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Abstract Advances in wireless communications, positioning technologies, and con-
sumer electronics combine to enable a range of applications that use a mobile user’s
geo-spatial location to deliver on-line, location-enhanced services, often referred to
as location-based services. This paper assumes that the service users are constrained
to a transportation network, and it delves into the modeling of such networks,
points of interest, and the service users with the objective of supporting location-
based services. In particular, the paper presents a framework that encompasses two
interrelated models—a two-dimensional, spatial representation and a multi-graph
presentation. The former, high-fidelity model may be used for the positioning of
content and users in the infrastructure (e.g., using map matching). The latter type
of model is recognized as an ideal basis for a variety of query processing tasks,
e.g., route and distance computations. Together, the two models capture central
aspects of the problem domain needed in order to support the different types of
queries that underlie location-based services. Notably, the framework is capable of
capturing roads with lanes, lane shift and u-turn regulations, and turn restrictions.
As part of the framework, the paper constructively demonstrates how it is possible
map instances of the semantically rich two-dimensional model to instances of the
graph model that preserve the topology of the two-dimensional model instances.
In doing so, the paper demonstrates how a wealth of previously proposed query
processing techniques based on graphs are applicable even in the context of complex
transportation networks. The paper also presents means of compacting graphs while
preserving aspects of the graphs that are important for the intended applications.
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1 Introduction

Continued improvements in the affordability and functionality, and thus popularity,
of Internet-worked mobile devices such as mobile phones, personal digital assistants,
and navigation systems enable a range of new personal information services, many of
which will exploit information about the user’s geo-location for providing the desired
functionality. Example services include applications that allow mobile phone users
to locate friends or family, businesses, or landmarks. Services may also deliver maps,
directions, or traffic reports.

One may distinguish among three location-based service scenarios depending on
the assumed degree of freedom with which the service users can move. The first
occurs when the users, e.g., sailors at sea, are considered capable of unconstrained
movement in the relevant physical space. The second occurs when user movement is
partially constrained due to obstacles. For example, the movement of a cross-country
jogger is constrained by a fence. The third scenario occurs when user movement is
restricted to a network-type structure, the prototypical example being users in cars
that move in a road network.

This paper concerns the third scenario, which is applicable to many kinds of
mobile services, e.g., those that supply moving users with information about relevant,
stationary objects. The paper addresses the modeling of transportation networks at
the level of lanes, and it also considers the modeling of points of interest and service
users.

The contributions are three-fold. As the first contribution, the paper presents a
framework that consists of a two-dimensional, geographical model and a derived
graph model of road networks. While the modeling of real-world phenomena such
as transportation networks is an open-ended process where additional aspects can
always be captured, care has been taken to capture aspects that relate to the
topology of transportation networks. Thus, the framework captures aspects such as
the following.

– bi-directional as well as one-directional roads
– lanes and the associated lane-change regulations
– u-turn regulations along roads
– turn regulations, such as no left turn and no u-turn, at intersections
– travel distances and travel times, e.g., as caused by road conditions

This type of detailed lane-level modeling of transportation networks is becoming
increasingly relevant because advances in positioning technologies are slated to
enable the positioning of vehicles within lanes. For example, infrastructures that rely
on in-road and in-vehicle sensors for accurate positioning at lane resolution are being
conceived in the telematics community.

Positioning at lane resolution will increase the quality of existing services, e.g.,
navigation services, but will also enable entirely new services, e.g., collision warning
and assisted driving services.
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In addition, the framework captures points of interest in relation to the trans-
portation network models. Points of interest may have multiple accessibility points
at lane resolution. The framework also captures movement-capable objects, termed
service users.

The second contribution is to leverage the large body of existing query processing
techniques based on graphs. The paper demonstrates that, and how, this body
of work is relevant for location-based services that rely on accurate modeling of
complex transportation networks.

Specifically, a central component of the paper’s framework is a mapping of
instances of the semantically rich two-dimensional model to instances of the graph
model. This mapping demonstrates how it is possible to represent complex trans-
portation network by semantically simple graphs. The graph model and mapping
are built to accurately capture the topologies of transportation networks while also
serving as a foundation for query processing. To enable distance computations, the
graph model includes edge weights; to capture roads with multiple lanes, the model
is a multi-graph; and to capture the ability to make u-turns in-between intersections
(in-between graph vertices) and the movement from one lane to another, so-called
co-edge and change-edge relations are also included.

Third, the paper presents techniques aimed at compacting graph model instances
without changing their semantics as seen by their intended applications. Different
intended uses of a graph generally pose different requirements to the fidelity of the
graph. For example, shortest path search does not rely on the accurate representation
of multiple lanes between pairs of vertices if these edges have equal weights; so
with shortest path search being the objective, multiple edges between the same
pair of vertices can thus be reduced to one edge in such cases. The paper takes
as its outset several common uses of graphs in location-based services and then
presents transformations that compact graphs while preserving the detail relevant for
these uses.

It is expected that most of the query processing underlying location-based services
will occur in the graph model and that the two-dimensional model will mainly serve
as a basis for the positioning of the points of interest and moving service users.
Therefore the paper’s focus is on the graph model and the mapping to this model.
Other two-dimensional models than the one utilized in this paper may well be equally
suitable.

2 Related work

Within computer science, past research has covered the efficient support for a variety
of types of queries, including different types of range queries, nearest neighbor
queries, and reverse nearest neighbor queries (e.g., [3], [18], [28], [31], [33]). How-
ever, this line of research generally makes simple assumptions about the problem
setting. Perhaps most prominently, much work assumes that data and mobile objects
are points embedded in, typically, two-dimensional Euclidean space (e.g., [11], [16]).
The resulting notion of proximity renders the techniques inadequate for many
location-based services. This paper’s proposal enables the use of the notion of road
distance, which is often the relevant notion of distance. Some recent proposals for
query processing techniques do assume road networks; we discuss these shortly.
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Other scientific work has considered problems where the infrastructure is central.
The classical approach is to use either non-directed or directed graph for the
modeling of road network. Both are compact mathematical representations that
capture some essential properties of roads. An exemplary problem addressed in this
setting is that of finding a shortest path between locations [4], [7]. In more recent
work, graphs have been used for the processing of nearest neighbor queries for
moving objects [26].

More recent approaches use graphs with different spatial embeddings, sometimes
called spatial network models, for the modeling of transportation networks.

In one line of work [19], Voronoi diagrams are built over spatial network with the
purpose of efficient query processing. In this research, a spatial network is a weighted
graph consisting of vertices and weighted edges. Vertices, which have coordinates
in the two-dimensional plane, are created for connection points where roads meet
and for points of interest. Network Voronoi diagrams are then created based on the
vertices that correspond to data points, so that each such vertex has an associated
Voronoi region in two-dimensional space. The proposal uses R-tree indexing of
these regions.

Another line of research [1], uses graphs in conjunction with variations of
Dijkstra’s algorithm. Here, a spatial network is a weighted, directed graph. In
addition, each edge has an associated polyline that captures the location in two-
dimensional space of the road modeled by the edge. In this line of research, R-
trees are used for the indexing of the edge polylines. Data points are located on
the edges—the position of a data point is given by an edge and a distance from the
start of that edge.

In a different line of research on query processing in spatial networks [25], a spatial
network is a weighted, directed graph where additional spatial components are
associated with the edges; specifically, each vertex, which models a road intersection,
is given a point position in two-dimensional space, and the weight of an edge, which
models a road segment, captures the length of (or travel time associated with)
the segment.

In yet other work, spatial networks capture an embedding into Euclidean space
and a conventional graph in a unified fashion. These models go further than the ones
just covered by also considering the modeling of turn restrictions at intersections and
the modeling of both one-way and bi-directional roads [15], [20], [23].

We note that none of these approaches capture a road infrastructure at the level
of detail of lanes, where issues such as the abilities to change lane and make u-turns
must be captured.

Next, in contrast to the research community’s contributions that aim to enable
the efficient processing of advanced and specialized spatial queries, solutions offered
by industry are generic and support the processing of basic spatial queries [22]—
these contributions use geographically embedded geometries as their primary data
structure and do not capture graphs.

In the domain of Geographic Information Systems for Transportation [14], focus
has been on the development of database models for road-related data [8]. These
typically use some form of linear referencing (e.g., [21]) for the capture of data object
locations within road networks. The main objective has been to provide foundations
for integrating different road-related content relevant to administrative tasks, not
location-based services for mobile users.
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Navigable data models have been created to support a multitude of tasks including
vehicle navigation. We are aware of only a few works that have taken it as a
requirement to devise models that capture road network details such as lanes and
the connectivities among lanes. Planar [13] and non-planar [10] representations have
been suggested, where the latter significantly improve on data maintenance. The
non-planar model captures the geo-location and topology of lanes. The topological
information consist of lane connectivities, of turn restrictions along lanes and at
points, and of impedance points. This information can then be used for constructing
a graph on which a search along the lanes can be performed. This paper extends this
line of work by constructively demonstrating how instances of such models can be
mapped to instances of an appropriate graph model. It also maps points of interest
and moving services users to these instances.

It should also be noted that modern “multi-purpose” Geographic Information
Systems [32], transportation-oriented systems [17], and an increasing number of
systems that offer route planing are related to this paper’s contributions. Such
systems rely on models of road networks for their functioning. However, these
models are generally proprietary and not available to the research community, or
they appear limited in their fidelity (e.g., they ignore lanes) and their intended uses,
in comparison to our proposal. This paper provides an expressive computational data
model for location-based services that is open to the research community, so that
further research may be built upon this model.

The paper is outlined as follows. Section 3 further elaborates on the addressed
problem. The two following sections present the two-dimensional and the graph
models of road networks and of static and moving data objects. This is followed by
a formal description of the transformation of the two-dimensional representation to
the graph representation in Section 6. Transformations that enable making graphs
more compact are presented in Section 7. Finally, Section 8 concludes and offers
directions for future research.

3 Application scenario

Our fundamental objective is to support mobile services that exploit location infor-
mation from the service users to deliver the desired functionality.

We assume that the movements of the service users are restricted to a road
network; and we assume the presence of two kinds of objects: moving and static. The
moving objects, which we term service users, are capable of continuous movement.
The static objects, all of which may be reached via the road network, are the objects
of interest to the service users, e.g., hospitals, gas stations, and exhibitions. We also
assume that the moving objects are on-line and may communicate their location to a
central server.

We anticipate that lane-level positioning will become possible and thus aim to sup-
port this level of accuracy in the framework. This positioning may be accomplished
via the Global Positioning System or the emerging Galileo positioning system, via the
wireless service infrastructure, via a combination of these, or via other means such as
in-road sensors. In particular, current radio positioning technologies are capable of
positioning accuracies of approximately 1 m. These technologies are close to being
sufficient for lane-level positioning on highways.
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According to the U.S. Department of Transportation, the overwhelming majority
of highways in the U.S. have lanes that are approximately 3.7 m (12 ft) wide [29]. A
receiver that is located at the center of such a lane and that is capable of providing
positioning with an accuracy of 1 m is very likely to allow correct lane identification.
This renders several, already existing technologies [2], [30] capable of providing
sufficiently accurate positioning for lane-based navigation in highway conditions. The
positioning in conditions different from highways—on roads with narrower lanes,
roads in urban areas, etc.—may be more challenging. However, other, emerging
positioning technologies [9], [12], [24] strive to provide positioning accuracies that are
similar or greater to the one described even under these more challenging conditions.

Next, radio positioning enhanced with information from various in-road sensors
hold the potential for enabling positioning at lane-level accuracy for lanes of
any width.

Finally we note that in practice, the accuracy of positioning depends also on the
map matching algorithms that map positions emitted by a positioning device to a
position in the road network.

The assumed setting allows the moving objects to use services that involve various
location-related queries about the objects in the road network, e.g., range queries, k
nearest neighbor queries, and reverse nearest neighbor queries, in addition to active,
continuous, and ranked (ordered) versions of these. For example, a user may issue a
query such as this: “display an up-to-date list of the three nearest, open pharmacies
within 6 km.”

To enable the processing of queries, appropriate representations of road networks
and moving and static objects are needed. As the moving objects are restricted to the
road network, the distances between pairs of objects have to be expressed in terms
of the road network—Euclidean distances do not suffice.

When designing a data model for representing this data, two properties attract
special attention, namely the efficiency with which queries may be processed against
the representation and the fidelity with which the mini-world may be captured using
the representation. Often, one must be traded for the other. A simple, low-fidelity
representation may be most amenable to efficient query processing. When increasing
the fidelity, more detail is captured, which leads to a more complex and voluminous
model that is less efficient for querying. To obtain both expressiveness and efficient
support for queries, we use two complementary and interrelated models, a two
dimensional and a graph model.

As an illustration, consider Fig. 1, which depicts a sample road network that
embodies a few of the aspects that the two representation must be capable of
capturing. This network illustrates some of the configurations of lanes possible in real
road networks. In particular, the network includes: bi-directional roads with several
lanes in each direction, the disappearance and an appearance of a lane due to local
traffic access to a highway, and the abrupt disappearance of lanes, i.e., a bi-directional
road turning into a single-directional road without reaching an intersection and a
road splitting into two.

The figure also illustrates different lane change restrictions. In the residential
areas to the right, there are no restrictions on lane changes and u-turns. However,
u-turns are not allowed on the bridge that crosses the highway (top right), and on the
highway, lane changes are prohibited from the access lane for local traffic.
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Fig. 1 Example road network

Figure 2a and b illustrate the two-dimensional and graph representations of this
network.

The first representation is two-dimensional in that it captures the approximate
geographic locations of the road network elements. A third dimension capturing
height can be easily added. However, as this adds little in the way of inherently
new challenges within this paper’s topic, we consider only two dimensions. This
representation, which is capable of capturing extensive detail, consists of line seg-
ments that represent (parts of) roads. This type of representation is required for our
scenario. Because the locations of mobile objects may be provided in (an equivalent
of) Euclidean coordinates, a correspondence between the roads and their locations
in Euclidean space is necessary in order for us to be able to place the moving objects
in the road network.

The bulk of the query processing occurs within the second representation, which is
a directed, weighted multi-graph. The graph is a multi-graph because it may contain
“duplicate” edges. In comparison to the two-dimensional representation, this graph
representation of a road network is completely separate from the geographic space
into which the road network is embedded.

It captures the topology of the road network. Put differently, it captures the
connectivity offered by the road network, i.e., the movement possible within the
network. Specifically, edges represent lanes in-between intersections along with their
movement directions, and they also capture the allowed movements at intersections.
Edge weights capture properties that influence movement. The graph representation



226 Geoinformatica (2008) 12:219–253

a   Two-Dimensional Representation b   Graph Representation

Fig. 2 Two-dimensional and graph representations of road networks

also includes relations that capture the possibilities of u-turns and lane changes
outside of intersections.

In keeping with its objective of being a computationally efficient basis for query
processing, the graph representation is a more abstract, structurally simple, and
compact structure than the two-dimensional one. The structural simplicity is due to
its use of only a few modeling constructs, each of which is very simple.

To summarize, the paper proposes to use two complementary representations
for supporting query processing in relation to location-based services. A two-
dimensional representation enables us to position geo-referenced objects in the
road infrastructure, and a graph representation is used for most of the actual query
processing. The actual uses of these representations in query processing is beyond
the paper’s scope.

Precise descriptions of the two representations and of a procedure for building a
graph representation that corresponds to a two-dimensional representation are given
in Sections 4, 5, and 6.

4 Two-dimensional representation

We begin the description of the framework by defining the two-dimensional (2D)
representation. In particular, we show how traffic regulations are captured.

The 2D representation captures the (approximate) geography of a road network,
of static and moving objects, as well as all other relevant data. It serves as the basis
for forming the subsequent graph representation, which is built as a transformation
of the 2D representation. The 2D representation and the transformation are utilized
when mapping data into the graph representation, since majority of locations are
expected to be given to us as geographical (Euclidean) locations.

4.1 Road networks

At the most abstract level, the 2D representation of a road network is given by a
two-tuple RN2D = (S, C), where S is a set of segments and C is a set of connections;
we consider these two elements next.
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4.1.1 Segments

Segments capture the approximate geography of roads. We capture a road by a zero-
width curve that represents the centerline of the road. This curve is represented as
a sequence of connected line segments where each line segment is given by a pair
of delimiting points. Such a sequence, which is called a polyline, can approximate
arbitrarily complex shapes of roads through adjusted lengths of their segments. The
combination of the delimiting points and the positions along the polyline segments
capture the embedding into geographical space of a road.

Segments also capture the traffic regulations that are associated with lanes. We
capture the division of roads into lanes and the associated horizontal demarcation
indicating the allowed movement from one lane to a neighboring lane. Examples of
these are markings in-between two lanes that prohibit movement between the two
lanes; that prohibit movement from one lane to the other, but not vice-versa; and
that do not restrict the movement (this can also refer to the absence of an explicit
demarcation, while the configuration of lanes is implied by other means, e.g., by
traffic signs).

We also capture traffic regulations that affect the movement of objects while they
stay within a lane. These may include speed limits, zones of increased danger, e.g.,
a zone with ongoing pavement repairs. These regulations are captured as all other
movement-affecting properties. We capture properties that affect movement if this
effect can be quantified. For example, the properties may be: the average traffic
congestion, the pavement wear-and-tear state, and a personal preference. These, and
a whole spectrum of other properties, can be quantified as conditions that hinder or
facilitate movement with respect to some nominal movement condition. The effects
of such properties are normalized over the network.

We proceed with a more formal definition of segments. A road segment s, or
simply a segment, is a four-tuple (ps, pe, l, prop). The first two elements belong to R

2

and are the start and end points of the segment. Element l = ((l−, l+), v) captures
the number of lanes in each movement direction and the connectivity between
neighboring lanes, i.e., whether it is allowed to change from one lane to another.
The last element is a set of properties that affect the movement along the lanes.

More specifically, ps = (xs, ys) and pe = (xe, ye), where ps �= pe, jointly denote the
delimiting points of s, and they specify location of all points p of the segment. Thus,
p ∈ s iff p ∈ {a(xe − xs, ye − ys) + (xs, ys) | a ∈ [0, 1]}.

Next, we capture the lanes of the segment by the element l = ((l−, l+), v), where
the absolute value of l− ∈ Z

−
0 denote the number of lanes in the es direction and

l+ ∈ Z
+
0 denotes the number of lanes in the se direction. We identify the lanes of a

segment by numbers, as follows. Lanes that allow movement from ps to pe, defined
as the se direction, are numbered 1, 2, 3, . . . , l+, with the numbering starting at the
leftmost lane (the lane closest to the opposite movement direction). Similarly, the
lanes that allow movement from pe to ps, defined as the es direction, are numbered
−1,−2, −3, . . . , l−. The value 0 is used for l+ and l− to capture the absence of a traffic
direction. For later use, we define the domain of all lane numbers for segment s as
Z

s = {i ∈ Z | l− ≤ i ≤ l+ ∧ i �= 0}.
Next, the set of pairs of lanes v captures the lane-change restrictions on a segment,

by capturing the changes between neighboring, or adjacent, lanes that are possible.
The change from the leftmost lane in one direction to the leftmost lane in the other
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Fig. 3 Road segment with
lanes and lane-change
restrictions

(1, 2), (2, 1)}

= {(–1, –2), (–2, –1),v

(1, –1), (–1, 1),
–2
–1

–3

2
1

direction, represents a u-turn. Set v thus contains the tuple (i, j) if a change from lane
i to lane j is allowed. Note that the changes between lanes can be asymmetric. Lanes
i and j are adjacent if j = i ± 1 or i, j ∈ {−1,+1} ∧ i �= j. Lane changes between non-
adjacent lanes are inferred from v by transitivity.

Example 1 Consider the example road segment in Fig. 3. The segment has two
lanes in the se direction and three lanes in the es direction. The lane numbering
is indicated along with example lane-change restrictions. Specifically, u-turns are
allowed from both travel directions, as are lane changes between the two first lanes
(i.e., numbers closest to 0) in each direction. We may imagine that the rightmost lane
in the es direction is for local traffic. In the figure, we thus have l+ = 2, l− = 3, and
v = {(1, 2), (2, 1), (1,−1), (−1, 1), (−1,−2), (−2,−1)}.

Finally, prop is a set of (property, value, lanes) tuples that capture properties
that affect the movement along a segment. The first element, property identifies a
property. The second element value belongs to R

+ and quantifies the effect on the
movement along the segment that the property has. Example of such properties
include an average traffic load and a driver’s personal preference. The intuition
is that the length of a segment is multiplied by the property values that apply to
the segment. Values between 1 and ∞ then slow down movement (they make the
segment “longer”), and values between 0 and 1 speed up movement (they make the
segment “shorter”). The third element specifies the set of lanes on the segment for
which the pair of a property and a value hold.

Example 2 Consider the 2D representation in Fig. 4. Table 1 provides information
about four segments from the figure, each of which has one lane in each movement

Fig. 4 2D representation
of a road network

L

C

A

B

Z
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Table 1 Example segments

s ps pe l prop

AB (4639,2481) (4714,1925) ((−1, 1), {(−1, 1), (1,−1)}) {(prsp, 0.67, {−1, 1})}
BZ (4714,1925) (4717,1599) ((−1, 1), {(−1, 1), (1,−1)}) {(prsp, 1.5, {−1, 1}),

(prbmp, 1.1, {1})}
ZC (4717,1599) (4906,1086) ((−1, 0),∅) {(prsp, 1, {−1})}
BL (4714,1925) (5128,1822) ((0, 1),∅) {(prsp, 1.2, {−1}),

(prdmg, 1.1, {1})}

direction. The property prsp captures the speed limits of the segments (in km/h). The
effect of the speed limit is normalized with respect to a nominal value of 60. Thus, the
speed limit is 90 on segment AB, 40 on BZ, 60 on ZC, and 50 on BL. Additionally,
the table indicates that segment BZ has several bumps in the se direction and that
BL has damaged pavement. These are represented by properties prbmp and prdmg,
respectively.

4.1.2 Connections

Connections are structures that connect segments. Each connection has a geo-
graphical position, captures which segments it connects, and records also the traffic
regulations that are imposed between lanes of the segments it connects.

The geographical location allows us to identify location of the physical entity,
e.g., an intersection, corresponding to a connection. In addition, the location may
be helpful in identifying the connected segments, by using the proximity of their
delimiting points to the location.

The set of connected segments captures the topology of the network. For example,
the set can indicate that two roads are connected although the delimiting points of
their corresponding segments do not coincide, or, conversely, it can indicate that
certain roads are not connected although the delimiting points of their corresponding
segments do coincide, e.g., on roads with lanes where one is above the other.

The traffic regulations imposed at a connection indicate the allowed movement
to/from a lane from/to other lanes on the connection.

In more precise terms, a connection c is a four-tuple (p, Sc, mx, id). The first
element p belongs to R

2 and denotes the geographical point location in two-
dimension space of the connection. A connection is typically located near or exactly
on the ending point(s) of one or more segments. As an example, consider Fig. 4,
where black dots represent connections. Some connections are labeled by capital
letters A, B, C, Z , and L.

The second element of a connection captures the set of segments that meet at
the connection. The segments that meet at connection c are referred to as the
connection segments of c and comprise the set Sc. For simplicity, we require that
all connection segments of a connection be delimited by the point location of that
connection. This requirement can be substituted with a requirement for a certain
proximity to the point location of c, e.g., it may be required that delimiting points of
connection segments are within a certain radius of a connection at which they meet.
In the figure, the connection with p = B has {AB, BL, BZ} as its second element.
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The third element mx of a connection is a connection matrix. It specifies for every
pair of a lane i of a segment s ∈ Sc and a lane j of a segment s′ ∈ Sc whether it
is allowed to move from lane i to lane j Note that s and s′ need not be different
segments. The matrix is given as a set of tuples, where a tuple indicates that it is
allowed to move over the connection from the lane in the first element of the tuple
to the lane in the second element, i.e., mx = {(s, i), (s′, j ) ∈ (Sc × Z

s) × (Sc × Z
s′
) |

it is allowed to move from lane i of segment s to lane j of segment s′}.
Connection matrices enable the capture of the specific traffic regulations that

apply at a connection. For example, it can capture prohibited/enforced turns at
intersections, allow u-turn at a separating line, indicate allowed transitions between
lanes at intersection areas where a road is widening or narrowing, or capture the
transitioning of lanes at places of splits and merges of roads.

Finally, the fourth element id is a unique value that is included to allow us to
reference connections.

Example 3 Consider the connection labeled B in Fig. 4. A connection matrix for
the connection is {((AB, 1), (BZ, 1)), ((AB, 1), (BL, 1)), ((BZ,−1), (AB,−1))}. It
indicates that it is allowed to move from the se lane of AB to the se lanes of BZ
and BL. It is also allowed to move from the es lane of BZ to the es lane of AB.
However, a left turn from BZ to BL is not allowed, i.e., ((BZ,−1), (BL, 1)) �∈ mx.

The regulations at a connection can have many configurations. However, every
configuration must be consistent: (1) for each lane that allows traffic movement into
a connection, there must be at least one lane that accepts the incoming traffic, and
(inversely) (2) for each lane that allows traffic movement out of the connection, there
must be at least one lane that provides the traffic.

Stated precisely, given a connection c = (p, Sc, mx, id) and a lane (s, l) ∈ Sc ×
Z

s on a connection segment, the following requirements correspond to the two
consistency requirements.

i > 0 ∧ pe = p
i < 0 ∧ ps = p

}
⇒ ∃(s′, j ) ∈ Sc × Z

s′
(((s, i), (s′, j )) ∈ mx) (1)

i < 0 ∧ pe = p
i > 0 ∧ ps = p

}
⇒ ∃(s′, j ) ∈ Sc × Z

s′
(((s′, j ), (s, i)) ∈ mx) (2)

Here, the left sides of the equations accommodate the two cases of segment and
connection alignment, namely the cases where either the start or the end point of the
segment is located at the connection.

Similarly, we require that (3) movement coming from a lane that starts at a
connection is prohibited, and that (4) movement to a lane that ends at a connection
is prohibited.

Example 4 Figure 5 depicts a fragment of a road network. Here s1, s2, and s3

are segments of a connection c = (p, Sc, mx, id). Bold and non-bold arrows in-
dicate lane configurations and allowed movements over the connection, respec-
tively. Figure 5a illustrates Eqs. 1 and 2. Here, segment s3 has two opposite lanes.
Thus, there must be at least one lane that receives traffic and one lane that
provides traffic over the connection for the lanes on segment s3. In the figure,
{((s3, −1), (s1, 1)), ((s2,−1), (s3, 1))} ⊆ mx. Figure 5b illustrates the third constraint.
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Fig. 5 Constraints imposed by
traffic regulations.
a Movement over the
connection that must be
present (thin lines). b and c
Movements over a connection
that must not be present
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Here, s3 has one lane, which starts at the connection. Thus, there should be no
allowed movement from (s3, 1) to lanes on s1 or s2. Figure 5c illustrates the similar
case for the fourth constraint.

Apart from the constraints that maintain the consistency of the model, the values
of a connection matrix are determined by the traffic regulations that apply to the
part of a road represented by the connection. A matrix may reflect regulations such
as “left turn not allowed,” “movement straight and right only”, and “do not enter.”

4.2 Storage efficiency

We note that efficient storage has not been a main consideration in the design of
the 2D representation. Rather, the objective has been to devise a rich represen-
tation of transportation networks at the lane level that may be used as a basis
for demonstrating how a complex road network may be represented by a graph
model. Consequently, a more storage-efficient representation can be envisioned.
For example, linear referencing techniques may be applied to the representation to
achieve higher storage efficiency [11].

We also note that computing and storage technologies advance rapidly. We may
well expect the vehicles of the future to be equipped with powerful computers with
ample storage available. (Current navigation systems already come with tens of
gigabytes.)

4.3 Data and query points

Location-based queries in a road network setting usually concern two types of
objects: moving objects (query points that capture mobile users), and static (data
points that capture stationary objects of interest) objects. For a query point, the key
characteristic that we capture is the most recent know position, i.e., the most recent
position sample, in the road network. Descriptive properties, as those captured for
static points, covered next, can also be introduced.

For stationary objects, we capture the points of their accesses to the network and
also descriptive properties. The points of access are positions within the network,
through which the objects are accessed (e.g., an entryway into a parking area). The
descriptive properties classify the objects with respect to search criteria. A more
formal definition follows.

A data point is an object of interest. It is characterized by a set of non-spatial prop-
erties and a set of locations as well as an ID. For a data point dp = ( prop, loc, id),
element prop is a set of properties that describe the data point. These properties may
be used in selection predicates of queries to identify the type or other characteristics



232 Geoinformatica (2008) 12:219–253

of an object. As our focus is on spatial aspects, we do not elaborate on these, but
rather leave prop as a placeholder for non-spatial properties.

Next, loc is the set of locations that may be associated with an object. Each location
lc in the set is a four-tuple (p, s, acc), where element p is a point and s is a segment
such that p is located on s. Together, these two elements provide the road network
coordinates of the location. The third element acc indicates the lanes from which the
object is accessible at the point of the segment, specifically acc ⊂ Z

s, i.e., it is a subset
of all lane numbers for the segment.

Last, the id of an object makes it possible to distinguish possibly multiple objects
with the same properties and at the same road network location(s). Multiple fast-
food outlets that are accessible through the same entrance into a parking area can be
an example.

The location of an object is determined by two factors: the location point’s
geographical location with respect to the location of the segment and by traffic
regulations imposed at the location point. This design reflects real-world road
settings in that a single object may be accessible from several road segments and
from specific lanes along them, e.g., a gas station at an intersection may be accessible
from two roads and only from the lane closest to the station of each road. Further,
a point of access may have traffic regulations that differ from those of the segment
with the point of access. For example, a shopping mall may have multiple entrances
where, at some entrances, it is allowed to access the mall by making a left turn, though
change of lanes in the direction of the left turn is not allowed at the point of access
on a corresponding segment.

Example 5 Consider the example in Fig. 4. The object marked by the pharmacy sign
has the property “open.” It has two entrances: one from BZ and one from BL. The
entrance on BL is from the only lane of the segment. However, a prohibited left turn
at the access point on BZ renders the object accessible only from one of two lanes on
the segment, i.e., the pharmacy can be described by the tuple ({ “pharmacy”, “open”},
{((4716, 1725), BZ, 1), ((4940, 1870), BL, 1)}, dp#000001).

Finally, query points represent the objects that issue queries. A query point qp =
(p, s, lane) is given by a point p located on a lane lane that belongs to a segment s.

4.4 Road and travel distances

In abstract terms, the movement of an object in a road network, termed a trajectory,
is given by a continuous curve in the space spanned by the geographical dimensions
and the time dimension. The projection of a trajectory onto the geographical space is
termed a path. During its movement, an object can move between segments, over
connections, and can change lanes. We will use the term stretch for a part of an
object’s path where the object stays in the same lane and also stays on the same
segment and does not move onto a connection. We can then represent any path as a
sequence of stretches.

A stretch is identified by a segment, a lane number, and a pair of delimiting
points. Specifically, a stretch is captured by a tuple str = (ps, pe, s, lane), where
ps, pe ∈ s specify, respectively, the start and an end of the stretch on the lane lane
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along segment s. The start and the end of a stretch implies the allowed direction of
movement on the stretch.

Next, a path pth is defined as a list of adjacent stretches [str1, . . . , strn] that satisfies
two properties: first, the path is continuous, i.e., the end point of stretch stri coincides
with the start point of the subsequent stretch stri+1; second, the path is traversable,
i.e., each lane in the path allows traffic in the direction in which it is used in the path
and each connection from one lane to another in the path allows movement from the
one lane to the other. The set of all paths in a road network is denoted Pth.

The road distance of traversing a path pth = [str1, . . . , strn] is the sum of the
Euclidean distances between start and end points of the stretches in the path list:

RD(pth) =
∑

stri∈pth

d(pi
s, pi

e) (3)

where stri = (pi
s, pi

e, si, lanei).
Given a stretch str = (ps, pe, s, lane) over segment s = (ps, pe, l, prop) and a set of

property values Valstr = {value|(property, value, lanes) ∈ prop ∧ lane ∈ lanes} that
affect the movement along the lane of the stretch, the travel distance of the stretch is
defined as the Euclidean distance between the start and end points, modified by the
properties of the lane:

TDstr(ps, pe) = d(ps, pe) ·
∏

val∈Valstr

val (4)

Given a path pth = [str1, . . . , strn], the travel distance of the path is the sum of the
travel distances of all stretches in the path:

TD(pth) =
∑

stri∈pth

TDstr(pi
s, pi

e) (5)

where stri = (pi
s, pi

e, lanei).
Building on these concepts, we define the road and travel distances from point

pa to point pb (or a distance between the two points) in a road network as the
minimal road and travel distances of a path between the two points. Formally, let
Pthab denote the set of all paths from pa to pb . Then the road distance from pa to
pb is RD(pa, pb ) = minpth∈Pthab (RD( pth)), and the corresponding travel distance is
TD(pa, pb ) = minpth∈Pthab (TD( pth)).

5 Graph representation

This section addresses first the modeling of a road network and then the modeling of
data and query points for the more abstract graph representation.

5.1 Road networks

The graph representation of a road network is defined as a three-tuple RNG =
(G, coE, chE), where G is a directed, labeled graph with loops and multiple edges,
coE is a binary, so-called co-edge, relationship on edges, and chE is a binary
relationship on edges, termed a change-edge relationship.
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Graph G = (V, E) is a two-tuple, where V is a set of vertices and E is a set of
edges. An edge e is a five-tuple e = (vs, ve, w, l, id), where vs, ve ∈ V is the start and
end vertex of the edge, respectively. Edge e can be traversed from the vs to the ve

only. Element w is the weight of the edge and represents the travel distance of the
part of the road network represented by the edge. Element l is the length of the
edge, capturing the actual length (or road distance) of the part of the road network
represented by the edge. Element id identifies the edge among other edges that have
the same start and end vertices.

As for the 2D representation, it is required that each vertex v has at least one
edge that ends at v (denoted an incoming edge of vertex v) and at least one edge that
starts at v (denoted an outgoing edge of vertex v). Thus, ∀v ∈ V (∃e1, e2 ∈ E ((v =
v1

s ) ∧ (v = v2
e ))), where ei = (vi

s, v
i
e, w

i, li, idi) for i = 1, 2.
A traversal through a graph normally starts and ends at a vertex, and it covers a

sequence of edges. However, because it is at times allowed for a vehicle moving in
a road network to make a u-turn, or to change lanes (and edges that correspond to
lanes), this simple scheme must be extended as shown next.

The co-edge relation coE ⊆ E × E captures pairs of edges that represent pairs
of lanes for which it is allowed to make a u-turn from the first lane of the tuple
to the second lane of the tuple. A u-turn can be made only to the opposing traffic
lane that is closest to the current traffic direction. Intuitively, a moving object may
jump from one edge in a co-edge relationship to the other edge in the relationship
without having reached a vertex. A moving object may overtake a car in front of it
by temporarily entering an oppositely directed lane if the pair consisting of the initial
lane and the oppositely directed lane belongs to the co-edge relation.

The change-edge relation chE ⊆ E × E captures pairs of edges that represent
pairs of lanes where it is possible to change from the first lane in the pair to
the second. Lane changes are restricted to lanes in the same traffic direction. The
intuition behind the relation is the same as for u-turns—that of a moving object
jumping from the first lane to the second without visiting a vertex.

The co-edge and change-edge relations are kept separate due to their different
semantics and their different usages during querying. We offer more detail on the
two relationships in Section 6.

Example 6 Consider the graph representation of a road network depicted in Fig. 6.
Example edges corresponding to the previously presented 2D representation are
denoted as follows: B′Z′ = (B′, Z′, 538, 326, e00000001), Z′B′ = (Z′, B′, 489, 326,

e00000002), and B′C′ = (B′, C′, 2560, 1280, e00000003). The edge B′Z′ is a co-
edge of the edge Z′B′ and vice-versa, i.e., {(B′Z′, Z′B′), (Z′B′, B′Z′ )} ⊆ coE .
Finally, edge D′E′

1 = (D′, E′, 650, 500, e00000004) and edge D′E′
2 = (D′, E′, 650,

500, e00000005) form a pair of change-edges. Assuming that the allowed change is
mutual, set changeE contains a tuple for each of the allowed changes.

5.2 Data points

Queries concerning data points issued against the graph representation are typically
interested in where a data point is located, rather than in whether it merely exists.
Thus, the essential characteristic that describes a data point in graph is its location.
A location is captured by preserving the semantics of the 2D representation, i.e., it is
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Fig. 6 Graph representation
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captured as a point in the graph. The location of a point is expressed in terms of graph
weight and Euclidean distance with respect to the start of an edge. The two measures
allow queries that concern Euclidean, or weighted, or both locations to immediately
determine these.

Additional characteristics of graph data points can be extracted using the associa-
tion with the 2D representation of the data point. The 2D representation includes
descriptive attributes that allow us to distinguish among different types of data
points, and it identifies the geographical location of a data point.

To be more specific, the set of data points in a graph G is denoted by DPG.
A data point dp = (e, posw, posl, id) is a four-tuple, where e = (vs,ve,w,l,id) is

the edge on which dp is located and elements posw and posl capture the weight and
length (travel and road distance) of the path corresponding to the section of the road
in-between the locations of vs and dp. Notice that posw ∈ [0; w] and posl ∈ [0; l], i.e.,
the data point cannot be located outside edge e. Finally, the id references the data
point in the 2D representation.

Example 7 Our example (Fig. 6) includes two graph representations of a single data
point that represents a pharmacy: ph_a = (B′Z′, 330, 200, dp#000001) and ph_b =
(B′C′, 438, 219, dp#000001).

5.3 Query point

A query point captures an object the location of which is capable of changing
continuously, and this location is the essential property of the object. The location
is essential for tracking, for providing real-time guidance, for identifying relevant,
time-dependent conditions, e.g., for identifying opposing traffic of moving objects.

Modeling of object locations at high fidelity requires knowledge of the location
continually as it changes. This, typically, entails location prediction, i.e., extrapola-
tion from sampled locations provided by a positioning devices and, possibly, from
statistical data. Put differently, the location has to be known from now on and into
the near future.

A query point is captured by a triple: qp = (e, posw, posl) where the elements of
the triple correspond to those used for data points (see the previous section) and
capture the location of the query point.
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Several comprehensive solutions exist for the modeling and tracking of mobile
objects [5], [6], [27], [31]. Coverage of these is beyond the scope of this paper.

6 Transformation

This section presents a mapping from the 2D model of a road network to the
graph model of a road network. This mapping constructively demonstrates how
it is possible to obtain an augmented graph representation from an existing 2D
representation.

We present the transformation as a set of mappings, each of which maps a
different part of a 2D representation to graph constructs. Transformations for road
networks, data points, and query points are provided. The combination of the
mappings provides a single, complete transformation t : RN2D → RNG of any 2D
representation to a corresponding graph representation.

6.1 Road network transformation

The road network transformation maps sets of 2D segments and connections to
sets of graph edges, vertices, change-edges, and co-edges. The general idea of the
transformation is to identify sequences of lane stretches, called chains, that can
be treated as single edges. Connections at the ends of chains are transformed into
vertices.

6.1.1 Chains

We define the concept of a set of chains that corresponds to a road network as a set
of paths with specific individual properties, where the paths cover the entire road
network, do not overlap, and are maximal. A path, pth = [str1, . . . , strn], is a chain if
it satisfies the following constraints:

1. Every stretch str of the path spans an entire segment. Specifically, the start and
end point of every stretch, denoted pstr

s and pstr
e , respectively, has to correspond

to a delimiting point of the segment on that the stretch lies. Such a segment is
called a corresponding segment of stretch str and is denoted sstr.

2. All stretches in pth must lie on the same lane. Thus, with lanei and lane j belonging
to stri and str j, respectively, we have: ∀stri, str j ∈ pth (|lanei| = |lane j|).

3. Adjacent stretches must have a corresponding segment each so that these
segments meet. Stated more precisely, adjacent stretches stri, stri+1 ∈ pth must
have corresponding segments sstri and sstri+1 such that a delimiting point of sstri

and a delimiting point of sstri+1 coincide at some connection. In addition, no other
segments must exist that start or end at this connection.

4. The connection between segment sstri and segment sstri+1 corresponding to adja-
cent stretches stri, stri+1 must allow movement corresponding to the lane-change
and u-turn restrictions on sstri and sstri+1 . For every pair of lanes (k, l) ∈ v of
segment sstri such that the movement along lane k is towards the connection, and
k and l are both positive or both negative, connection matrix mx must contain
entry ((sstri , k), (sstri+1 , l)). This case ensures that changes between lanes in the
same direction allowed on sstri are also allowed at the connection. Next, if k, l ∈



Geoinformatica (2008) 12:219–253 237

{−1, 1}, i.e., if k, l are of different signs, mx must contain entry ((sstri , k), (sstri , l)).
This case ensures that if a u-turn is allowed on sstri , a u-turn is also allowed at the
connection. Finally, corresponding constraints apply to segment sstri+1 .

5. Segments corresponding to adjacent stretches stri, stri+1 ∈ pth (connected by a
connection), must have identical property sets (meaning the same lane configu-
ration and the same lane properties), i.e., prop components of the corresponding
segments must be equal.

6. Path list must not contain repetitive stretches, i.e., ∀stri, strj ∈ch(i �= j⇒stri �=strj).

The first condition ensures that a path is at least as long as some segment, it identifies
building blocks of the path. The second condition ensures that the path stays on the
same lane over all stretches of the path. The third and the fourth conditions require
that there is no lane configuration change in the path (required for transformation
of segments into edges). The fifth condition ensures that the lane in a path can be
given the same weight per length unit in the graph representation. The sixth condition
eliminates the possibility of loops.

Example 8 Consider Fig. 4. Paths that satisfy the chain constraints may be delimited
by: (1) intersections of more than two roads, e.g., by the intersection at point C; (2) by
the end of a road, e.g., as depicted in right bottom part of the figure; and (3) changes
in road properties, e.g., at a connection delimiting stretches with different speed limit
on a lane, or a different lane configuration, as it happens at point Z (see Fig. 1 for
an illustration). In the latter situation, point Z delimits three paths: a path pthCZ that
covers a road with a single stretch, and two oppositely directed paths pthBZ, pthZB
that cover a road with two stretches in opposite directions (induced by two lanes in
opposite directions).

The set of chains describing a road network must posses two properties: each lane
of a segment in the road network is covered by exactly one chain, and no two chains
can be combined into one chain. For example, it is possible for a one-lane road with
the same properties through its entirety to be captured by multiple stretches. It is
then also possible for this road to be covered by different sets of chains. One such set
may contain a single chain for all stretches, while another may contain one chain for
each stretch. In this case, the last requirement above implies that the singleton set
is used.

For the chain ch = [str1, . . . , strn], we will use the term start and end connection,
denoted cs and ce, respectively, for the connection co-located with the start point of
str1 and end point of strn.

6.1.2 Connections to vertices

We map 2D connections to graph vertices and to so-called zero-edges (the set of such
edges is given by EC0 ⊆ E). The idea is to transform every 2D connection delimiting
a chain into a vertex if there are no movement restrictions over the connection. In
the case where movement restrictions are present at the connection, the connection
is represented by a structure of vertices and edges that preserve the movement
restrictions of the connection in the graph representation, without altering the results
of distance-related calculations in the graph.
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Before we detail the mapping, we introduce the notions of incoming and outgoing
segments for a connection c, denoted Sc

in and Sc
out, respectively. These are the

segments that have lanes allowing movement to (referred to as incoming lanes) and
from (referred to as outgoing lanes) the connection, respectively. Stated precisely,

Sc
in = {s ∈ Sc | ∃ls ∈ Z

s ( ∃(s′, ls′) ∈ Sc × Z
s′

(((s, ls), (s′, ls′)) ∈ mx))}
Sc

out = {s ∈ Sc | ∃ls ∈ Z
s ( ∃(s′, ls′) ∈ Sc × Z

s′
(((s′, ls′), (s, ls)) ∈ mx))}

The first formula captures the segments s that have at least one lane ls from which it is
allowed to move over the connection to a lane ls′ of a segment s′. The second captures
the segments s that have at least one lane ls onto which movement is allowed over the
connection from a lane ls′ of a segment s′. Note, that the two sets may overlap and
that their union is equal to Sc.

Example 9 With the movement directions on segments s1, s2, and s3 given by the
arrows in Fig. 7b, the sets of incoming and outgoing segments for connection c are
Sc

in = {s1, s2} and Sc
out = {s1, s2, s3}.

With these definition in place, we first map a connection to a single vertex if the
connection allows movement from each of its incoming lanes to each of its outgoing
lanes. The set of all such connections is denoted Cs and is formally defined as follows:

Cs = {
c ∈ C | c = (p, Sc, mx, id) ∧ ∀ ((sin, lsin), (sout, lsout )) ∈
(Scin × Z

sin) × (Scout × Z
sout ) (((sin, lsin), (sout, lsout )) ∈ mx ) ∧ P(c)

}
,

where predicate P(c) ensures that connection c is the start or end connection of some
chain. Specifically, P(c) = (∃ch ∈ Ch(c = cs ∨ c = ce)), where cs and ce is start and
end connection of chain ch.

The formula requires that each possible pair of an incoming lane and an outgoing
lane of the connection belong to the connection matrix mx, i.e., that mx allows
movement from the former lane to the latter lane. The transformation of connections
into single vertices is thus a one-to-one mapping that creates one vertex in VCs

for
each connection in Cs:

tCs : Cs → VCs

where VCs ⊆ V.
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Example 10 Considering again Fig. 7, connection c is transformed into a vertex
v as presented in Fig. 7c, if and only if movement is allowed from every
incoming lane of the connection to every outgoing lane, i.e., if no restrictions
are posed on the movement over the intersection. Specifically, given the allowed
movement depicted in Fig. 7a and assuming that c is the start connection of
s1, s2, and s3, connection c belongs to Cs iff the connection matrix mx con-
tains six tuples corresponding to the six arrows indicating the allowed move-
ment over the connection, i.e., mx = {((s1,−1), (s1, 1)), ((s1, −1), (s2, 1)), ((s1,−1),

(s3, 1)), ((s2,−1), (s2, 1)), ((s2,−1), (s1, 1)), ((s2, −1), (s3, 1))}.

Next, a connection is transformed into multiple vertices if the movement from
at least one incoming lane to at least one outgoing lane is not allowed. These
connections are given as follows:

Cm = {
c ∈ C |c = (p, Sc, mx, id) ∧ ∃ ((sin, lsin), (sout, lsout )) ∈
(Sc

in × Z
sin) × (Sc

out × Z
sout ) (((sin, lsin), (sout, lsout )) �∈ mx)∧P(c))

}
.

The formula requires a connection to have an incoming lane and an outgoing lane
such that the pair does not belong to the mx of the connection, i.e., such that mx does
not allow movement from the former to the latter.

The goal of the transformation of a connection into multiple vertices is to precisely
capture the movement allowed on the connection. This is achieved by modeling every
lane of every connection segment as a separate vertex, and by introducing additional
edges, one for each allowed movement direction over the connection.

Multiple vertices for a connection are generated by a mapping that generates one
vertex for each (connection, segment, lane) triple. Here segment and lane identify a
lane, while connection specifies either the start or the end of the lane. Thus, vertices
for lanes are generated by a one-to-one mapping that generates one vertex from
every lane of every connection segment for a given connection:

ν : Cm × Sc × Z
s → VCm ,

where VCm ⊂ V.
Vertices that represent the same connection are connected by edges of zero

length and weight, called zero-edges. Specifically, zero-edges in the graph form the
following set:

EC0 = {(vs, ve, 0, 0, id) ∈ E | ∃c ∈ Cm (c = (p, Sc, mx, id) ∧ (∃(s, ls), (s′, ls′) ∈
Sc × Z

s (((s, ls), (s′, ls′)) ∈ mx ∧ vs = ν(c, s, ls) ∧ ve = ν(c, s′, ls′))))}.
The definition requires that the start and end vertices of a zero-edge are mapped

using the function ν from an incoming and an outgoing lane of the same connec-
tion, respectively. This connection must allow movement from the incoming to the
outgoing lane.

Then the transformation of a connection c into multiple vertices produces one
vertex for each lane of incoming and outgoing connection segments of c, and into a
set of corresponding zero-edges:

tCm : Cm → 2VCm × 2EC0
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The sets Cs and Cm comprise all transformation-relevant connections—the remain-
ing connections are inside chains and are captured “within” edges. The set of all
vertices V is the union of the two sets of vertices VCm

and VCs
. In conclusion,

the connections in C are transformed to the graph representation by mappings tCs

and tCm
.

Example 11 Assume that left turn and u-turn over the connection c are not al-
lowed for vehicles coming from segment s2 (see Fig. 7). This requires transfor-
mation of the connection into multiple vertices and zero-edges. Vertices created
for each incoming and outgoing lane, i.e., for each triple (c, s1, −1), (c, s1, 1),
(c, s2,−1), (c, s2, 1), (c, s3, 1), form a set VCm

i ⊂ VCm
with five vertices.

Next, the vertices are connected by zero-edges, as depicted in Fig. 7d. Specifically,
edges e02, e03, and e04 connect the vertex of the incoming lane of s1 to the vertices of
the outgoing lanes of s1, s2, and s3. Further, the single zero-edge e01 connecting the
vertex of the incoming lane of s2 with the vertex of the outgoing lane of s1 effectively
captures the prohibited left turn and u-turn. The four zero-edges introduced form
the set EC0

i ⊂ EC0.

6.1.3 Segments to edges

We proceed to map lanes of segments to edges and to create appropriate co-edge
and change-edge relationships. We also maintain an auxiliary data structure the maps
each edge to the lane it represents. This mapping is needed during graph refinement
(as presented in Section 7) and is subsequently discarded. If no refinement is
intended, the mapping can be disregarded.

The idea is to represent each chain by a single edge. Additionally, pairs of edges
are registered as co-edges if the corresponding pairs of chains allow u-turn from
the lane corresponding to the first chain to the lane corresponding to the second
chain. Analogously, pairs of edges are registered as change-edges if the lanes of the
corresponding pairs of chains allow lane change from the lane corresponding to the
first chain to the lane corresponding to the second chain.

The transformation of chains is a one-to-one mapping: tch : Ch → Ech, where
Ech ⊆ E. The transformation maps each chain ch to an edge e = (vs, ve, w, l, id) as
follows:

– vs, ve derive from the mapping of the start and end connections cs and ce of chain
ch. The mapping differs for connections mapped to single vertices versus connec-
tions mapped to multiple vertices. The mapping particular to each connection is
accomplished by a function f : C × Ch → V that identifies a vertex corresponding
to a given connection c = (p, Sc, mx, id) and chain ch:

f (c, ch) =
{

tCs
(c) if c ∈ Cs

ν(c, f ′(c, ch)) if c ∈ Cm (6)

where f ′(c, ch) = {(s, ls)|s ∈ Sc ∧ ls ∈ Z
s ∧ ls ∈ ch}; note that card( f ′(c, ch)) = 1.

Then we let vs = f (cs, ch), and ve = f (ce, ch).
– w is equal to the travel distance of the chain ch, i.e., w = TD(ch).
– l is equal to the road distance of the chain ch, i.e., l = RD(ch).
– id is a unique identifier.



Geoinformatica (2008) 12:219–253 241

Each edge e ∈ Ech is also mapped to the lane number of the stretches in the chain
from which the edge was transformed.

Let e and e′ be the edge generated for chain ch and ch′, respectively. An element
(e, e′) is inserted into the coE relation if ch′ captures a lane accessible from the lane
captured by ch, and if the stretches in ch are aligned in the opposite direction than
stretches in ch′. Next, an element (e, e′) is inserted into the chE relation if chain ch′
captures a lane accessible from the lane captured by ch and edges e and e′ allow
movement in the same direction.

Example 12 The left part of Fig. 8 depicts a fragment of the road network shown in
Fig. 4, with the addition of bigger circles that mark the delimiting points of chains.
Assume that the depicted segments have the properties presented in Table 1. Then,
the example captures chains chCZ, chBC, chBZ, and chZB. Moreover, assume that the
connection at point B does not allow movement from the segment ZB to the segment
BL. Then the chain chBC = [strBL, strLN, strNM, strMC] (here, e.g., strBL denotes the
stretch from B to L on the only lane of the particular road) is transformed into
an edge B′

3C′ = (vs, ve, w, l, id) where vs = ν(B, f ′(B, chBC)) = B′
3, ve = tCs

(C) =
C′, w = TD(ch), l = RD(ch), and id = e00000003). Similarly, the chains chBZ and
chZB are transformed into edges B′

2Z′ and Z′B′
1. Additionally, (B′

2Z′, Z′B′
1) and

(Z′B′
1, B′

2Z′) are inserted into the coE relation to indicate that u-turn is allowed in
both directions.

6.2 Data point transformation

The next step is to transform 2D data points into graph data points. The idea is to map
every location of a data point in 2D into a separate data point in the graph. Because
a 2D data point can have several locations and can be accessible from several lanes
at every location, a single 2D data point may have several corresponding data points
in the graph.

First, recall that a data point in the 2D representation is a tuple dp = ( prop,

loc, id). Every location lc = (p, s, acc) in the set loc of the tuple can be accessed from
multiple lanes; thus, a single location can produce a set of graph data points. This is
handled by the mapping tLoc : DP2D → 2DPG

. Specifically, a 2D location and a lane
l ∈ acc is mapped to a graph data point dp = (e, posw, posl, id) as follows:

– Edge e corresponds to the chain ch capturing a lane l from which the object is
accessible. (Thus, e = tCh(ch).)

Fig. 8 Chains of segments
transformed into edges
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– The position according to length, posl , is defined based on the chain ch that
corresponds to the edge e. The position is the road distance of traversing the part
of ch from its start to the location of the data point. Let ch = [str1, . . . , strk, . . . ,

strn], such that strk starts at point pk
s and stretches over segment s, additionally

let ch′ = [str1, . . . , strk−1]. Then posl = RD(ch′) + d(pk
s , p).

– The position according to weight, posw, is the sum of the travel distance of path
ch′ (defined above) and the travel distance of the segment’s residual, i.e., posw =
TD(ch′) + TDstr(pk

s , p).
– Element id refers to the id of the 2D data point.

Example 13 Consider the pharmacy located close to two roads in Example 5. The
pharmacy is described by a tuple ({“pharmacy” , “open”}, {((4716, 1725), BZ, 1),

((4940, 1870), BL, 1)}, dp#000001). It thus has two locations, each of which
has one lane. The element id references the 2D data point. The resulting graph
representation of the pharmacy consists of pha = (B′Z′, 330, 200, dp#000001) and
phb = (B′C′, 438, 219, dp#000001).

6.3 Query point transformation

We conclude the transformation procedure by mapping 2D query points to graph
query points: tqp : qp2D → qpG. Recall that a 2D query point is captured by a sam-
pled position: a point, a segment, and a lane, i.e., qp2D = (p, s, lane). A graph query
point is modeled by a weight and length along an edge, i.e., qpG = (e, posw, posl). The
edge e, the position according to length posl , and the position according to weight
posw are defined similarly to the corresponding definitions for graph data points.

7 Refinement of the graph representation

Our graph data structure includes two non-traditional aspects: it allows multiple
edges between pairs of vertices, and it captures so-called lateral connectivities
between edges. The objective of refinement is to simplify the graph representation of
a road network so that it differs only little from that obtained when using a classical
directed, weighted graph. In addition, the refinement aims to minimize the size of a
graph. The simplifications possible depend on the intended uses of a graph. We say
that simplifications must preserve the use-specific semantics associated with a graph.
We require to preserve lanes in the reminder of the section.

7.1 Use-imposed limitations on refinement

We proceed to examine use scenarios for the graph representation to obtain insight
into the semantics that the representation carries for these uses. Our target uses
include routing, transportation simulation, and tracking.

In route search, also called routing, the objective is to determine a route in a graph
from one graph location to another. The route is a collection of edges and lateral
movements between them that yield a traversal from the source to the destination.
The shortest traversals are often of particular interest. This use poses a requirement
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for the accurate capture of lane information in the graph representation, as different
lanes in a traversal imply different routes.

Next, in transportation simulation, the movements of objects in a transportation
network are simulated. The objects are assumed to adhere to the traffic regulations—
to follow lanes and make turns only where they are allowed; and to adhere to simple
physical constraints—e.g., to change lanes when overtaking another object instead of
moving over/through the object in front. A primary use of simulations is to capture or
model object movement in the graph representation in order to perform calculations
over their location, e.g., to predict congestion based on the prediction of the future
positions of objects, or for verifying hypotheses about transportation networks by
realistic simulations. Such realistic simulation needs positioning at the granularity
of lanes.

Finally, in tracking of moving objects, two positions for each object are of interest:
the actual position and the position as believed by a central server. An object
positions itself in the 2D representation. The server predicts the position of an object
by means of the most recent information received from the object and a prediction
strategy; and the object is aware of this prediction. The object then issues an update
to the server when the server prediction degrades, thereby meeting an accuracy
guarantee on the server side. Tracking can be performed at both the granularity of
roads and lanes. Using the latter allows to address a broader range of issues.

In order to reduce the size of a graph, we apply a procedure that iteratively
attempts to apply two types of modifications.

7.2 Refinement procedure

A graph element is superfluous if the same semantics can be expressed without the
element.

Consider a change of a property from pr′ to pr′′ on some lane of a road. Presented
graphically, Fig. 9 schematically captures a part of a road network where, first, a
stretch of a two-way road meets a stretch of a one-way road. These two then merge
into a single road with three lanes and then they split into two roads. Each traffic
lane in the 2D representation (a) is depicted as an arrow with a label. Digits capture
the numbers of lanes. Lanes with label pr (lanes −1, −2) have the same property
set, while labels pr′ and pr′′ indicate a change of properties on a lane (lane 1).
Additionally, it is allowed to make a lane change from lane −1 to lane −2, as
indicated by the two lane-change restriction sets v ((a) bottom). The transformation
of the 2D model yields a graph (b) that depicts each (part of a) lane as an edge
with an annotation that captures the weight of the edge. The figure also uses
non-connected arrows to capture the change-edge relationships. The refined graph

a   2D Indicating Properties of Lanes and 
Lane Change Restriction

b   Corresponding Graph with Change- 
Edge Relations and Weight Expressions

c   Graph With Unnecessary Elements 
Eliminated

Fig. 9 Transformation example allowing for unnecessary edges and vertices
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a   Initial Graph b   Result of Refinement

Fig. 10 Lateral merge of edges

(c) eliminates unnecessary elements: it merges consecutive edges ((c) top) and
removes an unnecessary zero-edge ((c) bottom).

Superfluous edges and vertices are removed by a refinement procedure that
identifies them, eliminates them, and thus compacts the graph. The result of the
refinement is a smaller graph that retains all semantics.

The refinement process starts by scanning the original graph in RNG for patterns
consisting of a subgraph, called source subgraph, and of a subset of lateral connec-
tivities. Upon encountering a pattern in the graph, the source subgraph is replaced
by a more concise target subgraph, and corresponding adjustments are made to
lateral connectivities. The process is iterative, i.e., the outcome of a process iteration
produces a graph that can possibly be refined.

The naive strategy to multi-graph refinement is to identify as a pattern a subgraph
with edges that have the same weight/length ratio and that all have the same pair of
start and end vertices, i.e., edges that represent different lanes on the same stretch of
a road. The edges in the source subgraph are then merged into one edge (see Fig. 10).
This strategy is useful when graphs are used for distance calculation which, generally,
tolerates laterally merged lanes. This naive strategy is, however, not acceptable due
to our constraint of preserving lane data.

We proceed to consider two refinements: merging of edges that represent the same
lane on adjacent stretches of a road (consecutive merges), and an elimination of
zero-edges.

7.2.1 Transformation of zero-edges

The transformation of zero-edges simplifies a graph by replacing a connected sub-
graph of zero-edges (i.e., the edges with their delimiting vertices) by a subgraph of
one vertex. This transformation maps one graph to another

Technically, the idea is to reuse the mechanism that transforms a geographical
connection and its connection segments into a single graph vertex. The difference
is that the mechanism is now applied to a subgraph of zero-edges (as if it were a
connection) rather than to a connection.

The transformation of zero-edges takes a subgraph of zero-edges (subgraphs G′
and G′′ in Fig. 11) as argument. The vertices in this subgraph function as either sinks
or sources: the end vertices of the zero-edges are the sinks, and the start vertices are
the sources. It is required that every sink of the subgraph is connected to every source
of the subgraph. Such a subgraph can be mapped into a single vertex. The non-zero-
edges that used to start or to end at the sinks and the sources are modified so that
they start and end at the single vertex.

The refinement described is most likely to be applicable on roads with few lanes
in total, stretches with an increase/decrease in the number of lanes, and laterally
separated parts of wider roads.
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a   Initial Graph with Superfluous Edges b   Result of Refinement

Fig. 11 Transformation of zero-edge subgraphs

7.2.2 Merging of consecutive edges

The basic idea in this section is to merge two edges with a zero-edge located
in-between them into a single edge. This idea is used to define patterns and cor-
responding transformations called merges of consecutive edges, or a consecutive
merges.

The source subgraph of the consecutive merge pattern has three parts: a left
subgraph GL, a set of connecting zero-edge(s) G0, and a right subgraph GR (note that
“left” and “right” are terms used for reference only). The left and the right subgraph,
consists of non-zero-edges. Vertices of the connecting zero-edges lie in the left or in
the right subgraph. The lateral relationships of the consecutive merge pattern are
captured by co-edge coELR and change-edge chELR relations between edges in GL

or GR. Additional constraints differ between patterns (described further).
The refinement constructs a target subgraph by a function that maps the original

subgraphs to the target subgraph: r : GL ∪ G0 ∪ GR → G′. It also maps from a subset
of the co/change-edge relation to the target subset of the relation: r : 2coELR → 2coE ′

,
r : 2chELR → 2chE ′

. The refinement removes all original lateral relationships in coELR

and chELR from the set coE and chE and, instead, adds the refined relationships in
coE ′ and chE ′.

The edges in the target subgraph G′ are constructed and then added to RNG.
Whenever an edge is created in G′ by the refinement (by merging edges in the
source subgraph), the edge gets a length and weight that correspond to the sum
of the lengths and weights of the edges that it is created from. The edge also gets
a unique identifier. The source subgraph edges used for the creation of new edges
are discarded. The auxiliary edge-to-lane mapping, described in Section 6.1.3, is also
updated with a mapping of the new edge to its lane number (the lane number of
the edges that is was created from). This preserves the consistency of the graph
representation and allows the created edges to take part in patterns.

Note that when it is possible for a (moving) query point to be located on an
edge that is being consolidated during refinement, the refinement mapping must be
preserved. This is needed in order to map the query point from its location in the
2D representation to its location on an edge in the refined graph representation.
Alternatively, consecutive merge refinement should not be performed. The same line
of reasoning applies to data points.

Basic Patterns A constraint common to all basic patterns requires that the graph of
the connecting zero-edges is a connected graph.
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The patterns and their mappings to targets are presented in terms of subgraphs
and lateral relations:

– A one-way pattern involves left and right subgraphs that contain edges v1v2 and
v3v4 (we use vivj as a shorthand for an edge that starts at vertex vi and ends at
vertex vj), such that the edges participate in no lateral relationships. They have
equal weight per length unit and it is possible to get from the left edge to the
right by a connecting zero-edge v2v3—see Fig. 12a.
The refinement substitutes (by merging) the two edges and the zero-edge with a
newly created edge v1v4.

– A two-way single access pattern involves a left and a right subgraph that each
consist of a pair of edges that participate in a single co-edge relationship—see
Fig. 12b. The co-edge relation for the left and for the right subgraph consists of
tuple (v3v4, v2v1) and (v7v8, v6v5), respectively. Connecting zero-edges form a set
{v5v2, v4v7, v4v2}. The first two of these elements indicate the continuity of lanes,
and the last element mirrors the co-edge relationship.
The refinement merges edges v6v5 and v2v1 that capture parts of the same lane
into a single edge v6v1. Similarly, edges v3v4 and v7v8 are mapped to an edge v3v8.
Tuple (v3v8, v6v1) captures refined co-edge relationship for the subgraph.

– A two-way mutual access pattern is identical to the two-way single access pattern,
with a few differences. The differences indicate mutual lateral connectivity:
the source left and right subgraphs each participate in additional co-edge re-
lationships (v2v1, v3v4) and (v6v5, v7v8)—see Fig. 12c; the additional zero-edge
v5v7 belongs to the connecting zero-edges; the refined coE relation contains the
additional tuple (v6v1, v3v8).

– A one-way single access pattern, shown in Fig. 12d, is mapped similarly to how
the two-way single access pattern is mapped. The differences are due to the two
lanes being in the same direction. Thus, edge v6v5 and v2v1 becomes v5v6 and
v1v2, respectively; zero-edge v4v2 becomes v4v5; and the co-edge relationships
become change-edge relationships. With these adjustments, the mapping for the
two-way single access pattern is used.

– A one-way mutual access pattern, shown in Fig. 12e, is mapped similarly to how
to the two-way mutual access pattern is mapped. As above, differences occur
because the two lanes have the same direction. As a result, edge v6v5 and v2v1

becomes v5v6 and v1v2, respectively; edges v1v2 and v5v6 must correspond to
the same lane in the road network (as recorded in the edge-to-lane mapping),
and edges v3v4 and v7v8 must also correspond to the same lane in the road

a   One-Way b   Two-Way Single Access c   Two-Way Mutual Access

d   One-Way Single Access e   One-Way Mutual Access

Fig. 12 Patterns for consecutively merge
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network; zero-edge v4v2 becomes v4v5 and zero-edge v5v7 becomes v2v7; and
co-edge relationships become change-edge relationships.

Example 14 Consider the highway exit depicted in Fig. 13. In this example, there are
no entrances/exits for the traffic that travels in the opposite direction. In this case,
a graph representation of the road may contain the one-way mutual access pattern.
The left and the right subgraph GL and GR of the pattern contains edges v4v3, v8v7

and v2v1, v6v5, respectively. The connecting zero-edges v3v2, v3v6, v7v6, v7v2 form a
connected graph G0. Also, the lateral connectivity of the pattern includes change-
edge relationships (v2v1, v6v5), (v6v5, v2v1), (v4v3, v8v7), (v8v7, c4v3). The pattern
graph and its change-edge connections are substituted by a new subgraph G′ and
a reduced set of change-edge relationships as depicted in Fig. 13b.

7.2.3 Composite patterns

The patterns considered in the previous section can be combined to form composite
patterns, also called complexes, that can also be refined.

A complex can consist of an arbitrary number and of arbitrary types of patterns.
It is not practical to enumerate the possible complexes and then present a mapping
for each. Instead, we give an iterative procedure for identifying complexes in a
graph. Following that, we explain how to reuse the mappings of basic patterns when
producing the mapping of a complex obtained via the iterative procedure.

1. Identify a basic pattern where some of the edges of the pattern are laterally
connected to edges outside of the pattern and name it the current pattern.

2. Identify current pattern edges that are laterally connected to the remainder of
the graph and name them boundary edges. If no new boundary edges are found,
skip Steps 3 and 4.

3. For each pair of boundary edges that capture the same lane, determine whether
they form a pattern with laterally connected edges that are not part of the current
pattern; each such pattern is an iterative step pattern.

4. For each iterative step pattern, substitute the current pattern with the union of
the current and of the iterative step patterns and goto Step 2.

5. Check that the connections of the current pattern to the remainder of the
graph do not prevent refinement (as presented in Section 7.2.4). If preventing
connections are present, set the current pattern to the empty set.

6. The current pattern is empty or contains the identified pattern.

The procedure starts by identifying a basic pattern. It then attempts to grow
the pattern by identifying one or two patterns that are “adjacent” to the initial,

Fig. 13 Refinement of a basic
pattern

a   One-Way Mutual Access Pattern b   Refined Graph Representation
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current pattern and by adding the identified patterns to the current one, i.e., the
initial, current pattern is substituted with the pattern that is constructed by including
all elements of the current and of the identified patterns. The substituted pattern
is grown during further iterations until no additional adjacent patterns can be
identified. Next, connections between the substitute pattern and the remainder of
the graph are examined to determine whether the substitute pattern is suitable for
refinement. This examination is elaborated upon in Section 7.2.4. If the substitute
pattern is suitable for refinement, it is identified as a pattern. The identified pattern
is either empty, a basic pattern, or a complex.

Example 15 We consider the identification of a complex pattern in the graph shown
in Fig. 14a. Assume that the first step has identified the basic two-way mutual
access pattern. Two of its edges, v12v11 and v10v9, are laterally connected to the
two edges v8v7 and v6v5 that are not in the pattern. We find that the four edges
form the basic one-way mutual access pattern. According to the procedure, the
two patterns are united into one that is then used as the initial, current pattern in
the next iteration. That iteration finds a one-way single access pattern and includes
this in a final current pattern composed of edges v4v3, v2v1, v8v7, v6v5, v12v11, v10v9,
v13v14, v15v16 (see Fig. 14b). Without presenting the examination (to be covered in
Section 7.2.4), we state that the final current pattern has no connections that prevent
it from refinement and, thus, it is an identified pattern. The identified final pattern is
a complex.

The mapping of a complex pattern combines the mappings of the basic patterns
that the complex pattern contains. The initial pattern and the patterns of the iterative
step are basic patterns. For each of these patterns, we apply the corresponding
mapping. In addition, we ensure that no duplicate edges are produced, i.e., we do not
allow the same pair of source edges to be mapped to two different edges in different
basic pattern mappings.

Example 16 Consider Fig. 14. We refine the complex pattern in Fig. 14b by apply-
ing the refinements of basic patterns to the initial pattern and the iterative step
patterns. Thus, the two-way mutual access pattern refinement is applied to the
initial pattern that is formed of the left and right subgraph GL and GR contain-
ing v10v9, v13v14 and v12v11, v15v16 respectively, of zero-edge subgraph Z 0 contain-
ing v11v10, v11v15, v14v10, v14v15, and of four corresponding co-edge relationships. A

a   Iterative Step of Identifying a Pattern b   Maximal Identified Pattern c   Refined Pattern

Fig. 14 Iterative identification and refinement of a complex pattern
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consecutive iterative step pattern is refined according to the one-way mutual access
basic pattern refinement. The last refinement is that of the one-way single access
pattern. The refinements of the iterative step and of the initial pattern both map
edges v12v11, v10v9 to a refined edge v12v9. The edge is created by only one of the two
mappings.

A complex may have arbitrary size and structure. However, in practical applica-
tions to real road infrastructures, we may expect that a single complex groups at most
one two-way access pattern and several one-way single/mutual access patterns. Such
complexes occur when modeling multi-lane portions of roads, which are common on
highways, on main arteries of urban areas, and on approaches to traffic interchanges.

7.2.4 Connections between patterns and their surroundings

In Section 7.2.2, we described basic patterns consisting of a zero-edge subgraph
G0 and left and right subgraphs, GL and GR. We assumed that the patterns were
connected with the surrounding graph at the ends of GL and GR. Specifically, the
vertices of GL and GR that are not in G0 may delimit edges that are not in the
subgraphs.

Here, we explore the possibility of allowing patterns with additional connections
to their surroundings. In particular, we consider two types of connections of a pattern
to the surrounding graph. First, the zero-edge graph G0 may be connected to other
subgraphs by zero-edges that do not belong to G0. Second, edges of the left and the
right subgraphs GL and GR may be laterally connected to edges that are not in GL

and GR.
In case of the first type of connection, refinement is not possible. Refining such

a subgraph would result in “dangling” zero-edges, i.e., zero-edges exist that are
connected to vertices in G0 that would be eliminated by the refinement.

Also, subgraphs with the second type of connection are not refinable. Refining
such a subgraph would result in “partial” lateral connectivity, i.e., an edge exists
outside the subgraph to be refined that would be laterally connected to only part
of an edge that is created by the refinement. Such partial lateral connectivity is not
possible in the graph model.

Example 17 Consider the two patterns in the graph in Fig. 15. First, the subgraph G0

of the simple pattern is connected to the surrounding graph by a zero-edge that does
not belong to G0 (this zero-edge connects to the start of an exit lane). The pattern
cannot be refined to a single edge as the connecting zero-edge would be left with a
dangling start.

Fig. 15 Pattern connection
to the graph
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Further, the simple pattern has a lateral connection to the complex one. This also
prevents refinement of both patterns. It is not possible to capture in the graph model
that parts of edges are laterally connected. Specifically, it is not possible for parts of
the potential edges v13v16 and v17v20 to be connected laterally.

Last, both patterns are consecutively connected to edges at their vertices that are
not in their G0 subgraphs. These connections do not affect refinement as the vertices
are not modified by any presented refinements.

In summary, we observe that subgraphs with connections other than at their
“ends” are not refinable. This explains the choice of basic patterns in Section 7.2.2.

8 Summary and future work

This paper proposes a modeling framework that is intended to serve as a foundation
for the provisioning of high-quality, location-based services for road-network con-
strained mobile users. The framework includes a two-dimensional representation of
a transportation network, a graph representation of a transportation network, and
a mapping of instances of the former to instances of the latter. The framework also
enables the capture of data and query objects.

While the graph representation is compact and is well suited as a basis for the
processing of many types of queries, the two-dimensional representation captures
the geographical locations of networks and objects, which are necessary for tasks
such as the positioning of objects with Euclidean coordinates within a transportation
network, known as map matching.

The paper makes three main contributions. The first is the two transportation
network representations that are part of the modeling framework. The first repre-
sentation enables the accurate capture of key aspects of a transportation network.
Specifically, the representation enables the capture of lanes and the associated lane-
change regulations and u-turn regulations along roads; and it enables the capture
of turn restrictions, such as “no left turn” and “no u-turn,” at intersections. The
representation also captures static objects, e.g., so-called points of interest, with
multiple accessibility points and movement-capable objects, e.g., service users, at
lane resolution. In addition, the model supports the capture of travel distances
and travel times. This detailed level of modeling is increasingly relevant because
advances in positioning technologies are slated to enable the positioning of vehicles
within lanes. The second representation is a simple directed graph data structure that
embodies two non-traditional aspects: it is a multi-graph, and it captures so-called
lateral connectivities between edges by means of lateral connectivity functions. These
capture the possibilities of making u-turns and lane changes.

The second is the mapping from the rich representation to the graph represen-
tation of a transportation network. By devising this mapping, the paper leverages
the large body of existing query processing techniques for graphs. This mapping
demonstrates constructively how it is possible to model complex road networks by
means of (slightly extended) graphs.

The third contribution is a collection of transformations that enable the compact-
ing of graphs. The transformed graphs retain the properties of the source graph that
are relevant to the intended applications of the graphs, while reducing the size of
the graph.
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This work may be extended in several interesting directions. First, the richness
of the model may be increased by taking into account additional aspects of road
networks, e.g., time-varying properties of the domain, and objects and properties
with extent. It may also be of interest to introduce movement functions for the two-
dimensional representation of query points. Second, as the model is intended to serve
as a basis for query processing in the context of location-based services, it is highly
relevant to explore the processing of various proximity queries—conventional as well
as trajectory-based—for network-constrained, static and moving objects based on the
model. We believe that this may lead to both refinement of the model and new insight
into query processing.
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