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Abstract This paper presents a novel approach to express and evaluate the complex
class of queries in moving object databases called spatiotemporal pattern queries (STP
queries). That is, one can specify temporal order constraints on the fulfillment of
several predicates. This is in contrast to a standard spatiotemporal query that is
composed of a single predicate. We propose a language design for spatiotemporal
pattern queries in the context of spatiotemporal DBMSs. The design builds on the
well established concept of lifted predicates. Hence, unlike previous approaches,
patterns are neither restricted to specific sets of predicates, nor to specific moving
object types. The proposed language can express arbitrarily complex patterns that
involve various types of spatiotemporal operations such as range, metric, topological,
set operations, aggregations, distance, direction, and boolean operations. This work
covers the language integration in SQL, the evaluation of the queries, and the
integration with the query optimizer. We also propose a simple language for defining
the temporal constraints. The approach allows for queries that were never available.
We provide a complete implementation in C++ and Prolog in the context of
the Secondo platform. The implementation is made publicly available online as a
Secondo Plugin, which also includes automatic scripts for repeating the experiments
in this paper.
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1 Introduction

The area of moving objects databases has been active since the early 2000s, and is
recently receiving a lot of interest because of the advances in the positioning and
sensor technologies that generates large amounts of moving objects data. These
databases deal with the geometries that change over time, also called spatiotemporal
data. There are two classes of models for such data. The first deals with the current
movement and the predicted near future (e.g. [21]). These models are optimized for
cheaper updates. The second class deals with the trajectories or the history of the
movement (e.g. [16]), and these models are optimized for cheaper queries. In this
paper, we focus on the second class of models, the trajectory databases.

Having the spatiotemporal trajectories of the moving objects stored in a database
system allows for issuing spatiotemporal queries. One can query, for example, for
animals which crossed a certain lake during a certain time interval or for the total
length of a car trajectory inside a certain zone. There has been a lot of work on
providing spatiotemporal data management and query operations (e.g. [4]). Recently
more focus is given to the nearest neighbor queries (e.g. [11, 15]), and the trajectory
similarity queries (e.g. [19]).

However, due to the recent application domains, trajectories are getting longer.
Additionally, due to the privacy restrictions, trajectories are getting anonymized. The
precise position and/or extent of the moving objects are more and more replaced by
the events or the changes that happened during the movement, the so called semantic
trajectories [2]. It is difficult to query, for example, sequences of such changes of
data using traditional spatiotemporal queries. This difficulty comes from the fact,
that they are composed of one predicate. In many cases, one would need to express
temporal orders (relative or absolute) of several changes, each of which need to be
expressed as a predicate. For example, f ind all trains that encountered a delay of more
than half an hour after passing through a snow storm is a query that expresses two
changes/predicates, one happening after the other. It is very difficult if not impossible
to express such a query using the traditional spatiotemporal query methods.

Spatiotemporal pattern (STP) queries provide a more complex query framework
for moving objects. In particular, they specify temporal order constraints among a set
of time-dependent predicates. For example, suppose the predicates P, Q, and R that
may hold over one or more time intervals and/or instants. We would like to be able
to express conditions like the following:

• P then (later) Q then R.
• P ending before 8:30 then Q for no more than 1 h.
• (Q then R) during P.

The predicates P, Q, and R, etc. might be of the form:

• Vehicle X on road W.
• Train X is inside a snow storm Y.
• The extent of the storm area Y is larger than 4 kms2.
• The speed of air plane Z is between 400 and 500 km/h.

For such conditions to hold, there must exist a time interval for each of the predicates,
during which it is fulfilled, and this set of time intervals must fulfill the temporal
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order in the condition. The spatiotemporal patterns described by such conditions
cannot be expressed by traditional spatiotemporal queries. One would rather need
the spatiotemporal pattern queries.

More about the importance of STP queries in many fields of application is
illustrated in [9]. So far we are talking about the spatiotemporal patterns that
occur within individual trajectories. That is every trajectory in the database can
individually answer the pattern without knowledge of other trajectories. The term
Spatiotemporal Patterns is also used in the literature to refer to group patterns.
This is more related to the spatiotemporal data mining literature. The methods
analyze simultaneous movements and the interaction between objects (e.g. patterns
like leadership, play, fighting, migration, trend-setting, ... etc). The research in
this direction aims at developing a toolbox of data mining algorithms and visual
analytic techniques for movement analysis. For example, algorithms for the flock,
leadership, convergence and encounter patterns are presented in [12]. In this paper,
we are focusing on the individual spatiotemporal pattern queries, simply denoted
spatiotemporal pattern queries (STP queries) during the rest of the paper.

Few proposals exist for handling STP queries as will be detailed in the related
work section. All of them lack generality in the patterns that can be expressed. They
are limited to certain moving objects types (moving points in most of the proposals),
and to certain types of spatiotemporal predicates (spatial predicates and nearest
neighbor predicates). The approach described in this paper, expresses and evaluates
STP patterns that are neither restricted to certain types of moving objects, nor to
certain types of predicates. Our contributions are the following:

• The proposed approach is based on a very general and powerful class of
predicates, the so-called lifted predicates [16]. They are very powerful as they
are simply the time dependent version of arbitrary static predicates. Instead of
returning a bool value (like standard predicates) they return a moving(bool)
(time dependent booleans as defined later). Our approach allows one to formu-
late temporal constraints on the results of arbitrary expressions returning such
moving booleans. Formulating STP queries over lifted predicates allows for a
wide range of queries that are not addressed before.

• The proposed approach can be easily extended to support more complex pat-
terns. Section 6 describes one such extension.

• In contrast to previous work we are able to actually integrate STP queries into
the query optimizer. Obviously for an efficient execution of pattern queries
on large databases the use of indexes is mandatory. In Section 7 we consider
how STP queries can be mapped by the query optimizer to efficient index
accesses.

• We propose a simple language for describing the relationship between two time
intervals (e.g. Allen’s operators). The language makes it easier, from the user
point of view, to express interval relations without the need to memorize their
names.

• The complete implementation of the work in this paper is done in the context
of the Secondo platform [25]. It is publicly available as a Secondo Plugin and
can be downloaded from the Plugins web site [22]. Parallel to this paper, we
have written a user manual describing how to install and run the Plugin within a
Secondo system.
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• There are automatic scripts for repeating the experiments in this paper. They are
installed during the installation of the Plugin. Section 11 describes the procedure
to repeat the experiments. The scripts, together with the well documented source
code provided in the Plugin, allow the readers to explore our approach, further
elaborate on it, and compare with other approaches.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 gives a brief background about the moving objects databases and recalls
some necessary definitions from previous work. In Section 4, we define the proposed
language. Section 5 formalizes the spatiotemporal pattern predicate as a constraint
satisfaction problem, and explains the evaluation algorithms. In Section 6, the basic
spatiotemporal pattern predicate is extended into a more expressive version. In
Section 7 we show how to integrate our approach seamlessely with the query
optimizers. Section 8 is dedicated to the technical aspects of the implementation
in the Secondo framework. The experimental evaluation is shown in Section 9. In
Section 10, we demonstrate two application examples that emphasize the expressive
power of our approach. Section 11 and the Appendices at the end of the paper
describe the experimental repeatability. Finally we conclude in Section 12.

2 Related work

A theory and a design for spatiotemporal pattern queries, although important, are
not yet well established. Only few proposals exist. In [5], a model that relies on a
discrete representation of the spatiotemporal space is presented. The 2D space is
partitioned in a finite set of user defined partitions, called zones, each of which is
assigned a label. The time domain is partitioned into constant-sized intervals. The
trajectories are represented as strings of labels. For example, the trajectory part rzzzh
represents a moving object that stayed in zone r for one time unit, moved to zone z
and stayed there for three time units, then moved to zone h for one time unit. The
user query is composed as a formal expression, which is then evaluated using efficient
string matching techniques.

This approach is not general in the sense that the space and time have to be
partitioned. The partitioning depends on the intended application and has to be
done in advance. Moreover, only patterns that describe the changes of the location
of moving points can be expressed. The approach leaves behind all other kinds of
predicates (e.g. topological, metric comparisons, ...) as well as other types of moving
objects (e.g. moving regions).

In [17], an index structure and efficient algorithms to evaluate STP queries that
consist of spatial and neighborhood predicates is presented. The work addresses the
problem of conjoint neighborhood queries (e.g. find all objects that were as close as
possible to A at time T1 then were as close as possible to B at time T2). The two NN
conditions in this query have to be evaluated conjointly. In other words, an object
which minimizes the sum of the two distances at the two time points is the answer of
this query.

Again the approach addresses only limited types of predicates, and handles mov-
ing points only. It tightly couples the evaluation of the predicates with the evaluation
of the STP query itself. On the one hand, this allows for efficient evaluation of
the STP query. It also allows for the conjoint neighborhood queries, which are not
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possible in our appraoch for example. On the other hand, it is very specific to this set
of predicates. In order to support other predicates and/or other data types, one has to
find a way to extend their evaluation algorithms. In the context of systems, a modular
design that decouples the predicate evaluation from the STP query evaluation would
be preferred.

The series of publications [7–9], and [20] provide a concrete formalism for spa-
tiotemporal developments. A spatiotemporal development is a composite structure
built as an alternating sequence of spatiotemporal and spatial predicates, and they
are themselves spatiotemporal predicates. They describe the change, wrt. time, in the
spatial relationship between two moving objects. Consider, for example, a moving
point MP and a moving region MR. The development MP Crosses MR is defined as:

Crosses = Disjoint meet Inside meet Disjoint

where meet is a spatial predicate that yields true when its two arguments touch
each other, and Disjoint is a spatiotemporal predicate that yields true when its two
arguments are always spatially disjoint. The spatiotemporal predicates, denoted by
being capitalized, differ from the spatial predicates in that, the former hold at time
intervals while the latter hold at instants. Spatiotemporal developments consider
two spatiotemporal objects and precisely describe the change in their topological
relationship.

The spatiotemporal developments in their definition are not equivalent to spa-
tiotemporal patterns, as they can only describe the change in the topological rela-
tionship between two objects. This is not general enough to describe STPs. A natural
way of describing STPs would involve several interactions between one trajectory
and many other objects in the spatiotemporal space, as well as the trajectory’s own
motion attributes (e.g. speed, direction, ...etc.).

Additionally, all the related works discussed above share two limitations. First,
they do not address issues of system integration and query optimization (e.g. SQL
style syntax). Second, only sequential patterns are allowed. A pattern is not allowed
to include, for example, concurrent predicates. As shown in the rest of this paper,
our approach overcomes these limitations. Mainly, it is designed with expressiveness,
system integration, and extensibility in mind.

3 Moving objects databases

In previous work [10, 16], and [4], a model for representing and querying moving
objects is proposed. The work is based on abstract data types (ADT). The moving
type constructor is used to construct the moving counterpart of every static data
type. Moving geometries are represented using three abstractions; moving(point),
moving(region) and moving(line). Simple data types (e.g. integer, bool, real) are also
mapped to moving types. In the abstract model [16], moving objects are modeled as
temporal functions that map time to geometry or value. For example, moving points
are modeled as curves in the 3D space (i.e. time to the 2D space).

In [10] a discrete data model implementing the abstract model is defined. For
all data types in the abstract model, corresponding discrete types whose domains
are defined in terms of finite representations are introduced. In the discrete model,
moving types are represented by the sliced representation as units.
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["2003-11-20-06:06" "2003-11-20-06:06:08.692"[, (16229.0 1252.0), (16673.0 1387.0)

["2003-11-20-06:06:08.692" "2003-11-20-06:06:24.776"[, (16673.0 1387.0), (16266.0 1672.0)

["2003-11-20-06:06:24.776" "2003-11-20-06:06:32.264"[, (16266.0 1672.0), (16444.0 1818.0)

["2003-11-20-06:06:32.264" "2003-11-20-06:06:39.139"], (16444.0 1818.0), (16144.0 2227.0)

x
y

t

Fig. 1 The sliced representation of an mpoint

Definition 1 A data type moving(α) is a set of units. Every unit is a pair
(I, Instant → α). The semantic of a unit is that at any time instant during the interval
I, the value of the instance can be calculated from the temporal function Instant → α.
Unit intervals are not allowed to overlap, yet gaps are possible (i.e. periods during
which the value of the object is undefined).

The moving data types are denoted by appending m to the standard type (e.g.
mpoint denotes moving(point)). Similarly, the unit types are denoted by appending
u. The mpoint, for example, is modeled in the discrete model as a set of upoints, each
of which consists of a time interval and a line function. This is illustrated in Fig. 1.
The coordinates of the mpoint at any time instant within the interval are obtained by
evaluating the line function. The moving type constructor is similarly applied to the
scalar data types (e.g. real, string, bool) [16]. A precise definition of the mbool data
type is given in Section 4.

The model offers a large number of operations that fall into three classes:

1. Static operations over the non-moving types. Examples are the topological
predicates, set operations and aggregations.

2. Spatiotemporal operations offered for the temporal types (e.g. trajectory of an
mpoint, area of an mregion).

3. Lifted operations offered for combinations of moving and non-moving types.
Basically they are time dependent versions of the static operations.

Lifted operations are obtained by a mechanism called temporal lifting [16]. All the
static operations defined for non-moving types are uniformly and consistently made
applicable to the corresponding moving types. For example, a static predicate and its
corresponding lifted predicate are defined as follows.

Definition 2 A static predicate is a function with the signature

T1 × .... × Tn → bool

where Ti is a type variable that can be instantiated by any static/non-temporal data
type (e.g. integer, point, region).

Example BrandenburgGate inside Berlin.

Definition 3 A lifted predicate is a function with the signature

T1 × .... × Tk× ↑ Tk+1 × ...× ↑ Tn → mbool
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where ↑ is the moving type constructor. A lifted predicate is, hence, obtained by
allowing one or more of the parameters of a static predicate to be of a moving data
type. Consequently, the return type is a time dependent boolean mbool.

Example Train_RE1206 inside Berlin.

Note that inside in this example is a lifted predicate because the Train_RE1206
is a moving object. It is therefore different from the standard inside predicate in the
previous example.

4 Spatiotemporal pattern predicates

The Spatiotemporal Pattern Predicate (STP predicate) is the tool that we propose for
expressing STP queries. It describes the pattern as a set of time-dependent predicates
that are fulfilled in a certain temporal arrangement (e.g. a sequence). To motivate
the idea of our design, consider the following example:

Example A query for possible bank robbers may look for the cars which entered a
gas station, kept close to the bank for a while, then drove away fast.

The query describes an STP consisting of three time-dependent predicates: car
inside gas station, car close to the bank, and speed of car ≥ 80 km/h. The predicates
are required to be fulfilled in a sequential temporal order.

We propose a modular language design of the STP predicate. It consists of
two parts. The first defines a special kind of predicates that accept moving ob-
ject arguments and report the time intervals, during which they are fulfilled. The
second part is to define a language for temporal constraints on the predicate
fulfillments.

Fortunately, the lifted predicates [16] in Definition 3 do exactly what is needed in
the first part. Lifted predicates yield objects of type mbool, which tell about the time
intervals of the predicate fulfillment. Moreover, they are not restricted to certain data
types of arguments nor to certain types of operations. Formulating the STP predicate
on the top of the lifted predicates easily leverages a considerable part of the available
infrastructure. The temporal constraints, in the second part, enforce certain temporal
arrangements between the mbool results of the lifted predicates.

We start here by a rough illustration. The details follow later in this section. The
bank robbers query is written as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and
pattern([ c.trip inside l.region as gas,

distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 80000 as leaving],

[stconstraint(gas, bnk, vec(aabb)),
stconstraint(bnk, leaving, vec(abab, aa.bb, aabb)])



504 Geoinformatica (2011) 15:497–540

where c.trip is an mpoint that stores the car’s trajectory. The STP predicate, denoted
pattern in the SQL-like syntax, includes a set of three lifted predicates:

c.trip inside l.region,
distance(c.trip, bank) < 50.0,
speed(c.trip) > 80000

having the aliases gas, bnk, and leaving. The syntax of the STP predicate assigns
aliases for the lifted predicates, so that they can be referred to in the temporal
constraints. This is analogous to the aliases given to attributes and tables in the
standard SQL. An alias of a lifted predicate can be any valid unique identifier. The
STP predicate in this example includes two temporal constraints, denoted stconstraint
in the SQL-like syntax. Each constraint is stating a temporal relationship between
two of the lifted predicates (i.e. binary temporal constraints). The syntax vec(.) states
the temporal order between the fulfillments of the two lifted predicates. Roughly
speaking, the first temporal constraint states that the car came close to the bank after
it has left the gas station. The second constraint is a bit more tricky. We wish to say
that the car left the bank area quickly. This means that the car started fast, or may
have started normally and then sped up after a while. The three arguments to the
vec(.) operator state these three possibilities, as formalized later in this section.

Now we start the formal definition of the STP predicate. We first recall the
definition of the mbool data type from [10]. Let Instant denote the domain of time
instants, isomorphic to R. Let IT be the set of possible time intervals, i.e:

IT = {(t1, t2, lc, rc) | t1, t2 ∈ Instant,

lc, rc ∈ {false, true}, t1 < t2,

(t1 = t2) ⇒ lc = rc = true}
That is, a time interval can be left-closed and/or right-closed as indicated by the
values of lc and rc respectively. It is also possible that the interval collapses into a
single time instant, see [10]. Let the domain of Boolean Unit ubool be:

UBool = {(i, u)|i ∈ IT , u ∈ {false, true}}
and the domain of mbool is:

MBool = {U ⊂ UBool | ∀(i1, u1), (i2, u2) ∈ U :
(i) i1 = i2 ⇒ u1 = u2

(ii) i1 	= i2 ⇒ i1 ∩ i2 = ∅ ∧
i1 adjacent i2 ⇒ u1 	= u2}

where i1 adjacent i2 :⇔ i1.t2 = i2.t1 ∧ (i1.rc ∨ i2.lc). This last condition ensures the
mbool objects have a unique representation, the one with the minimum number of
units.

Following we define a language for temporal relationships between pairs of
time intervals. It will be the base for the temporal constraints between the lifted
predicates inside the STP predicate. In the temporal logic literature some studies
define the relationships between pairs of time intervals, and assign them names (e.g.
the 13 Allen’s operators [1]). Here we propose a language, instead of names. This is
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because, in our case 26 such relationships are possible, which makes it difficult for
a user to memorize the names. Table 1 shows the 26 terms of this language, and a
graphical illustration of each. In the terms, the letters aa denote the begin and end
time instants of the first interval. Similarly bb are the begin and end of the second
interval. The order of letters describes the temporal relationship, that is, a sequence
ab means a < b . The dot symbol denotes the equality constraint, hence, the sequence
a.b means a = b , and a.a means that the start and the ends of the first interval are
the same (i.e. the interval degenerates into a time instant).

Formally, let IR be the set of interval relationships of Table 1, that is

IR = {aabb, abba, ..., a.a.b.b}
Let i1, i2 ∈ IT , ir = s1s2...sk ∈ IR (note that 4 <= k <= 7, that is, the shortest term
includes two a’s and two b’s, and the longest term includes additionally three dots).

Let rep(si) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i1.t1 if si is the first a in ir

i1.t2 if si is the second a in ir

i2.t1 if si is the first b in ir

i2.t2 if si is the second b in ir

. if si = .

i1 and i2 fulfill s1s2...sk :⇔∀ j ∈ {1, ..., k − 1} :
(i) s j 	= . 	= s j+1 ⇒ rep

(
s j

)
< rep

(
s j+1

)

(ii) s j+1 = . ⇒ rep
(
s j

) = rep
(
s j+2

)

Table 1 A language for
expressing interval
relationships

Term Illustration Term Illustration Term Illustration
Both arguments are intervals (Allen’s operators)

aabb abba bbaa

a.bab aa.bb a.bba

bb.aa baa.b abab

aba.b baba a.ba.b

baab

The first argument is an instant
a.abb bb.a.a a.a.bb

bba.a ba.ab

The second argument is an instant
b.baa aa.b.b b.b.aa

aab.b ab.ba

Both arguments are instants
a.ab.b b.ba.a a.a.b.b
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Two time intervals i1, i2 ∈ IT fulfill a set of interval relationships if they fulfill any
of them, that is:

i1 and i2 fulfill SI ⊆ IR :⇔ ∃ ir ∈ SI : i1 and i2 fulfill ir

The vec(.) in the SQL-like syntax allows for composing such SI subsets. For
syntactic elegance, one can assign names to them, and use the names in the queries.
This is done using the let statement as follows:

let then = vec(abab, aa.bb, aabb);
let later = vec(aabb);

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and
pattern([c.trip inside l.region as gas,

distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 80000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then])

That is, later and then can hence be used inside the stconstraint operator.
For ease of presentation, in the following we define the STP predicate within the

relational data model. The definitions can however be adapted easily to fit within
other database models (e.g. object oriented), thanks to the ADT modeling of the
moving objects which does not depend on a particular database model.

Let tuple denote a tuple type in the sense of the relational data model.1 Let Dtuple

denote the domain of the tuples conforming to this type. Let the domain of the type
mbool be:

Dmbool = MBool

A time-dependent predicate is a function with signature:

tuple → mbool

hence it is a function

f : Dtuple → Dmbool

We denote a predicate with this signature as ptuple, and a set of such predicates as
Ptuple when the tuple type is relevant.

Note that the definition of a time-dependent predicate is more general than that
of a lifted predicate. A lifted predicate also yields an mbool, but it must correspond
to some standard static predicate, see Definition 3. Formally, the STP predicate is
composed of a set of time-dependent predicates, and a set of temporal constraints, as
shown later in this section. Throughout the text, however, we are often using the term
lifted predicate instead of the more general term time-dependent predicate because the
former seems more relevant from the user point of view. That is, users will be using

1Here tuple is viewed as a type variable that can be instantiated by any valid tuple type.
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lifted predicates to compose their STP queries. This will become obvious from the
many query examples in the rest of this paper.

Let Ptuple = {p1, ..., pn} be a set of time-dependent predicates. A temporal con-
straint on Ptuple is an element of the set:

TC
(
Ptuple

) = {1..n} × {1..n} × P(IR)

Hence it is a binary temporal constraint, that assigns a pair of predicates in Ptuple a set
of interval relationships. In the SQL-like syntax, the operator stconstraint expresses
a temporal constraint. It accepts three arguments: two aliases of time-dependent
predicates, and a set of interval relationships composed by the vec(.) operator.

Based on the above definitions, a spatiotemporal pattern predicate is defined as
follows:

Definition 4 A spatiotemporal pattern predicate (STP predicate) is a pair (Ptuple, C),
where C ⊆ TC(Ptuple).

In SQL, the operator pattern denotes the spatiotemporal pattern predicate. For an
STP predicate to hold, all the temporal constraints in C must be fulfilled. Formally it
is as follows:

Let t ∈ Dtuple be a tuple and Ptuple = {p1, ..., pn}, we denote by pk(t) the evaluation
of pk ∈ Ptuple on t. Hence pk(t) ∈ MBool. We also define the set of candidate
assignments CA(Ptuple, t) as:

CA
(
Ptuple, t

) = ptrue
1 × ... × ptrue

n

where ptrue
k = {i|(i, true) ∈ pk(t)}. That is, the CA(Ptuple, t) is simply the Cartesian

product of the sets of time intervals during which the time-dependent predicates in
Ptuple are fulfilled with respect to the tuple t.

Let ca = (i1, ..., in) ∈ CA(Ptuple, t) and let c = ( j, k, SI) ∈ TC(Ptuple) be a temporal
constraint

ca fulfills c :⇔ i j and ik fulfill SI

Let C ⊆ TC(Ptuple) be a set of temporal constraints, and let t ∈ Dtuple be a tuple.
The set of supported assignments of C is defined as:

SA
(
Ptuple, C, t

) = {
ca ∈ CA

(
Ptuple, t

) | ∀ c ∈ C : ca fulfills c
}

That is, for a candidate assignment to be a supported assignment, it must fulfill all the
constraints in C. An STP predicate is fulfilled for a given tuple if and only if such a
supported assignment is found.

Definition 5 A spatiotemporal pattern predicate is a function with the signature
tuple → bool. Given a tuple t of type tuple, its evaluation is defined as:

eval
((

Ptuple, C
)
, t

) = (
SA

(
Ptuple, C, t

) 	= ∅)
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5 Evaluating spatiotemporal pattern predicates

The formalization of the STP predicate in the previous section maps pretty well into
the well known Constraint Satisfaction Problem (CSP). This section illustrates this
mapping and the algorithms used to evaluate the STP predicate.

Definition 6 Formally, a constraint satisfaction problem is defined as a triple
〈X, D, C〉, where X is a set of variables, D is a set of initial domains, and C is a set of
constraints. Each variable xi ∈ X has a non-empty domain di ∈ D. CSP algorithms
remove values from the domains during evaluation once it is discovered that the
values cannot be part of a solution. Each constraint involves a subset of variables
and specifies the allowable combinations of values for this subset. An assignment for
a subset of variables is supported if it satisfies all constraints. A solution to the CSP
is in turn a supported assignment of all variables.

Recalling, from Definition 4, that the STP predicate contains the set Ptuple =
{p1, ..., pn} of time-dependent predicates, a straightforward way to construct the sets
X, D of the CSP is as follows:

1. For every pi ∈ Ptuple, define a variable xi with the same name as the alias of pi in
the user query. Set X := X ∪ xi.

2. Given a tuple t of type tuple, compute for every pi ∈ Ptuple its evaluation pi(t).
3. For every ptrue

ij ∈ ptrue
i , set Di := Di ∪ ptrue

ij .

That is, a CSP variable is created for every time-dependent predicate in the STP
predicate. The aliases of the lifted predicates, as specified in the user query, are
used as the variable names. The initial domain of every CSP variable is the set of
time intervals during which the corresponding time-dependent predicate is fulfilled.
Finally the set of constraints in the CSP is the same as the set of constraints in the
STP predicate. As is shown next, this is not exactly how we map the STP predicate
into a CSP. The main difference is that the domains of the variables (i.e. the set D)
are evaluated in a lazy fashion. Following, we briefly discuss the known algorithms
for solving CSPs. Later in this section, we will be proposing another algorithm for
evaluating the CSP that fits more with our approach.

A CSP having only binary constraints is called binary CSP and can be represented
graphically in a constraints graph. The nodes of the graph are the variables and the
links are the binary constraints. Two nodes are linked if they share a constraint.
The neighborhood of a variable in the constraints graph are all variables that are
directly linked to it. The spatiotemporal pattern predicate is fulfilled if and only if its
corresponding CSP has at least one supported assignment.

CSPs are usually solved using variants of the backtracking algorithm. The algo-
rithm is a depth-first tree search that starts with an empty list of assigned variables
and recursively tries to find a solution (i.e. a supported assignments of all variables).
In every call, backtracking adds a new variable to its list and tries all the possible as-
signments. If an assignment is supported, a new recursive call is made. Otherwise the
algorithm backtracks to the last assigned variable. The algorithm runs in exponential
time and space.

Constraint propagation methods [3] (also called local consistency methods) can
reduce the domains before backtracking to improve the performance. Examples
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are the ARC Consistency and Neighborhood Inverse Consistency (NIC) algorithms.
They detect and remove some values from the variable domains that cannot be part
of a solution. Local consistency algorithms do not guarantee backtrack-free search.
To have the nice property of backtrack-free search one would need to enforce n-
consistency (equivalent to global consistency), which is again exponential in time
and space.

The solvers for CSPs assume that the domains of the variables are known in
advance. This is, however, a precondition that we wish to avoid. In the STP predicate,
calculating the domain of a variable is equivalent to evaluating the corresponding
lifted predicate. Since this can be expensive, we wish to delay the evaluation of the
domains.

The proposed algorithm Solve Pattern below tries to solve the sub-CSP of k − 1
variables (CSPk−1) first and then to extend it to CSPk. Therefore, an early stop is
possible if a solution to the CSPk−1 cannot be found. Which means that, in case no
solution is found, the evaluation will be stopped as soon as this is realized, without
the unnecessary evaluation of the remaining lifted predicates.

The Solve Pattern algorithm uses three data structures: the SA list (for Supported
Assignments), the Agenda and the Constraint Graph. The Agenda keeps a list of
variables that are not yet consumed by the algorithm. One variable from the Agenda
is consumed in every iteration. Every supported assignment in the SA list is a solution
for the sub-CSP consisting of the variables that have been evaluated so far. In
iteration k there are k − 1 previously evaluated variables and one newly evaluated
variable (Xk with domain Dk). Every entry in SA at this iteration is a solution for
the CSPk−1. To extend the SA, the Cartesian product of SA and Dk is calculated.
Then only the entries that constitute a solution for CSPk are kept in SA. CSPk is
constructed using the consumed variables and their corresponding constraints in the
constraint graph.

Algorithm Solve Pattern
input: variables, constraints
output: whether the CSP is consistent or not

1. Clear SA, Agenda and Constraint Graph
2. Add all variables to Agenda
3. Add all constraints to the Constraint Graph
4. WHILE Agenda not empty

(a) Pick a variable Xi from the Agenda
(b) Calculate the variable domain Di (i.e. evaluate the

corresponding lifted predicate)
(c) Extend SA with Di

(d) IF SA is empty return NotConsistent

5. return Consistent

Algorithm Extend
input: i, Di; the index and the domain of the newly
evaluated variable

1. IF SA is empty

(a) FOREACH interval I in Di
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i. INSERT a new row sa in SA having sa[i]= I and
undefined for all other variables

ELSE

(a) set SA = the Cartesian product SA × Di

(b) Construct the subgraph CSPk that involves the
variables in SA from the Constraint Graph.

(c) FOREACH sa in SA

i. IF sa does not satisfy the CSPk, remove sa from
SA

The methodology for picking the variables from the Agenda has a big effect on
the run time. The best method will choose the variables, so that inconsistencies are
detected soon. For example, suppose an STP predicate having four predicates with
aliases u, v, w, and x. The constraints are:

stconstraint(u, x, vec(abab)), stconstraint(v, x, later),

and stconstraint(w, x, vec(bb.a.a)).

If the variables are picked in sequential order u, v, w, then x, the space and time costs
are the maximum. Since u, v, and w are not connected by any constraints, the SA is
populated by the Cartesian product of their domains in the first three iterations. The
actual filter to SA starts in the fourth iteration after x is picked.

The function that picks the variables from the Agenda chooses the variables
according to their connectivity rank in the Constraint Graph. The connectivity rank
of a variable is the summation of its individual connectivities in the Constraint Graph.
If a given variable is connected to an Agenda variable with a constraint, it gets
0.5 connectivity score for this constraint. This means that evaluating this variable
contributes 50% in evaluating the constraint because the other variable is still not
evaluated. If the other variable in the constraint is a non-Agenda variable (i.e. a
variable that is already evaluated), the connectivity score is 1. Back again to the
example, in the first iteration, the variables u, v, and w have connectivity ranks of
0.5, whereas x has 1.5. Therefore, x is picked in the first iteration. In the second
iteration u, v, and w have equal connectivity ranks of 1, so the algorithm picks any of
them.

This variable picking methodology tries to maximize the number of evaluated
constraints in every iteration with the hope that they filter the SA list and detect
inconsistencies as soon as possible.

The time cost of the Solve Pattern algorithm is
n∑

i=1

i∏

k=1

dk × ek

where n is the number of variables, dk is the number of values in the domain of the
kth variable and ek is the number of constraints in CSPk. The storage cost is

n∑

i=1

i∏

k=1

dk

The algorithm runs in O(edn) and takes O(dn) space.
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The exponential time and space costs are not prohibitive in this case. This is
because the calculations done within the iterations are simple comparisons of time
instants. Moreover, the number of variables in an STP query is expected to be less
than 8 in the normal case. The Solve Pattern algorithm is more focused on minimizing
the number of evaluated lifted predicates (statement 4.b of the algorithm). The cost
of evaluating the lifted predicates varies, but it is expected to be expensive because
the evaluation usually requires retrieving and processing the complete trajectory
of the moving object. The run time analysis of many lifted predicates is illus-
trated in [4].

6 Extending the definition of the STP predicates

Back to the example of bank robbers, a sharp eyed reader will notice that the
provided SQL statement can retrieve undesired tuples. Suppose that long enough
trajectories are kept in the database. A car that entered a gas station in one day,
passed close to the bank in the next day, and in a third day sped up will be part of the
result. To avoid this, we would like to constrain the period between leaving the gas
station till speeding up to be at most 1 h.

Indeed the proposed design is flexible so that such an extension is easy to
integrate. The idea is that after the STP predicate is evaluated, the SA data structure
contains all the supported assignments. As illustrated before, a supported assignment
assigns an interval to each lifted predicate during which it is satisfied. At the same
time the interval values of all variables satisfy all the constraints in the STP predicate.
Now that we know the time intervals, we can impose more constraints on them. For
example, we state that the period between leaving the gas station (first predicate) till
speeding up (third predicate) must be at most 1 h.

The following describes formally an extended version of the STP predicate that
allows for such additional constraints. Let Ptuple = {p1, ..., pn} be a set of time-
dependent predicates, and let C ⊆ TC(Ptuple) be a set of temporal constraints. Let
g be a function:

g : In
T × Dtuple → Dbool

That is, g is a predicate that accepts a set of n time intervals and a tuple, and yields a
bool.

An extended STP predicate is defined as follows:

Definition 7 An extended spatiotemporal pattern predicate is a triple (Ptuple, C, g).
Given a tuple t of type tuple its evaluation is defined as:

eval
((

Ptuple, C, g
)
, t

) = ({
sa ∈ SA

(
Ptuple, C, t

) | g(sa, t) = true
} 	= ∅)

That is, the boolean predicate g is applied to the supported assignments in SA and
to the input tuple t. For the extended STP predicate to be fulfilled, g must be fulfilled
at least once. The evaluation of the extended STP predicate is, hence, done in two
parts, that both must succeed. The first solves the STP predicate (Ptuple, C) for the
given tuple t, and the second part, which is processed only after the success of the
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first part, evaluates the boolean predicate g for every supported assignment. Hence,
conditions on the list of supported assignments SA are possible.

Syntactically, the user is provided with two functions start(.) and end(.) that yield
the start and end time instants of the intervals in an SA element. The two functions
are in the form:

f : In
T × {1, ..., n} → Instant

Given a supported assignment sa ∈ SA and an index, the two functions yield the start
and the end time instants of the time interval at this index in sa.

Formally let sa = {i1, ..., in} ∈ SA(Ptuple, C, t).

start(sa, k) = ik.t1, and

end(sa, k) = ik.t2

where 1 ≤ k ≤ n.
To implement the extension, step 5 in the Solve Pattern algorithm is changed to

return SA. The predicate g is then iteratively evaluated for the elements of the SA.
The algorithm of evaluating the extended STP predicate is not shown in the paper,
because it is a trivial change for the Solve Pattern algorithm.

The extended STP predicate is denoted patternex in the SQL-like syntax. The bank
robbers query is rewritten using it as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and
patternex([c.trip inside l.region as gas,

distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then],

start(leaving) - end(gas) < 1)

where the additional condition start(leaving) - end(gas) < 1 ensures that
the time period between the car getting out from the gas station (i.e. end(gas)) till it
starts leaving the bank area (i.e. start(leaving)) is less than one hour. Note that in the
SQL-like syntax, the start, and end operators get the predicate aliases, rather their
indexes as in the definition.

More complex conditions can be expressed. The time intervals can be used, for
example, to retrieve parts from the moving object trajectory to express additional
spatial conditions. For example, the query for possible bank robbers may more
specifically look for the cars which entered a gas station, made a round or more
surrounding the bank, then drove away fast. To check that the car made a round
surrounding the bank, a possible solution is to check the part of the car trajectory
close to the bank for self intersection. The query may be written as follows

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and
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patternex([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then],

isSelfIntersecting(
trajectoryPart(c.trip, start(bnk), end(bnk))) and

(start(leaving) - end(bnk)) < 1)

where trajectoryPart computes the spatial trajectory of the moving object between
two time instants and isSelfIntersecting checks a line for self intersection.

7 Optimizing spatiotemporal pattern predicates

In Section 5 we explained the evaluation of the spatiotemporal pattern predicate.
The proposed algorithm is efficient because it avoids the unnecessary evaluation of
lifted predicates. In the context of large-scale DBMS, this is not enough. Obviously
for an efficient execution of pattern queries on large databases the use of indexes is
mandatory. It should be triggered by the query optimizer during the creation of the
executable plans.

In this section, we demonstrate a generic procedure for integrating the STP pred-
icate with query optimizers. We do not assume a specific optimizer or optimization
technique. The optimizer is however required to have some basic features that
will probably be available in any query optimizer. In the following subsection, we
describe these basic assumptions.

7.1 Query optimization

A typical query optimizer contains two basic modules; the rewriter and the planner
[18]. The rewriter uses some heuristics to transform a query into another equivalent
query that is, hopefully, more efficient or easier to handle in further optimization
phases. The planner creates for the user query (or the rewritten version) the set
of possible execution plans (possibly restricted to some classes of plans). Finally it
applies a selection methodology (e.g. cost based) to select the best plan.

We assume that the query optimizer contains the rewriter and the planner
modules. We also assume that it supports the data types and operations on moving
objects, in SQL predicates as described in [16] and [10].

7.2 Query optimization for spatiotemporal pattern predicates

One observation that we like to make clear is that the STP predicate itself does not
process database objects directly. Instead, the first operation applied is the evaluation
of the lifted predicates that compose the STP predicate. The idea, hence, is to design a
general framework for optimizing the lifted predicates within the STP predicate. This
framework should trigger the optimizer to use the available indexes for the currently
supported lifted predicates as well as for those that might be added in the future. It
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should utilize the common index structures. Although specialized indexes, as in [17],
can achieve higher performance, the overhead of maintaining them within a system
is high and they only serve specific purposes, which makes them unfavorable in the
context of systems.

The idea is to add each of the lifted predicates, in a modified form, as an extra
standard predicate to the query, that is, a predicate returning a boolean value.
The standard predicate is chosen according to the lifted predicate, so that the
fulfillment of the standard predicate implies that the lifted predicate is fulfilled at
least once. This is done during query rewriting. The additional standard predicates in
the rewritten query trigger the planner to use the available indexes. To illustrate
the idea, the following query shows how the bank robbers query in Section 4 is
rewritten.

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and
pattern([c.trip inside l.region as gas,

distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[stconstraint(gas, bnk, later),
stconstraint(bnk, leaving, then])

and
c.trip passes l.region and
sometimes(distance(c.trip, bank) < 50.0) and
sometimes(speed(c.trip) > 100000)

The three lifted predicates in the STP predicate x inside y, distance(x,
y) < z, and speed(x) < y are mapped to the standard predicates x passes
y, sometimes(distance(x, y) < z), and sometimes(speed(x) < y), re-
spectively. Here sometimes(.) is a predicate that accepts an mbool and yields true
if the argument ever assumes true during its lifetime, otherwise false. Each of the
standard predicates ensures that the corresponding lifted predicate is fulfilled at least
once, a necessary but not sufficient condition for the pattern predicate to be fulfilled.
Clearly, the rewritten query is equivalent to the original query.

The choice of the standard predicate depends on the type of the lifted predicate
and the types of the arguments. For example, the lifted spatial range predicates (i.e.
the spatial projection can be described by a box) are mapped into the passes standard
predicate. The passes predicate [16], in this example, is fulfilled if the car c.trip
ever passed the gas station l.region. If passes fails, then we know that inside is
never true and that pattern will also fail. The planner should have for the added
passes predicate already some optimization rule available (e.g. use a spatial R-tree
index when available). In Section 9.2.2 we show an optimized query written in the
Secondo executable language.

To generalize this solution, we define a table of mappings between the lifted
predicates (or groups of them) and the standard predicates. Clearly, this mapping is
extensible for the lifted predicates that can be introduced in the future. The mapping
for the set of lifted predicates proposed in [16] is shown in Table 2.



Geoinformatica (2011) 15:497–540 515

Table 2 Mapping lifted predicates into standard predicates

Lifted Predicates Type Standard Predicates

= lifted spatial passes
range

inside

intersects

= lifted equality sometimes( = )

= , lifted left sometimes( ),
range sometimes( )

= , lifted right sometimes( ),
range sometimes( )

distance( , ) threshold lifted spatial passes enlargeRect(bbox( ), threshold, threshold)
range

Other lifted predicates, sometimes( )

For the lifted spatial range predicates, they map into passes and the available
translation rules for passes do the rest. The distance(x, y) < z is conceptually
equivalent to a lifted spatial range predicate, where the spatial range is the minimum
bounding box of the static argument extended by z in every side. Other types of
lifted predicates are mapped into sometimes. We need to provide translation rules
that translate sometimes(.) into index lookups. For every type of lifted predicates,
one such translation rule is required. For example, the sometimes(Pred), where Pred
is a lifted left range predicate, searches for a B-tree defined on the units of the moving
object, and performs a left range search in the B-tree. We show examples for these
translation rules within Secondo in Section 8.2.

This two steps optimization helps develop a general framework for optimizing
the sometimes(.) predicate, which may also appear directly in the user queries. Note
that we can alternatively rewrite all lifted predicates into sometimes(.), and provide
translation rules accordingly. It remains an implementation decision, which approach
to use.
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8 The implementation in SECONDO

Secondo [13, 14, 25] is an extensible DBMS platform that does not presume a
specific database model. Rather it is open for new database model implementations.
For example, it should be possible to implement relational, object-oriented, spatial,
temporal, or XML models.

Secondo consists of three loosely coupled modules: the kernel, GUI and query
optimizer. The kernel includes the command manager, query processor, algebra
manager and storage manager. The kernel may be extended by algebra modules.
In an algebra module one can define new data types and/or new operations. The
integration of the new types and/or operations in the query language is then achieved
by adding syntax rules to the command manager.

The Secondo kernel accepts queries in a special syntax called Secondo executable
language. The SQL-like syntax is provided by the optimizer. For more information
about Secondo modules see [25] and [24]. For more information about extending
Secondo see the documentation on [23].

If it is the case that a new data type needs a special graphical user interface
(GUI) for display, the Secondo GUI module is also extensible by adding viewer
modules. Several viewers exist that can display different data types. Moving objects,
for example, are animated in the Hoese viewer with a time slider to navigate forwards
and backwards.

A large part of the moving objects database model presented in [4, 10, 16], that we
also assume in the paper, is realized in Secondo. That is, the current Secondo version
2.9.1 includes the algebra modules, the viewer modules, and the optimizer support
for moving objects. In the following subsections, we describe the implementation of
the STP predicate in Secondo 2.9.1. This implementation is available as a Secondo
Plugin as explained in Section 11.

8.1 Extending the kernel

We have implemented the STP predicate in the Secondo kernel in a new algebra
module called STPatternAlgebra. The algebra contains:

1. One data type stvector. The class represents a set of interval relationships as
defined in Section 4. The Secondo operator vec is used to create an stvector
instance. The operator accepts a set of strings from Table 1, and constructs the
stvector instance accordingly.

Example: vec("aabb", "a.abb", "a.a.bb").

2. The stconstraint operator. The operator represents a temporal constraint within
the STP predicate. The signature of the operator is:

string × string × stvector → bool

The first and second parameters are the aliases for two lifted predicates.

Example: stconstraint("predicate1", "predicate2",
vec("a.a.bb")).
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3. The stpattern operator. The operator implements the STP predicate. It has the
signature:

tuple ×AliasedPredicateList × ConstraintList → bool

where the AliasedPredicateList is a list of time-dependent predicates, each of
which has an alias, and the ConstraintList is a list of temporal constraints (i.e. a
list of stconstraint operators).

4. The stpatternex operator. The operator implements the extended STP predicate,
Section 6. It has the signature:

tuple ×AliasedPredicateList × ConstraintList× bool → bool

5. The start(.) and the end(.) operators, described in Section 6. They accept a string
representing a predicate alias and return the start/end of the corresponding time
interval. The operators have the signature:

string → instant

Using these operators, the query for bank robbers can be written in Secondo
executable language as follows:

query cars feed {c}
landmark feed {l}
filter[.type_l = "gas station"]

product
filter[.
stpatternex[gas: .trip_c inside .region_l,

bnk: distance(.trip_c, bank) < 50.0,
leaving: speed(.trip_c) > 100000;

stconstraint("gas", "bnk", vec("aabb")),
stconstraint("bnk", "leaving", vec("abab",

"aa.bb", "aabb"));
duration2real(start("leaving") - end("gas")) < (1/24) ]]

consume

where feed is a postfix operator that scans a relation sequentially and converts it into
a stream of tuples. The query performs a cross product between the tuples of the
cars relation and the tuples of landmark relation that has the value “gas station" in
their type attribute. The resulting tuple stream after the cross product is filtered using
the extended STP predicate stpatternex. Finally, the consume operator converts the
resulting tuple stream into a relation, so that it can be displayed.

8.2 Extending the optimizer

The Secondo optimizer is written in Prolog. It implements an SQL-like query
language which is translated into an optimized query in Secondo executable lan-
guage. The Secondo optimizer includes a separate rewriting module that can be
switched on and off by setting the optimizer options. The planner implements a
novel cost based optimization algorithm which is based on shortest path search in
a predicate order graph. The predicate order graph (POG) is a weighted graph whose
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nodes represent sets of evaluated predicates and whose edges represent predicates,
containing all possible orders of predicates. For each predicate edge from node x to
node y, so-called plan edges are added that represent possible evaluation methods
for this predicate. Every complete path via plan edges in the POG from the bottom-
most node (i.e. zero evaluated predicates) till the top-most node (i.e. all predicates
evaluated) represents a different execution plan. Different paths/execution plans
represent different orderings of the predicates and different evaluation methods.
The plan edges of the graph are weighted by their estimated costs, which in turn
are based on given selectivities. Selectivities of predicates are either retrieved from
prerecorded values, or estimated by sending selection or join queries on small
samples of the involved relations to the Secondo kernel and reading the cardinality
of the results. The algorithm is described in more detail in [14] as well as in the
Secondo programmers guide [23].

Our extension to the optimizer has three major parts: query rewriting, operator
description, and translation rules. In the query rewriting, we choose to rewrite all the
lifted predicates into sometimes(.). This is because an accurate rewriting based on
the mapping in Table 2 requires that we know the data types of the arguments. The
Secondo optimizer knows the data types only after query rewriting is done.

Following are the Prolog rules that do the rewriting:

inferPatternPredicates([], []).

inferPatternPredicates([Pred|Preds],
[sometimes(Pred)|Preds2] ):-

assert(removefilter(sometimes(Pred))),
inferPatternPredicates(Preds,Preds2).

where the inferPatternPredicate accepts the list of the lifted predicates within the
STP predicate as a first argument, and yields the a list of rewritten predicates in
the second argument. The additional sometimes(.) predicates are kept in the table
removefilter(.), so that it is possible to exclude them from the executable plan
afterwards.

In the operator descriptions, we annotated the lifted predicates by their types (e.g.
lifted left range) as in Table 2. Then we provided translation rules for sometimes(.)
for every type of lifted predicates. Following is an example for such a rule:

indexselectLifted(arg(N), Pred ) =>
gettuples(rdup(sort(windowintersectsS(
dbobject(IndexName), BBox))), rel(Name, *))

:-
Pred =..[Op, Arg1, Arg2],
((Arg1 = attr(_, _, _), Attr= Arg1) ;
(Arg2 = attr(_, _, _), Attr= Arg2)),

argument(N, rel(Name, *)),
getTypeTree(Arg1, _, [_, _, T1]),
getTypeTree(Arg2, _, [_, _, T2]),
isLiftedSpatialRangePred(Op, [T1, T2]),
(
( memberchk(T1, [rect, rect2, region, point, line,
points, sline]), BBox= bbox(Arg1)
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);
( memberchk(T2, [rect, rect2, region, point, line,
points, sline]), BBox= bbox(Arg2)

)
),
hasIndex(rel(Name, _), Attr, DCindex,
spatial(rtree, unit)),

dcName2externalName(DCindex, IndexName).

where this rule translates the lifted spatial range predicates into an R-tree window
query, as indicated in the rule header. The => operator can be read as translates
into. It means that the expression to the right is the translation of the expression
to the left, if the conditions in the rule body hold. The body of the rule starts by
inferring the types of the arguments of the lifted predicate within the sometimes(.).
Then it uses them to make sure that the predicate is of the type lifted spatial range.
Finally, it checks whether a spatial R-tree index on the involved relation and attribute
is available in the catalog. It tries to find a spatial R-tree built on the units of the
moving object. Similar translation rules are provided for other types of indexes. The
optimized query in Section 9.2.2 shows the effect of these translation rules.

9 Experimental evaluation

We proceed with an experimental evaluation of the proposed technique. The in-
tention is to give an insight into the performance. It is clear that the runtime of an
STP predicate depends on the number and types of the lifted predicates. Therefore,
we show three experiments. The first measures only the overhead of evaluating the
spatiotemporal pattern predicate. That is, we set the time of evaluating the lifted
predicates to negligible values.

In the second experiment, we generate random STP predicates with varying
numbers of lifted predicates and constraints and measure the run time of the queries.
The experiment also evaluates the optimization of STP predicates. Every query is
run twice; once without invoking the optimizer, and another time with the optimizer
being invoked.

The third experiment is dedicated to evaluate the scalability of the proposed ap-
proach. It mainly evaluates the proposed optimization approach in large databases.
A random set of queries is generated and evaluated against relations of cardinalities
50,000, 100,000, 200,0000, and 300,000, where the trajectories are indexed using the
traditional R-tree index.

The first two experiments use the berlintest database that is available with the free
distribution of Secondo. The last experiment uses the BerlinMOD benchmark [6] to
generate the four relations. The benchmark is available for download on [25]. The
three experiments are run on a Secondo platform installed on a Linux machine. The
machine is a Pentium-4 dual-core 3.0 GHz processor with 2GB main memory.

9.1 The overhead of evaluating STP predicates

To perform the first experiment, we add two operators to Secondo; randommbool
and passmbool. The operator randommbool accepts an instant and creates an mbool



520 Geoinformatica (2011) 15:497–540

object whose definition time starts at the given time instant, and consists of a random
number of units. The operator passmbool mimics a lifted predicate. It accepts the
name of an mbool database object, loads the object and returns it. More details are
given below.

9.1.1 Preparing the data

This section describes how the test data for the first experiment is created. The
randommbool operator is used to create a set of 30 random mbool instances and store
them as database objects. The operator creates mbool objects with a random number
of units varying between 0 and 20. The first unit starts at the time instant provided
in the argument. Every unit has a random duration between 2 and 50,000 ms. The
value of the first unit is randomly set to true or false. The value of every other unit
is the negation of its preceding unit. Hence, the minimal representation requirement
[10] of the moving types in Secondo is met. That is, adjacent units can not be further
merged because they have different values.

The 30 mbool objects are created by calling randommbool(now()) 30 consec-
utive times. This increases the probability that the definition times of the objects
temporally overlap.

9.1.2 Generating the queries

The queries of the first experiment are selection queries consisting of one filter
condition in the form of an STP predicate. The queries are generated with different
experimental settings, that is, different numbers of lifted predicates and constraints
in the STP predicate. The number of lifted predicates varies between 2 and 8. The
number of constraints varies between 1 and 16. The queries are not generated for
every combination. For example, it does not make sense to generate STP predicates
with 2 lifted predicates and 10 constraints. For N lifted predicates, the number of
constraints varies between N − 1 and 2N. The rationale of this is that, if the number
of constraints is less than N − 1, then the constraint network can not be complete (i.e.
some predicates are not referenced within constraints). On the other hand, having
more than 2N constraints increases the probability of contradicting constraints. For
every experimental setting, 100 random queries are evaluated and the average run
time is recorded.

A query with 3 lifted predicates and 2 constraints, for example, looks like:

query thousand feed
filter[.

stpattern[a: passmbool(mb5),
b: passmbool(mb13),
c: passmbool(mb3);

stconstraint("b", "a", later),
stconstraint("b", "c", vec("abab") ]]

count

where query thousand feed streams the thousand relation, which contains 1,000
tuples. For every tuple, the STP predicate stpattern is evaluated. Note that the
predicate does not depend on the tuples. That is, the same predicate is executed
1,000 times in the query. This is to minimize the effect of the time taken by Secondo
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to prepare for query execution. The lifted predicates are all in the form of
passmbool(X), where X is one of the 30 stored random mbool objects.

The constraints are generated so that the constraint graph is complete. We start
by initializing a set called connected having one randomly selected alias. For every
constraint, the two aliases are randomly chosen from the set of aliases in the query,
so that at least one of them belongs to the set connected. The other alias is added
to the set connected if it was not already a member. After the required number
of constraints is generated, we check the completeness of the graph. If it is not
complete, the process is repeated till we get a connected graph. The temporal
connector for every constraint is randomly chosen from a set containing 31 temporal
connectors namely, the 26 simple temporal connectors in Table 1 and 5 vector
temporal connectors (later, follows, immediately, meanwhile, and then) (shown in
Appendix A).

Before running the queries, we query for the 30 mbool objects so that they are
loaded into the database buffer. The measured run times should, hence, show the
overhead of evaluating the STP predicates in Secondo because other costs are made
negligible.

9.1.3 Results

The results are shown in Fig. 2. The number of lifted predicates is denoted as N.
Increasing the number of lifted predicates and constraints in the STP predicate does
not have a great effect on the run time. This is a direct result of the early pruning
strategy in the Solve Pattern algorithm. The results show that the evaluation of STP
predicate is efficient in terms of run time.

9.2 STP queries with optimization

The second experiment is intended to evaluate the run time of STP queries. It also
evaluates the effect of the proposed optimization. Unlike the first experiment, the
STP predicates in this experiment contain lifted predicates. We generate 10 random
queries for every experimental setting and record the average run time. Every query
is run twice; without being optimized, and after optimization.

Fig. 2 The overhead of
evaluating STP predicates
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9.2.1 Preparing the data

The queries use the Trains20 relation. It is generated by replicating the tuples of the
Trains relation in the berlintest database 20 times. The Trains relation was created
by simulating the underground trains of the city Berlin. The simulation is based on
the real train schedules and the real underground network of Berlin. The simulated
period is about 4 h in one day. The schema of Trains20 is similar to Trains with the
additional attribute Serial:

Trains20[Serial: int, Id: int, Line: int, Up: bool, Trip: mpoint]

where Trip is an mpoint representing the trajectory of the train. The relation contains
11,240 tuples and has a disk size of 158 MB. To evaluate the optimizer, a spatial R-
tree index called Trains20_Trip_sptuni is built on the units of the Trip attribute. A set
of 300 points is also created to be used in the queries. The points represent geometries
of the top 300 tuples in the Restaurants relation in the berlintest database.

9.2.2 Generating the queries

The queries are generated in the same way as in the first experiment. In this
experiment, however, we use actual lifted predicates instead of passmbool. Every
lifted predicate in the STP predicate is randomly chosen from

1. distance(trip, randomPoint) < randomDistance.
2. speed(trip) > randomSpeed.

where randomPoint is a point object selected randomly from the 300 restaurant
points, randomDistance ranges between 0 and 50, and randomSpeed ranges between
0 and 30. The distance(., .) < . is a sample for the lifted predicates that can be mapped
into index access, so that we can evaluate the optimizer. While the queries in the first
experiment are created directly in the Secondo executable language, they are created
here in Secondo SQL. It is an SQL-like syntax that looks similar to the standard
SQL, but obeys Prolog rules. The main differences are that everything is written in
lower case, and lists are placed within square brackets.

Here is one query example from the generated queries:

SELECT count(*)
FROM trains20
WHERE pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))])

where pattern is the SQL operator equivalent to stpattern in the executable language.
The rewritten version of the query as generated by the rewriting module of the
Secondo optimizer is:

SELECT count(*)
FROM trains20
WHERE [ pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))]),

sometimes(distance(trip, point170) < 18.0),
sometimes(speed(trip) > 11.0)]
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Finally, the optimal execution plan is:

Trains20_Trip_sptuni
windowintersectsS[ enlargeRect(bbox(point170), 18.0, 18.0)]
sort rdup Trains20 gettuples
filter[sometimes((distance(.Trip,point170) < 18.0))]
{0.00480288, 1.69712}
project[Trip]
filter[. stpattern[ a:(distance(.Trip, point170) <

18.0),
b:(speed(.Trip) > 11.0);

stconstraint("a", "b", vec("b.ba.a"))]]
{0.00480288, 1.49038}
filter[sometimes((speed(.Trip) > 11.0))]
{0.883731, 1.48077}

count

where the predicates are placed within the f ilter[] operator, which means that
they belong to the where clause in SQL. The rewriter generates for the two lifted
predicates in the original query two standard sometimes predicates. The predicate
sometimes( distance(., .) < .) is handled by the optimizer as a special kind of range
predicate. Since the optimizer can find the spatial R-tree index that we created, it is
used. The index access part in the query is:

Trains20_Trip_sptuni windowintersectsS[enlargeRect
(., ., .)]

This part expands the minimum bounding box of point170 by the distance threshold
value 18.0. The enlarged box is intersected with the R-tree to get the candidate tuple
id’s. The rest of the query retrieves the data of the candidate tuples and performs the
query. The pairs of numbers between the curly brackets do not affect the semantics
of the query. They are estimated predicate selectivities and run time statistics used
to help estimate the query execution progress.

9.2.3 Results

In Fig. 3, the chart to the left shows the average run times of the non-optimized
STP queries. The chart to the right shows the average run times of their optimized
counterparts. The N is again the number of lifted predicates. The run times of the
optimized STP predicates are very promising.

The high peak in the optimized queries chart at N = 2 and Number of Con-
straints = 2 is because it happened that five of the ten generated queries have only
speed(.) < . predicates. Since the sometimes(speed(.) < .) predicate does not map into
index access, the average run time for this experimental setting is close to the non-
optimized version.

9.3 Scalability experiment

This experiment evaluates the performance of the proposed approach in large
databases. As shown in Section 7.2, the optimization of the STP predicate is carried
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Fig. 3 The run times for STP queries on the Trains20 relation

out without special index structures, which is practically preferred in the context of
systems. It remains however questionable, how far are the traditional indexes (e.g.
R-trees) effective for such a type of queries. This experiment tries to answer this
question.

Obviously if all the lifted predicates within the STP predicate in a given query are
not supported by the indexes in the database system, then one is out of luck, and
the STP predicate will be evaluated for every tuple. Therefore, in this experiment,
we compose the STP predicates by lifted predicates that are supported by index
structures available in Secondo.

9.3.1 Generating the data

The data for this experiment is generated using the BerlinMOD benchmark [6]. It
simulates an arbitrary number of cars moving in the city Berlin. The scenarios of
the trips are quite realistic, simulating the trips to and from the work place, and the
leasure time trips. The benchmark is downloadable from the Secondo web site [25].
The trajectory data is generated by running Secondo scripts. It is possible to control
the number of cars, and the number of observation days by editing a configuration
file.

For this experiment, we have generated the four relations described in Table 3.
The table shows for every relation the number of cars/trajectories, the number of
simulation days, the number of units of all trajectories, and the storage space of the
relation. The number of units is analogous to the total number of observations of all
cars, in the discrete sense. Note that in this moving objects model, the trajectories

Table 3 The database relations used in the scalability experiment

Relation name Number of cars Duration Number of units Size (GB)

datascar50 50,000 1 day 64,331,426 9.1
datascar100 100,000 1 day 128,437,840 18.2
datascar200 200,000 1 day 256,373,737 36.3
datascar300 300,000 1 day 384,923,972 54.5
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are continuous. That is, the locations of the cars between any two consecutive
observations are linearly interpolated. The generation of the four relations using the
BerlinMOD benchmark took about five days on the machine described in Section 9.

For each of the four relations, a spatial R-tree index is derived for the trip
attribute. The R-tree contains the bounding boxes of the units of the Trip attribute,
which are of type upoint.

9.3.2 Generating the queries

The BerlinMOD benchmark generates for every car up to five trips in a working day.
Two of them go to and from the work place, and the other three trips are leasure time
trips in the afternoon/evening. The leasure time destinations are randomly chosen
from the neighborhood of the car’s home location with a probability of 80%, and
from the whole map with a probability of 20%. We use this information to design the
experiment queries.

For each of the four relations in this experiment, a set of ten queries is randomly
generated. Each of the queries randomly picks a car and retrieves its home location
and three locations from its neighborhood, call them atmmachine, supermarket, and
bakery for example. The query looks for the cars that made a leasure time trip start-
ing from the location home, and passing by the locations atmmachine, supermarket,
and bakery in order. Since the locations are chosen from the neighborhood of an
existing car, there is some probability that the cars will fulfill the pattern. A sample
query for the relation datascar300 looks as follows:

SELECT count(*)
FROM datascar300 c
WHERE [ pattern([ c.trip = home as pred1,

c.trip = atmmachine as pred2,
c.trip = supermarket as pred3,
c.trip = bakery as pred4],

[stconstraint("pred1", "pred2", later),
stconstraint("pred2", "pred3", later),
stconstraint("pred3", "pred4", later)])

]

where home is the home location of the car, and the = lifted predicate is fulfilled in
the time instants/intervals when its two arguments have the same spatial coordinates.
Ten such queries are randomly generated for every relation. The next subsection
shows the average runtimes.

9.3.3 Results

In this experiment, we switch on the optimizer. Since the = lifted predicates in the
queries belong to the lifted spatial range predicates, as shown in Table 2, the optimizer
generates execution plans that use the R-tree indexes, that are generated during the
data generation. Figure 4 shows the average runtimes. These results conclude two
points:

• Taking into consideration the large relation sizes as shown in Table 3, and the
moderate machine specifications described in Section 9, the average runtimes are
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Fig. 4 Scalability results
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cheap regarding such complex query type. To be able to compare, we measured
the average runtime of an optimized spatiotemporal range query on the 300,000
relation, and it shows 20 s. This is in comparison to an average of 28.6 s for the
STP query. This confirms that the proposed optimization approach works fine
without the need for specialized index structures.

• The runtime seems to scale linearly with the relation size. This is already
expected since the STP predicate is applied to every tuple in the input (i.e. the
tuples retrieved after the index access). Note that the BerlinMOD benchmark
generates all the trips within the limited spatial space of the city Berlin. A larger
number of cars in the simulation implies that the window queries on the R-tree
index yield more candidates.

To sum things up, the scalability of the STP queries as proposed in this paper is
affected by four parameters:

1. The number of lifted predicates in the STP predicate.
2. The number of the temporal constraints in the STP predicate.
3. The number of input tuples/trajectories.
4. The length of the trajectories in terms of number of units.

The scalability in terms of the first three parameters is evaluated already in the three
experiments in this paper. The last parameter, the length of trajectories, affects the
evaluation time of the STP predicate indirectly as it affects the evaluation time of the
lifted predicates. This is because the lifted predicates are evaluated for the complete
trajectory. When the trajectories are long (e.g. several weeks of observation time),
the cost of evaluating the lifted predicates increases accordingly. The majority of
them scale linearly with the number of units in the trajectory. More about the lifted
predicate evaluation algorithms can be found in [4].

In the STP predicate, the temporal constraints impose a certain temporal order
between the lifted predicates. While evaluating the STP predicate, one gets temporal
information from the lifted predicates evaluated so far. A proper analysis of this
information can identify parts of the trajectory that can be safely ignored while
evaluating other lifted predicates. In future work we plan to study how to utilize
this information. Roughly, one would need to redefine the lifted predicates, so that



Geoinformatica (2011) 15:497–540 527

they process the trajectory parts upon request (e.g. in a stream fashion) rather than
the whole trajectory.

10 Application examples

To illustrate the expressive power of the proposed approach, we present in the
following two subsections more examples for STP queries. Section 10.1 demonstrates
a scenario called Finding Ali. It is about a kid called Ali, who moves on the street
network of Cairo (the capital of Egypt). He makes several trips riding in several cars.
We want to query for these cars using their movement profiles.

In Section 10.2, we demonstrate example queries that the reader can try him-
self/herself in Secondo. The queries are based on the berlintest database, that is
available with the Secondo distribution. Unlike the first application, the queries are
not linked to a single scenario. Hence we can demonstrate STP queries that involve
moving points, moving regions, and many kinds of lifted operations.

10.1 Finding Ali

We assume that the road network of Cairo is observed for one month and that the
complete trajectories of the cars are stored in the database. The queries assume the
following schema:

• Car[PlatesNumber: string, Trip: mpoint] where Trip is the complete trajectory of
the car for the whole observation period.

• Landmark[Name: string, Type: string, Location: point]
• Heliopolis: A region object marking the boundary of the district Heliopolis where

Ali lives.
• AliHome: A point object marking Ali’s home.
• FamilyHome: A point object marking the house of the father’s family.
• SportsClub: A region object marking the boundary of the sports club in which

Ali is a member.

10.1.1 The go-to-school trips with the school bus

The bus starts at the school at 6:00–6:30 am, enters the district Heliopolis at 6:45–
7:00 am, stops near Ali’s home, picks Ali, exits Heliopolis at 7:45–8:00 am, then goes
back to school.

This query can be written without a spatiotemporal pattern predicate. The spa-
tiotemporal window of every predicate is known. It can be expressed as a conjunction
of 5 spatiotemporal range predicates (Bus inside School at the time interval [6:00,
6:30] AND Bus inside Heliopolis at the time interval [6:45, 7] ...). We include this
as an example of spatiotemporal pattern queries that can be expressed without STP
predicates.

10.1.2 The evening trips with grandfather

Starting from Ali’s home, the grandfather drives Ali to the sports club. They stop at
the sports club for at least 2 h. After the club they go by car to buy some bread, then
back home.
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SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Bakery%") and
patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,

c.Trip inside SportsClub as AtClub,
distance(c.Trip, l.Location) < 20.0 as AtBakery,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtClub,
AtClub later AtBakery,
AtBakery later BackHome],

end("AtClub") - start("AtClub") >= 2.0 and
daypart(AtHome) = daypart(BackHome))

In this query, the extended STP predicate is used to state that they stayed at least
2 h in the sports club and that the whole pattern occurred in one day. Another note is
that the query uses the predicate distance(c.Trip, AliHome) < 20.0 twice
with two different aliases. The two aliases are needed to write the constraints. It is
the responsability of the query optimizer to detect this common predicate (i.e. using
common sub-expression optimization techniques) and evaluate it only once.

10.1.3 The weekend trips with mother

The mother starts from Ali’s home, drives only in main roads, stops near a shopping
mall for at most 4 h then back home. The trip to the mall takes more than 1.5 times
the estimated time because the mother uses only main roads. In Cairo it is easier to
drive in main roads but they have high traffic.

SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Mall%") and
patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,

distance(c.Trip, l.Location) < 40.0 as AtMall,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtMall,
AtMall later BackHome],

end("AtMall") - start("AtMall") <= 4.0 and
(start("AtMall") - end("AtHome") >

1.5 * EstimatedDriveTime(l.location, AliHome) ))

where we assume for simplicity that EstimatedDriveTime is a function that computes
the normal period that a drive between two places takes. It may do so by finding the
shortest path and multiply by the average driving speed.

10.2 The Berlintest example

In this example, we use the database berlintest, more specifically, the Trains relation
and three newly added relations with the following schemas:

SnowStorms[Serial: int, Storm: mregion]
TrainsMeet[Line: int, Uptrip: mpoint, Downtrip: mpoint, Stations: points]
TrainsDelay[Id: int, Line: int, Actual: mpoint, Schedule: mpoint]
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The SnowStorms relation contains 72 tuples, each of which contains a moving region,
representing a snow storm that moves over Berlin. The TrainsMeet relation is
generated from the Trains relation. The tuples contain all possible combinations of
two trains that belong to the same line and move in opposite directions. The Stations
attribute represents the train stations of the associated line. The TrainsDelay relation
is also generated from the Trains relation. Each tuple contains the original Trip
attribute (renamed into Schedule), and a delayed copy of it with delays of around
30 min. The scripts for creating the three relations and for executing the example
queries are available for download as will be explained in Appendix D.

Table 4 lists the lifted operations used within the queries. We have designed the
queries so that they illustrate the expressive power of our approach by using various
lifted operations to compose complex pattern queries. The table shows only the
operator signatures that are used in the queries. The complete list of valid signatures
is in [16].

Table 4 Lifted operations

Operation Signature Type Meaning

at topological opera-
tion

computes a moving point that
exists whenever the point argu-
ment is inside the moving re-
gion argument.

isempty set operation true whenever the argument is
defined.

not boolean operation logical negation.
rough center aggregation aggregates the moving region

into a moving point that repre-
sents its center of gravity.

speed metric property the metric speed of the moving
point.

distancetraversed metric property the  distance  that  the  moving
point traversed since the start
of its definition time.

area metric property the area of the moving region.
intersection set operation computes the common parts of

the two arguments.

inside
spatial range predi-
cate

true  whenever  the is
contained in the ,
or passes some of the .

delay metric operation considers the first argument
actual, and the second sched-
uled  movement and computes
the delay of the actual move-
ment in seconds.

= spatial range predi-
cate

true whenever the moving
point passes the point.

xangle direction the angle (in degrees) between
x-axis and  the  tangent of  the
moving point.

and boolean operation logical and.
, =, , = left/right range

predicate
true in the time intervals
during which  the  comparison
holds.
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10.2.1 Find the snow storms that passed over the train station mehringdamm
with speed greater than 40 km/h

SELECT *
FROM snowstorms
WHERE pattern([not(isempty(storm at mehringdamm)) as pred1,

speed(rough_center(storm)) > 40.0 as pred2],
[stconstraint("pred1","pred2", together)])

where together is a vector temporal connector that yields true if the two predicates
happen simultaneously.

10.2.2 Find the snow storms that could increase their area over 1/4 km2 during the
f irst traversed 5 km

SELECT *
FROM snowstorms
WHERE pattern(

[distancetraversed(rough_center(storm)) <= 5000.0
as pred1, area(storm) > 250000.0 as pred2],

[stconstraint("pred1","pred2", meanwhile)])

10.2.3 Find the trains whose up and down trips meet inside one of the train stations

SELECT *
FROM trainsmeet
WHERE pattern(

[not(isempty(intersection(uptrip, downtrip)))
as pred1, uptrip inside stations as pred2 ],

[stconstraint("pred1","pred2", together)])
ORDERBY line

10.2.4 Find the trains that encountered a delay of more than 30 min after passing
through the snow storm msnow

SELECT *
FROM trainsdelay
WHERE pattern([not(delay(actual, schedule) > 1800.0)

as pred1, actual inside msnow as pred2,
delay(actual, schedule) > 1800.0 as pred3 ],

[stconstraint("pred1", "pred2",
vec("abab", "aba.b", "abba")),

stconstraint("pred2", "pred3",
vec("abab", "aba.b", "abba", "aa.bb", "aabb"))])

10.2.5 Find the trains that are always heading north-west after passing mehringdamm

SELECT *
FROM trains
WHERE patternex([trip = mehringdamm as pred1,

ndefunit(((xangle(trip) >= 90.0) and



Geoinformatica (2011) 15:497–540 531

(xangle(trip) <=180.0)), int2bool(1)) as pred2],
[stconstraint("pred1","pred2",then)],
(((start("pred2")- end("pred1"))

< create_duration(0, 120000))
and
((inst(final(trip)) - end("pred2"))

< create_duration(0, 15000))))

where we use the ndefunit operator in this query to replace the undefined periods
within the mbool by true units. This is because the xangle 2 operator yields undefined
during the train stops in the stations. In other words, pred2 is true whenever the train
is not heading other than north-west. The query restricts the results to the trains
which started heading north at most 2 min after passing mehringdamm and remained
so till at least 15 s before the end of the trip. These time margins are used to cut out
small noisy parts in the data, so that the query yields results.

11 System use and experimental repeatability

The implementation of the described approach is made available as a Plugin for
the Secondo system. It can be downloaded from the Plugin web site [22]. The User
Manual (also available on the Plugin we site) describes how to install and run the
Plugin. We have also made available the scripts for running the first and the second
experiments in this paper, and the Berlintest application example, so that the results
are repeatable. There are no scripts here for the third experiments. For interested
readers, please refer to the BerlinMOD benchmark [6] to generate the test data,
then use the queries as described in Section 9.3.

Before running the scripts of the experiments, you need to install:

1. The Secondo system version 2.9.1 or later.3 A brief installation guide is given
in the Plugin User Manual on [22], and a detailed guide is given in the Secondo
User Manual [24].

2. The Spatiotemporal Pattern Queries Plugin (STPatterns) as described in [22].

11.1 Repeating the first experiment

During the installation of the STPattern Plugin, two files are copied to the Secondo
bin directory $SECONDO_BUILD_DIR/ bin. These two files Expr1Script.sec and
STPQExpr1Query.csv (described in Appendix A) automate the repeatability of the
first experiment in this paper. The experiment can then be run as follows:

1. Run SecondoTTYNT (i.e. in a shell, go to $SECONDO_BUILD_DIR/bin and
write SecondoTTYNT).

2The xangle operator is a corrected copy of the Secondo mdirection operator. It is presented only for
the sake of this example. In the Secondo versions newer than 2.9.1, the mdirection operator works
fine.
3Since our optimizer extension wraps around the standard optimizer implementation, you may get
different optimization results in later Secondo versions. The described results in this paper are
obtained from version 2.9.1.
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2. Make sure that the berlintest database is restored (i.e. at the Secondo prompt,
write list databases and make sure that berlintest database is in the list).
Otherwise, restore it by writing

restore database berlintest from berlintest

at the Secondo prompt (press <return> twice).
3. Execute the script by writing @Expr1Script.sec at the Secondo prompt. The

script creates the required database objects and executes the experiment queries.
This may take half an hour depending on your machine.

Executing the script creates a Secondo relation STPQExpr1Result in the berlintest
database, which stores the experimental results. Its schema is shown in Table 5.

The experimental results are also saved to a comma separated file STPQ-
Expr1Result.csv in the Secondo bin directory. The file has a similar structure as the
table STPQExpr1Result.

11.2 Repeating the second experiment

Repeating the second experiments is also automated by script files that are copied
to the Secondo directories during the installation of the STPattern Plugin. For the
second experiment, two script files are used; the $SECONDO_BUILD_DIR/ bin/
Expr2Script.sec file creates the necessary database objects, and the $SECONDO_
BUILD_DIR/ Optimizer/ expr2Queries.pl executes the queries. The Expr2Script.sec
file is described in Appendix B, and the expr2Queries.pl in Appendix C. The
experiment is repeated as follows:

1. Run SecondoTTYNT.
2. Make sure that the berlintest database is restored, otherwise, restore it.
3. Execute the Expr2Script.sec by writing @Expr2Script.sec at the Secondo

prompt. This creates the necessary database objects.

Table 5 The schema of the STPQExpr1Result relation

Attribute Meaning Example

no A serial number for the query 0
queryText The query text thousand feed

filter [.stpattern[
a:passmbool(mb10),
b:passmbool(mb30);
stconstraint("a", "b",
vec("aa.b.b"))]] count

numPreds The number of the lifted predicates 2
in the STP predicate

numConstraints The number of the constraints in the 1
STP predicate

ElapsedTimeReal The measured response time, 0.171932
in seconds, for this query

ElapsedTimeCPU The measured CPU time, in seconds, 0.16
for this query
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Table 6 The schemas of the Expr2StatsDO.csv and Expr2StatsEO.csv files

Attribute Meaning Example

NumberOfPredicates The number of the lifted predicates in the STP predicate 2
NumberOfConstraints The number of the constraints in the STP predicate 1
Serial A serial for the query in the range [0,9]. The serial is 1

repeated with every experimental setup
ExecTime The measured response time, in milliseconds, for this query 443

4. Quit SecondoTTYNT (i.e. write quit at the Secondo prompt), go to the
Secondo optimizer folder $SECONDO_BUILD_DIR/ Optimizer and write
SecondoPL. This starts the Secondo optimizer user interface in the single user
mode.

5. Write consult(expr2Queries). to let Prolog interpret the script file
expr2Queries.pl.

6. Open the berlintest database (i.e. write open database berlintest.).
7. Write runSTPQExpr2DisableOptimization. to run the queries without enabling

the optimization of the STP predicate, or runSTPQExpr2EnableOptimization.
to run the queries with the optimization of the STP predicate being enabled. This
can take more than an hour.

The results are saved to the comma separated files Expr2StatsDO.csv and
Expr2QueriesDO.csv in the Secondo optimizer folder if the STP predicate optimiza-
tion is disabled. If it is enabled, the results are saved to the files Expr2StatsEO.csv
and Expr2QueriesEO.csv.

The files Expr2StatsDO.csv and Expr2StatsEO.csv show the run times. They
include the columns described in Table 6.

The files Expr2QueriesDO.csv and Expr2QueriesEO.csv have a similar structure.
They exclude the ExecTime attribute and have two more attributes; the SQL
attribute which stores the SQL-like query, and the ExecutablePlan which stores the
execution plan generated by the Optimizer.

12 Conclusions

We propose a novel approach for spatiotemporal pattern queries. It combines
efficiency, expressiveness and a clean concept. It builds on other moving objects data-
base concepts. Therefore, it is convenient in the context of spatiotemporal DBMSs.
Unlike the previous approaches, it is integrated with query optimizers. We also
propose an algorithm for evaluating the constraint satisfaction problems, that is cus-
tomized to fit the efficient evaluation of the spatiotemporal pattern predicates. In the
paper, we demonstrate two application examples to emphasize the expressive power
of our approach. Our work is completely implemented in the Secondo platform. The
implementation and the scripts for experimental repeatability are available on the
Web. The experimental evaluation shows that the run times are reasonable. As fu-
ture work, we intend to revisit the definition of the lifted predicates, and extend them
to process only the parts of the trajectories that are candidates for a solution of the
STP predicate. This will allow for efficiently reporting patterns in long trajectories.
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A The Expr1Script.sec file

This is a commented version of the Expr1Script.sec script.
The script runs the first experiment with minimal user interaction. The experi-

ment, as described in Section 9.1, is intended to evaluate the execution overhead
of the STP predicates. This script first creates the required database objects, then
executes the queries and logs the run times.

close database;
open database berlintest;

let mb1 = randommbool(now());
...

let mb30 = randommbool(now());

The commands open the database berlintest and creates 30 random mbool ob-
jects with the names mb1... mb30. These objects are needed for the queries. The
randommbool operator works as described in Section 9.1.1.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors are used in the queries as examples for vector
temporal connectors. They are used together with the 26 simple temporal connectors
to generate the queries.

let STPQExpr1Query=
[const rel(tuple([no:int, queryText: text,

numPreds: int, numConstraints: int])) value ()]
csvimport[’STPQExpr1Query.csv’, 0, "", "$"] consume;

The query imports the experiment queries from the comma separated file STPQ-
Expr1Query.csv and stores them in a Secondo relation called STPQExpr1Query.
The [const . value .] operator tells the cvsimport operator the schema of the relation,
which is shown in Table 7.

The file contains 4,900 queries that were randomly generated as described in
Section 9.1.2. The queries represent 49 experimental settings, each of which have

Table 7 The schemas of the STPQExpr1Query.csv file and the STPQExpr1Query table

Attribute Meaning

no A serial for the query in the range [0, 4899]
queryText The query statement written in Secondo executable language
numPreds The number of the lifted predicates in the STP predicate
numConstraints The number of the constraints in the STP predicate
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100 queries. The following query executes them and logs the results in the relation
STPQExpr1Result:

let STPQExpr1Result =
STPQExpr1Query feed
loopjoin[fun(queryTuple: TUPLE)

evaluate(attr(queryTuple, queryText))
project[ElapsedTimeReal, ElapsedTimeCPU]]
consume;

This query can take half an hour depending on your machine. You can query the
results relation in any of the Secondo user interfaces [24] and create aggregations
for the charts. Additionally, the following query exports the relation to the comma
separated file STPQExpr1Result.csv in the Secondo bin directory.

query STPQExpr1Result feed
projectextend[; Serial: .no,

NumberOfPredicates: .numPreds,
NumberOfConstraints: .numConstraints,
ResponseTime: .ElapsedTimeReal,
CPUTime: .ElapsedTimeCPU]

csvexport[’STPQExpr1Result.csv’, FALSE, TRUE]
count

NOTE We encourage the reader to get information about the Secondo operators
by using the built-in operator descriptions. For example, to get help on the operator
csvimport, write the following query at the Secondo prompt:

query SEC2OPERATORINFO feed
filter[.Name contains "csvimport"]

consume

B The Expr2Script.sec file

This is a commented version for the Expr2Script.sec script.
The script is used to generate the data required for running the second experiment
in this paper without executing the queries. The queries need to be executed in the
SecondoPL environment afterwards.

close database;
open database berlintest;

let RestaurantsNumbered =
Restaurants feed addcounter[no, 1] head[300] consume;

let point1 =
RestaurantsNumbered feed filter[.no = 1]
extract[geoData];

...
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let point300 =
RestaurantsNumbered feed filter[.no = 300]
extract[geoData];

delete RestaurantsNumbered;

First, the commands open the database berlintest. The geometries of the first
300 restaurants in the Restaurants table are then copied to point objects (point1...
point300) to be used in the queries.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors, that are also created in Expr1Script.sec, are
included here so that the two experiments can be run independently.

let Trains20 = thousand feed head[20]
Trains feed product consume;

This query creates the Trains20 relation by replicating the tuples of the Trains
relation 20 times. In the following query, we create an index on the Trains20 relation
to test the proposed STP predicate optimization. The index is a spatial R-tree on the
units of the Trip attribute. Instead of indexing the complete movement, the index is
built on the units (i.e. a bounding box is computed for every unit in the Trip). This is
done so that the bounding boxes better approximate the moving point.

let Trains20_Trip_sptuni =
Trains20 feed

projectextend[Trip; TID: tupleid(.)]
projectextendstream[TID; MBR: units(.Trip)

use[fun(U: upoint) bbox2d(U) ]]
sortby[MBR asc]

bulkloadrtree[MBR];

C The expr2Queries.pl file

This Prolog file is used to run the queries of the second experiment and log the
execution times. It defines four prolog predicates:

1. runSTPQExpr2DisableOptimization/0: switches off STP predicate optimization
by setting the optimizer options, and executes the queries.

2. runSTPQExpr2EnableOptimization/0: switches on STP predicate optimization,
and executes the queries.

3. executeSQL/4: helper predicate for executing queries.
4. runSTPQExpr2/4: the facts table that stores the queries. The file contains 490

such facts, 10 queries for each of the 49 experimental settings. The queries are
randomly generated as described in Section 9.2.2. For every query, the fact also
stores its serial, number of lifted predicates, and number of constraints.
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D Running the Berlintest application example

To execute the queries in the berlintest example, you need first to run the script
BerlintestScript.sec from the SecondoTTYNT prompt. The script is installed within
the STPattern Plugin. You also need to have the berlintest database restored in your
system. The script file creates the required database objects but it doesn’t execute
the queries. It first defines some temporal connectors:

close database;
open database berlintest;
let later= vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows= vec(...
let immediately= vec(...
let meanwhile= vec(...
let then= vec(...
let together= vec(...

Then it restores the SnowStorms relation from the SnowStorms file in the Sec-
ondo/bin directory, which is installed with the Plugin.

restore SnowStorms from SnowStorms;

The following command creates the relation TrainsMeet, that is used in the
example in Section 10.2.3. Every tuple in the relation is a different combination of an
up train, down train of the same line, and the stations where the train line stops.

let TrainsMeet =
Trains feedproject[Line, Trip, Up] {t2}
filter[.Up_t2 = FALSE]

Trains feedproject[Line, Trip, Up] {t1}
filter[.Up_t1 = TRUE]

hashjoin[Line_t2 , Line_t1 , 99997]
extend[Line: .Line_t1, Uptrip: .Trip_t1,
Downtrip: .Trip_t2,
Stations: ((breakpoints(.Trip_t1,

create_duration(0,5000) )
union val(initial(.Trip_t1)))
union val(final(.Trip_t1)))]

project[Line, Uptrip, Downtrip, Stations]
consume;

Next we create the relation TrainsDelay, used in the example in Section 10.2.4.
Every tuple has a schedule and an actual moving point. The schedule movement is a
copy from the Trip attribute in the Trains relation. The actual movement should have
delays of about half an hour. We shift the Trip 1,795 s forward, and apply a random
positive or negative delay up to 10 s to the result. This creates actual movements with
random delays between 29:45 and 30:05 min.

let TrainsDelay=
Trains feed
extend[Schedule: .Trip,



538 Geoinformatica (2011) 15:497–540

Actual: randomdelay(
.Trip translate[create_duration(0, 1795000) ,
0.0, 0.0], create_duration(0,10000) ) ]

project[Id, Line, Actual, Schedule]
consume;

After running the BerlintestScript.sec script, use the Javagui to execute the queries.
It is the graphical user interface for Secondo. To launch it:

1. Start the Secondo kernel in server mode, the optimizer server, and the GUI:
In a new shell, go to $SECONDO_BUILD_DIR/bin, and type
SecondoMonitor -s.
In a new shell, go to $SECONDO_BUILD_DIR/Optimizer, and type
StartOptServer.
In a new shell, go to $SECONDO_BUILD_DIR/Javagui, and type sgui. The
Javagui will start and connect to both the kernel and the optimization server.

2. Open the database. In the Javagui type:
open database berlintest.

3. Set the optimizer options. The Secondo optimizer maintains a list of options that
controls the optimization. The examples in this paper require the options im-
provedcosts, determinePredSig, autoSamples, rewriteInference, rtreeIndexRules,
and autosave. To set each of these options, type in the Javagui:
optimizer setOption(option)

4. View the underlying network. Type:
select * from ubahn to display the underground trains network.
select * from trains to display the moving trains. Use the slider to view
the results.
Select the last query in the top-right panel and press hide to hide the trains.
select * from snowstorms to display the moving snow storms.
hide the snow storms.

5. Type the example queries as in Section 10.2, and make sure to type everything in
lower case.
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