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Abstract Intelligent crime analysis allows for a greater understanding of the dynam-
ics of unlawful activities, providing possible answers to where, when and why certain
crimes are likely to happen. We propose to model density change among spatial
regions using a density tracing based approach that enables reasoning about large
areal aggregated crime datasets. We discover patterns among datasets by finding
those crime and spatial features that exhibit similar spatial distributions by measuring
the dissimilarity of their density traces. The proposed system incorporates both
localized clusters (through the use of context sensitive weighting and clustering)
and the global distribution trend. Experimental results validate and demonstrate the
robustness of our approach.

Keywords Crime analysis - Spatial distribution - Density tracing -
Areal aggregated data

1 Introduction

Crime analysis allows for a greater understanding of the dynamics of unlawful
activities, providing possible answers to where, when and why certain crimes are
likely to happen. This analysis is of great importance to a number of people and
agencies such as regional planners, politicians, police and residents themselves.

The distribution of crime in time and space is non-random. Because criminal
behavior is dependent upon situational factors, crime is patterned according to the
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location of criminogenic environments. Crime will be concentrated around crime
opportunities and other environmental features that facilitate criminal activity. The
purpose of crime analysis is to identify and describe these crime patterns [33].

Environmental criminology is a branch of criminological theory that can guide
crime analysis and crime prevention efforts. The goal of environmental criminology
is to understand the various aspects of a criminal event in order to identify patterns
of behaviors and environmental factors that create opportunities for crime [3].
Discovering crime and spatial features that exhibit a similar spatial distribution (co-
distribution) is a key component to environmental criminology and allows a deeper
insight into the complex nature of criminal behavior.

As crime activities are geospatial phenomena, they must be interpreted and
analyzed in conjunction with various factors that can contribute to the formulation
of crime. Many of these datasets, such as those provided by the Queensland Police
Service, are areal aggregated due to limited environmental circumstances and ethical
issues. Areal aggregated datasets are region based datasets that have aggregate data
values (densities) for regions, e.g. a particular suburb has recorded five assaults. The
Australian Bureau of Statistics also releases sociodemographic information only in
aggregated form to protect the privacy of individuals. It is necessary for crime analy-
sis tools to discover co-patterning, that is, patterns happening together in multiple
themes or datasets. These co-patterning relationships can comprise of point-to-point
association (co-location capturing the relationship within a pair of points belonging
to different geographical themes at each location), spatial dependence (capturing
the relationship between distinct pairs belonging to the same geographical theme),
and spatial co-distribution (modeling the relationship between pairs belonging to
different geographical themes across locations) [17]. Pearson’s correlation coefficient
is a typical measure for point-to-point association while Moran’s [ is a typical
measure for spatial dependence. There is no widely accepted measure for spatial
co-distribution.

Several crime data mining techniques have been developed over recent years
[5, 12, 20, 24], however reasoning about crime data has received less attention [4, 21].
Most of these reasoning approaches are based on clustering point crime data and
reasoning with those clusters. The drawback of such approaches is that reasoning
based on surrogate clusters can be imprecise and is heavily cluster-dependent. These
techniques can also only discover positive associative features whereas negative
associative features can also be informative. Several works using spatial Association
Rules Mining (ARM) have also been proposed in order to mine spatial associations
in geospatial databases [15, 16, 29]. The main drawback of these approaches is
that they capture point-to-point association (with no consideration for neighboring
regions), but ignore spatial dependence.

The increasing availability of heterogeneous data, such as socio-economic and
socio-demographic factors, geospatial features and crime datasets, has brought with
it an increasing need for intelligent analysis. To discover interesting patterns in these
areal aggregated datasets the co-patterning relationship between different spatial
themes across locations needs to be modeled and quantified.

We propose to capture these co-patterning relationships by modeling the spatial
distribution of areal aggregated datasets using a density trace. Unlike point-to-point
association methods, we are able to account for local neighborhood information
(capturing nearby neighbors) and the global distribution (modeling the whole study
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region) within the density trace. Figure 1 shows three hexagon shaped areal aggre-
gated datasets (shaded regions indicate density: black = 3, grey = 2, white = 1). The
three pairs of datasets, A-B, B-C and C-A show identical point-to-point association
as Pearson’s correlation coefficient is the same (0.422)(also each dataset has 5 black,
17 grey and 13 white regions). However, it can be seen that the pair A-B shows
a higher level of spatial co-patterning than those of B-C and C-A. By modeling
the spatial co-distribution, we are able to account for this spatial neighborhood
information. We are able to discover co-patterning relationships that can be either
positive (causing crimes) or negative (preventing crimes). The resulting patterns can
then be used by domain specialists to further investigate and target the cause of these
specific patterns.

How we model the density trace is important as we must retain as much spatial
information as possible. We examine four popular locational ordering methods to
determine the spatial ordering of the areal units in the study region: Guided Local
Search (GLS), Depth First Search (DFS), Breadth First Search (BFS) and a Nearest
Neighbor (NN) technique. We show that in general, the GLS technique is best
able to capture neighbors (i.e. those regions that share a border). The distance
(dissimilarity) between two density traces is calculated using a modified Locality
In-between Polylines (LIP) distance measure [23]. Intuitively, two density traces are
considered spatially similar when they move close (i.e., their traces approximate each
other) at the same place. To the best of our knowledge, this is the first attempt at
using density traces/routes to represent the spatial distribution of areal aggregated
datasets for crime data mining. Our density tracing approach efficiently and robustly
reveals the top-k positive and negative co-distribution relationships. Density tracing
observes the first law of Geography [30] and can consider not only localized clusters
but the global trend (density trace).

The next section provides a review of existing areal aggregated crime reasoning
techniques. In Section 3 we detail our proposed technique and the special properties

Fig. 1 Drawback of
point-to-point association
co-patterning: a—c Datasets
A-C
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of areal aggregated data and density tracing. Section 4 provides experimental eval-
uation and comparison with other approaches. We conclude with final remarks and
ideas for future work in Section 5.

2 Reasoning about areal aggregated crime

There exist three general approaches for reasoning with areal aggregated datasets:
choropleth mapping (visualization), spatial statistics, and geographical data mining.

Choropleth mapping is a common technique for representing aggregated data in
data-poor environments. In crime analysis, this is generally known as crime mapping
and is used by analysts to visually search for trends or patterns of a particular
crime type in specific areas [20, 25]. The problem faced when using this mapping
is the choice of data classification method: the user must select an appropriate
technique that best depicts the spatial properties of the data [8]. Choosing the ‘best’
classification method is heavily dependent on the user’s domain knowledge and even
then may require a number of iterations to determine the most suitable method.
Visualization techniques are not a scalable solution to the crime reasoning problem
and further, reasoning is based on subjective visual inspection.

Geographic Data Mining (GDM) is data mining applied to georeferenced
datasets. GDM must consider the peculiar characteristics of geoinformation that
makes space special in order to detect geographically interesting patterns [19].
Crime activities are geospatial phenomena and as such techniques for their analysis
must take into account the special properties of geospatial data such as spatial
autocorrelation and spatial heterogeneity. Two core techniques within GDM are
spatial clustering and association mining. Spatial clustering is closely related to
intensity measurement while association mining is generally related to dependency
measurement.

Spatial association is the degree to which a set of observations are similarly
arranged over space. Two different communities have focused on two different
measures to model these spatial relationships. The geoinformatics community have
focused on using spatial statistic-based approaches to measure spatial dependence
(autocorrelation) based on cross-k function with Monte Carlo simulation, spatial
chi-square tests, Moran’s / and Geary’s c statistics [2, 6]. These measures quantify
the relationship between distinct observations belonging to the same theme across
locations, that is, they measure the spatial relationship a variable has with itself. For
example, they can model the likelihood that theft will occur near other regions where
theft is high. However, these measures are limited to univariate measurement and are
computationally expensive and as such are not suited to data-rich environments [19].

The spatial data mining community has focused on variants [14-16, 18] of tra-
ditional ARM [1] to model spatial association. These approaches typically capture
point-to-point associations and mainly focus on frequent patterns, and can thus be
dominated by uninteresting frequent co-occurring patterns, such as traffic lights are
co-located with roads. Approaches that overcome this drawback by mining rare
events have also been developed [13], however they are still focused on capturing
point-to-point association. These algorithms are scalable and applicable to mining
co-patterning relationships, however, the main criticism of these approaches lies in
their inability to model spatial dependence. Lee [17] explored the combination of
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point-to-point association and spatial dependence, but it is still limited to bivariate
analysis and remains computationally expensive requiring quadratic time for bivari-
ate analysis.

Most existing GDM approaches for reasoning about areal aggregated datasets use
clustering, Association Rules Mining (ARM) or a combination of the two [9, 14—
16]. Estivill-Castro and Lee [9] enable exploratory analysis of geospatial patterns
by utilizing a clustering technique and then reason based on those clusters using
ARM. Spatial clustering methods are often based on point data, so before they
can be applied to areal aggregated datasets data transformation must take place.
This transformation from an areal dataset to a point dataset may introduce artificial
patterns depending on the technique used. Clusters are dense spatial aggregations
and as such any patterns based on these clusters may not depict the trend of the data;
only the trend of the dense clusters [10].

Recent geospatial reasoning techniques have also used Co-Location Rules Min-
ing [34] to discover point features that are frequently located together in a geographic
space. It extends traditional ARM by providing a transaction free approach using the
concept of neighborhoods without having to define a reference feature. Typically,
traditional ARM interest measures are not used and this approach introduces two
new interest measures (prevalence and conditional probability) that can be used
in a dynamic situation where transactions are not fixed to a constant. However,
as with ARM an overwhelming amount of uninteresting patterns are typically
discovered.

To successfully enable crime analysis and decision making using areal aggregated
datasets, patterns that happen together in multiple themes or datasets must be
discovered. We propose to discover these co-patterning relationships by modeling
the spatial distribution of datasets as density traces. Current techniques that discover
co-patterning relationships by modeling point-to-point association do not take into
consideration neighborhood information, we overcome this draw back by utilizing
both local neighborhood information and the global distribution within the density
trace. We compare and contrast our approach to ARM in Section 4.

3 Density tracing for crime reasoning
3.1 Problem statement and motivation

The major drawback of current reasoning techniques that are based on clustering
and ARM is that they may miss important global trends that are not part of the local
cluster aggregations [10]. A vast number of spatial clustering methods have been
proposed [11], with each method likely to give a different set of clusters, any patterns
based on those clusters are heavily cluster-dependent. An example of this is given in
Fig. 2, where we have three datasets that show the center points and density values
of each region.

If we wish to find possible associative patterns for dataset,, a typical cluster based
reasoning approach would determine that dataset, is highly correlated with dataset,
while dataset, is not. Depending on the chosen clustering method, the algorithm may
only detect the densest regions of the three datasets (shaded regions), and in this case
dataset, and dataset;, have the same dense region.
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s1 s2 s3 s4 s5
Regions (d)

Fig. 2 Drawback of cluster based reasoning: a—¢ Datasets dataset,_.; d Histogram of density values

From visual analysis of the histogram in Fig. 2d we argue that dataset, has a higher
similarity than dataset, because the global density trend is more similar to that of
dataset,. The clustering approach fails to detect the global trend. Our framework
returns the following results with these datasets demonstrating that dataset, has a
higher similarity than dataset;:

Reference Feature selected: dataset_a
Feature: dataset_b Dissimilarity: 0.4269240
Feature: dataset_c Dissimilarity: 0.0101308

We propose to model the spatial distribution by using the density change be-
tween regions to discover co-patterning relationships between certain types of
crime. Crime and spatial features that exhibit similar spatial distributions warrant
further investigation by domain experts. Our approach is able to overcome the
drawbacks of frequent pattern mining approaches that are combined with clustering
techniques by considering not only localized clusters but also the global spatial
distribution.
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3.2 Working principle

We explain the working principle of our framework with the example synthetic
datasets shown in Fig. 3. We have three datasets that show the center points and
density values of each region. We use the spatial distribution of density values to
model the co-patterning relationship between regions belonging to different datasets
across the study region. Dataset, and dataset, show a similar density distribution:
higher than normal density in the shaded regions. Dataset. however has a more even
density pattern with all regions showing a similar density.

(b)

3 10 57 “regions (1)

Fig. 3 Working principle of our framework: a-c¢ Datasets dataset,_. before normalization; d GLS
region ordering; e Density trace; f Density trace with area highlighted
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We will now present an overview of how our framework discovers co-patterning
relationships, details of each step will be given in Section 3.3. Initially, we load the
three areal aggregated datasets dataset,_. and calculate the center point of each
region. We assume all datasets share a common base map, thus the center points of
each region only need to be calculated once. The density values are then normalized
into the range [0, 1]. The next step is to determine the spatial ordering of regions. In
this example we use the GLS method with a random starting location, Fig. 3d shows
the resulting order with the starting region labeled 1. Once the spatial ordering of
regions is determined, the density traces for each dataset can be calculated. Figure 3e
depicts these density traces with each line representing one dataset. These density
traces represent the spatial distribution of the density values projected onto the
Cartesian plane. In this example we wish to find patterns involving dataset,, thus we
select dataset, as our reference feature f. The similarity value between f and each
dataset is then computed using our modified Locality In-between Polylines technique,
with the basic idea being to calculate the area of the shape formed by the two 2D
density lines. Figure 3f highlights the areas that need to be computed to calculate
the similarly between dataset, and dataset,. We can prune the results with a user
supplied minimum similarity min_sim or simply retrieve the k Most Similar and/or k
Least Similar results. The output using this example dataset is as follows:

Reference Feature selected: dataset_a
Feature: dataset_b Dissimilarity: 0.735477
Feature: dataset_c Dissimilarity: 1.476240

3.3 Algorithm

Our approach is detailed in Algorithm 1. To calculate a density trace for our areal
aggregated crime and feature datasets, they must first be preprocessed. Step 3
determines the center point of each region, which can then be used to determine
the density trace and neighboring locations (we define neighbor as those that share a
boundary). We assume all datasets share a common base map, thus the center points
of each region only needs to be calculated once. The center of a region is determined
by taking the center point of the region’s bounding box. If the center does not fall
inside the region itself the point is moved in the X direction until it enters into the
region. The point is then moved in the same direction, along the X axis, until it exits
the polygon. The centroid is calculated to be halfway between the two points, on the
same X axis. For complex polygons that have more than one pair of polygon outlines
that cross the X-axis, each pair of outlines is compared to see which pair creates
the widest length along the X-axis. Then, the centroid is calculated to be halfway
between the points where this pair of outlines crosses the X-axis. This is the same
as the standard GIS technique employed by ArcView GIS for calculating the center
point of a polygon [26].

Step 18 of the density tracing framework is to normalize the density values so
that a meaningful similarity can be measured. We must normalize the datasets as
the density traces are projected onto the Cartesian plane, with density as the Y axis.
To measure similarity we compute the area formed between two density traces so
to successfully compare between pairs of datasets the density values must be in a
common range. We do this by using the min-max normalization [28] technique which
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Algorithm 1 Density Tracing for Crime Reasoning

Input: A set D=/{d|,da,...,d,} of spatial areal aggregated datasets, a common base map
B=1{by,by,...,b;}, the required spatial ordering algorithm order Alg, a reference feature f, and a
minimum similarity minSimilarity;

Output: A set S = {s1, 52, ..., sm} of ordered features with dissimilarity y < minSimilarity;

: LoadDatasets(D);

1
2:
3: CalcCenters(B):

4: for each region r in B do

5: cp < center Point O f Bounding Box(r)

6 if ¢p is not within Bounding Box(r) then

7 point1: Move cp in the X direction until it enters into r
8 point2: Move cp in the X direction until it exits »

9: Centroid cp is calculated to be halfway between point1 and point2 on the same X axis
10: if More than one pair of polygon outlines cross the X-axis then
11: Compare each pair of outlines to see which pair creates the widest length along the X-axis
12: Calculate centroid cp as halfway between the points where this pair of outlines crosses the
X-axis
13: end if
14: end if
15: return cp
16: end for
17:

18: NormalizeDensity(D):

19: for all d; € D do

20: upper Limit < 1

21: lower Limit < 0

22: Hi < d;.max()

23: Lo < d;.min()

24: fact < (upper Limit — lower Limit) /(Hi — Lo)
25: forall x € d; do

26: dilx] < (di[x] — Lo) = fact + lower Limit
27: end for

28: end for

29:

30: RegionOrdering(B, order Alg);

31:

32: DT <« DensityTrace(D):
We have to project the normalised density onto the Cartesian plane according to the region ordering
33: foralld; € D do

34: for iterator r < regionOrder.b egin() do

35: Get the corresponding density value (d1) for region r from d;
36: point(X,Y) < pl((xr),dl)

37: Get the next region r from region Order: r + +

38: if 7! = RouteSet.end() AND r! = NULL then

39: Get the corresponding density value (d2) for region r from d;
40: point(X,Y) < p2((xr), d2)

41: Make segment between pl, p2

42: Store segment in list: DT

43: end if

44: end for

45: end for

46:

47: foralld; € D do

48:  list similarity S

49:  localS < CalcSimilarity( f. d;, minSimilarity)

50: if localS! = —1 then

51: S.append(local S)

52: end if

53: end for

54: S.sort()

55: return S
{Note: Library of Efficient Data types and Algorithms (LEDA) utilised to provide geometric algorithms
and data types such as intersection of lines, area of polygons, etc.}
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retains the original distribution of scores except for a scaling factor and transforms
all the density values into the common range [0, 1]. Step 30 (detailed in Algorithm 2)
of the algorithm is to determine the spatial ordering of the regions so that we can
determine a density trace. This ordering can have a large impact on the overall
framework: we must preserve the spatial information contained within the data so
that the discovered patterns describe the spatial distribution. We are concerned with
how density changes from location to location, from neighbor to neighbor, and our
region ordering should reflect this. Again, as we assume all datasets share a common
base map, this spatially aware region ordering needs to be calculated only once for
all datasets.

We investigate four popular linear techniques that can be used to determine this
spatially aware region ordering; greedy GLS, DFS, BFS and a NN technique. As we
can see from Fig. 4, the GLS and NN-5 orders are better able to preserve spatial
neighborhood information than both DFS and BFS. Visually, we can see that the
GLS route is the only one that does not have overlapping edges (that is, edges that
cross over another edge), also Fig. 4f shows that compared with GLS and NN-5, DFS
and BFS exhibit a significantly larger edge length variance.

There are a number of different techniques that can be used to determine spatial
neighbors and orders. Neighborhood graphs such as the Relative Neighborhood
Graph (RNG), Gabriel Graph (GG) and the Delaunay Triangulation (DT) [22]
cannot be used directly with our approach as they produce a nonlinear ordering.
The density tracing approach outlined in this paper projects the normalized density

(a) (b) (©)

Order  Variance

GLS 0.000082
DFS 0.007476
BFS 0.006869
NN-5  0.000766

(d) (e) (®

Fig. 4 Spatially aware region ordering: a Base map including center points; b GLS; ¢ DFS; d BFS;
e NN-5; f Variance of edge lengths
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Algorithm 2 Density Tracing: RegionOrdering

Require: Centre point for each region in the base map has been calculated;
Input: A common base map B and the required spatial ordering algorithm order Alg;
Output: A list of regions order, ordered by the spatial ordering algorithm order Alg;

1: Starting region can either be random or user supplied; polygon p = random Region()
2: if order Alg = GLS then
3:  Use Fast Local Search, the 2-Opt heuristic as the move operator, no construction heuristic and Alpha <
0.167
4 Invoke GLS algorithm using a random starting solution
5 Refer to Voudouris [31] for complete algorithm
6: else if order Alg = DFS then
7:  list order
8: stack < polygon > S
9: S.push(p)
10:  while !S.empty() do

11: polygon local < S.pop()

12: order.append(local)

13: for Each neighbouring region n of local ordered by distance do
14: if n is not already in order or S then

15: S.push(n)

16: end if

17: end for

18: end while

19: return order

20: else if order Alg = BFS then
21:  list order

22: queue < polygon > Q
23: Q.append(p)

24: while ! Q.empty() do

25: polygon local < Q.pop()

26: order.append(local)

27: for Each neighbouring region n of local ordered by distance do
28: if n is not already in order or Q then

29: Q.append(n)

30: end if

31: end for

32: end while

33: return order

34: else if order Alg = NN then
35:  list order

36: order.append(p)

37:  local base map /b < B

38: for all regionr <— p € [b do

39: list polygon nn List <— nearest Neighb ors(r, 5)
40: for all region n € nn List do

41: if n is not already in order then

42: order.append(n)

43: Ib .remove(n)

44: end if

45: end for

46: end for

47: return order

48: end if

onto the Cartesian plane following a defined spatial ordering. The ordering must be
linear as the algorithm computes a dissimilarity score by calculating the area formed
between two density traces when overlaid. Each region can only be connected to a
maximum of two other regions in the ordering. Similarly, space filling curves such
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Algorithm 3 Density Tracing: CalcSimilarity

Require: Density Trace for all datasets stored in DT
Input: A reference feature f, dataset d and minimum similarity minSimilarity;
Output: The dissimilarity dissimilarity between traces of f and dj

1: segment list referenceSegment <— DT ¢

2: segment list datasetSegment <— DT 4

3: length/ < 0

4: point list area Points

5: last intersection segment/point last Intersect, last Intersect Point
6: number regions in polygon numR < 0

7: region weight for polygon rw < 0

8: for sl € referenceSegment, s2 € datasetSegment do

9:  if INTERSECTION( sl, s2) then

10: Save the intersection point: area Points.append(INT ERSECTION(s1, 52))
11: Work back from intersection point of other line (datasetSegment):
12: iterator it < s2
13: while it! = NULL do
14: if it = lastIntersect then
15: Save the intersect point: area Points.append(last Intersect Point)
16: Save the length of the segment
17: break
18: else
19: Save the start point: area Points.append((xit).source())
20: Save the length of the segment
21: end if
22: it——
23: end while
24: Save the length of the segments up to the intersection point
25: Increase num regions covered by polygon: numR < numR + 1
26: Update region weight covered by polygon: rw < rw + RegionWeight(s1.source())
27: Make polygon: polygon P(area Points)
28: weight w < [/(total Segment Length( f) + total Segment Length(d))
29: avg region weight rw < rw/numR
30: dissimilarity < dissimilarity + area Points x w % rw
31: if dissimilarity > minSimilarity then
32: return —1
33: end if
34: Reset variables: area Points.clear(),l < 0, numR < 0,rw < 0
35: lastIntersect < s2, lastIntersect Point < INTERSECTION(s1, s2)
36: else if s1 = referenceSegment.end() then
37: Make a polygon from intersection point to end of segment
38: Save the length of the segments up to the end of segment
39: Increase num regions covered by polygon: numR < numR + 1
40: Update region weight covered by polygon: rw < rw + RegionWeight(s1.source())
41: Make polygon: polygon P(area Points)
42: weight w <« [I/(total Segment Length( f) + total Segment Length(d))
43: avg region weight rw <« rw/numR
44: dissimilarity < dissimilarity + area Points s w % rw
45: if dissimilarity > minSimilarity then
46: return —1
47: end if
48: Reset variables: area Points.clear(),l < 0, numR < 0,rw < 0
49: else
50: Continue checking for intersection until last segment
51: Save the length of these segments: | «<— [ + s1.length() + s2.length()
52: Add reference segment start/end point:
area Points.append(s1.source()), area Points.append(s1.target())
53: end if
54: end for
55: if dissimilarity > minSimilarity then
56: return —1
57: else
58: return dissimilarity
59: end if
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as Morton-order or Hilbert curve [27] also cannot be used directly as the base map
contains irregular regions that are not well represented by these curves. Section 5
discusses possible future work extending density tracing to neighborhood graphs.

Determining region ordering for use in our framework is similar to the symmetric
Travelling Salesman Problem (TSP) where the cost between regions is the Euclidean
distance. Starting from Region, we wish to order all regions in the study area so that
the next region visited is a spatial neighbor (sharing a border). Region, can be chosen
at random or, perhaps more usefully, it can be chosen based on some real world
property (for example the Central Business District of a city). GLS is an intelligent
search strategy for combinatorial optimization problems. The technique sits on top
of local search procedures and has as a main aim to guide these procedures for
exploring efficiently and effectively (the complete algorithm is out of the scope of this
paper, please refer to [32] for details). We generate a random ordering starting from
Region, and then apply GLS to generate the ordering that minimizes the Euclidean
distance between regions (i.e. ideally we wish to move from neighbor to neighbor).
We use the suggested GLS parameters from [32] (Fast Local Search, 2-Opt heuristic
move operator, no construction heuristic and Alpha = 0.167).

DFS starts from Region, and pushes each neighboring region onto a stack. The
closest neighbor is then popped from the stack and added to our region ordering. We
continue in this fashion before backtracking to Region,. The process then repeats
for the remaining neighbors of Region,. BFS is similar to DFS except we use a queue
instead of a stack. It starts at Region, and adds all neighboring regions to the region
ordering (in order of distance) and then continues the search outwards.

The NN technique that we use first adds the 5 (NN-5) closest neighbors of Region,
to the region ordering. We then select the next closest neighbor (i.e. the 6th closest
to Region,) which becomes the new starting point. We repeat the process of adding
the closest 5 neighbors until there are no regions left. We choose five closest regions
as for our suburb dataset it is noted that suburbs have on average five neighbors.

Note that the ordering approaches adopted in this paper utilize the combination
of topological information (neighboring regions sharing boundaries) and geometric
information. Other approaches such as the Minimum Spanning Tree (MST) and
cumulative distance ordering could be used with modification, however the former
is not linear whilst the latter only uses topological information. We experimentally
investigate the effect of region ordering in Section 4.

Once we determine the spatial ordering of regions in the study area, Step 32 of
the algorithm is to calculate the density traces of each dataset. This trace projects the
normalized density onto the Cartesian plane (following the defined ordering from
Step 30) and depicts the spatial distribution of the density values within the study
region.

To discover patterns of similar spatial distribution we need to query the set of
density traces for similarity. To measure similarity we need to quantify the distance
between two density traces. We modify the Spatial Trajectory Similarity Search
technique [23] to incorporate region weights. Given a reference feature f, the most
similar trace in D with respect to f is the one that minimizes the distance measure
Region Weighted Locality In-between Polylines (RWLIP). Intuitively, two traces are
considered spatially similar when they move close (i.e., their traces approximate each
other) at the same place. As such RWLIP defines a distance function upon the traces
(projected on the Cartesian plane) where the idea is to calculate the area of the
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shape formed by the two traces. Note that this distance measure is equivalent to
dissimilarity, i.e. a lower distance measure equates to higher similarity.
The distance measure between two traces Q and S is defined as follows:

RWLIP(Q.S)= Y Area;-w; - regionw;, 1)

Vpolygon;

where polygon; is a member of the set of polygons formed between intersection
points I created when Q and S are overlaid in the 2D plane, w; € [0,1] is a
contribution weight and regionw; € [0, 1] is a region weight. Figure 5 illustrates
the respective areas that contribute in RWLIP(Q, S). Let Lengtho(l;, I;+1) and
Lengths(1I;, I;+1) be the length of the trace that participates in the construction of
a given polygon. The contribution weight can then be defined as follows:

_ Lengtho(1;, Ii+1) + Lengths(1;, Ii11)
N Length + Lengthg

i )
that is, the numerator is the perimeter of the polygon in question, while the denomi-
nator is the sum of the total length of the routes. It is a weight of how much a certain
polygon contributes to the whole trace.

Each region of the reference feature f can have a user specified weight. It
is designed to enable the combination of clustering results into the density trace
similarity algorithm. The regionw; is defined as the average region weight of all
regions that contribute to the polygon i. If no region weight is specified, then each
areal unit is equally important and the global trend (the entire set of areal units) is
used for the similarity calculation. On the other hand, the user can assign different
weights to regions so that high peak areal units (clusters) have more effect on the
similarity score. This enables the user to incorporate both context sensitive weighting
and clustering into our system.

As the RWLIP algorithm traverses the spatial ordering, if there are no inter-
sections between Q and S (the traces are parallel) then the algorithm detects this
and closes the segments by connecting the initial points of Q and § and the final
points of Q and S. The algorithm can then proceed with this one area. The range

Fig. 5 Region weighted
locality in-between polylines

density

regions
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of the similarity measure RWLIP is dependent on the density range (Y axis)
and number of regions (X axis). A lower dissimilarity measure equates to higher
similarity between the density traces.

The last step of the algorithm is to save any features that show a similarity to our
reference feature f. We can either use a user supplied minimum similarity min_sim
or simply retrieve the k Most Similar and/or k Least Similar results.

3.4 Time complexity analysis

To analyze the time complexity of our approach we analyze each function of
Algorithm 1 separately. Given n as the number of spatial areal aggregated datasets
in D and / as the number of spatial regions in the base map B, LoadDatasets(D)
is linear to n. The time complexity of CalcCenters(B) is dependent on the
regions of B. Typically CalcCenters(B) is linear to /, however if B contains
convex polygon regions then the complexity is O(log/) [26]. To normalize D, for
each dataset d, we must examine / values, and thus NormalizeDensity(D)
has a time complexity of O(n x [). To generate the spatial ordering of our base
map B using the default GLS method, RegionOrdering(B, order Alg) typically
requires O(/log!/) [32]. To generate the density trace of each dataset d, we need to
examine / regions, thus DensityTrace(D) requires O(n x [). Note that the original
LIP(Q, S) computation requires O(/log!) [23], thus our RW L1 P extension also has
a time complexity of O(llogl). CalSimilarity(f, d;, minSimilarity) requires the
comparison of n datasets using the RW L[ P algorithm and thus has a time complexity
of O(n x llogl).

4 Experimental results

This section provides experimental evaluation and comparison of our approach. The
base region map used for our experiments are the 216 urban suburbs of Brisbane, the
capital city of Queensland, Australia. Sections 4.1 and 4.3 use the whole study region
while Section 4.2 uses a small subset of the base map.

4.1 Experiments with synthetic datasets

The examples in Sections 3.1 and 3.2 are illustrative experiments that are designed to
explain our technique of using spatial distribution to find co-patterning relationships
between datasets. We conduct a number of experiments with synthetic datasets
to evaluate and justify our approach. The synthetic datasets are produced using a
MATLAB program which generates random point data drawn from a mixture of
multivariate guassians. We then convert this point set to an areal aggregated dataset
by assigning points to regions of the given base map. For the figures in this section we
display the point data overlaid onto the base map instead of the density aggregates
to aid readability.

We first evaluate our approach with synthetic datasets that show increasing
dissimilarity. Figure 6a—d show the synthetic datasets used in this experiment. We
start with n = 4 clusters in dataset,, and for each subsequent dataset we remove k
clusters (0 < k < n). We assert that the linear decrease in the number of clusters
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Dissimilarity
© o o o
[~ w B w

o
i
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k=0 . k=1 k=2 k=3
Number of modified clusters (k) (E)

Fig. 6 Synthetic experiment removing clusters: a—d Datasets dataset,_;; e Increasing dissimilarity
with respect to number of removed clusters

results in these datasets showing increasing dissimilarity, that is, as clusters are
removed, dataset;, _; become less similar to the original dataset,. Figure 6e illustrates
this; when we select dataset, as the reference feature the dissimilarity increases with
the number of clusters removed. For these synthetic datasets all four region orderings
identify the increasing dissimilarity as we remove clusters from the datasets.

The second experiment we present is a modification of the first synthetic exper-
iment. Figure 7 starts with n = 4 clusters in disjoint regions of the feature space
and for each subsequent dataset we move the k" cluster to a new location within
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(d)
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04 -

03 -

02 1

Dissimilarity

01 4

k=0 k=1 k=2 k=3 k=4
(e) Number of modified clusters (k) 0

Fig. 7 Synthetic experiment moving clusters: a—e Datasets dataset,_.; f Increasing dissimilarity with
respect to number of moved clusters

the space. The main difference between this and the previous experiment is that
n does not vary between datasets. We assert that the linear decrease of clusters in
their original locations will result in an increase in dissimilarity as we move clusters.
Figure 7f shows that when we select dataset, as the reference feature, only the GLS
and NN-5 orders give this expected result for all datasets, that is, they show an
increase in dissimilarity. When k = 2 (dataset,;) the DFS order records a peak in
dissimilarity, calculating that dataset; and dataset, are more similar to the reference
feature than dataset,. A similar result can be seen for the BFS ordering when k = 3.

To measure similarity between datasets we compare the spatial distribution, that
is, how the density changes between regions. For these synthetic datasets, the GLS
and NN-5 spatial ordering are better able to preserve the spatial neighborhood
information, as reflected in the fact that the DFS and BFS orders give unexpected
results for part of this experiment. We use these synthetic datasets to evaluate and
justify our approach as there is no baseline measure that can be used to measure
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similarity, we rely on the linear decrease in the number of clusters to confirm that
these datasets show increasing dissimilarity.

4.2 Optimal spatially aware ordering

To further investigate the effect of the four linear spatial ordering methods, we
generate all possible orderings for a given base map and find the optimal solution
that minimizes the dissimilarity score for a given control dataset. This enables us to
compare the optimal linear ordering to the orders generated by our techniques.

We choose a small subset of eight regions from the Brisbane base map as our study
area. For this study area there are 8! possible spatial orders. We generate all possible
orders to determine the optimal spatial order that will minimize the dissimilarity
score for the datasets shown in Fig. 8a—d. We assert that dataset, is similar to dataset,
as they show a similar high density distribution in the three top left regions and low
density distribution in the remaining regions. It can also be seen that dataset, is very
dissimilar to dataset._ . Figure 9a—d show the GLS, DFS, BFS and NN-5 orders for
the study region respectively. To enable comparison we use the same starting region
for each order. Constraining the optimal ordering to the same starting region as our
three techniques reduces the number of possible orders to 7!.

Figure 10 shows a comparison of the results obtained by the density tracing
algorithm for each spatial ordering. The dissimilarity values are normalized using the
min-max technique described in Section 3.3. Both GLS, NN-5 and DFS are good
approximations of the optimal ordering. Figure 9d shows that the optimal order
is very similar to the orders generated using our three other techniques with the
same starting region. In particular, the GLS order is most similar. The worst case
scenario for generating the spatial ordering is when the optimal order reflects a
completely different region ordering. Figure 9e shows the unconstrained optimal

1 08
N 08 My , 09 g
09 fo & 3 01 T~ Fo &
| o > 0
1] 02 e
(a) . (b)
0 | 0 (
S5 _"o.s' ) P -;1 ;
0 07 &/ 0 3 09 ¢
1} N T ~ o7,
0 s \ o 7 e
- L
(c) (d)

Fig. 8 A subset of regions from the Brisbane base map with synthetic data: a—d Datasets dataset,_,4
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(a) (b) (c)

(d) ' (e) - (0

Fig. 9 Optimal ordering: a GLS; b DFS; ¢ BFS; d NN-5; e Optimal order with same starting region;
f Optimal order

order for this study region. For these experiments the unconstrained optimal order
is not the worst case scenario. It is noted that we do not need an optimal order, only
one that can model spatial neighborhood information so that we can compare the
spatial distribution of datasets. From the comparison of this small subset and visually
from Fig. 4 we can see that GLS is suited to capture spatial information for these
study regions.

4.3 Experiments with real crime datasets

This section examines the real crime dataset from 216 urban suburbs of Brisbane. The
study region is highly dynamic and active. It continues to experience significant and
sustained population growth and various criminal activities [20]. The Queensland
Police Service (QPS) releases crime data in areal aggregated format due primarily
to privacy concerns. We combine these crime datasets with spatial feature datasets
so that interesting relations can be discovered. We use a total of 29 crime datasets
and 5 features (reserves, schools, hospitals, university/colleges and parks) in this
experiment. The crime dataset from the QPS has three main categories: personal

Fig. 10 Comparison of
normalized density
dissimilarity of synthetic
datasets using various orders
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Table 1 Crime abbreviations TOHO

MSLT
DRCD
SEAS
OTAS
RAAR
OTSO
ARRO
UNRO
EXTO
KAAE
OFAP

TOAPR

TOUE
ARSO
OTPD
MOVT
OTTH
STFD
SHST
OTST
FBCH
FBCC
OTFR
TOOO
TRAV
GOOO
TARO
MIOF

Total homicide

Manslaughter (excl. by driving)
Driving causing death

Serious assault

Other assault

Rape and attempted rape
Other sexual offences

Armed robbery

Unarmed robbery

Extortion

Kidnapping & abduction etc.
Other offences against the person
Total offences against property
Total unlawful entry

Arson

Other property damage

Motor vehicle theft

Other theft (excl. unlawful entry)
Stealing from dwellings

Shop stealing

Other stealing

Fraud by cheque

Fraud by credit card

Other fraud

Total other offences
Trespassing and vagrancy
Good order offences

Traffic and related offences
Miscellaneous offences

safety (offences against person), property security (offences against property) and
other offences. Table 1 lists all crime types we study in this experiment. GLS is
used as the region ordering due to its low edge overlap and low edge variance

(Section 3.3).
14 ———reserves
% -~ hospitals
pal a0 N SR e schools
£
E
g

Dissimilarity
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Fig. 11 Similarity between features and various crime datasets: a Reserves, hospitals and schools;

b University/colleges and parks
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Figure 11 shows the result of this experiment. An interesting pattern that we
detected is that the reference feature reserves shows a very high similarity to both
kidnapping (KAAE) and manslaughter (MSLT) (the 2 Most Similar). It is interesting
to note that parks, while similar physically to reserves, do not exhibit the same
pattern. Another pattern discovered is universities and colleges show a highly similar
density trace to both shop stealing (SHST) and other fraud (OTFR), again these are
the 2 Most Similar. These results can then be used by domain experts to further
investigate the cause of these specific patterns.

There is a point where the number of discovered patterns can become too much
for the end user to handle—so called ‘information overload’. As can be seen from
Fig. 12 a low minimum similarity will not reveal any patterns, whereas a high limit
may introduce unwanted ‘noise’. We offset this drawback by allowing the user to
retrieve the k Most Similar and/or k Least Similar results. It is noted that even with a
high minimum similarity the number of patterns generated by our approach is much
smaller than the number of patterns returned by ARM. We compare and contrast
the two approaches in Section 4.4.

Figure 13 shows a comparison between the four region ordering approaches
GLS, DFS, BFS and NN-5. The four techniques show similar results in this case,
demonstrating the minimal role of different orderings for this particular dataset.

In the next experiment we introduce clustering results into the framework. We
select the reference feature reserves and assign weights to specific regions. These

Fig. 13 Comparison between w 12
GLS, DFS and BFS for £
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kidnapping g_
:E 08
=
T o0s
=y
5 o4
E o2
=2
8 o
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Features
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Fig. 14 Comparison between 06
weighted and non-weighted
regions for reserves 05 19
£ oa
e
‘E 03
E
-
A 02
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regions can be found using a clustering technique or may be a user defined influence
on the study area. We discover two clusters in the reserves dataset; suburb Coorparoo
is the densest cluster and is assigned a region weight of 0.1 while suburb Tennyson a
weight of 0.5. Figure 14 compares the dissimilarity scores of reserves when cluster
weights are used and when they are not. The region weights have lowered the
dissimilarity of a number of crime types, with the most affected being Serious Assault
(SEAS), Other Stealing (OTST) and Trespassing (TRAV).

4.4 Comparison with association rules mining

ARM discovers co-patterning relationships by capturing point-to-point association
of frequent patterns that have support and confidence greater than some user
specified minimum support and minimum confidence thresholds. Our approach
aims to discover co-patterning relationships by modeling the spatial distribution
of datasets. We use the same areal aggregated dataset as described in Section 4.3
for a comparison with ARM. Before we can use ARM, we must first transform
the data into categorical values. We classify the density values into three groups;
high, medium and low (using normalized values). This results in a database of 318
columns (items). ARtool [7] (Apriori algorithm) is used to perform the association
mining. It is noted that while many patterns discovered by our density tracing
approach may be the same as patterns discovered from ARM, the two are not directly
comparable. ARM measures the point-to-point association of datasets while our
approach measures the spatial distribution.

One of the drawbacks of ARM is that typically a lot of uninteresting rules
are found. With a minimum support and minimum confidence of 0.8, the Apriori
algorithm generated 2,319,036 rules. This increases the complexity for the end user
as they must sift through results looking for useful information. The column graph
in Fig. 15 shows that as the confidence is increased the number of rules generated
decreases, however there are still an unmanageable number of patterns (support is
fixed at 0.8). The line chart in Fig. 15 compares the results obtained from the Top-100
density tracing approach to ARM. The percentage depicts the number of patterns
from the Top-100 that were also discovered by ARM at varying confidence levels.
With fixed support of 0.8 and confidence of 0.85, all the patterns discovered by our
approach are also discovered by ARM. With a confidence level of 0.95, 57% of the
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Fig. 15 Comparison between mem ARMrules =#=Top-100 patterns
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patterns match; these patterns are especially interesting as they show a similar density
distribution and also strong point-to-point association.

One of the reasons many other reasoning techniques use a combination of
clustering and ARM is because ARM is generally slow for large datasets. With a
minimum support and minimum confidence of 0.8 the computation time for ARM
was 32,876 msec, this is compared with an average of 867 msec for our experiments
in Section 4.3 (both performed on a Intel P4 3.2Ghz with 1IGB RAM). Our density
trace based approach efficiently produces interesting co-patterning relationships for
areal aggregated crime datasets. These patterns can then be used by domain experts
for confirmatory analysis to help answer the why question of crime analysis which
can have the greatest impact on crime management and prevention.

5 Final remarks

We have presented a novel reasoning approach that uses density tracing to allow
autonomous exploratory analysis and knowledge discovery in areal aggregated
crime datasets. The spatial distribution of a dataset is represented as a density
trace to allow the discovery of co-patterning relationships that can offer a deeper
insight into the complex nature of criminal behavior. It successfully discovers both
positive and negative co-patterning among crime incidents and spatial features and
is computationally efficient. We overcome the drawbacks of current areal aggregated
reasoning approaches by using the global spatial distribution (density trend) that
models density change between regions. Through the use of regions weights we are
also able to incorporate the use of both context sensitive weighting and clustering
into our system.

The approach presented here is part of a larger research project aimed at reason-
ing within massive crime datasets. Future work includes extending our framework
to consider temporal density traces over the same study region and improving the
algorithm efficiency by investigating the further integration of clustering methods
within the density traces. We plan to further investigate the use of density tracing
as a preprocessing step for ARM for the discovery of patterns that have a strong
combination of both point-to-point association and spatial distribution. A similar
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neighborhood graph based approach for using changes in density to discover co-
patterning is also being researched.
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