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Abstract A novel approach to color image segmentation (CIS) in scanned archival
topographic maps of the 19th century is presented. Archival maps provide unique
information for GIS-based change detection and are the only spatially contiguous data
sources prior to the establishment of remote sensing. Processing such documents is
challenging due to their very low graphical quality caused by ageing, manual production
and scanning. Typical artifacts are high degrees of mixed and false coloring, as well as
blurring in the images. Existing approaches for segmentation in cartographic documents are
normally presented using well-conditioned maps. The CIS approach presented here uses
information from the local image plane, the frequency domain and color space. As a first
step, iterative clustering is based on local homogeneity, frequency of homogeneity-tested
pixels and similarity. By defining a peak-finding rule, “hidden” color layer prototypes can
be identified without prior knowledge. Based on these prototypes a constrained seeded
region growing (SRG) process is carried out to find connected regions of color layers using
color similarity and spatial connectivity. The method was tested on map pages with
different graphical properties with robust results as derived from an accuracy assessment.

Keywords Color imagesegmentation . Topographicmaps . Localhomogeneity . Constrained
seeded region growing . Peak-finding . Clustering . GIS

1 Introduction

Color image segmentation is a crucial preliminary process for most image analysis and
pattern recognition tasks [8]. For this reason intense research has been carried out on image
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segmentation in general [17, 31], and on color image segmentation in particular [7, 26]. The
aim of segmentation is to divide an image into different regions such that each region is
homogeneous, but the union of any two neighboring regions is not [10].

Image segmentation also plays a key role as a pre-processing step in feature extraction and
recognition of cartographic documents for GIS data capture [4, 24, 35, 37, 39]. This can be
subjected to color image segmentation since thematic layers in maps, such as hydrography,
elevation contours, and vegetation, are normally represented by distinct color classes. Map
extraction tasks are complex processes [18, 20, 34] because poor data quality and complex
map documents tend to be found in combination [12, 25, 38], especially with historical maps
[24]. Such maps are unique data sources for GIS-based analysis of land cover changes over
long time periods [22], and typically the only spatially contiguous data sources prior to the
establishment of remote sensing. Large amounts of historical maps are currently collected in
archives and become available as scanned data sources. To make use of these maps in a GIS,
automatic approaches for spatial feature extraction and recognition are urgently required. This
represents one research challenge at the intersection of GIS and image processing.

Several research efforts e.g., [2, 13], or [35] have been dedicated to the segmentation of
digital cartographic documents with high spatial quality constraints. In general the aim is to
reduce the scanned color values to the original set of map color layers by regrouping the
pixels based on their color information which is a typical classification problem. At the same
time the spatial context, connectedness and shape of map objects have to be preserved.
Frequently, segmentation in well-conditioned maps aims at the extraction of particular layers
from the document such as elevation contours [6, 20, 21, 34]. Existing approaches to color
image segmentation developed for image understanding, e.g., [5, 9, 10, 14], or [36],
frequently result in significant over-segmentation and distorted shapes if the image is of poor
quality. Some interesting recent attempts include combining color with spatial features [7],
texture [3], space and texture [30], connectivity and homogeneity [27] or using fuzzy
integrals as distance measures [32]. However, none of these approaches allows for identifying
initially hidden distinct color layer prototypes in map documents that suffer from noise, false
and mixed colors without prior knowledge. In summary, there are no satisfying approaches
for reliable color image segmentation of inferior cartographic documents.

In this paper we present a promising automatic approach to the color image
segmentation of scanned archival topographic maps of low graphical quality. Typical
problems, which are mainly due to ageing and scanning, are noise in colors, blurring, mixed
coloring (layer intersections), and false coloring. Variations in color rendition within each
color layer as well as between different map pages of one map series also pose problems.
The scanning process resulted in digital images of 256 colors, which were assumed to
sufficiently account for the observed variability in the color layer values and still allow
efficient processing of the images. The proposed method relies on an iterative clustering
procedure to identify pixels that represent color layer prototypes without prior knowledge,
using information from three different domains: the image plane, histogram and color
space. Prototypes and seeds of the different color layers are defined by an iterative peak-
finding process that uses local homogeneity measures [8, 9], frequency of homogeneity-
tested pixels and color similarity. A constrained seeded region growing (SRG) process [14,
36] is based on color similarity and connectivity. Constrained SRG allows the expansion of
connected regions of pixels belonging to the individual map color layers, as well as the
discrimination of non-allocated pixels, which are subject to post-processing. The method
uses information directly derived from color space [5, 28, 36]. It thus overcomes the
drawback of intensity-based approaches where the steps are applied to each component of
the color space and the results are combined [7, 19].
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In the next section the considered historical map we studied is described. In section three
the methods are outlined. In section four the results are reported and discussed in the light
of an accuracy assessment, and finally at the end we draw some conclusions.

2 The historical map studied and associated problems

The Siegfried Map series (Fig. 1) was manually produced using copperplate and stone
engraving on the scale of 1:25,000 in the Swiss Plateau and 1:50,000 in the mountainous
regions. The series consists of thousands of map pages produced between 1868 and the
1930s. Different color layers were used, such as blue for hydrography and wetlands, red for
contour lines and white for the background. The black layer includes forest, road networks
as solid, double or dashed lines, political boundaries, rocky outcrops and cliffs, vineyards,
buildings, as well as written text.

Fig. 1 The Siegfried Map with color layers. The subsections, taken from different map pages, illustrate
specific problems of graphical image quality, such as noise, color variation, false colors, mixed colors at
intersections and blurring at transitions
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The main problems concerning the extraction of spatial information stem from the low
graphical quality of the complex historical map. This is due to some noise in color
rendition, distorted shapes and the varying sizes of symbols (as they were drawn by hand),
as well as a high degree of overlap and intersection between objects of the same and
different color layers. Scanning these documents results in images that suffer from mixed
and false colors, blurring and color variations in the color layers and between different map
pages (Fig. 1). Aging of paper archived for long periods causes additional random color
variations through bleaching effects. The lines in the scanned documents have varying
dimensions, depending on the meaning and graphical quality, which range from one to six
pixels.

3 Methods

3.1 Overview of the method

The aim of color image segmentation of scanned cartographic documents is to reduce the
color values to fit the original set of printing colors. The segmentation approach presented
here involves four main stages (Fig. 2): First, a clustering algorithm is presented which
relies on local homogeneity of pixel colors, histogram analysis of homogeneity-tested
pixels and color similarity to carry out an iterative peak-finding procedure. This key step
allows the automatic determination of the pixels, which represent color layer prototypes, by
combining three domains of information: the local image domain, the histogram analysis
and color space. Second, pixels are defined as layer-specific seeds based on the distances in
color space to the color points of the computed layer prototypes and local homogeneity
(seeding). These seeds are the starting points to carry out constrained seeded region
growing (SRG), the third main stage. Constrained SRG is based on spatial connectivity
between pixels and seeds, as well as similarity in color vectors between them. SRG expands
the seeds to identify connected regions of pixels belonging to one of the color layers, and
thus to discriminate step-by-step any pixels that could not be allocated. These unallocated
pixels typically suffer from false and mixed coloring. As a fourth stage these pixels are
further examined in a post-processing step using filtering and spatial neighborhood tests. A

Fig. 2 Overview of the color image segmentation procedure
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method to assess the accuracy of the segmentation, which is part of the inherent uncertainty
in the historical map [23], is presented at the end of this section.

In contrast to other research studies on CIS such as [8, 36] the RGB color space is
directly used without further transformation as colors in topographic maps are usually
represented by values close to the RGB extremes. Despite the known correlation of RGB
channels, it offers still the best discrimination space. In contrast to common full-color
images, typical color space conversions that focus on color perception are not feasible for
cartographic maps. This is because lightness and saturation are only influenced by artifacts
and ageing. For this reason such color transformations would not bring any significant
advantage to the approach. However, choosing the optimal color space for a specific
problem is one of the major challenges in CIS, to date [7, 8].

3.2 Finding the prototypes: an iterative clustering approach

A prototype of a color layer is a pixel characterized by a color vector, which occurs very
frequently in the histogram and is sufficiently distinct from color properties of the other
color layer prototypes. Color properties of pixels within the local neighborhood of
prototypes are characterized by random, but low variation which means prototypes are
normally located within homogenous local environments although certain variation in
colors will occur due to scanning and ageing. To identify these prototypes, the following
steps are required:

1. Computing local homogeneity using image plane and color space;
2. Peak-finding based on the frequency of homogeneous pixels in the histogram and color

dissimilarity in color space;
3. Iterative processing to find “hidden” prototypes. Hidden means that the color vectors of

the remaining layer prototypes cannot be discovered in the histogram as peaks,
immediately. The reason is that colors similar to the already identified prototype colors
occur very frequent and thus hide or overlay the colors of the next color layer
prototypes.

3.2.1 Computing local homogeneity

Homogeneity of color within the considered local neighborhood of a pixel often plays the
key role in color image segmentation [27]. In this context, Euclidean distance measures are
applied for intensity-based approaches that treat color space components separately [8, 10].
Similarly, Euclidean distances can be used to e.g., derive belief values [5] or similarity
values [36].

In the approach presented here, for each pixel j in the image, a local color homogeneity
measure is computed from its 3×3 neighborhood (Fig. 3). This computation is based on the
distances dm,j in color space between the color point of j and the color points of its
neighbors m. Distances dm,j are defined as (Eq. 1):

dm;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm � rj
� �2þ gm � gj

� �2þ bm � bj
� �2q

; ð1Þ
where m indicates the pixel in the 3×3 neighborhood, j indicates the central pixel, and r, g
and b represent the color components red, green and blue, respectively. Here, and also in
the following steps described below, the local 3×3 neighborhood is used according to the
resolution in the map, which depends on scanning parameters, and in relation to the size of
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elements represented. This minimum window size is the most appropriate one to investigate
the map since the map objects have dimensions between one and many pixels.
Neighborhoods of larger size can be used for documents of higher resolution where objects
would have a minimum dimension of several pixels.

Local homogeneity hj describes, for each pixel j in the image, the level of homogeneity
between the observation of interest of j and the observations of a given number of
neighboring pixels m (m=1,…,n with n=8). This measure is weighted by the number of
neighbors and ranges between 0 and 1 on a continuous scale. The greater hj is, the more
homogeneous is the local environment of j with regard to the observation of interest, which
is color in this case. The equation for hj is (Eq. 2):

hj nð Þ ¼ 1

n

Xn
m¼1

dZ dm;j
� �

; ð2Þ

where n is the number of the local neighbors m (n=8 for 3×3 neighborhood) and δZ is a
fuzzy membership function represented as a Z-function. This function characterizes a fuzzy
set F in a universe U by associating with each element u in U a real number in the interval
[0,1] such that F: U→ [0,1]. The elements u in U are represented by the neighboring pixels
m of j each of which is attributed by distance measure dm,j in color space (Eq. 1). Thus the
value of δZ at element m denotes the degree of membership of m in F based on dm,j This can
be interpreted as the degree of homogeneity between pixel j and its neighbor m instead of
using a rigid threshold value to determine homogeneity. The smaller dm,j is the higher is δZ
and the higher is the color homogeneity between j and m. The Z-function δZ (Fig. 4) has the
form (Eq. 3):

dZ dm;j
� � ¼

1� 2� dm;j�dmin

dmax�dmin

� �2
; dmin � dm;j � dmax

2

2� dm;j�dmax

dmax�dmin

� �2
; dmax

2 < dm;j � dmax

8><
>:

; ð3Þ

where dmax and dmin represent the maximum and minimum Euclidean Distances in color

space (dmin=0 and dmax ¼ 2552 þ 2552 þ 2552ð Þ1=2¼ 441 if the whole color space is
considered), respectively. The Z-function is appropriate for discriminating artificial color

Fig. 3 Derivation of fuzzy homogeneity vectors based on Euclidean distances in the color space between the
pixel in question (black) and its 3×3 neighbors (white)
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graphics that suffer from noise and blurring because it shows a flattened graph for δZ close
to 1 over a range of small distances and a steeper slope of the graph for decreasing values of
δZ where distances increase (Fig. 4). The described steps (Eqs. 1–3) can be used to derive
estimates of local color homogeneity between each pixel j in the image and its
neighborhood. We also tested whether we could better address very thin line features in
the image by computing hj using only the t (where t<n) 3×3 neighbors with the highest
memberships δZ in F. This modification had little effect on the performance of the process
except that homogeneity became overestimated in some cases.

3.2.2 Peak-finding based on frequency and similarity of homogeneous pixels

As mentioned, each prototype is found by examining the homogeneity-tested pixels in two
subsequent steps that have to be iteratively repeated:

(a) Deriving frequency of color vectors of homogeneity-tested pixels in a homogeneity
histogram (peak finding);

(b) Similarity tests in color space to identify colors that are similar to the color of the layer
prototype. These colors are eliminated from the histogram to uncover the next
“hidden” prototypes in subsequent iterations.

Frequency The frequency measure is derived as follows. For each color vector i in the
image (i=1,...,I with I as the total number of colors in the image), we count for how many
pixels j the computed local homogeneities hj (see Eq. 2 in Section 3.2.1) exceed a threshold
value hcrit. This involves a counter Ch,i being incremented each time a homogeneous pixel
j with color vector i and hj > hcrit is found resulting in frequency values of homogeneous
pixels. The value hcrit indicates the minimum level of homogeneity hj required between
pixel j and its local neighbors m to be admitted as a homogeneity-tested pixel. The greater
hcrit is, the stricter is the requirement that the color layers of the map have to contain some
homogeneous subsets. We tested different values of hcrit between 0.95 and 1 to examine the
sensitivity of the procedure to a change of this parameter. The values of Ch,i are presented
over the color vector indices i (Fig. 5) in a full color homogeneous histogram. In this case

Fig. 4 Illustration of the Z-Func-
tion which characterizes a fuzzy
set F. Its value at element m
denotes the degree of member-
ship of m in F based on the
distances between neighbor m
and pixel j in color space
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the indices, which indicate existing combinations of color components, range between 0
and 255 as a result of the scanning process. Thus the homogeneous histogram includes
information from all color space components since local homogeneity is based on distances
in the 3D color space.

Fig. 5 Illustration of the clustering process to identify the color layer prototypes. a Peak-finding to search
for the most frequent homogeneity-tested color vector index (blue triangle in the histogram, blue circle in the
3D space). Color points with distances less than dcrit to the point of this prototype in color space (red
triangles and red circles, respectively) are removed from the histogram before the next iteration. b–d The
“hidden” maxima, and thus all remaining prototypes, are found iteratively in the same way. Notice the
broken range for frequency in the histogram
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A peak-finding rule is formulated to identify the color vector of each prototype Pk of
color map layer k (k=1,...,K with K as the total number of color map layers). The following
condition has to be fulfilled (Eq. 4):

i ¼ Pk ;) :9ii; ii ¼ 1; . . . ; I ; ii 6¼ i Ch;i < Ch;ii; ð4Þ
where ii represents the set of color vectors with ii=1,...,I except i, and Ch,i and Ch,ii indicate
the frequency of homogeneity-tested pixels with color vectors i and ii, respectively. The
other variables have been explained earlier. In other words, the color vector i, which is
counted most frequently in the homogeneous histogram—the global maximum—represents
the color property of the first prototype Pk of color map layer k. The values R(Pk), G(Pk)
and B(Pk) are registered to locate the corresponding point in the color space (Fig. 5a). All
pixels, which are characterized by this color vector and which were tested as homogeneous
pixels before, represent prototypes Pk of color map layer k.

Similarity To identify color vectors that are similar to the one of prototype Pk, a sphere
in color space with a pre-defined radius dcrit and centre R(Pk); G(Pk); B(Pk) is defined.
The color point of Pk is indicated as blue triangle in the histograms and as blue circle in
the color space diagrams in Fig. 5. The value dcrit is used as a threshold to determine
similarity. All color points whose Euclidean distances to the point R(Pk); G(Pk); B(Pk) in
color space are smaller than dcrit (Fig. 5a) are removed from the homogeneous histogram,
regardless of their frequency Ch,i, for the following reason: These color vectors are
considered too similar to the one of Pk but still could have high frequencies in the
histogram. If so the color vector of the prototype of the next color layer, R(Pk+1);
G(Pk+1); B(Pk+1), could not be discovered by searching for a global frequency maximum
in the histogram if this would be “hidden” by the frequency of colors similar to R(Pk); G
(Pk); B(Pk). Typical examples are documents with large areas of background where
normally few similar colors occur with high frequency and the colors of the prototypes of
the color map layers have a much lower count than each of these background values. Thus
before the next iteration the color points classified as being similar to R(Pk); G(Pk); B(Pk)
are removed from the histogram (Fig. 5b). Changing the value of dcrit will modify the
level of color distinction between the clusters of similar colors in color space. Since color
layers in the RGB color space of cartographic documents are represented by well-
distinguished colors, a single high value can be set for dcrit and considered valid for any
map page. For maps where for some reason color layers are more similar this value can be
changed to adjust the prototype search, accordingly.

3.2.3 Iterative processing and parameterization

The color points of the remaining color layer prototypes are found by uncovering the next
“hidden” maxima in the homogeneous histogram and by carrying out the steps described in
Section 3.2.2 (Fig. 5b–d) using Eq. 4. The prototype search terminates if no further global
maximum in the histogram is found, i.e., if no more color vectors i exist for which Ch,i>
Ccrit. Ccrit indicates the minimum frequency of homogeneity-tested pixels with the same
color vector i required to be admitted as a layer prototype. The larger Ccrit is, the more
homogeneity-tested pixels with the same color vector i have to be found to indicate the
existence of a color layer prototype. This demands a higher degree of homogeneity within
the color layers of the map. Similar to dcrit the value of parameter Ccrit was defined as a
constant valid for any map page if the area of investigation was sufficiently large. It can be
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assumed that for a whole map page of size 7,000×4,800 pixels a sufficient amount (e.g.
>100, or >0.0003%) of homogeneous pixels can be found for each of the truly existing
color layers even for very strict constraints given by hcrit and dcrit.

The steps described in Section 3.2 provide the color layer prototypes Pk with k=1,...,K
and their color points R(Pk), G(Pk) and B(Pk) (Fig. 6b). The peak-finding method is

Fig. 6 Illustration of the single segmentation steps. a Original map. b Homogeneous color prototypes (beige
background, blue hydrography, red elevation contours, black black layer, grey non-allocated pixels). c Layer-
specific seeds. d Result of constrained SRG. e Inclusion of remaining color patches in constrained SRG.
Note the differences between (d) and (e), where smaller regions inside forest symbols and in elevation dashes
are additionally segmented. f Final result after post-processing of the non-allocated pixels
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expected to be robust since, in most cartographic documents, print colors are chosen by the
publisher to be as visually distinct as possible. The color layer prototypes should, then, be
very distinct from each other in the color space, even in very old documents or those where
the colors vary greatly.

The parameters hcrit, dcrit and Ccrit mentioned here were all used as constant values for
different map pages. Adjusting them did not influence the performance of the procedure,
significantly. This is one important presumption to develop a procedure that does not
require prior knowledge of the data source. Nevertheless, where needed these parameters
could be used to adjust the computation to the level of intra-layer noise (Ccrit) and overall
noise (hcrit), as well as to the level of similarity between the color layers in the map (dcrit). It
could be observed that too small or too high values of Ccrit result in the definition of too
many or too few prototypes, respectively. The value hcrit affects the number of
homogeneous pixels that can be found in the map in general. Finally, too small or too
large values of dcrit result in an overestimation or underestimation of the number of color
layer prototypes, respectively, by determining the level of similarity between prototype
colors.

3.3 Seeding, constrained Seeded Region Growing (SRG) and final classification

SRG segments an image into homogeneous regions starting with an initial set of seeds [1].
In each step one additional neighboring pixel is allocated to one of the seed sets whereby
the seeds are replaced by the centroids of the homogeneous regions in each iteration [7, 15].
Normally, SRG is repeated until all pixels have been allocated to one of the homogeneous
regions. In this paper, the allocation of pixels is based on iterative tests for color similarity
and connectivity to one of the homogeneous seeds Sk in the map (Fig. 6c), which are
derived from the color layer prototypes Pk (see Section 3.2). Thus the procedure described
is a constrained SRG in that pixels are left unallocated if one of the tests for similarity or
homogeneity cannot be approved. To prevent oversegmentation the segmented subregions
are immediately classified to one of the color layers whose number is indicated by the
number of the derived prototypes (Fig. 6d). This step takes into account that color map
layers consist of spatially separated regions.

The unallocated pixels are subject to further examination since they are not located
within homogeneous regions. It should be recalled that these parts of the maps are the main
reason for the inherent poor graphical quality due to mixed and false colors as well as noise.
The following steps identify the connected regions of the color layers (Fig. 6d) and include
some post-processing to allocate the unallocated pixels (Fig. 6e):

1. Computing color similarity between pixels in the image and prototypes;
2. Defining initial seeds (Fig. 6c);
3. Performing constrained SRG based on similarity and connectivity (Fig. 6d);
4. Including small unallocated color layer patches in SRG (Fig. 6e); and
5. Post-processing and filtering to allocate remaining pixels.

3.3.1 Computing color similarity with prototypes

For each pixel j in the image, similarity sPk ;j with each of the color layer prototypes Pk

(Section 3.2) with k=1,...,K, is computed. The values sPk ;j are the inverse normalized
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Euclidean distances dk,j in the color space between the color points of the prototypes Pk of
layer k and the one of pixel j (Eq. 5):

sPk ;j dk;j
� � ¼ 1� dk;j

dmax
; ð5Þ

with

dk;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPk � rj
� �2þ gPk � gj

� �2þ bPk � bj
� �2q

;

where r, g and b indicate the color values of red, green and blue, respectively, and dmax is the
maximum Euclidean distance in color space. As can be seen the computation of sPk ;j is based
on minimum-distance rules in color space. For each pixel j the highest value out of the color
similarities sPk ;j and the layer index k of this maximum are determined. The value k is
registered for pixel j to indicate the color layer to which j shows the highest level of color
similarity.

3.3.2 Defining initial seeds

This step has to ensure a sufficient number of seeds such that SRG can be initialized even
within smaller isolated layer segments where no prototype could be identified. The seeds,
which serve as initial points for layer-specific SRG, are defined based on color similarity
sPk ;j (see Section 3.3.1) and on homogeneity criteria using weaker homogeneity conditions
than when defining prototypes. The prototypes Pk (Section 3.2) are immediately defined as
seeds since they were already examined for homogeneity.

To test if pixel j is embedded within a homogeneous local environment (Fig. 6c) the 3×3
neighborhood is examined using median filtering. If the majority of the neighbors of j
shows the highest similarity sPk ;jto the same prototype Pk, j is registered as a homogeneous
seed Sk of color layer k and represents one starting point for SRG. Using this weaker
homogeneity test means accepting some layer specific color variation to define a sufficient
number of homogeneous seeds also in smaller isolated parts of the map color layers.

3.3.3 Constrained SRG based on similarity and connectivity

The constrained SRG process works as an iterative layer-specific expansion procedure,
starting at the initial seeds Sk of each color layer k (Section 3.3.2) and testing the connected
neighbors for similarity. Connectivity is defined as a strict 4-connected neighborhood
relationship in order to prevent wrong connections between parts of different color layers
that intersect or overlap each other. This condition is included in response to the resulting
level of mixed and false colors at these intersections. Each pixel that is a connected or
adjacent neighbor m to a seed Sk of color layer k is registered as a new seed of the same
color layer k if the following condition is fulfilled (Eq. 6):

m ¼ Sk ) j ¼ Skð Þ AND :9l; l ¼ 1; . . . ;K; l 6¼ k sPk ;m < sPl ;m

� �
; ð6Þ

where sPk ;m and sPl ;m indicate the similarity of the 4-connected neighbor m to color layer k
(Eq. 5) and to all other color layers l, respectively. If pixel m shows the highest similarity to
color layer k which Sk represents a seed for, m is registered as a new seed Sk for the next
iteration of SRG (Fig. 6d). Otherwise this pixel is subject to further examination as
described below. This step segments the connected subregions of all color layers in the map
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that have their origin in one of the initial homogeneous seeds, Sk of color layer k. Thus the
immediate classification of these subregions to one of the color map layers is strictly
enforced. Before constrained SRG terminates, one more step is carried out (see Section
3.3.4). After this, SRG runs iteratively until no more pixels in the image can be classified as
belonging to one of the color layers.

3.3.4 Including deviating small layer patches in SRG

Small patches of color layers with unexpectedly high deviations in color values sometimes
occur where the conditions for seed definition (see Section 3.3.2) cannot be fulfilled. They are
not connected to larger regions and are mainly caused by manual updating and bleaching of
the archival documents. To include such cases in the segmentation, one further step before
completing constrained SRG is required. The image is searched for pixels j that have not yet
been allocated. A simplified homogeneity test based on similarity sPk ;j (see Eq. 5) within the
local 3×3 neighborhood is carried out using median filtering techniques (Eq. 7):

j ¼ Sk ) 8l; l ¼ 1; :::;K; l 6¼ k sPl ;j < sPk ;j

AND
) 8m;m ¼ 1; :::;M ; 8l; l ¼ 1; :::;K; l 6¼ k sPl ;m < sPk ;m

ð7Þ

where Sk indicates a seed of color layer k, l with l=1,...,K represents all color layers except
layer k and m with m=1,...,M indicates the 3×3 neighbors of pixel j being considered. Pixel j
is registered as seed Sk of color layer k if the majority of the neighboring pixels shows highest
similarity to the same color layer prototype Pk as j. These new seeds are included in the
constrained SRG process (see Section 3.3.3 and Fig. 6e), which runs until no new seed is
determined even within the smaller deviating patches of color layers. This step includes the
weakest condition to identify the pixels that—based on similarity and homogeneity—belong
to one of the color layers in the map. It accepts higher layer-specific variation in color over
one map page than in Section 3.3.2 while still enforcing local homogeneity.

3.3.5 Postprocessing of the distribution of unallocated pixels

After the constrained SRG is completed, the final step is to examine the pixels that remain
unallocated after the described steps (see Sections 3.3.1–3.3.4). Most of the unallocated
pixels can be found adjacent to or form part of an object in the black layer (Fig. 6e), which
is very subject to false and mixed coloring. Median filtering rules are used to examine
which class dominates within the local 3×3 neighborhood of pixel j. At this point it should
be recalled that the 3×3 neighborhood has been evaluated as the optimal local environment
with regard to the resolution of the scanned map and the size of the objects in the map (see
Section 3.2.1). Pixel j obtains the same layer index as the dominating class within the
neighborhood if the median value is greater than or equal to a predefined number (= 8 in
Fig. 6f). Most of the unallocated pixels inside river lines, elevation contours, background or
forest symbols can be merged using this filtering step. Some single pixels or small groups
of pixels, which are only adjacent to a segmented color layer region, still remain
unallocated. They mainly belong to parts of the black layer, which are represented by very
thin line-work such as forest symbols. Consequently these pixels are allocated to the black
color layer (Fig. 6f). Pixels, which would be misclassified after this step, can be
straightforwardly filtered in subsequent stages of image processing based on the size and
morphological properties of connected components in the image.
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3.4 Assessing the accuracy of segmentation results

A method for objectively assessing the accuracy of segmentation results where area, line
and symbol regions occur at the same time is presented below. Accuracy assessments must
be conducted with care but are rarely done according to the literature [6] or they are focused
on line segmentation taking into account the line length as evaluation measure [6, 20]. The
developed assessment tool (Fig. 7) allows for an efficient sample-based visual inspection of
the original map and the computed segmentation, at the same time. According to well-
established techniques in Remote Sensing both the segmentation outputs and the inspection
results are used for confusion matrix based assessment of the overall and layer-specific
classification accuracy.

The first step is the conduction of a systematic sampling over the set of processed map
documents (Fig. 7a). The coordinates of each sample pixel and its color layer index after
segmentation are registered in the entry rows of a database. Each entry row is dynamically
linked to the display representations of the corresponding locations in the original and the
segmented map (Fig. 7b). The visual inspection is done by a group of experienced
cartographic interpreters, who decide for each sample point in the original map which color
layer it belongs to. The dynamic visualization of the segmented image at the same time
makes it possible to immediately compare the original and the result. These two sets of
layer indices are then input to the confusion matrix. Measures derived from the confusion

(a) (b)

Fig. 7 Accuracy assessment. a Systematic sampling for test pixels over the set of map pages processed. b
Detail of the accuracy assessment. The sample plots in both the original and the segmented map (red dashed
rectangle) are dynamically linked and decisions about the central pixel of the rectangle are registered in the
database
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matrix are recall and precision [33] for each color layer, as well as global measures such as
accuracy (ACC) [29], Kappa coefficient of agreement (K) [11] and normalized mutual
information criterion (NMI) [16]. NMI is described as the most conservative measure and
meets all the requirements of a global accuracy measure, making full use of the information
contained in the confusion matrix. Furthermore NMI remains robust against the occurrence
of classes whose size far exceeds the sizes of other classes, which has to be expected if area
and line features are evaluated by systematic sampling. The evaluation has been done on
1870 sample points selected from eleven maps with 7,000×4,800 pixels each. A sample of
this size represents a representative set for the whole amount of pixels to be examined and
provides a first objective estimation of the accuracy of the procedure.

In addition, the segmentation results—in particular the segmented black layer—were
tested as input for cartographic feature extraction as described in [24]. The aim was to
examine whether the segmentation remains robust for a large number of maps that show a
high degree of variation in color values and graphical properties.

4 Performance

In this section the results of the color image segmentation are presented and some critical
aspects concerning parameter sensitivity and observed segmentation errors are discussed.
The results are illustrated for three test images, shown in Figs. 8, 9 and 10. In each of the
figures a large subsection of the original map is shown on the top left (a), and the
segmentation results on the top right (b). Below the original (c, e, g) and the segmented (d,
f, h) sub-images of the larger sections are presented to illustrate specific problems in
performance and parameter settings. Reference to a sub-image is given as “figure(sub-
image)”, e.g. 8(c) for Fig. 8, sub-image (c).

Fig. 8 Results of the color image segmentation presented on a subsection of map page 149. a Original. b
Segmented map. c–h Enlarged sub-images showing critical aspects in the original on the left (c, e, g) and in
the segmented map on the right (d, f, h)
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Fig. 9 Results of the color image segmentation presented on a subsection of map page 068. a Original. b
Segmented map. c–h Enlarged sub-images showing critical aspects in the original on the left (c, e, g) and in
the segmented map on the right (d, f, h)

Fig. 10 Results of the color image segmentation presented on a subsection of map page 236. a Original. b
Segmented map. c–h Enlarged sub-images showing critical aspects in the original on the left (c, e, g) and in
the segmented map on the right (d, f, h)
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The global accuracy measures (Table 1) indicate a robust performance of the segmentation
procedure (ACC=0.96, K=0.93, NMI=0.81). The accuracy assessment described is strict in
nature because it is based on the pixel-level, whereas the aim of the segmentation is to preserve
the shapes and spatial properties of the color features on the region level. Nevertheless this is the
most objective kind of evaluation to check the overall robustness of the approach. Moreover,
the segmentation errors reported do not impede subsequent recognition processes because the
geometrical and structural properties of the regions are preserved (Figs. 8, 9 and 10). This could
be verified by including the segmentation results in the feature extraction process of forest cover
as described in [24], where segmentation as a first step still relied on map-specific parameter
settings. The extraction results were comparable to the outcomes in [24] demonstrating a high
level of robustness of the segmentation process. Nevertheless, some shortcomings and minor
segmentation errors occurred that can be ordered according to categories of graphical quality.
These aspects and possible solutions such as adjusting one of the parameters, which are constant
values otherwise, are discussed chronologically below.

False colors Where red elevation contours are drawn extremely dense (Figs. 8c, 9c, 10g),
adjacent black objects frequently contain red shadows (Figs. 8d, 9d, 10h) as a consequence
of false coloring. In such cases the falsely colored regions fulfill the similarity criterion
during SRG and cause a decrease in recall of the black layer as well as a decrease in
precision of the red layer. In some instances the shapes of small objects, such as forest
symbols, are interrupted (Figs. 8f, 10d, h). Similar effects occasionally occur where false
coloring generates small isolated homogeneous regions adjacent to objects of the black
layer, e.g., in blue (Fig. 8h). However, such problems can be solved by filtering according
to region size and through overshoot analysis in subsequent processing stages.

Mixed colors Mixed colors at layer intersections, e.g., between the red and the blue layer
(Figs. 8e, 9g, 10e), are a frequently observed problem, resulting in decreasing layer-specific
precision and recall, depending on the class the region is added to. Normally, these patches
remain unallocated and are added to the black layer after the post-processing (Figs. 8f, 9h, 10f).
In very few instances such mixed color patches generate an additional layer prototype (e.g.,
greenish or brownish as a mixture of red and blue or of red and black, respectively). This
problem is solved by adjusting the parameters for color distinctness and the minimum frequency
of homogeneity-tested pixels required for prototyping. However, filtering in subsequent
processing stages will be necessary to eliminate these regions.

Color variations within one layer As a result of color variations within one color layer (Figs. 8
and 9) some small patches remained unallocated, and were thus falsely added to black. This
caused a decrease in precision of the black layer and a decrease in recall of the corresponding
color layer. The main reasons for this minor problem are a lack of homogeneity between the

Table 1 Results of the accuracy assessment: the assessment was performed on 1870 sample plots
systematically distributed over a set of map documents, each 7000×4800 pixels, in size

Hydro (Blue) Elevation (Red) Black Layer Background (White) Global

Recall 0.76 0.91 0.97 0.97 –
Precision 0.80 0.92 0.93 0.99 –
ACC – – – – 0.96
Kappa – – – – 0.93
NMI – – – – 0.81
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pixel values of such small and thin patches, as well as an unexpectedly high deviation of the
color values from the prototype. Examples are dashes of elevation contours (Figs. 8d, 9h) or
thin isolated line-work indicating elevation (Fig. 10f) or hydrography (Fig. 9f). This error can be
corrected by adjusting the homogeneity conditions for seed definition.

Color variations between map pages In some map pages, a part of the colors used for
hydrography or elevation are not very distinct from the black layer values (Fig. 10), leading
to misclassifications of single pixels or pixel groups as black (Fig. 10f, h). This can be
partially circumvented by adjusting the parameter dcrit for color layer distinctness. However,
such small pixel groups can be identified in later processing stages using neighborhood
analysis and filtering such as median filtering techniques to find small black regions
embedded within blue or red local environments.

Manual production and noise Since the Siegfried Map was manually produced, it is
difficult to process the scanned documents, automatically. Transitions between objects and
background are usually blurred. Thus, depending on the parameter set, the segmentation
tends to thicken black objects (Figs. 8d, h, 10d). In general this has no impact on
subsequent line detection except where objects are erroneously connected. Another effect of
manual production is the variation in size and shape of objects, e.g., text or forest cover
symbols. If a circle-like forest cover symbol is very small and drawn as a closed circle, the
background pixels inside the circle do not always fulfill the homogeneity condition.
Consequently they remain unclassified and are added to black since the final filtering step
will not provide enough background pixels in the neighborhood (Figs. 8h, 9d, 10d, e). This
is, however, a minor problem because the recognition of a forest area is not affected.

A similar effect was observed if several parallel hydrography lines are drawn very close to
each other (Fig. 10e, g). In some instances thin stripes of background between them could not
satisfy the homogeneity criterion and thus remained unclassified. They then appeared as
black after the final step (Fig. 10f, h). Such errors can be corrected in subsequent image
processing steps using neighborhood analysis and filtering, as described in Section 3.3.5.
These manual production problems result in a decreased recall of the background layer and
decreased precision of the black layer. Other problems occur where thin line-work of the red
and blue layer degenerates and forms bleached and broken partitions (Fig. 9e) which do not
fulfill the homogeneity condition. The classification of such parts as black (Fig. 9f) also
resulted in a decreased recall of the color layer and decreased precision of the black layer.

5 Conclusions

In this paper a method for automatically segmenting the color images of archival
topographic maps is presented which solves the problem of color layer discrimination in
cartographic documents of low graphical quality. The procedure was tested on the so-called
Siegfried Map–a manually produced topographic map series of the 19th century. The series
suffers from noise and mixed colors, resulting in variations in color and blurring effects.

This methodwas shown to be robust in solving these discrimination problems and to prevent
over-segmentation of the image. The clustering process—the central methodological step—
ensures the identification of color layer prototypes without prior knowledge. The iterative
clustering method combines different domains of information: local image plane, frequency
and color space. Peak-finding in the homogeneous histogram—the histogram showing the
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homogeneity-tested color values - provided the color vectors of the color layer prototypes.
Color similarity tests in color space allowed for identifying the colors similar to the identified
prototype that had to be eliminated from the histogram. Thus the colors of the next prototypes,
which represent “hidden” maxima in the initial homogeneous histogram, could be uncovered
for the next iterations. After the initial seeds are derived from color layer prototypes,
constrained SRG, based on similarity and connectivity tests, successfully expands the
connected regions of the different color layers. After including some postprocessing steps
and filtering rules for unallocated pixels the final segmentation could be derived.

The segmentation results demonstrate how our method allows the simultaneous
segmentation of line-work, symbols and area regions that belong to different color layers.
The accuracy assessment identified some minor classification errors, many of which can be
corrected in later processing steps. Such errors did not, however, impede subsequent feature
extraction processes since the shape and size features of map objects could be preserved.

The main advantage of this segmentation approach is that only a few preliminary
assumptions are required. These assumptions are derived from rules for producing
cartographic documents such as: printing layers should be visually distinct and the typical
layer colors should occur frequently, with little color variation in their local environment.
The clustering process then automatically derives the color vectors of the layer prototypes
and thus the number of color layers in the map. The parameters described allow
adjustments of the segmentation process to varying levels of map quality, homogeneity
conditions, noise, and color distinctness, as well as to color variation over a set of different
map pages. However, for the map pages processed here these parameters are globally
defined without severely impeding the robustness of the segmentation.

Future research activities will be dedicated to the further development of the
segmentation process in connection to feature extraction and recognition tasks. More
advanced cartographic rules and aspects of the spatial context between objects and their
neighborhood will be integrated, and ways of including processes for gap filling, filtering
and overshoot analysis explored. The procedure will also be tested on other families of
historic map documents which suffer from similar or different quality problems. Applying
this method as the first processing step will facilitate feature extraction processes in maps
and thus help to derive information about the historical landscape for land change detection.
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