maximize the
query quality according to our developed objective cost function.

Algorithm 1 A Greedy Approach
1: function Greedy (User U , Query Q)
2: e ← the road segment contains the user U
3: S ← {e}
4: while NumUser(S) < U.K or Length(S) < U.L do
5: R ← All adjacent road segments of S
6: BestEdge ← argminei∈R

(
Cost(S ∪ ei, Q)

)

7: S ← S ∪ BestEdge
8: end while
9: return S

Figure 4 gives an example to illustrate the greedy approach for the query-aware
location anonymization algorithm where the user issues a k-NN query Q1 where
k = 3 while being five anonymous within a set of connected road segments with
a total length of at least five, i.e., K = 5 and L = 5. For ease of comparison and
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Fig. 4 Example of the greedy approach

discussion, we use the same road network that was used in Fig. 3. Although we
show only part of the road network, we assume that the whole road network has
R = 100,000 road segments and T = 1,000 target objects. Hence, according to the
query cost model developed in Section 4, we will need to search R/T × k = 300
edges for each open vertex in a cloaked segment set S. Since edge v4v6 contains
Q1, we initially set the cloaked set of road segments S to {v4v6}, where vertices
v4 and v6 are open vertices that are enclosed in rectangles. As S does not sat-
isfy the user privacy requirements, i.e., NumUser(S) = 1 and Length(S) = 1, we
compute the objective cost of the adjacent edges of v4v6 and add the edge with
the lowest cost to S. The cost of these adjacent edges is Cost(S ∪ v5v6) = (3 ×
300 + 2)/(min(5/5, 1) × min(4/5, 5/4)) = 902/(1 × 4/5) = 1127.5, Cost(S ∪ v6v7) =
902/(2/5 × 2/5) = 5637.5, Cost(S ∪ v3v4) = 902/(3/5 × 3/5) = 2505.6, and Cost(S ∪
v4v9) = 902/(1 × 5/10) = 1804. Since edge v5v6 has the smallest objective cost, we
add v5v6 to S (Fig. 4a).

However, S = {v4v6, v5v6} satisfies only the K-anonymity requirement, i.e.,
NumUser(S) = 5 and Length(S) = 4, so we compute the objective cost of the ad-
jacent edges of the edges in S. The cost of these adjacent edges is Cost(S ∪ v6v7)=
(3 × 300+3)/(min(6/5, 1)×min(5/5, 5/5))=903/(1×5/5)=903,Cost(S ∪ v3v4)=(4×
300+3)/(min(7/5, 1)×min(6/5, 5/6))=1203/(1×5/6)=1443.6, and Cost(S ∪ v4v9)=
(4×300+3)/(min(14/5, 1)×min(13/5, 5/13))=1203/(1×5/13)=3127.8. Since edge
v6v7 has the smallest objective cost, we add v6v7 to S (Fig. 4b). Finally, S =
{v4v6, v5v6, v6v7} satisfies the user privacy requirements, i.e., NumUser(S) = 6 ≥ K
and Length(S) = 5 ≥ L, and there are three open vertices in S, i.e., v4, v5, and v7,
that are enclosed in rectangles. This example shows that the developed objective
cost function effectively balances between the query execution cost and the query
quality, because the cloaked segment set S has the maximal query quality, i.e.,
Length(S) = L = 5, and the query execution cost of S (i.e., Vo(S) = 3 and E(S) = 3)
is only slightly deteriorated compared to the optimal query cost (i.e., Vo(Sc) = 3 and
E(Sc) = 2) given in Section 5.1.
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5.3.2 Randomized greedy approach

Although the greedy approach is simple and effective in terms of achieving privacy
requirements, minimizing the query execution cost, and maximizing the query qual-
ity, the greedy approach is vulnerable to adversary attacks. Basically, we assume the
worst case that an adversary knows the number of users and length of each road
segment, and the adversary is able to crack the system to know or guess the used
objective cost function. Then, the adversary can know the road segment in which the
user issuing the query is residing through a reverse engineering process. For example,
given a cloaked set of road segments S, the adversary performs two main steps.
(1) The adversary selects a certain edge ei ∈ S, and then applies the revealed cost
function in a greedy manner for ei to compute another cloaked set of road segments
S′. (2) If there is an edge e j where e j ∈ S′ and e j /∈ S, the adversary knows that the
user is not in ei. The main idea is that if the user is in ei, S′ should always be included
in S, i.e., S′ ⊆ S, before S′ is equal to S. The adversary can repeat these two steps for
each edge in S for all possible combinations of the user’s privacy requirements, i.e.,
K and L. When the adversary achieves a case that S′ = S, it is likely that the user
who issued the query is in ei.

The main reason of having such a privacy attack is that the greedy approach relies
on a deterministic cost function to determine a cloaked set of road segments S. To
this end, we propose a randomized greedy approach for our query-aware location
anonymization algorithm. The idea is to inject some randomness into the process of
selecting road segments to S. Rather than solely relying on a greedy approach, we will
alternate between greedy and random approaches. Although injecting randomness
into the anonymization process may degrade the query processing performance,
i.e., the query execution cost and the query quality, but it significantly reduces, if
not prevent, the possibility of the adversary attack. To balance between the query
processing performance and the vulnerability of adversary attacks, we introduce
a user parameter, random factor (RandF), that controls the level of randomness
injected into the greedy approach. When RandF is set to 0, our randomized greedy
approach acts exactly as the pure greedy approach. On the other hand, when RandF

is set to 1, our randomized greedy approach acts in a purely random way where we
keep randomly selecting the adjacent edges of a current cloaked segment set S until
S satisfies the user privacy requirements. In general, a larger RandF provides more
secure privacy for the user, yet it results in lower query processing performance. It
is important to note that both the pure greedy and randomized greedy approaches
are guaranteed to generate a cloaked set of road segments satisfying both the K-
anonymity and minimum length L privacy requirements.

Algorithm 2 gives the pseudo code of our randomized greedy approach. The
pseudo code is similar to that of the pure greedy approach in Algorithm 1 except
for the part of choosing an edge in the set of adjacent edges of S, R, to be added to
the current cloaked set of road segments S (Lines 6 to 11 in Algorithm 2). Basically,
the randomized greedy approach has an option to randomly select road segments
to S. Thus, we generate a random number between 0 and 1. If the input parameter
RandF is greater than the generated random number, we opt to randomly select
a road segment among the ones stored in R, i.e., the adjacent road segments of
S. On the other hand, if the input parameter RandF is less than the generated
random number, we use our greedy approach to select the road segment from R
that minimizes the objective cost function described in Section 5.2. By injecting
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Algorithm 2 A Randomized Greedy Approach
1: function RandomizedGreedy (User U , Query Q, Float RandF)
2: e ← the road segment contains the user U
3: S ← {e}
4: while NumUser(S) < U.K or Length(S) < U.L do
5: R ← All adjacent road segments of S
6: RandN ← a random number between 0 and 1, i.e., [0, 1)

7: if RandF > RandN then
8: BestEdge ← a road segment is randomly selected from R
9: else

10: BestEdge ← argminei∈R

(
Cost(S ∪ ei, Q)

)

11: end if
12: S ← S ∪ BestEdge
13: end while
14: return S

randomness to the anonymization process, we can prevent the reverse engineering
attack as an adversary cannot guess the generated random numbers.

6 Shared execution paradigm

As a location-based database server is likely to receive a numerous number of
concurrent queries, processing these queries individually would pose a system bot-
tleneck. To tackle this scalability issue, we propose a shared execution paradigm that
aims to minimize the number of queries executed by the database server for a set of
private queries. The main idea is to maximize the number of common vertices and
edges in the cloaked set of road segments of a set of similar queries issued from
nearby users. Two or more queries are similar if they belong to the same query
type and interested in the same target object type. It is important to note that the
proposed shared execution paradigm can be incorporated into both the pure greedy
and randomized greedy approaches for query-aware location anonymization. In this
section, we first give the motivation of the shared execution paradigm, and then
present the algorithm with a running example.

6.1 Motivation

Figure 5 depicts a motivating example of the proposed shared execution paradigm,
in which the location anonymizer receives three similar queries Q = {Q1, Q2, Q3} at
the same time. The privacy requirements of these queries are (Q1.K=5, Q1.L=5),
(Q2.K=6, Q2.L=7), and (Q3.K=3, Q3.L=6). Without the concept of shared ex-
ecution, we use the pure greedy approach to anonymize the location information
of these queries individually. Figure 4b gives the cloaked set of road segments S1

of Q1, while the cloaked segment sets S2 and S3 of Q2 and Q3 are depicted in
Fig. 5a. Anonymizing these queries individually results in three cloaked segment
sets S1 = {v4v6, v5v6, v6v7}, S2 = {v1v3, v2v3, v3v4}, and S3 = {v6v7, v7v8, v8v10} that
contain a total of nine edges (represented as black lines) and ten open vertices



588 Geoinformatica (2011) 15:571–607

(2,2)

(4,9)

(1,1)

v2

v3

v1

v6

v7

v10

v8

v4

(1,4)

(1,2)

(1,1)Q2

Q3

(a) Non-shared execution

(2,2)

v3

v5

v6

v7

v8

v4
(1,1)

(4,3)

(1,2)

(1,1)Q2

Q3

Q1

(b) Shared execution

Fig. 5 Motivating example of shared execution

(enclosed in rectangles), i.e., {v4, v5, v7} in S1, {v1, v2, v4} in S2, and {v6, v7, v8, v10}
in S3. Thus, the database server has to retrieve the target objects of these nine edges
and execute the requested query at each of these ten open vertices.

With the proposed shared execution paradigm, the location anonymization al-
gorithm aims to maximize the number of common open vertices and edges of the
cloaked segment sets of a set of similar queries. Figure 5b depicts the set S of distinct
edges in the cloaked segment sets S1, S2, and S3 that are computed by the pure greedy
approach with our shared execution paradigm, in which S1 = {v4v6, v5v6, v6v7}, S2 =
{v3v4, v4v6, v5v6, v6v7}, and S3 = {v3v4, v4v6, v6v7, v7v8}. Hence, S contains five dis-
tinct edges (represented as black lines), i.e., v3v4, v4v6, v5v6, v6v7, and v7v8, and five
distinct open vertices (enclosed in rectangles), i.e., v3, v4, v5, v7, and v8. This example
shows that the shared execution paradigm reduces the number of edges and open
vertices among the cloaked segment sets of the three queries by 44.4% (i.e., from nine
edges to E(S) = 5) and 50% (i.e., from ten open vertices to Vo(S) = 5), respectively.
As a result, the database server needs to retrieve the target objects of five edges and
execute the requested query at five open vertices, and then share the answer of these
queries among Q1, Q2, and Q3.

6.2 Algorithm

Main idea Given a set of n similar queries Q = {Q1, Q2, . . . , Qn} received by the
location anonymizer at the same time or within a short time interval, the shared
execution paradigm aims to maximize the number of common open vertices and edges
in the cloaked segment sets S1, S2, . . . , Sn for the queries in Q. S is a set of distinct
edges in the cloaked segment sets S1, S2, . . . , Sn, i.e., S = ⋃

1≤i≤n Si. In the shared
execution paradigm, when we are selecting an edge to a current cloaked segment set
Si for a query Qi, we give a higher priority to select an edge that is adjacent to Si

and has been selected by other preceding queries in Q for their cloaked segments
sets. In other words, given a set of adjacent edges R to Si, we first select an edge
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from {R ∩ S}. The main reason is that adding any edge from S will have a zero query
execution cost because the query execution cost of the edges in S is absorbed by
other queries in Q. Thus, by using the quality function described in Section 5.2, we
add the edge that gives the highest quality of answers among the set {R ∩ S} to Si.
However, in case that {R ∩ S} is empty, we simply employ our objective cost function
to select the best candidate edge to Si. Although the shared execution paradigm
would incur longer anonymization time for some queries, it improves the average
anonymization time of the queries in the similar query set, and this sacrifice will
be paid off by the significant gain in the query processing at the database server.
Experimental results in Section 7 give more details on this performance gain.

Algorithm Algorithm 3 depicts the pseudo code of the shared execution paradigm
applied to the pure greedy approach (or the randomized greedy approach with the
same modifications). The input of the algorithm is a set of similar queries Q. We
maintain a set S to store the distinct edges in the cloaked set of road segments of each
query in Q. Initially, we set S to empty and sort the queries in Q by their parameters
in decreasing order, i.e., the value of k of k-NN queries or the network range distance
r of range queries (Lines 2 to 3 in Algorithm 3). The main idea behind this sorting is to
ensure that the answer of the requested query at a selected open vertex can be used by
a database server to answer the subsequent queries in Q. For example, a k-NN query
answer can be used to answer another k′-NN query if k ≥ k′. For each query Qi in
Q, the proposed shared execution paradigm is applied to the pure greedy approach
(or the randomized greedy approach) to find a cloaked set of road segments Si. First,
we set the edge that contains the querying user Ui to Si (Line 6 in Algorithm 3). If
Si does not satisfy the user privacy requirements, i.e., Ui.K and Ui.L, we repeatedly
select the adjacent edges of Si, R, to Si until Si satisfies the user privacy requirements.
We distinguish between two cases of selecting the best edge to Si. Case 1: {R ∩ S}

Algorithm 3 A Greedy Approach with Shared Execution
1: function SharedExecutionGreedy (QuerySet Q)
2: S ← {∅}
3: Sort Q by the query parameter in decreasing order
4: for Each query Qi ∈ Q do
5: e ← the road segment contains the user Ui of Qi

6: Si ← {e}
7: while NumUser(Si) < Ui.K or Length(Si) < Ui.L do
8: R ← All adjacent road segments of Si

9: if R ∩ S is empty then
10: e ← argmine j∈R

(
Cost(Si ∪ e j, Qi)

)

11: else
12: e ← argmaxe j∈{R∩S}

(
Quality(Si ∪ e j)

)

13: end if
14: Si ← Si ∪ e
15: end while
16: S ← S ∪ Si

17: end for
18: return S
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is empty. In this case, there is no adjacent edge of Si in S . Thus, we simply use the
objective cost function to select an edge with the best cost among the set of adjacent
edges of Si, R (Line 10 in Algorithm 3). Case 2: {R ∩ S} is not empty. In this case,
there are some adjacent edges of Si are in S . We select an edge with the largest
quality from the set {R ∩ S} (Line 12 in Algorithm 3). It is important to note that
choosing any edge from {R ∩ S} just adds a zero cost to the query processing. After
we find a cloaked set of road segments Si for Qi, we update S accordingly (Line 16
in Algorithm 3). Finally, we send the queries in Q along with their cloaked segment
sets Si in a batch to the database server.

Example Figure 6 depicts an example of the shared execution paradigm applied
to the pure greedy approach where the query set contains three similar queries
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Fig. 6 An example of the shared execution scheme for a query set Q = {Q1, Q2, Q3}
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Q = {Q1, Q2, Q3} that are sorted by their query parameters in decreasing order. The
privacy requirements of these queries are the same as in Section 6.1. First, we com-
pute the cloaked set of road segments S1 of Q1. Since Q1 is the first query in Q, i.e.,
S is empty, we compute S1 based on the pure greedy approach, as depicted in Fig. 4;
and hence,S = S1 = {v4v6, v5v6, v6v7}. Then, we process Q2 residing in edge v3v4, i.e.,
S2 = {v3v4}. Since only one of the adjacent edges of S2 is in S , i.e., v4v6, we add v4v6 to
S2 (Fig. 6a). Selecting v4v6 results in two adjacent edges of S2 in S , so we compute the
quality of these two edges, i.e., Quality(S2 ∪ v5v6) = min(7/6, 1) × min(6/7, 7/6) =
1 × 6/7 = 0.857 and Quality(S2 ∪ v6v7) = min(4/6, 1) × min(4/7, 7/4) = 4/6 × 4/7 =
0.381. Thus, we add the edge with the highest quality, i.e., v5v6, to S2 (Fig. 6b).
Since v6v7 is the only adjacent edge of S2 in S , we add v6v7 to S2 (Fig. 6c).
After that, S2 = {v3v4, v4v6, v5v6, v6v7} satisfies the user privacy requirements, i.e.,
NumUser(S2) = 8 and Length(S2) = 7. The anonymization process of Q2 results in
adding only one open vertex v3 (enclosed in a rectangle) and one edge v3v4 to S .
Similarly, we anonymize the location information of Q3 residing in edge v7v8. The
cloaked segment set of Q3 is S3 = {v3v4, v4v6, v6v7, v7v8} (Fig. 6d) that results in only
one open vertex v8 and edge v7v8 to be added to S . Finally, the cloaked segment sets
of these three queries contain five distinct open vertices (enclosed in rectangles) and
five distinct edges (represented as black lines), as depicted in Fig. 5b.

7 Experimental results

In this section, we experimentally evaluate the performance of the two versions
of our proposed query-aware location anonymization algorithm, i.e., pure greedy
(denoted as PG) and randomized greedy (denoted as RG). We also evaluate the
performance of the proposed shared execution paradigm incorporated into the pure
greedy (denoted as SPG) and randomized greedy (denoted as SRG) approaches.

Baseline algorithms We compare our approaches with two previous works [22, 31].
Since the work of [22] uses the Casper’s location anonymization algorithm [24]
(denoted as Casper) that is designed for the Euclidean space to blur a user location
into a cloaked area. Then, a set of road segments intersecting the cloaked area forms
a cloaked segment set. The other previous work [31] (denoted as XStar) is the state-
of-the-art technique for location anonymization in road networks. To have a fair
analysis of its resilience to the privacy attacks ,i.e., the replay attack and the center-
of-cloaked-area attack, the same random factor of our randomized greedy approach
is also applied to this previous work.

Experiment settings The simulated experiments are implemented in C++. In all ex-
periments, we generate a set of moving objects on the road map of Hennepin County,
Minnesota, USA (Fig. 7). The input road map is extracted from the Tiger/Line files
that are publicly available [30]. The total area of the Hennepin County is 1,571 km2.
The road map has 57,020 edges and 42,135 vertices in which the average length of the
edges (l) is about 0.1 km and the average degree of connectivity of the vertices (d)
is 2.7. Mobile users are initially distributed among the vertices, and then move along
the roads at speeds between 50 and 70 miles per hour. The experiments were run
on an Ubuntu Linux system with an Intel Core 2 Quad processor at 2.83GHz and
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Fig. 7 The road map
of Hennepin County,
Minnesota, USA

4GB RAM. At the database server, we employ an incremental network expansion
algorithm [27] and a depth-first search algorithm to process k-nearest-neighbor (k-
NN) and range queries in the road network, respectively.

Parameter settings Unless mentioned otherwise, the experiments consider 100,000
mobile users and 2,000 objects in the underlying road network in which 1,000
users issue queries. The default user privacy requirements, anonymity level K and
minimum length L, are K = 200 and L = 1 km. The random factor RandF for
our randomized greedy approach is set to 0.2. The query parameters of k-NN and
range queries are k=10 and r = 1 km, respectively. The default size of an object is
128 bytes. The transmission bandwidth of the high-bandwidth wired communication
link between the location anonymizer and the service provider is 1,000 Mbps, and
the transmission bandwidth of the wireless communication link between the location
anonymizer and the user is 10 Mbps. Table 2 gives a summary of the parameter
settings.

Privacy attack models In this section, we evaluate the privacy resilience of a location
anonymization algorithm against two privacy attack models, namely, the replay
attack [31] and the center-of-cloaked-area attack [7, 35]. (1) Replay privacy attack.
In this attack, we assume the worst scenario where an adversary knows the location
anonymization algorithm, the user locations (but not their user identities) and the
statistics used by the objective cost function. Given a cloaked segment set S with a
query, the adversary wants to know which segment in S contains the query issuer.
To do that, the adversary re-runs the location anonymization for each segment s ∈ S,
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Table 2 Parameter settings Parameter Default value Evaluation range

Number of users 100,000 100,000–500,000
Number of objects 2,000 2,000–10,000
Number of queries 1,000 2,000–10,000
Anonymity levels (K) 200 100–500
Minimum total segment 1 km 5–25 km

length (L)
Requested number of 10 1–20

objects k
Requested range distance r 1 km 5–30 km
Object size 128 bytes 32–512 bytes

and then calculates the linkability between the cloaked segment set of s, S′, and S
using the following equation:

linkability(s, S) = |S′ ∩ S|/|S| (6)

After calculating the linkability for each segment in S, the adversary infers that the
segment s∗ with the highest linkability contains the query issuer. The replay privacy
attack succeeds if s∗ contains the actual query issuer; otherwise, it fails. (2) Center-
of-cloaked-area privacy attack. In this attack, we assume that an adversary knows the
user locations (but not their user identities). Given a cloaked segment set S with a
query, the adversary wants to infer which user issues the query. The adversary first
computes a minimum bounding rectangle (MBR) of the segments in S. Then, the
adversary determines the distance between each user located on the segment in S
and the center of the MBR, and infers that the closest user u∗ to the center of the
MBR is the query issuer. The center-of-cloaked-area privacy attack succeeds if u∗ is
the actual query issuer; otherwise, it fails.

Performance metrics We evaluate our algorithms with respect to five performance
measures, (1) the processing time, (2) the candidate list size, i.e., the query quality,
(3) the success rate of the replay privacy attack, (4) the success rate of the center-
of-cloaked-area privacy attack, and (5) the end-to-end performance. The processing
time is the sum of the average time consumed in the anonymization process (i.e.,
anonymization time) and the average query processing time at the database server.
The candidate list size measures the average number of objects returned to the
users per query. The success rate of the two privacy attacks indicates the privacy
resilience of our algorithms. The end-to-end performance measures the average
overall query response time per query, which includes the anonymization time at
the location anonymizer, the query processing time at the service provider, the
transmission time of sending candidate lists from the service provider to the location
anonymizer through high-bandwidth wired channels, and the transmission time of
sending candidate lists from the location anonymizer to the user through wireless
communication channels.

7.1 Number of users

Figures 8 and 9 depict the scalability of our approaches with respect to varying the
number of users from 100,000 to 500,000 for k-NN and range queries, respectively.
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Since the location anonymization is independent of query types, the resilience of the
location anonymization algorithm to any privacy attack is the same for any query
types, and thus, we only show the success rates of the replay and center-of-cloaked-
area attacks for k-NN queries.

Figure 8a gives that our approaches with the shared execution paradigm, SPG and
SRG, outperform the approaches without the shared execution paradigm, PG, RG,
and the baseline algorithm, Casper, and even XStar having the concept of shared
execution, in terms of query processing time. The main reason is that our shared
execution paradigm dynamically finds a shared set of cloaked segments for a group
of queries without any limitation on their locations. However, XStar only shares a
cloaked segment set for the queries on the same segment. Casper gives the worst
performance in terms of query processing time because it does not consider the query
execution cost in road network environments. In general, the location anonymization
time and the query processing time of all the approaches improve as there are more
users in the system. This is due to the fact that smaller cloaked areas are generated
to satisfy the same required K-anonymity level when the number of users increases.

Figure 8b also gives that our approaches perform better than Casper and XStar in
terms of candidate list size. Since Casper does not take into account the underlying
road network environment, the total segment length of the cloaked segment sets
generated by Casper is longer than other approaches, which are designed for road
network environments. As a cloaked segment set with a longer segment length
leads to larger candidate list size, Casper gives the worst query quality. Since our
approaches do not rely on any specific basic unit structure for location anonymiza-
tion, while XStar needs to group neighboring segments to form stars as the basic
unit structure for its anonymization process, the total segment length of the cloaked
segment sets of our approaches is shorter than XStar, and thus, our approaches give
better query quality than XStar.

Figure 8c and d depict the resilience of all the approaches to the replay and center-
of-cloaked-area privacy attacks, respectively. Since the success rate of the replay
attack of the pure greedy approach (PG) is always one, we do not show its result
for the replay attack. The experimental evidence shows that injecting randomness
to a location anonymization process effectively increases its resilience to the replay
attack. As Casper uses a data structure to do location anonymization, it is more
vulnerable to the replay attack. It is interesting to see that our shared execution
paradigm also improves the resilience to the replay attack. The reason is that the
generation of a shared set of cloaked segments depends on a set of queries; instead
of only one query in the non-shared execution paradigm, so an adversary is much
more difficult to use the replay attack for a shared set of cloaked segments. The
result shows that our SRG provides much better privacy guarantee than XStar
for the replay attack. In terms of the center-of-cloaked-area privacy attack, all the
approaches have very strong resilience to the attack, i.e., its success rate is less than
0.016 for all the approaches.

Figure 9 shows similar results for range queries, where our approaches with the
shared execution paradigm, SPG and SRG, outperform our non-shared execution
approaches, PG and RG, and the baseline algorithms, Casper and XStar, in terms
of processing time (Fig. 9a). Since our approaches generate cloaked segment sets
with shorter total segment lengths, they provide better query quality, i.e., a smaller
candidate list size, than the baseline algorithms, Casper and XStar (Fig. 9b).
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7.2 Number of queries

Figures 10 and 11 give the performance of all the approaches with respect to
increasing the number of objects from 2,000 to 10,000 for k-NN and range queries,
respectively. The processing time of the non-shared execution approaches, PG, RG,
and Casper, is only slightly affected by the increase of the number of queries in
the system for both k-NN and range queries, as depicted in Figs. 10a and 11a,
respectively. On the other hand, the processing time of the shared execution ap-
proaches, SPG, SRG, and XStar, improves when there are more querying users. The
reason is that when there are more querying users, it has a higher chance that a
cloaked segment set shared by more queries, and thus, more queries share the query
execution cost of the cloaked segment set. Our approaches with the shared execution
paradigm also generate cloaked segment sets with shorter total segment lengths, so
they provide better query quality than other approaches (Figs. 10b and 11b).

Figure 10c shows that the resilience to the replay privacy attack of the shared
execution approaches, SPG, SRG, and XStar gets stronger, as the number of queries
increases. The reason is that the generation of the cloaked segment set not only
depends on the cost function, but it also depends on the properties of other queries,
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e.g., their distribution, their privacy requirements, and the order of anonymizing
them; and thus, when more segments in a cloaked segment set are shared by other
queries, it is more difficult for an adversary to infer which segment in the cloaked
segment set contains the actual query issuer. The result provides evidence that the
shared execution paradigm can reduce the query processing overhead and improve
the resilience to the replay privacy attack.

7.3 Number of objects

Figures 12 and 13 give the performance of all the approaches with respect to
increasing the number of objects in the system from 2,000 to 10,000 for k-NN
and range queries, respectively. Since varying the number of objects at the service
provider does not affect the location anonymization, the execution overhead and
resilience to the privacy attacks of the location anonymization algorithms are not
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affected. It is interesting to see that the processing time of k-NN queries decreases
as there are more objects in the system, as depicted in Fig. 12a. The reason is that
the query processor can find the requested number of nearest objects for each open
vertex in a cloaked segment set by searching a smaller number of road segments when
the number of objects increases. On the other hand, the processing time of range
queries slightly increases when there are more objects in the system (Fig. 13a). This
is because the query processor has to search the requested distance from each open
vertex in a cloaked segment set regardless of the object distribution. When there are
more objects in the system, the query processor has to retrieve more objects for a
segment, and thus, the query processing time slightly increases. Since a candidate
answer list must contains the objects located within a cloaked segment set for both
k-NN and range queries, when the number of objects increases, the candidate answer
list contains more objects (Figs. 12b and 13b).

7.4 K-anonymity privacy requirements

Figures 14 and 15 depict the performance of all the approaches for k-NN and range
queries, respectively, as the user required K-anonymity level increases from 100 to
500. It is expected that when the location anonymization algorithm has to generate
larger cloaked segment sets to satisfy the stricter privacy requirements, the location
anonymization overhead of all the approaches increases (Figs. 14a and 15a). Since
our approaches with the shared execution paradigm, SPG and SRG, effectively share
cloaked segments among queries, they perform better than the baseline algorithms,
Casper and XStar, as the user requires stricter K-anonymity levels. Such larger
cloaked segment sets lead to larger candidate lists returned to the user, so the query
quality gets worse when K increases (Figs. 14b and 15b).

As the user requires stricter K-anonymity levels for their queries, it is expected
that the resilience to the replay privacy attack increases (Figs. 14c and 15c). The
result shows that our randomized greedy approaches, RG and SRG, have better
resilience to the replay attack than XStar. Similar to other experiments, Figs. 14d
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R
G

S
R

G
C

a
s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

S
P

G

C
a

s
p

e
r

X
S

ta
r

P
ro

c
e

s
s
in

g
 T

im
e

 [
m

s
]

K–Anonymity Levels
100 200 300 400 500

Query Processing  
Anonymization

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0

  9.0

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

(a) Processing Time

400 500

C
a
n
d
id

a
te

 L
is

t 
S

iz
e

K–Anonymity Levels

PG 
RG 
SPG 
SRG 
Casper 
XStar 

  0

  10

  20

  30

  40

  50

  60

  70

  80

  90

  100

100 200 300

(b) Candidate List Size

Fig. 15 K-anonymity levels (range queries)
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Fig. 16 Requested number of objects (k-nearest-neighbor queries)

and 15d show that the success rate of the center-of-cloaked-area privacy attack is
very small, i.e., 0.025, for all the approaches, even though the approach not designed
for road network environments, i.e., Casper.

7.5 Query parameters

In this section, we evaluate the performance of all the approaches with respect to
varying the requested number of objects for k-NN queries from 1 to 20 (Fig. 16) and
the range distance r for range queries from 0.5 km to 3 km (Fig. 17). Since varying k
and r for k-NN and range queries, respectively, does not affect the cloaked segment
sets generated by the location anonymization process, the location anonymization
time and the resilience to the privacy attacks of the location anonymization process
are not affected. It is expected that when k and r get larger, the query execution
overhead increases (Figs. 16a and 17a) and larger candidate lists are returned to

S
R

G
C

a
s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

R
G

S
P

G
S

R
G

S
P

G

C
a

s
p

e
r

X
S

ta
r

P
ro

c
e

s
s
in

g
 T

im
e

 [
m

s
]

Range Distance
500m 1km 1.5km 2km 3km

Query Processing  
Anonymization

  0.0

  0.5

  1.0

  1.5

  2.0

  2.5

  3.0

  3.5

  4.0

P
G

R
G

S
P

G
S

R
G

C
a

s
p

e
r

X
S

ta
r

P
G

R
G

(a) Processing Time

1km 1.5km 2km 3km

C
a

n
d

id
a

te
 L

is
t 

S
iz

e

Range Distance

PG
RG
SPG
SRG
Casper 
XStar

  0

  20

  40

  60

  80

  100

  120

  140

500m

(b) Candidate List Size 
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Fig. 18 End-to-end performance (number of users)

users (Figs. 16b and 17b). The results also show that our approaches with the shared
execution paradigm, SPG and SRG, perform better than the baseline algorithms,
Casper and XStar, when k and r get larger.
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7.6 End-to-end performance

This section evaluates the end-to-end query response time of all the approaches for
k-NN and range queries with respect to increasing the number of users from 100,000
to 500,000 and the object size from 32 to 512 bytes, as the results are depicted
in Figs. 18 and 19, respectively. The end-to-end query response time includes the
location anonymization time at the location anonymizer (represented by black
bars), the query processing time at the database server (represented by dark grey
bars), the transmission of sending candidate lists from the database server to the
location anonymizer (represented by light grey bars), and the transmission of sending
candidate lists from the location anonymizer to the user (represented by white bars).

Figure 18 gives the same trend for both k-NN and range queries, where the
transmission overhead for the user dominates the end-to-end query response time.
This is because we assume the user communicates with the location anonymizer
through wireless communication channels, e.g., IEEE 802.11. Since our approaches
with the shared execution paradigm, SPG and SRG, effectively share cloaked
segments among queries, the number of objects transmitted from the database server
to the location anonymizer is much smaller than other approaches. However, after
the location anonymizer gets the objects returned from a set of shared queries, it has
to determine the candidate list for each individual user from the returned objects
and send the candidate list to each user separately, and thus, the shared execution
paradigm cannot reduce the transmission time of sending candidate lists to users.
Fortunately, our approaches generate smaller cloaked segment sets than the baseline
algorithms, Casper and XStar, so they incur lower communication overhead than the
baseline algorithms.

Figure 19 depicts the expected results that the end-to-end query response time gets
longer when the object size increases. As the object size gets larger, the transmission
time between the location anonymizer and the database server and between the
location anonymizer and the user increase. Since our approaches with the shared
execution paradigm, SPG and SRG, generate cloaked segment sets with shorter total
segment lengths than other approaches, they give the best performance in terms of
the overall query response time.

8 Conclusion

This paper proposed a query-aware location anonymization algorithm for road
network environments. Our algorithm aims to blur a user location into a set of
connected road segments S such that: (a) there exist at least K users in S to satisfy
the K-anonymity privacy requirement, and the total segment length of the road
segments in S is at least L to fulfill the minimum length L privacy requirement,
(b) the query execution cost of the requested query over S is minimized, and (c) the
query quality of S is maximized (i.e., the candidate list size returned to the user is
minimized). Based on a developed objective cost function that takes into account the
user specified privacy requirements, the query execution cost, and the query quality,
we proposed two greedy-based approaches, pure greedy and randomized greedy
approaches, for location anonymization in road networks. To accommodate intervals
with a high workload, we also proposed a shared execution paradigm to improve
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the scalability of our location anonymization process and the query processing of a
database server to support larger numbers of quires in a short time period. Extensive
experimental results show that our location anonymization algorithms are efficient
and scalable, while preserving the user location privacy and enabling high quality
services through minimizing the developed objective cost function. Injecting random-
ness into our location anonymization algorithms effectively avoids the replay privacy
attack. The results also depict that our algorithms with the shared execution para-
digm outperform the state-of-the-art location anonymization technique designed for
road network environments, in terms of both query response time and query quality.
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