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Abstract Consistency is a crucial prerequisite for a large number of relevant applications of
3D city models, which have become more and more important in GIS. Users need efficient
and reliable consistency checking tools in order to be able to assess the suitability of spatial
data for their applications. In this paper we provide the theoretical foundations for such tools
by defining an axiomatic characterization of 3D city models. These axioms are effective and
efficiently supported by recent spatial database management systems and methods of
Computational Geometry or Computer Graphics. They are equivalent to the topological
concept of the 3D city model presented in this paper, thereby guaranteeing the reliability of
the method. Hence, each error is detected by the axioms, and each violation of the axioms is in
fact an error. This property, which is proven formally, is not guaranteed by existing
approaches. The efficiency of the method stems from its locality: in most cases, consistency
checks can safely be restricted to single components, which are defined topologically. We
show how a 3D city model can be decomposed into such components which are either
topologically equivalent to a disk, a sphere, or a torus, enabling the modeling of the terrain, of
buildings and other constructions, and of bridges and tunnels, which are handles from a
mathematical point of view. This enables a modular design of the axioms by defining axioms
for each topological component and for the aggregation of the components. Finally, a sound,
consistent concept for aggregating features, i.e. semantical objects like buildings or rooms, to
complex features is presented.

Keywords 3Dcitymodels . CityGML . Consistency constraints . 3Dsurfaces . 2-manifolds .

Solids

1 Introduction

3D city models play a more and more important role in GIS. These models are needed for
an increasing number of GIS applications, e.g. telecommunications planning, noise
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emission simulation and mapping, urban planning, vehicle navigation, indoor–outdoor
navigation, or escape route derivation in disaster management. Typically, providers and
users of data are different. One the one hand, the user has to check whether the data is
suitable for his purposes. Thus he needs models, methods and tools to specify his
requirements and to check whether they are fulfilled. On the other hand, the provider has an
interest to demonstrate the quality of his data—not only with regard to geometrical
accuracy, but also with regard to semantics and consistency. Hence, both the providers and
the users need models and methods to verify desired properties of the data. Error freeness
and particularly consistency—compliance of data with the assumptions of the underlying
model—are essential prerequisites for the usability of data and the viability of a spatial data
infrastructure. This paper deals with models and methods for checking the consistency of
3D city models.

3D city models differ with regard to their structural complexity. For some applications of
3D city models, e.g. telecommunications planning or visualization, the representation of the
(geometry of the) visible surface of the terrain and of urban structures is sufficient. Digital
surface models [38] are appropriate for these tasks. From a mathematical point of view,
such surfaces are 2-manifolds, i.e. connected, purely areal objects, which do neither
penetrate nor intersect themselves. Bridges, tunnels and arcades, which are called handles
in mathematics [2], make such surfaces more complex [48].

For more advanced applications of 3D GIS, surface models are not sufficient. These
applications require among others the computation of the volumes of the objects. Volumes
are needed for many purposes: heating costs, the amount of oxygen in an emergency case,
etc. Thus, an explicit representation of solids is required. Neighboring solids have common
boundaries which have to be represented. Furthermore, rooms are connected by doors,
stairs etc. The explicit representation is fundamental for indoor applications, e.g. the
derivation of escape routes. Again, surface models are not appropriate for these purposes.
They require the representation of rooms as volume objects, of storeys as aggregation of
rooms together with doors, storeys and staircases. Subsurface structures like cellars have to
be considered as well, and all buildings have to be integrated smoothly in the surface
representing the terrain. In such solid models that represent cities two aspects are closely
connected: the GIS viewpoint, modeling the terrain and the visible hull of cities, and the
CAD viewpoint, representing internal structures of buildings.

The problem of integrating GIS and CAD has been discussed in the last years [e.g., 31,
49, 53]. Languages for the representation of 3D city models such as CityGML [17, 30]
cover both aspects, thereby enabling indoor as well as outdoor applications and
combinations of both, e.g. planning of rescue actions in disaster scenarios.

Languages for 3D city models such as CityGML provide several options for the
representation of topology. The same is true for the standard ISO 19107 ‘Spatial Schema’
[24]. However, these models do not consider the question of a formal representation and
verification of topological consistency. This is the major motivation for this paper.

In order to specify consistency, spatial relations between the components of a 3D city
model have to be identified, formalized, and verified. Two questions arise: First, what are
the spatial relations between components of a 3D city model which have to be assured?
And second, how are those relations specified and formalized? One possible answer to the
second question is the well-known 4-intersection model developed by Max Egenhofer in
the early nineties [8]. It provides a formalism for the representation of topological relations,
which is also employed in standards for spatial query languages [26] and in commercial
databases, e.g. in Oracle Spatial [39]. It is entirely based on two notions from point set
topology: the interior and the boundary of point sets. At first, mainly applied to the 2D
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case, it has been generalized to 3D solids which have bounding surfaces and interiors as
well [54]. Both notions have an intuitive interpretation when surfaces embedded in the 2D
Euclidean plane or solids embedded in the 3D Euclidean space are considered.

Rooms and staircases, for instance, are either disjoint or they touch. The same is true for
pairs of storeys and for pairs of buildings. Between storeys and buildings, and between
rooms and storeys, one of the relations inside or coveredBy holds.

For checking consistency, however, this characterization which uses the notions of the 4-
intersection model cannot be implemented directly. It involves the notions of boundary and
interior, which are defined as infinite point sets. Appropriate finite representations are
needed. The verification of consistency requires effective conditions (also called axioms)
which may effectively—better efficiently—be checked. Such axioms, however, must be
equivalent to the mathematical notion, which is not effectively implementable to guarantee
the reliability of the method. Hence, the formulation of the axioms must be transparent and
comprehensible in order to be able to proof this equivalency. The equivalency consists of
two opposite aspects: completeness and correctness. Completeness means, that the validity
of the axioms implies the mathematical notion, while vice versa axioms are correct if they
are implied by the mathematical notion.

Another requirement for city models is space coverage. The space of a building is
completely filled by rooms, doorways and other internal substructures. While disjointness is
covered by Egenhofer’s relations, space coverage is not. The volumes of the interior objects
could be balanced, but apart from practical difficulties such as specification the size of the
walls it is not satisfactory from a theoretical point of view. It provides only necessary, but
not sufficient conditions. It can prove the presence, but not the absence of errors.

The problem of checking the consistency of 3D models in the context of GIS, Computer
Graphics and Computational Geometry has been addressed by several authors in the last
20 years. The methods presented by [34] and [37] are restricted to single solids as
component of 3D models. However, not all corresponding errors are detected by these
methods. The approach by Molenaar [36] is more comprehensive; he gives conventions to
check whole 3D models, but again this method provides necessary but not sufficient
conditions. Euler Operators [34], which are discussed in Solid Modeling and CAD,
preserve the topological consistency of local modifications once this consistency is given,
but do not provide general rules to check consistency. The same is true for the adoption of
Euler Operators to GIS [14, 48].

The contribution of this paper is a model and method for the verification of the
consistency of 3D city models. We identify the components of 3D city models—surfaces of
different topology—and describe how those components interact. The single components
and the whole city model are characterized by well-established mathematical, mainly
topological notions on one hand, and by effective axioms on the other. Both character-
izations are provably equivalent—complete and correct—guaranteeing the reliability of the
method. The efficiency of the method stems from the fact that most of the axioms can be
checked locally, separately for each component. This is a surprise since consistency
checking in general is a global problem: each solid, surface, line or point may penetrate
each other.

The rest of this paper is organized as follows: The second section defines basic notions
from point set and algebraic topology as well as from graph theory, and gives a short survey
on existing 3D models in GIS and on existing methods to check the consistency of those
models. The third section presents the components of 3D city models: surfaces for the
representation of the terrain, which are topologically equivalent to a disk, and surfaces
bounding solids, which are topologically equivalent to a sphere. Both types are
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characterized axiomatically. The case of handles, which does not cause any problems with
regard to consistency checking, is discussed separately. In the fourth section, both types of
surfaces are combined to define a 3D city model. This model is described both on a
mathematical level, which is not implementable immediately, and by effective axioms,
where both representations are proven to be equivalent. Based on these models, features are
defined which specify the semantics of objects. This is the topic of the fifth section. This
paper ends with concluding remarks and a discussion of open questions and further work.

2 Basic notions and concepts

This section recapitulates mathematical notions from graph theory [22] and mathematical
topology [1, 2, 34] as base of the concepts and methods presented in this paper, and fixes
terminology.

2.1 Topology

Topology as a branch of mathematics provides the appropriate notions for classifying
surfaces1 and solids to model urban objects. A fundamental notion in topology is the
topological space which is a set M together with a set N of subsets of M, called
neighborhoods, where i) each element m ∈ M is in a neighborhood n ∈ N, and ii) the
intersection of two neighborhoods of m ∈ M is or contains a neighborhood of m. On
topological spaces, topological invariants are defined, which are preserved by applying
topological transformations, that are called homeomorphisms. These are continuous,
bijective mappings between topological spaces, whose inverse mapping is continuous,
too. Homeomorphisms map neighborhoods to neighborhoods.

Homeomorphisms are related to topological spaces in general. In this paper, the focus is
on Euclidean spaces as special cases, where a metric, i.e. a distance between points of the
underlying set R2, resp. R3, is defined. In 3D Euclidean space, a surface embedded in R

3 is
defined as a continuous, differentiable mapping from R

2 to R
3. 2-manifold surfaces play a

decisive role in geometrical and topological modeling [12, 23, 34, 36, 37]. A 2-manifold is
a topological space, where each point has a neighborhood which is topologically equivalent
to an open two-dimensional disk. An example for an open disk is depicted in Fig. 1a).
Examples for 2-manifolds are given in Fig. 1: an open disk itself (a) is a 2-manifold, as well
as a sphere (b) and an open cylinder surface (c). The surfaces d) and e) are
counterexamples: the neighborhoods of the points on the black line in d) and of the black
point in e) are not topologically equivalent to an open disk.

An important topological invariant is the number of boundaries of a surface. An open
disk (Fig. 1a) has one boundary, whereas the number of boundaries of an open cylinder
surface (Fig. 1c) is two and of a sphere (b) zero. Surfaces with two or more boundaries can
be used to model tunnels or bridges, since they may—if they are integrated in a larger
surface—form so-called handles (see next paragraph). Surfaces without boundaries are
closed2; they enclose a volume completely and hence are used in geometrical modeling to
represent solids [34, 37]. An example for a closed surface is the sphere (the shell of a ball)
or a cuboid (the shell of a three-dimensional, rectangular box).

1 Geometrically, a surface embedded in R
3 is a continuous, differentiable mapping from R

2 to R
3.

2 The notion of “closed” as used throughout this paper [1, 24] should not be mixed up with the other point set
topological notion of “closed” meaning that the boundary points of a point set belong to that set [1, 2].
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The number of handles is another topological invariant of surfaces. Handles in surfaces are
used to model bridges, tunnels and arcades. The number of handles is given by the maximal
number of closed, continuous, non self intersecting and mutually non-intersecting curves on
surfaces, the cutting of which preserves the connectivity of the surface. This number is also
called the genus of the surface.

Figure 2 illustrates this concept. The sphere (a) is divided into two parts by each cutting
curve, thus the genus and the number of handles is zero. If the torus (b) is cut by one curve as
depicted in the figure its connectivity is preserved. Each additional curve cutting the surface,
however, destroys its connectivity: The genus is one. Hence, a torus has (or is) one handle.

The genus of a surface can be computed by Euler’s formula [37] effectively under the
assumption that the surface has a graph structure (c.f. Section 2.2). Let Vj j; Ej j; and Fj j
be the numbers of vertices, edges and faces of the connected graph representing the
surface. For graphs which are connected and surrounded by one unbounded outer face
(c.f. Section 2.2), the genus G, which is equal to the number of handles, can be derived by
the formula

G ¼ 2� Vj j þ Ej j � Fj jð Þ=2

Fig. 1 a open disk, b sphere and c open cylinder surface as examples for 2-manifolds. d and e are non 2-
manifold surfaces

Fig. 2 Characterization of handles by counting the maximal number of cutting curves preserving the
connectivity of the surface. a Sphere: zero cutting curves, zero handles. b Torus: one cutting curve, one
handle
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The same formula is valid for closed surfaces, i.e. surfaces enclosing a volume
completely. Another case is a surface which is not closed, and where the unbounded outer
face is missing. The term composite surface will be used later in this paper to denote such
2D point sets. For such surfaces, the following version of Euler’s formula holds:

G ¼ 1� Vj j þ Ej j � Fj jð Þ=2
A surface is orientable, if two opposite sides of the surface can be distinguished. For the

general case a more formal definition of orientability is given in [2]. Well-known examples for
non-orientable surfaces are the Möbius strip and the Klein bottle. Both are depicted in Fig. 3.

For surfaces which are composed of faces bounded by edges, orientability means that the
orientations of incident faces coincide. Orientability of such surfaces can be checked by a
simple algorithm called Möbius procedure [3, 37], which is as follows: First, the set of
edges is duplicated, such that each face gets its own edges in its boundary. Then for each
face the edges are orientated consistently, either clockwise or counter-clockwise. If there
exists such an orientation for each face such that all pairs of coincident edges have opposite
orientation, the surface is orientable, otherwise it is not orientable. This procedure is
referred to as Algorithm 1 in this paper.

In the case of closed surfaces, a result from mathematical topology states a correlation
between orientability of surfaces and its penetration-free embedding in Euclidean 3D space.
This theorem generalizes the observation that the Klein bottle has no penetration-free
embedding in R

3:

Theorem 1 Each closed surface, which has a penetration-free embedding in R
3, is

orientable [3].

This proposition is implied by the well-known classification theorem for closed surfaces
[46] which states that each closed surface is homeomorphic to either a sphere, a closed
surface with k handles, or the projective plane. The projective plane is a surface which is
not orientable, and has no penetration-free embedding in R

3, similar to the Klein bottle. It
can be deduced that a closed surface is determined completely, up to homeomorphism, by
its genus and its orientability. Since the sphere and closed surfaces with k handles are
orientable and have penetration-free embeddings in R

3, Theorem 1 is implied.
The Möbius strip, which was already discussed in Section 2.1, is embeddable in R

3

without penetrations, but is not a closed surface, thus the preconditions of Theorem 1 are
not met.

Fig. 3 Non-orientable surfaces: a Möbius strip. b Klein bottle
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In geometrical modeling, solids representing buildings, rooms or other volume objects
are described mathematically by rigid bodies. A rigid body is a bounded, regular and semi-
analytical subset of R

3. Regularity excludes non-volume elements like point or line
enclaves, while semi-analytical sets are constructed by combining analytical sets—which
are the range of analytical functions, particularly polynomials—by the set operations
difference, intersection and union. In boundary representation schemes, which are widely
used in Geometrical Modeling, CAD and GIS, solids are represented by their bounding
surfaces. Rigid bodies are exactly those bodies which are bounded by a single, closed
2-manifold [3].

2.2 Graph theory

A graph G(V, E) consists of a set V of vertices and a set E of edges. An (undirected) edge e
is defined by a two-element set {v1, v2} of end vertices; e is called incident to v1 resp. v2
and vice versa. The vertex v1 is adjacent to v2 and vice versa. The degree of a vertex,
degree(v), is the number of incident edges. A sequence of edges where two consecutive
edges are incident to a common vertex is called a path. The vertex where the path starts is
called start vertex, while the last vertex is the end vertex of the path. A cycle is a path where
start and end vertex are identical. It is simple, if beside the start and the end vertex no other
vertex occurs more than once. A graph is called connected, if there is a connecting path for
each pair of vertices. A graph is non-separable, if it is connected and remains connected
after the removal of an arbitrary vertex.

A graph can be embedded in the Euclidian plane R2 by assigning a 2D position to each
vertex. Edges are represented by straight line segments. A graph is plane, if each
intersection point of two edges is a common end vertex of both edges. Such an embedding
defines faces as atomic areal entities. A face f is mathematically defined by the following
property: f is a maximal part of the plane such that for any two points p1 and p2 in f there is
a continuous (not necessarily straight) line from p1 to p2 which does neither cross nor touch
any edge of the graph. Faces are bounded by simple cycles of the graph. The edges in the
boundary are incident to the face and vice versa. By assigning a 3D position to a vertex, a
graph is embedded in the Euclidean space R

3. The notion of a face can be generalized to
this case by forcing the edges incident to a face to be located in the same plane; such faces
are planar.

2.3 Algebraic topology: cell complexes

Algebraic topology [1, 23] is the base of many data models in GIS, CAD and Computer
Graphics. This branch of mathematics provides rules to construct complex objects from
primitive ones, modeling the touching of spatial objects explicitly, thereby providing a
clean interface between objects without any penetrations. Primitives are nodes, edges,
faces and solids, also called 0-cells, 1-cells, 2-cells and 3-cells, respectively. Each n-cell
is bounded by (n - 1)-cells, which are the boundary of the cell. A cell complex [1, 23] is
an aggregation of cells where the following condition holds: The intersection of two cells
in the cell complex is either empty, or it is a cell which is part of the boundaries of both
cells.

Figure 4 gives two examples of cell complexes. In a), the intersection of the 2-cells A
and B is the 1-cell depicted thick. It is part of the boundary of both A and B. The
intersection of the two 3-cells in b) is given by the 2-cell, which is colored dark, and by the
gray 0- and 1-cells; both are part of the boundaries of both 3-cells.
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2.4 3D models in GIS

Three-dimensional models have been considered in GIS for about fifteen years. All those
models are boundary representations (see Section 2.1), which differ mainly with regard to
the primitives used—node, edge, face, and body/solid. Topological models are mostly based
on the mathematical concept of cell complexes (cf. Section 2.3), while geometrical models
neglect the explicit representation of topological relations between primitives and allow for
primitives whose interiors or boundaries may penetrate mutually.

A survey of topological models for GIS can be found in [53], whereas in [9] the
requirements and benefits of such models for GIS applications are identified. The first data
model from a historical perspective was the Formal Data Structure (FDS) presented by
Molenaar [34]. He distinguishes the primitives nodes, arcs/edges, and faces. Volumes are
called bodies and exist on a feature level. Faces are bounded by edges/arcs, and each arc
has a start and an end node. Each face has a body on the left and a body on the right side.
Flick [11] extends the FDS by introducing bodies as topological primitives. The Urban
Data Model (UDM) [5] and the Simplified Spatial Schema [54] modify this model by
omitting the explicit representation of edges. The topology model of the standard ISO
19107 Spatial Schema [24], which is particularly implemented by the exchange format
Geography Markup Language (GML 3) [44], supports topological primitives for all
dimensions and realizes the topological relations of cell complexes. In contrast to all other
models mentioned so far, the aggregation of solids to composite solids is supported. A
topological model which is based on simplicial complexes—the restriction of cell
complexes to triangles and tetrahedrons—is the TEN structure [41]. It can be implemented
in relational databases very efficiently [40].

These topological models are defined in a non-algorithmic fashion. Effective axioms
have been given by [35]. In this paper the conventions claim to assure the consistency.
There are examples, however, which demonstrate that this is not the case [15, 16]: The
conventions are correct, but not complete, since the mutual penetration of bodies is not
avoided. The same holds true for the conditions defined by [34], which were developed in
the context of solid modeling. These conditions are restricted to single solids bounded by a
2-manifold surface, and do not cover the consistency of complexes of solids.

Prominent examples for geometrical models in GIS are the Simple Features [25] issued
by the Open Geospatial Consortium (OGC), which are implemented in the exchange

Fig. 4 Cell complexes, consisting of a two 2-cells, and b two 3-cells

144 Geoinformatica (2011) 15:137–165



language GML 2, 3D Shapefiles, a data format used in tools from ESRI, and the geometry
model of the standard ISO 19107 Spatial Schema [24], which GML 3 is based on. In
contrast, there are purely geometrical or graphical models without any semantical
information. Examples are VRML [50], X3D [52], KML [21] and Collada which is used
by Google Earth, and U3D [7], which is used for embedding 3D graphics in pdf documents.

3 Consistency of components of 3D city models: solids and surfaces

A 3D city model is built from surfaces and solids, which again are bounded by surfaces. The
terrain and the visible hull of urban structures are represented by a surface, while buildings—
above and below surface—and internal structures like rooms, cellars, storeys and staircases are
modeled by solids. This section discusses both components separately by giving a
mathematical characterization which is not effectively checkable as well as an axiomatic
characterization, which both are proven to be equivalent. The consistent combination of both
kinds of surfaces which yield a 3D city model, is presented in Section 4.

3.1 Surfaces representing the terrain

Surfaces provided by most commercial GIS are restricted to 2D or 2.5D, i.e., each
position on the earth’s surface has at most one elevation value. Such surfaces are not
sufficient for modeling mountainous regions with scarps and overhangs or urban
scenarios, where vertical walls, balconies, projections and roof overhangs have to be
represented. Extensions of 2.5D surfaces coping with these phenomena are Digital
Surface Models (DSM) [38]. An approach characterizing the mathematical concept of a
DSM is the 2.8D map [19, 20, 33]. A 2.8D map is a 2D surface embedded in 3D space.
This is suitable to model the visible surface of the terrain and of urban objects. It can be
considered as a rubber sheet which is draped over the urban landscape. This sheet may
not be torn or folded; this property is specified mathematically by the concept of a 2-
manifold (c.f. Section 2.1), which avoids self-intersections, holes or gaps in the surface.
The topological structure of a 2.8D map is represented by vertices, edges and planar faces
of a graph embedded in R

3. Formally, a 2.8D map is specified as follows [20]:

Definition 1 (2.8D map) A 2.8D map is a non-separable graph G(E,V), which is embedded
in R

3. Edges are represented by straight line segments of non-zero length, which are
mutually non-intersecting. The embedding defines a set F of faces. There is exactly one
unbounded face in F (called OUT); all other faces are planar and bounded. The set of all
faces, edges and vertices forms a tessellation of a surface, which is a single, orientable 2-
manifold of genus zero.

Non-separability of the graph asserts that all faces have an outer boundary which is
a simple cycle (c.f. Section 2.2). The face OUT is a special case; it has an inner
boundary which is a simple cycle, and which surrounds the other faces, edges and
vertices of the map. Note that OUT is the only face in which the boundary does not have
to be planar.

Operational, reliable procedures are needed in order to check whether a data set
satisfies the requirements of Definition 1, and to detect violations thereof. The
mathematical concept given in the definition is not suitable for this task, since it does
not provide a base for effective procedures. This is mainly due to the notion of a 2-
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manifold as an infinite point set. We propose an alternative characterization of 2.8D
maps, which are called axioms or consistency constraints, which may be implemented
immediately to check consistency. These axioms are complete and correct, i.e. equivalent
to the mathematical concept of a 2.8D map (Definition 1). Hence, each error is detected
by the axioms, and each violation of the axioms is in fact an error, i.e. a violation of the
2.8D map properties.

The axioms for 2.8D maps are given in Table 1 (c.f. [20]). They can be implemented
by using standard techniques from computer graphics [12], computational geometry [45]
or graph theory [22, 28]. The axioms 1, 2, 4, 7, 11 and 13 can be implemented by
counting the numbers of graph elements that are related by incidence associations.
Axioms 3 and 8 require graph-theoretical methods to traverse the boundaries of faces
[22], and again the connectedness is a graph-theoretical property which can be checked
by simple graph algorithms like the Dijkstra’s algorithm [6]. Geometrical methods have
to be employed to check axioms 6, 9 and 10, e.g. the 3D version of the scan-line
algorithm [45] for the detection of intersections between edges, ray tracing methods [12]
for checking whether edges penetrate faces, and linear algebra methods for checking the
planarity of faces. Orientability (axiom 14) can be stated by using the Möbius procedure
(c.f. Section 2.1).

Note that axiom 3 excludes two 2-manifolds joining in a single, common node, thereby
yielding a non-manifold surface. This error case is the 3D generalization of two manifold
surfaces embedded in R

2 which touch in a single node; an example was already given in
Fig. 1e).

The equivalence of the axioms and the definition of 2.8D maps is stated by the following
theorem:

Theorem 2 The axioms given in Table 1 are complete and correct for 2.8D maps.

For the completeness part, the tessellation and 2-manifold properties are implied by
axioms 8 and 10 for faces, by axioms 4 and 6 for edges and their neighborhoods, and by
1 and 3 for vertices and their neighborhoods. Particularly, the disjointness of faces is a

Table 1 Complete and correct axioms for 2.8D maps

Vertices: 1. Different vertices have different coordinates

2. Each vertex has at least two incident edges (vertex degree ≥2)
3. Each vertex is surrounded by exactly one alternating sequence of edges and vertices

(Umbrella-Axiom)

Edges: 4. Each edge has exactly two distinct vertices as end points

5. Edges are straight line segments geometrically

6. Edges intersect only at common vertices (intersection-free edges)

7. Each edge has exactly two distinct incident faces

Faces: 8. Each face is bounded by exactly one simple cycle of edges

9. Bounded faces are planar

10. No point of an edge touches the interior of a face

11. There is exactly one unbounded face “OUT”

Graph: 12. The underlying graph is connected

13. 2� Vj j þ Ej j � Fj jð Þ=2 ¼ 0 (Euler-Axiom)

14. The map is orientable

146 Geoinformatica (2011) 15:137–165



consequence of axiom 10, since faces are planar (axiom 9). Note that the mutual
penetration of the interiors of faces is prevented by axiom 10: since faces are planar
(axiom 9), only penetrations of edges and the interiors of faces have to be considered.
For the detailed proof of some important aspects of this theorem the reader is referred to
[20].3

Apart from being correct and complete, the axioms are minimal in the sense that no
axiom can be omitted or substantially be weakened without loosing the property of
completeness; details may again be found in [20].

Note that the existence of handles in surfaces does not cause any problems for the
concepts described in this paper. The 2-manifold-property is a local one, which is not
affected by handles, as well as the tessellation property. Surfaces without and with
handles differ only from a global point of view: they are topologically equivalent to a
sphere in the first case, but not in the second. This is why handles are excluded in
Definition 1 and in the axioms: If both, the restriction to surfaces of genus zero and
axiom 13 are omitted, the results proved in this section hold as well. The absence of
handles can easily be verified by the Euler equation (see Section 2.1).

The face concept can be extended from plane to curved surfaces like Bezier-surfaces,
B-spline-surfaces or NURBS (non-uniform rational B-splines) [12]. In that case, the
disjointness of face’s interiors must be checked explicitly [20]; it is no longer sufficient to
test whether a point of an edge touches the interior of a face (axiom 10).

3.2 Solids

In a Boundary Representation, a solid is represented by the surface which bounds it.
Similar to the surfaces dealt with in the last section, this surface is a 2-manifold, which
prevents gaps and self-intersections. However, the topology of both types of surfaces
differs: a surface bounding a solid is topologically equivalent to a sphere (c.f. Fig. 1b),
while a surface representing the terrain is topologically equivalent to a disk (c.f. Fig. 1a).
Despite this discrepancy, both types differ topologically only in the existence of a single
face, the unbounded face OUT, which is missing in solid boundaries. The transformation
from a 2.8D map to a surface bounding a solid and vice versa is illustrated in Fig. 5. The
2.8D map in a) has a single unbounded face OUT, which can easily be everted to become
a bounded face, which seals a solid. Due to this correspondence the definitions and
axiomatic characterization of solids and its representation by surfaces can mainly be
based on the results for 2.8D maps presented in the last section; thus, we concentrate on
the differences.

A surface bounding a solid is called Closed Composite Surface [24]. It differs from a
2.8D map (Definition 1) only in the omission of the unbounded face OUT: all faces are
bounded. Hence, the 2-manifold describing such surfaces mathematically has no
boundary.

3 The focus of the concepts in [20] was the tessellation property; hence these axioms differ slightly from the
axioms presented in this paper. Particularly, the umbrella axiom (axiom 3 in Table 1) ensuring the 2-
manifold-property was not discussed in [20]. The 2.8D maps in [20] are topologically equivalent to a disk. In
this paper, a more general notion of 2.8D maps is presented, which may be generalized to allow handles.
Orientability (axiom 14 in Table 1)—in combination with other axioms—is a simple method to check
whether the outer boundary of the map is homeomorphic to the boundary of a disk. Axiom 11 (uniqueness of
the unbounded face OUT) is a clarification, which is implied by axiom 9 in [20].
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Definition 2 (Closed Composite Surface) A Closed Composite Surface is a non-separable
graph G(E,V) embedded in R

3 whose edges are represented by straight line segments of
non-zero length which are mutually non-intersecting. The embedding defines a set F of
faces. Each face is bounded by a simple, planar cycle of the graph. The aggregation of all
faces, edges and vertices is an orientable 2-manifold of genus zero without boundary.

The corresponding axioms for closed composite surfaces are given in Table 2; they
emerge from the axioms in Table 1 by adapting axiom 11 (none instead of one unbounded
face). For 2.8D maps, orientability has to be stated explicitly as an axiom. Due to the results
in [3] (see section 2.1), orientability is implied by non-penetrating faces for closed surfaces.

Fig. 5 Conversion of a 2.8D surface (a) to a surface bounding a solid (d). The models in a) and d) differ in
one single face ( f resp. f ′) only

Table 2 Complete and correct axioms for closed composite surfaces. The difference to the axioms for 2.8D
maps (Table 1) is in italics

Vertices: 1. Different vertices have different coordinates

2. Each vertex has at least two incident edges (vertex degree ≥2)
3. Each vertex is surrounded by exactly one alternating sequence of edges and faces (Umbrella-

Axiom)

Edges: 4. Each edge has exactly two distinct vertices as end points

5. Edges are straight line segments geometrically

6. Edges intersect only at common vertices (intersection-free edges)

7. Each edge has exactly two distinct incident faces

Faces: 8. Each face is bounded by exactly one simple cycle of edges

9. Faces are planar

10. No point of an edge touches the interior of a face

11. Each face is bounded

Graph: 12. The underlying graph is connected

13. 2� Vj j þ Ej j � Fj jð Þ=2 ¼ 0 (Euler-Axiom)
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Hence, axiom 14 can safely be omitted in Table 2. The following proposition is immediate
from Theorem 1 and 2:

Theorem 3 The axioms given in Table 2 are complete and correct for closed composite
surfaces.

The results presented in this section hold for Closed Composite Surfaces with handles as
well—by omitting the restriction to surfaces of genus zero—similar to the case of 2.8D
maps. A corresponding solid is topologically equivalent to a Torus or in general to a n-
Torus [1] in the case of n handles; the number of handles may be counted by using the
Euler equation.

4 Consistency of 3D city models

In the last section, solids bounded by surfaces and surfaces representing the terrain were
modeled and characterized by axioms, which are complete and correct. The topic of this
section is the consistent and clean aggregation and combination of these components in
order to obtain 3D city models, which include buildings above and below the surface,
inner structures like rooms, staircases and subsurface structures.

4.1 Topology

The combination of solids and surfaces has got several implications from a topological
point of view. The first is the transition from 2-manifold to non-manifold structures [51]. A
simple example is depicted in Fig. 6b), where the neighborhood of an edge, namely e, is not
topologically equivalent to an open disk. This edge is incident to three faces, whereas the
number of incident faces in 2-manifold models is two (see Fig. 6a). We discuss how
consistency of such non-manifold models can be achieved. A further problem is how to
handle adjacent solids. The building with a garage given in Fig. 4b) is an example for two
solids which are adjacent. The surface separating the building from the garage is
represented explicitly, thereby allowing for calculating the volume of the garage separately,
for example. Such surfaces are called separating surfaces; they bound solids on both sides.

In order to guarantee that solids, surfaces and edges are disjoint and only touch at
common boundaries, 3D city models are represented as a special cell complex (c.f.
Section 2.3). An example is shown in Fig. 7. Three solids, s1, s2 and s3, which are defined
by the closed composite surfaces c1, c2 and c3, and whose interiors are disjoint, share
common faces, edges and vertices. Hence, the face in the boundary c1 of solid s1 is
divided into three smaller faces: one, f1, is shared with the boundary of s2, one, f2, with
the boundary of s3, and one bounds only s1.

The concept of a cell complex does not meet our requirements since it allows for
unwanted voids inside the model, for space which is not covered by solids. In order to
exclude such voids, the model presented here provides a complete covering of space by
solids, a so-called 3D tessellation. This is achieved by introducing two special solids: one,
called above-surface solid (sas), represents the airspace, while the other, the below-surface
solid (sbs), models the mass of the earth.4 Note that both are only partially bounded by a

4 Below-surface solids are unique and bounded partially by 2.8D maps; they differ from solids representing
below earth surface features [10], which are bounded completely.
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surface (a 2.8D map), similar to a half space in 3D which is partially bounded by a plane. In
this model, each point in space is represented explicitly. Figure 8 depicts an example cross
profile of a 3D city model. Bounded solids are bounded by closed composite surfaces, and
likewise, partially bounded solids are bounded by 2.8D surfaces. Hence, the visible surface
of a city model is a 2.8D surface, and symmetrically, the model seen from below, from a
mole perspective, is again a 2.8D map.

Partially bounded solids are the generalization of the concept of an unbounded face
OUT, which is employed in 2D or 2.8D maps to yield a 2D tessellation, a complete
covering of the plane with faces.

This model is called Geometric-Topological 3D City Model, or simply 3D city model
when no confusion arises. It will be discussed in the following, and characterized by
axioms afterwards. The completeness and correctness of the axioms is proven formally.

A representation of 3D city models using the object-oriented, graphical modeling
language UML (Unified Modeling Language) (cf. [4]), is given in Fig. 9: A 3D city model
consists of solids, which are either bounded or partially bounded. The bounded solids are
bounded by closed composite surfaces (cf. Definition 2), while the others, sas and sbs, are
only partially bounded by 2.8D maps. Each face in each map or closed composite surface
bounds exactly two solids. Faces are bounded by edges, and an edge is defined by exactly
two vertices. The location of each vertex is given by a 3D-coordinate.

Fig. 7 A cell complex, consisting of three solids. The solids touch in common faces, edges and vertices

Fig. 6 Two different models of a building, depicted from below. a 2-manifold. b Not a 2-manifold: edge e
has a neighborhood which is not topologically equivalent to an open disk

150 Geoinformatica (2011) 15:137–165



The formal definition of a geometric-topological 3D city model is as follows:

Definition 3 (Geometric-Topological 3D City Model) A geometric-topological 3D city
model is a graph G(V, E, F, S), where V, E, F, and S are sets of vertices, edges, faces and
solids respectively. For G, the following conditions hold:

1. G has two 2.8D maps mbs und mas as sub-graphs of which each separates a partially
bounded below-surface solid sbs ∈ S resp. above-surface solid sas ∈ S. Both mbs und mas

are incident to an unbounded face OUT.
2. All solids s ∈ S apart from sbs ∈ S resp. sas ∈ S are bounded by a closed composite

surface which is a sub-graph of G.
3. The solids in S tessellate the space completely.
4. The vertices, edges, faces and solids in G constitute a cell complex, i.e. the intersection

of two such primitives is either empty, or a primitive which is part of the boundaries of
both primitives.

Fig. 8 Sketch of a cross profile of a geometric-topological 3D city model

Fig. 9 UML class diagram for geometric-topological 3D city models
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4.2 Error cases for 3D city models

Data sets representing urban scenes often violate the consistency rules of definition 3,
thereby yielding severe errors if these data sets are used by applications which rely on these
rules. A prominent example is the mutual penetration of solids; an example is depicted in
Fig. 10. Note that the penetration of solids is a global phenomenon; potentially, the interiors
of each pair of solids in the data set may be overlapping. Another error case involving
overlapping solids is depicted in Fig. 11. A solid representing a building and the partially
bounded solid sas penetrate. A face, f, bounds three solids; one from above, and two, the
building solid and sas from below.

An error with local impacts is a gap in the boundary of a solid. Fig. 12b) shows an
example where the composite surface bounding the building solid is not completely closed.
Hence, the 2.8D map m bounding the partially bounded solid sas has a gap. The consistent
version is shown in Fig. 12a).

4.3 Axioms: checking consistency effectively and efficiently

In order to detect the errors discussed in the last section reliable procedures are required.
The formalization of 3D city models in Definition 3, however, is mathematically precise,
but not suitable as base for effective procedures. This is mainly due to the notion of the
tessellation of space with solids; no means are given how to check this property.
Furthermore, the cell complex property may not be implemented effectively and
efficiently; particularly, the test whether all pairs of solids are non-penetrating is very
time-consuming.

Similar to our approach for checking consistency of 2.8D maps and closed composite
surfaces, we now give axioms for 3D city models, which are equivalent to the mathematical
definition; this property will be formally proven in the next section. These axioms are given
in Table 3. The first as well as the second axiom refer to the set of axioms for 2.8D maps
(Table 1), and axiom 3 refers to the axioms for closed composite surfaces bounding a solid
(Table 2). Axiom 4 simply states that each face must bound two solids, one on each side.
The fifth axiom again is very simple. It forces each vertex and each edge to be part of the
boundary of at least one face. The last axiom states that all solids apart from the partially
bounded solids sas and sbs must be bounded.

For the implementation of the first three axioms, the reader is referred to Sections 3.1
and 3.2. The remaining three axioms can be realized easily and efficiently by counting
incidences between vertices, edges, faces and solids.

Fig. 10 Penetration of two solids
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Although consistency is a global property, the axioms are local, as they are restricted to
the boundary of a single solid. Particularly, the test for mutual penetrations of solids, which
is computationally very expensive, is not necessary. In Section 4.4 we will prove that this
property is implied by the axioms. Similarly, checking of mutual intersections of line
segments and faces can be restricted to the boundary of a single solid.

4.4 Correctness and completeness

The equivalence between the axioms and the mathematical definition of geometric-
topological 3D city models, i.e. the completeness and correctness, is formally proven in
three consecutive steps. The first intermediate result states that the unbounded face OUT
only exists once, i.e. is unique, and that both sides of OUT cannot be connected by a curve
which does not cross any face, edge or node. Based on this lemma, it is proven that the
interiors of solids are mutually non-penetrating. Note that this property is not stated

Fig. 12 Error case in b: the closed composite surface c1 bounding the building and the 2.8D map m
bounding the airspace solid both have a gap. a): corrected situation

Fig. 11 Error case: mutual penetration of two solids, one representing the building, the other the air space.
The horizontal face f (ground face of the first floor, depicted hatched) bounds the airspace solid
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explicitly in the axioms. This result is a main part of the completeness and correctness
proof, which will be given in the third step. We start with the first step:

Lemma 4 Let the axioms for 3D city models be valid. Then a) there exists only one
unbounded face, and b) there does not exist a continuous curve which connects both sides
of an unbounded face and does not cross any face, edge or node.

Proof First, we show by contradiction that there exists exactly one unbounded face (a).
Suppose there are at least two such faces, say f1 and f2. According to axiom 4, each of them
has two references to solids; since f1 and f2 are unbounded, these solids must be partially
bounded. According to axiom 6, there are exactly two partially bounded solids sas and sbs.
Hence, either f1 ( f2) reference the same solid sas (sbs) on both sides, or f1 resp. f2 reference
sbs on one side and sas on the other. In any case, sas (sbs) is bounded by more than one 2.8D
map, thereby contradicting axiom 1 resp. axiom 2, which force partially bounded solids to
be bounded by exactly one 2.8D map.

Now we are able to proof b). Suppose, there exists a continuous curve c connecting both
sides of an unbounded face. Since there is exactly one unbounded face OUT, OUT is part of
the 2.8D map bounding sbs, which separates R3 in two half spaces. Since both sides of OUT
are in different half spaces, the curve c cannot exist. ■

This result is used in the proof of the following theorem:

Theorem 5 Let the axioms for 3D city models be valid. Then the interiors of solids are disjoint.

Proof By contradiction. Suppose there is a penetration of two solids s1 and s1′. Construct a
half line h which starts at a point in the overlapping space of s1 and s1′. The half line does
not touch any edge or vertex, and touches a face at most in a point. Since the numbers of
edges, vertices and faces are finite, such a half line must exist.

Consider the faces which are penetrated by h. At each penetration one solid is left and
another is entered. Figure 13 illustrates the half line h and its face penetrations. We now
show that at any point of h is in the interior of at least two different solids. At the start
point, h is in s1 and s1′. At each face penetration of h, one solid sk is left and another sk + 1 is
entered; this is implied by axiom 4. The one which is entered is not identical to the other
solid, in whose interior this part of h is already located. This follows from the 2-manifold-
property of boundaries of solids: a solid is either left or entered, but not both. Hence, each
point of h is in the interior of at least two different solids. Since one side of the half line h is
unbounded, and since the number of solids is finite, a part ht of h is in the interior of two
different partially bounded solids, i.e. of s∞ and s∞′.

Since s∞ and s∞′ are bounded by 2.8D maps, both of which contain the unbounded face
OUT, the axioms 1 and 2 imply the existence of a continuous curve c connecting h with the

Table 3 Axioms for geometric-topological 3D city models, which are complete and correct

1. The boundary of the above-surface solid sas is a 2.8D map

2. The boundary of the below-surface solid sbs is a 2.8D map

3. Each bounded solid is bounded by a closed composite surface

4. Each face bounds two solids on different sides

5. Each vertex and each edge is incident to at least one face

6. Besides sas and sbs, all solids are bounded

154 Geoinformatica (2011) 15:137–165



s∞ side of OUT, and one curve c′ connecting h with the s∞′ side of OUT. Neither c nor c′
crosses or touches any face, edge or vertex. The union of c and c′ yields a continuous curve
connecting both sides of OUT, thereby contradicting Lemma 4. Hence, the assumption that
the interiors of solids penetrate is false. ■

Now the equivalence between the axioms and the mathematical concept of 3D city
models can be shown:

Theorem 6 The axioms for geometric-topological 3D city models are correct and complete.

Proof For the completeness, we have to show that the four conditions of Definition 3 hold:

1. Condition 1 is immediate from axioms 1 and 2, together with the uniqueness of face OUT
(Lemma 4).

2. The second condition is implied by axiom 3.
3. For the tessellation property of solids, the disjointness is stated in Theorem 5, whereas the

complete coverage is a consequence of the axiom 3, which forces each face to bound two
solids.

4. In order to proof that the graph is a cell complex, it is sufficient to show that the
interiors of all primitives are pair-wise disjoint. This is done by reducing each mutual
penetration of the interiors of primitives to the penetration of solid’s interiors, which
contradicts Theorem 5. It is sufficient to consider the disjointness of the interiors to
proof the cell complex property, since each touching of boundaries not sharing
common primitives implies a penetration of interiors of the boundary.

We consider all possible cases of penetrations of interiors:

a) The penetration of the interiors of two solids contradicts Theorem 5.
b) When the interiors of two faces f1 und f2 are not disjoint, we have two cases (note that

f1 and f2 both bound two solids according to axiom 4): if f1 and f2 bound the same solid
s, one of the axioms 1, 2 or 3 is violated. This depends on s which may be partially
bounded (axiom 1 or 2) or bounded (axiom 3). If f1 and f2 bound different solids, then
one pair of these solids’ interiors penetrates, thereby contradicting Theorem 5.

c) When the interiors of two edges e1 and e2 touch, we have two cases again: if e1 and e2 are
incident to the same face f, the axiom avoiding edge intersections (axiom 6 in Table 1
or 2) referred to in axiom 1, 2, or 3 is violated. If e1 and e2 are not incident to a common
face, then axiom 5 implies that e1 and e2 are incident to faces which are incident to
solids (axiom 4). Hence, both e1 and e2 are surrounded by an alternating sequence of

Fig. 13 Proof of the disjointness of solid’s interiors. The half line h is partitioned into segments h1,..,ht by face
penetrations. Each segment hi is the interior of two solids, so is ht in the interior of two partially bounded solids
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faces and solids, and two of these solids’ interiors penetrate, thereby contradicting
Theorem 5.

d) Each vertex is completely surrounded by edges, faces and solids (axiom 5). Hence,
two vertices with identical coordinates imply penetrating solids.

e) When the boundaries of two solids touch without sharing a common face, edge or
vertex, we have three cases, each of which can be reduced to b), c), or d): If the
intersection is two-dimensional, b) is implied, while an one-dimensional intersection
implies c) and a zero-dimensional intersection implies d).

f) When the boundaries of two faces touch without sharing a common edge or vertex, c) is
implied for a one-dimensional intersection, and d) for a zero-dimensional intersection.

g) When the boundaries, i.e. the end nodes of two edges, touch without sharing a
common node, d) is implied.

For the correctness part, we have to show that the axioms are implied by Definition 3.
Axiom 1 and 2 are a consequence of the first condition, and axiom 3 is identical to the
second condition of the definition. Axiom 4 is implied by the tessellation property, and the
fifth follows from the tessellation and cell complex properties, which prohibit isolated
vertices and edges. Axiom 6 is immediate from the definition. ■

5 Complex features

Based on geometric-topological 3D city models, semantical spatial objects, often called
features [27], can be defined. As a rule, features are arranged in a hierarchy. A building
feature, for example, consists of a garage feature, an outbuilding feature, and a main
house feature. The main house may be divided in parts, e.g. storeys, which again consist
of rooms. This aggregation hierarchy of features has to be reflected in the city model.
Figure 14 depicts an example for the aggregation of atomic solids, where a building
feature is constructed from simpler features which represent a garage and a main house.
These features are composed from storey features again, which consist of room features.
Note that each feature has a 2-manifold boundary.

Not every arbitrary combination of solids is a valid representation of a feature: non 2-manifold
boundaries have to be avoided, as well as void spaces inside the feature. A building, for example,
consists of storey features which have to fill the building feature completely. Note that a storey
feature as well as a room feature covers the whole volume of the storey or room, including the
walls and the air space inside the object. Hence, the conditions for solids of the 3D city model,
which are called atomic solids henceforth, have to be valid for aggregated solids as well.
Another problem is the unwanted penetration of features. While the disjointness of atomic
solids is implied by the axioms for 3D city models, it is not implied for aggregated solids.

Examples for aggregations which are not considered as features are given in Fig. 15. In
a), the boundary of the aggregated solid is not a 2-manifold, because of the edge e. The
structure in b) is bounded by a 2-manifold, which has a genus of one, i.e. it has a handle. Such
objects are excluded at the moment, but can be incorporated when handles are considered. The
boundary of the structure in c) is not a closed composite surface, since it is not connected.

Beside the consistency of features, the efficiency of spatial analyses is another important
issue. Particularly, the structure presented in this paper should support the efficient
treatment of topological queries, e.g. whether two buildings are neighbors or not.

The hierarchical structure of aggregated solids is represented by trees, whose leaves
correspond to atomic solids. Each (aggregated) feature which is part of an aggregated
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feature is defined by a sub-tree of the corresponding tree. All (aggregated) features of a 3D
city model are represented by a set of disjoint trees. Such a structure is called forest [28].

In the following, aggregated solids are defined recursively. In order to guarantee that an
aggregated solid has a 2-manifold boundary, the two solids which are part of the aggregate have

Fig. 14 Aggregation of solids defining features
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to touch in a specific way: both have to touch in a structure which has a simple cycle as
boundary. It may be a single face, or it may consist of many faces which are arranged in such a
way that the boundary of the whole structure is a simple cycle. Such a structure is called
composite surface [24]:

Definition 4 (Composite Surface) A Composite Surface is a non-separable graph G(E, V)
which is embedded in R

3. Edges are represented by straight line segments of non-zero length
which are mutually non-intersecting. The embedding defines a set F of faces which are planar
and bounded. The set of all faces, edges and vertices is a single, orientable 2-manifold of
genus zero which has one simple boundary.

The concept of a composite surface is quite similar to the concept of a 2.8D map.
The only difference is that the unbounded face OUT is missing in composite
surfaces.

Before defining the aggregation structure of solids, we first consider how an aggregated
solid is constructed from atomic solids:

Definition 5 (Aggregated solid and its boundary) Let G(V, E, F, S) be a 3D city model. An
aggregated solid is defined recursively as follows:

i) An atomic solid s ∈ S\{sas, sbs} is an aggregated solid. Its boundary is the boundary of s.
ii) Let a be an aggregated solid with boundary r and s ∈ S\{sas, sbs} be an atomic solid. If

1. the interiors of a and s are disjoint, and
2. the intersection of the boundaries of a and s is a composite surface cs,

Fig. 15 Aggregation of Solids: Error Cases. The surface bounding the aggregated solids is not a 2-manifold
without handles. a Non-manifold edge e, b handle, c disjoint solids
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then the union of a and s is an aggregated solid a′. The boundary of a′ is the union of
the boundaries of a and s, where the faces and internal vertices and edges of the
common composite surface cs have been removed.

The stepwise construction of the structure in Fig. 14 is accomplished with regard to this
definition: in each step, the intersection of the two boundaries is a composite surface. This
is not the case in the three examples in Fig. 15. In a), the intersection of c1 and c2 is an
edge, in b) two separated faces and in c) it is empty. In all three cases, it is not a composite
surface.

An aggregated solid is homeomorphic to a solid. This is stated by the following theorem:

Theorem 7 An aggregated solid is bounded by a closed composite surface.

Proof We have to show the validity of the axioms for closed composite surfaces in
Table 2. We proceed by induction on the number n of solids in the aggregate. The case
n=1 is straightforward, since in this case the aggregate is an atomic solid. Let the
proposition be valid for aggregates an with n solids; we show that it also holds for
aggregates an+1 with n+1 solids. an and s touch in a common composite surface cs with a
simple boundary c. The validity of the axioms 1, 2, 4, 5, 6, 8, 9, 10, 11 for an+1 is implied
immediately by the induction hypothesis, i.e. the validity of the axioms for an and s.

Axiom 3 (umbrella-axiom) can only be violated if an and s meet in a single vertex. In
contrast, both meet in a composite surface, therefore axiom 3 is valid. The consideration of
axiom 7 can be restricted to the edges in the simple cycle c, which bounds the common
composite surface cs. Let e be such an edge. In an as well as in s, e has two incident faces
by the induction hypothesis. Two of these faces—those which are in cs—are identical and
are removed in an+1. Hence, in an+1 e has exactly two incident faces. Axiom 12
(connectedness of an+1) is implied by the touching of an and s in a common composite
surface.

In order to prove axiom 13, we have to show that the Euler formula (see Section 2.1)
must hold for an+1:

2� Vnj j þ V 0
n

�
�

�
�� Vcj j � 2 Vcsj j� �þ Enj j þ E0

n

�
�

�
�� Ecj j � 2 Ecsj j� �� Fnj j � F 0

n

�
�

�
�� 2 Fcsj j� � ¼ 0

The cardinalities of the sets of faces, edges and vertices are obtained by the sums of the
cardinalities of the sets for an (Vn, En, Fn) and s (V′n, E′n, F′n), subtracting the cardinalities
of the boundary cycle of cs (Vc, Ec), and subtracting twice the cardinalities of the faces
(Fcs), internal edges (Ecs) and internal vertices (Vcs) of cs. These have to be subtracted twice
since they are removed from both, an and s, while the cycle c is only removed once.

After rearranging and grouping, we obtain:

2� Vnj j þ Enj j � Fnj jð Þ þ 2� V 0
n

�
�

�
�þ E0

n

�
�

�
�� F 0

n

�
�

�
�

� �

þ Vcj j � Ecj jð Þ�2 2� Vcsj j þ Ecsj j � 2 Fcsj jð Þ þ 2 ¼ 0

Now we apply the induction hypothesis to an and s, yielding

0þ 0þ Vcj j � Ecj jð Þ � 2 2� Vcsj j þ Ecsj j � 2 Fcsj jð Þ þ 2 ¼ 0

Since the numbers of edges and vertices in a simple cycle are equal, Vcj j � Ecj j vanishes.
Now we apply the Euler formula to cs, thereby considering the fact that the boundary cycle
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c does not affect its validity and that a closed composite surface has no unbounded face
OUT, i.e.: 2� Vcsj j þ Ecsj j � Fcsj j ¼ 1. We finally obtain the valid equation

0� 2ð1Þ þ 2 ¼ 0

Hence, the Euler formula is valid for an+1. ■

By using the concept of aggregated solids we can now define aggregated features in a
3D city model by applying the definition to each volume feature, and by arranging these
features in a hierarchical tree structure.

Definition 6 (Aggregated feature, set of aggregated features) Let G(V, E, F, S) be a 3D city
model. A set of aggregated features is a set of trees (a forest) T, where the following
conditions hold:

1. Each leave node of each tree t ∈ T corresponds to an (atomic) solid s in S.
2. Each non-leave node n of a tree t corresponds to an aggregated solid which is derived

from the sub tree nodes of n in t.

An aggregated feature is a tree t ∈ T.

The tree structure avoids overlapping features: either features are disjoint, features touch,
or there is a containment relation.

The third condition refers to Definition 5; hence Theorem 7 implies that each non-leaf-
node and hence each aggregated feature is bounded by a closed composite surfaced. This
boundary can be derived by applying the definition recursively; in each step, the faces
common to two solids which define the geometry of the feature are removed.

An example for a set of aggregated features is given in Fig. 16, which is based on the 3D
city model in Fig. 14. Each leave node corresponds to an atomic solid, and each tree to a
feature. The forest contains nine features: four features of type Room and one of type
Garage correspond to atomic solids, i.e. trees of depth 1, while the Storey, Building and
Complex Building features are represented by trees with a depth of 2, 3 or 4.

For the following concept, the notions of predecessor and successor in a tree are needed
which are defined as customary: A node A is a successor of node B, if there is a direct link
down (from the root to the leaves) the tree from B to A, or if A is part of the sub-tree whose
root is the node direct linked downwards from B. A is predecessor of B, if and only if B is

Fig. 16 Aggregated Features, based on the example in Fig. 14
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successor of A. For example, the node labeled Building in Fig. 16 is predecessor of the six
nodes labelled Storey and Room, and successor of the node Complex Building.

The explicit representation of the aggregation structure supports the efficient analysis of
3D city models. Particularly, topological queries referring to the topological relations of
Egenhofer’s 4-Intersection-Model, may be answered very efficiently:

& Two Features A and B are disjoint, if one is not a predecessor of the other in the forest,
and if there does not exist a face f which is in the boundary of a leaf solid of A and in
the boundary of a leaf solid of B.

& Two Features A and B touch, if one is not a predecessor of the other in the forest, and if
there exists a face f which is in the boundary of a leaf solid of A and in the boundary of
a leaf solid of B.

& One Feature A is inside another feature B, if A is successor of B in the forest, and if
there does not exist a face f which is in the boundary of a leaf solid of A and in the
boundary of a leaf solid of B.

& One Feature A is coveredBy another feature B, if A is successor of B in the forest, and if
there exists a face f which is in the boundary of a leaf solid of A and in the boundary of
a leaf solid of B.

For these topological queries the consideration of the geometry is not required. The structural
information represented by the tree makes the derivation of these relationships very efficient.

If lattices are used instead of trees, as in [29], the situation is more complex. In a lattice,
an element can have more than one predecessor, hence a solid may belong to two or more
overlapping features that are not related to an aggregation hierarchy.

The concept for handling aggregated solids is similar to two-dimensional nested maps
[42, 43], which have been introduced to represent the areal aggregation hierarchy of
administrative entities, for example: parcels are aggregated to municipalities, municipalities
to districts, districts to federal states, and federal states to countries. Nested maps are also
represented by a tree, whose leaves are the faces of a 2D map. The consistency of the model
is guaranteed by a single rule: Each node, whose spatial extent is the spatial extent of its
successors in the tree, must be bounded by a simple cycle. This rule is generalized by the
rule for defining consistent aggregated features given in this paper.

6 Conclusions

This paper presents a method to check consistency—the conformance of data sets with
the rules of the underlying model—for 3D GIS models. This method enables data providers
as well as users to check and assure the usability and suitability of data for certain
applications effectively and efficiently. The proposed approach is particularly appropriate
for 3D city models which are represented, provided and exchanged in formats like
CityGML. This method closes a gap, since there is a lack of effective and efficient
procedures to check consistency. International standards like ISO 19107 “Spatial Schema”
or the exchange language GML 3, which play an increasingly important role in GIS
modeling, do not answer the question of consistency sufficiently. Our method consists of a
system of axioms which are immediately implementable and hence the base of an efficient
and effective procedure to check consistency. The reliability of the procedure is guaranteed
by mathematical proofs of the correctness and completeness of the axioms: each error is
detected, and each violation of the axioms is in fact an error. The axioms are designed in a
modular way based on the partition of city models in topological surfaces which are either
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topological equivalent to a sphere, or to a disk. The first type of surfaces represents rooms,
storeys or buildings, while the other models the terrain and the visible hull of urban
structures. Both are described by 2-manifolds mathematically, thereby excluding self-
intersections and gaps. We show how a 3D city model is composed of both types of
surfaces, thereby yielding a system of axioms which guarantees the consistency of entire
3D city models. Checking consistency is a global problem: potentially, each spatial object
may interact with each other. We show how this global problem is solved locally, by axioms
which are safely restricted to check the consistency of single components individually.
Particularly, we show that the test whether two solids penetrate, which is very elaborate and
expensive from an algorithmic and running time point of view, is in fact not necessary; this
property is already implied by other axioms which can be checked in a much cheaper way.

Based on 3D city models, we present a concept to define the spatial extent of features, i.
e. semantical objects, by the aggregation of solids. These aggregations have the same
properties as single solids: they are bounded by a closed 2-manifold. The hierarchical
structure of features is defined by trees. This enables efficient topological queries.

Another topic is the consistent updating of 3D city models in order to represent changes
which occur frequently in today’s cities. Specific rules have been designed to cover this
dynamic aspect of consistency which focus on the updates locally. Such transaction rules
are based on the axioms given in this paper or in [16] and can be based on the 2D case,
which is treated in [19]. In this context, the treatment of handles to cover bridges, tunnels
and arcades is essential. In contrast to the static aspects of consistency which are dealt with
in this paper, consistent transactions require the localization of handles, since their
involvement in updates may violate consistency severely. Transaction rules and the
adequate treatment of handles, however, is a topic of a subsequent paper.

This paper focuses on the spatial aspects of consistency. Many consistency constraints
depend on the semantics of features to formalize specific constraints, e.g. that doors have to
be part of walls, not part of roofs, or that garages are located on the ground, or connected to
roads by ramps or driveways, since they must be accessible by cars. The formalization of
semantics is part of an ongoing research process in spatial ontologies [13, 32]. Spatio-
semantical consistency rules for 3D city models can be based on the formalization of
semantics by UML diagrams, which are provided by CityGML [17], for example, by using
ontology languages like the Web Ontology Language (OWL) [47].
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