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Abstract Nearest Neighbor (NN) search has been in the core of spatial and spatiotemporal
database research during the last decade. The literature on NN query processing algorithms
so far deals with either stationary or moving query points over static datasets or future
(predicted) locations over a set of continuously moving points. With the increasing number
of Mobile Location Services (MLS), the need for effective k-NN query processing over
historical trajectory data has become the vehicle for data analysis, thus improving existing
or even proposing new services. In this paper, we investigate mechanisms to perform NN
search on R-tree-like structures storing historical information about moving object
trajectories. The proposed (depth-first and best-first) algorithms vary with respect to the
type of the query object (stationary or moving point) as well as the type of the query result
(historical continuous or not), thus resulting in four types of NN queries. We also propose
novel metrics to support our search ordering and pruning strategies. Using the
implementation of the proposed algorithms on two members of the R-tree family for
trajectory data (namely, the TB-tree and the 3D-R-tree), we demonstrate their scalability
and efficiency through an extensive experimental study using large synthetic and real
datasets.
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1 Introduction

With the integration of wireless communications and positioning technologies, the concept
of Moving Object Databases (MOD) has become increasingly important, and has posed a
great challenge to the database community. In such implicitly formulated location-aware
environments, moving objects are continuously changing locations; nevertheless existing
DBMSs are not well equipped to handle continuously changing data. Emerging location-
dependent services call for new query processing algorithms and techniques to deal with
both the spatial and temporal domains. Examples of these new services include traffic
monitoring, nearby information accessing and enhanced 911 services.

Unlike traditional databases, MODs have some distinctive characteristics: First of all,
several spatiotemporal queries in MODs are by nature continuous. In contrast to snapshot
queries, which are invoked only once, continuous queries require continuous evaluation as
the query result becomes invalid after a short period of time. Also, we typically have to deal
with large volumes of historical data which correspond to a large number of mobile and
stationary objects. As a consequence, querying functionality embedded in an extensible
DBMS that supports moving objects has to present robust behavior in the above mentioned
issues.

An important class of queries that is definitely useful for MOD processing is the so-
called k nearest neighbor (k-NN) queries, where one is interested in finding the k closest
trajectories to a predefined query object Q. To our knowledge, in the literature such queries
primarily deal with either static ([3], [5], [12]) or continuously moving query points ([15],
[17]) over stationary datasets, or queries about the future or current positions of a set of
continuously moving points ([1], [7], [9], [16], [22], [23]). Apparently, these types of
queries do not cover NN search on historical trajectories.

The challenge accepted in this paper is to describe diverse mechanisms to perform k-NN
search on R-tree-like structures [8] storing historical information. To illustrate the problem,
consider an application tracking the positions of rare species of wild animals. Such an
application is composed of a MOD storing the location dependent data, together with a
spatial index for searching and answering k-NN queries in an efficient manner. Experts in
the field would be advantaged if they could pose a query like “find the nearest trajectories
of animals to some stationary point (lab, source of food or other non-emigrational species)
from which this species passed during March.” Now imagine that the expert’s wish is to
pose the same query with the difference that the query object Q is not a stationary point but
a moving animal moving from location P1 to P2 during a period of time. This query gives
us rise to deduce a more generic query where the expert may wish to set another trajectory
of the same or relative class of species as the query object Q. It is self-evident that by these
types of queries an expert may figure out motion habits and patterns of wild species or
deviations from natural emigration, which could be interrelated with environmental and/or
ecological changes or destructions. Having in mind that MOD users are usually interested
in continuous types of queries, the two previously discussed queries are extended to their
continuous counterparts. In their continuous variation, each query returns a time-varying
number (denoting the nearest distance, which depends on time) along with a collection of
trajectory ids and the appropriate time intervals for which each moving object is valid
{O1[t1, t2), O2[t2, t3), ...}.
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To make the previous example more intelligible, Fig. 1 illustrates the trajectories of six
moving animals {O1, O2, O3, O4, O5, O6} along with two stationary points (Q1 and Q2)
representing two sources of food. Now, consider the following queries demonstrated in
Fig. 1 (Queries 2 and 4 are the continuous counterparts of Queries 1 and 3, respectively):

Query 1. “Find which animal was nearest to the stationary food source Q1 during the time
period [t1,t4],” resulting to animal O1.

Query 2. “Find which animal was nearest to the stationary food source Q2 at any time
instance of the time period [t1,t4],” resulting to a list of objects: O2 for the
interval [t1,t3); O1 for the interval [t3,t4].

Query 3. “Find which animal was nearest to animal O3 during the time period [t2,t6],”
resulting to O2.

Query 4. “Find which animal was nearest to animal O6 at any time instance of the time
period [t2,t6],” resulting to a list of objects: O5 for the interval [t2,t5); O4 for the
interval [t5,t6].

Although Queries 2 and 4 are continuous in nature (at any time instance) they cannot be
characterized as pure continuous queries; with respect to the database engine, a continuous
query is one that is submitted to the database only once and remains active, continuously
updating the query result with the evolution of time, until its completion is declared by
either a user’s message or a predetermined query lifetime [2], [6], [10]. In this sense,
Queries 2 and 4 are snapshot queries. However, in order to differentiate them from Queries
1 and 3 and also from pure continuous queries, in the rest of the paper, we will call them
Historical Continuous NN queries (HCNN).

Posing the problem in a more human-centric context, consider an application analyzing
the dynamics of urban and regional systems. The intention here is to assist the development
of spatiotemporal decision support systems (STDSS) aimed at the planning profession.
Such a case requires similar methodologies for comprehending, in space and time, the
interrelations of the life courses of individuals. The life courses of most individuals are built
around two interlocking successions of events: a residential trajectory and an occupational
career. These patterns of events became more complex during last decades, creating new
challenges for urban and regional planners. We believe that an expert may take advantage
of the features provided by our nearest neighbor query processing algorithms and utilize
them for analyzing human life courses.
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Fig. 1 Historical continuous and
non-continuous point and trajec-
tory NN queries over moving
objects trajectories
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To the best of our knowledge, this is the first work on k-NN query processing over
historical trajectories of moving objects. Outlining the major issues that will be addressed in
this paper, our main contributions are as follows:

& We propose query processing algorithms to perform NN search on R-tree-like structures
storing historical information about moving objects. The description of our algorithms
for different queries depends on the type of the query object (point or trajectory) as well
as on whether the query itself is continuous or not. In particular, we present efficient
depth-first and best-first (incremental) algorithms for historical NN queries as well as
depth-first algorithms for their continuous counterparts. All the proposed algorithms are
generalized to find the k nearest neighbors.

& We propose novel metrics to support our search ordering and pruning strategies. More
specifically, the definition of the minimum distance metric MINDIST between points
and rectangles, initially proposed in [12] and extended in [17], is further extended in
order for our algorithms to calculate the minimum distance between trajectories and
rectangles efficiently.

& We conduct a comprehensive set of experiments over large synthetic and real datasets
demonstrating that the algorithms are highly scalable and efficient in terms of node
accesses, execution time and pruned space.

The rest of the paper is structured as follows. Related work is discussed in Section 2,
while Section 3 introduces, at an abstract level, the set of k-NN algorithms over moving
object trajectories, as well as the metrics that support our search ordering and pruning
strategies. Sections 4, 5 and 6 constitute the core of the paper describing in detail the query
processing algorithms to perform NN search over historical trajectory information
(Sections 4 and 5) together with their continuous counterparts (Section 6). Section 7
presents the results of our experimental study and Section 8 provides the conclusions of the
paper and some interesting research directions.

2 Related work

In this section we will firstly deal with R-tree-like structures indexing historical trajectory
information, and subsequently we will examine the related work performed in the domain
of nearest neighbor query processing with stationary or moving query objects over
stationary or moving datasets.

2.1 Indexing trajectories

A variety of spatiotemporal access methods for the past positions of moving objects have
been proposed during the last years, most of them based on the R-tree [4], [8], which is an
extension of B-tree in multidimensional spaces. Like B-tree, R-tree, is a height-balanced
tree with the index records in its leaf nodes containing pointers to the actual data objects
and guarantees that the space utilization is at least 50%. Leaf node entries are in the form
(id, MBB), where id is an identifier that points to the actual object and MBB (Minimum
Bounding Box) is a n-dimensional interval. Non-leaf node entries are of the form (ptr,
MBB), where ptr is a pointer to a child node, and MBB the bounding box that covers all
child nodes. A node in the tree corresponds to a disk page and contains between m and M
entries. The 3D R-tree [21] is a straightforward extension of the R-tree in the 3D space
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constituting by 2+1 (spatial and temporal, respectively) dimensions. It treats time as an
extra spatial dimension and is capable of answering range and timeslice queries.

In fact, the first index proposed to support trajectory-based queries in historical MODs
was the Trajectory Bundle tree (TB-tree) [11], following an approach fundamentally
different from other spatiotemporal access methods mainly because of its insertion and split
strategy. It is a height-balanced tree with the index records in its leaf nodes; leaf nodes
contain entries of the same trajectories, and are of the form (MBB, Orientation), where MBB
is the 3D bounding box of the 3D line segment belonging to an object’s trajectory (handling
time as the third dimension) and Orientation is a flag used to reconstruct the actual 3D line
segment inside the MBB among four different alternatives that exist. Since each leaf node
contains entries of the same trajectory, object id can be stored once in the leaf node header.

The TB-tree insertion algorithm is not based upon the spatial and temporal relations of
moving objects but it relies only on the moving object identifier (id). When new line
segments are inserted, the algorithm searches for the leaf node containing the last entry of
the same trajectory, and simply inserts the new entry in it, thus forming leaf nodes that
contain line segments from a single trajectory. If the leaf node is full, then a new one is
created and is inserted in the right-end of the tree. For each trajectory, a double linked list
connects leaf nodes together (Fig. 2), resulting in a structure that can efficiently answer
trajectory-based queries.

2.2 Nearest neighbor search in spatiotemporal databases

In the last decade, NN queries have fueled the spatial and spatiotemporal database
community with a series of interesting noteworthy research issues. An affluence of methods
for the efficient processing of NN queries for static query points already exist, the most
influential probably being the branch-and-bound R-tree traversal algorithm proposed by
Roussopoulos et al. [12] for finding the nearest neighbor of a single stationary point. The
algorithm utilizes two metrics, MINDIST and MINMAXDIST, in order to implement tree
pruning and ordering. Specifically, starting from the root of the tree, the algorithm identifies
the entry with the minimum distance from the query point (with the use of the above
metrics). The process is recursively repeated until the leaf level is reached, where the first
candidate nearest neighbor is found. Returning from this recursion, only the entries with a
minimum distance less than the distance of the nearest neighbor already found are visited.
The above process was generalized to support k-NN queries. Later, Cheung and Fu [3]
proved that, given the MINDIST-based ordering, the pruning obtained by [12] can be
preserved without the use of MINMAXDIST metric (the calculation of which is
computationally expensive).

t3

t1

t7

t11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Fig. 2 The TB-structure
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Hjaltason and Samet [5] presented a general incremental NN algorithm, which employs a
best-first traversal of the R-tree structure. When deciding what node of the tree to traverse
next, the proposed algorithm picks the node with the least distance in the set of all nodes that
have yet to be visited. In order to achieve this, the algorithm utilizes a priority queue where
the tree nodes are stored in increasing order of their distance from the query object. This best-
first algorithm outperforms Roussopoulos et al. algorithm in terms of pruned space.
Additionally, once the nearest neighbor has been found, the k-NN can be retrieved with
virtually no additional work, since the algorithm is incremental. The basic drawback of this
best-first algorithm is that its performance depends on the size of the priority queue. In case
the priority queue becomes very large, the execution time of the algorithm increases rapidly.

The first algorithm for k nearest neighbor search over a moving query point was
proposed in [15]. The algorithm assumes that sites (landmark points) are static and their
locations (known in advance) are stored in an R-tree-like structure. A discrete time dimension
is assumed, thus a periodical sampling technique is applied on the trace of the moving query
point. The location of the query point that lies between two consecutive sampled locations is
estimated using linear or polynomial splines. Executing a Point Nearest Neighbor (PNN)
query for every sample point of the query trace is highly inefficient, so the proposed
algorithm adopts a progressive approach, based on the observation that when two query
points are close, the results of the k-NN search at these locations have to be related.
Therefore, when computing the result set for a sample location, the algorithm tries to
exploit information provided by the result sets of the previous samples. The basic
drawback of this approach is that the accuracy of the results depends on the sampling
rate. Moreover, there is a significant computational overhead.

A technique that avoids the drawbacks of sampling relies on the concept of time-
parameterized (TP) queries [16]. TP queries retrieve the current result at the time the query
is issued, the validity period of the result and the change (i.e., the set of objects) that causes
the expiration of the result. Given the current result and the set of objects that affect its
validity, the next result can be incrementally computed. The significance of TP queries is 2-
fold: (1) as stand-alone methods, they are suitable for applications involving dynamic
environments, where any result is valid for a certain period of time, and (2) they lie at the
core of more complex query mechanisms, such as the Continuous NN (CNN) queries. The
main disadvantage of using TP queries for the processing of a CNN query is that several
NN queries are required to be performed. Thus, the cost of the method is prohibitive for
large datasets.

Using the TPR-tree (Time Parameterized Tree) structure [13], Benetis et al. [1] presented
efficient solutions for NN and RNN (Reverse Nearest Neighbor) queries for moving
objects. (An RNN query returns all the objects that the query object is the nearest neighbor
of.) The proposed algorithm was the first to address continuous RNN queries, since
previous existing RNN algorithms were developed under the assumption that the query
point is stationary. The algorithms for both NN and RNN queries in [1] refer to future
(estimated) locations of the query and data points, which are assumed to be continuously
moving on the plane. In the same paper, an algorithm for answering CNN queries is also
proposed.

Tao et al. [17] also studied CNN queries and proposed an R-tree based algorithm (for
moving query points and static data points) that avoids the pitfalls of previous ones (false
misses and high processing cost). The proposed tree pruning heuristics exploit the
MINDIST metric presented in [12]. At each leaf entry, the algorithm focuses on the
accurate calculation of the split points (the points of the query segment that demonstrate
a change of neighborhood). A theoretical analysis of the optimal performance for CNN
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algorithms was presented and cost models for node accesses were proposed.
Furthermore, the CNN algorithm was extended for the case of k neighbors and
trajectory inputs.

Based on the TP queries presented in [16], Iwerks et al. [7] described a technique that
focuses on the maintenance of CNN queries (for future predicted locations) in the presence
of updates on moving points, where the motion of the points is represented as a function of
time. A new approach was also presented, which filters the number of objects to be taken
into account when maintaining a future CNN query.

Recently, under the same field, Xiong et al. [23], proposed a method for scalable
processing of CNN queries in spatiotemporal databases. They propose a general
framework for processing large numbers of simultaneous k-CNN queries with static or
moving queries over static or (currently) moving datasets without making any
assumptions about the object trajectories. Unlike other proposals, their solution in order
to support high update rates is not based on the R-tree but on a simple grid structure
maintained on the disk. A similar method was also proposed by Yu et al. [22] for
monitoring k-CNN queries over (currently) moving objects without making any
assumptions about the object trajectories. The method also uses (main memory) grid
indices indexing moving objects and queries and is shown to outperform R-tree-based
solutions. Mouratidis et al. [9] also relax the assumption that moving object’s trajectories
are fully predictable by their motion parameters, and propose a comprehensive technique
for the efficient monitoring of continuous NN queries. The proposed method, named
conceptual partitioning monitoring method (CPM), uses also a grid structure and achieves
low running time by handling moving object’s location updates only from objects falling in
the vicinity of some query. The experimental results presented in [9] show that the CPM
method outperforms the techniques presented in [23] and [22].

Shahabi et al. [14] presented the first algorithm for processing the k-NN queries for
moving objects in road networks. Their proposed algorithm, which utilizes the network
distance between two locations instead of the Euclidean, is based on transforming the road
network into a higher dimensional space, in which simpler distance functions can be
applied. Using this embedding space, efficient techniques are proposed for finding the
shortest path between two points in the road network. The above procedure, which is
utilized in the case of static query points, is slightly modified in order to support the case of
moving query points.

Acknowledging the advantages of the above fundamental techniques, in this paper we
present the first complete treatment of historical NN queries over moving object
trajectories, handling both stationary and moving query objects.

3 Problem statement and metrics

We first define the NN queries that are considered in this paper. Subsequently, we present
the heuristics utilized by our algorithms to implement the metrics needed to formulate our
ordering and pruning strategy.

3.1 Problem statement

Let D be a database ofN moving objects with objects ids {O1, O2, ..., ON}. The trajectory Ti of
a moving object Oi consists of Mi 3D-line segments Li1; Li2; :::; LiMif g. Each 3D line segment
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Lj is of the form ((xj−start, yj−start, tj−start), (xj−end, yj−end, tj−end)), where t0≤tj−start<tj−end≤now.
Obviously, as we treat only historical moving object trajectories, each partial linear movement is
temporally restricted between t0, the beginning of the calendar, and now, the current time point.

We have already stated that NN queries search for the closest trajectories to a query
object Q. In our case, we distinguish two types of query objects: Qp, a point (x, y) that
remains stationary during the time period of the query Qper[tstart, tend], and QT, a moving
object with trajectory T. Furthermore, the MOD is indexed by an R-tree-like structure such
as the 3D R-tree [21], the STR-tree or the TB-tree [11]. Having in mind the previous
discussion, we define the following two types of NN queries:

& NN_Qp (D, Qp, Qper) query searches database D for the NN over a point Qp that remains
stationary during a time period Qper, and returns the closest to Qp point pc from which a
moving object Oi passed during the time period Qper, as well as the implied minimum
distance.

& NN_QT (D, QT, Qper) query is similar to the previous with the difference being upon the
query object Q which in the current case is a moving object with trajectory T.

The extensions of the above queries to their historical continuous counterparts vary in
the output of the algorithms. In the continuous case, each query returns a time-varying real
number, as the nearest distance depends on time. We introduce the following two types of
historical CNN queries:

& HCNN_Qp (D, Qp, Qper) query over a point Qp that remains stationary during a time
period Qper returns a list of triplets consisting of the time-varying real value Ri along
with a moving object Oi (belonging in database D) and the corresponding time period
[ti−start, ti−end) for which the nearest distance between Qp and Oi stands. These time-
varying real values Ri are, in any time instance of their lifetime, smaller or equal to the
distance between any moving object Oj in D and the query point Qp. The time periods
[ti−start, ti−end) are mutually disjoint and their union forms Qper.

& Similarly, HCNN_QT (D, QT, Qper) differs, compared to the previous, upon the query
object Q which in the current case is a moving object with trajectory T. The corresponding
time-varying real values Ri are, in any time instance of their lifetime, smaller or equal to
the distance between any moving object Oj and the query trajectory QT. The respective
time periods [ti-start, ti-end) are mutually disjoint and their union forms Qper.

The above four queries are generalized to produce the corresponding k-NN queries. The
generalization of the first two queries is straightforward by simply requesting the first,
second, ..., kth nearest point—with respect to a query point or a query trajectory—from
which a moving object Oi passed during the time period Qper, excluding at the same time
points belonging to a moving object already marked as the jth nearest (1≤ j<k). The
historical continuous queries are generalized to produce k-HCNN requesting to provide
with k lists of {Ri, [ti-start, ti-end), Oi} triplets. Then, for any time during the time period Qper,
the ith list (1≤ i≤k) will contain the i-order NN moving object (with respect to the query
point or the query trajectory) at this time instance.

To exemplify the proposed k-NN extensions, let us recall Fig. 1. Searching for the 2-NN
versions of the four queries (Query 1, 2, 3 and 4) presented in Section 1, we will have the
following results:

& Query 1 (historical non-continuous): O1 (First NN) and O2 (Second NN)
& Query 2 (historical continuous): 1-NN list includesO2 for the interval [t1,t3) and O1 for the

interval [t3,t4]; 2-NN list includes O1 for the interval [t1,t3) and O2 for the interval [t3,t4]
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& Query 3 (historical non-continuous): O2 (First NN) and O4 (Second NN)
& Query 4 (historical continuous): 1-NN list includes O5 for the interval [t2,t5) and O4 for

the interval [t5,t6]; 2-NN list includes O4 for the interval [t2,t5) and O5 for the interval
[t5,t6].

3.2 Metrics

We exploit on the definition of the minimum distance metric (MINDIST) presented in [12]
between points and rectangles, in order to calculate, the minimum distance between line
segments and rectangles and, the minimum distance between trajectories and rectangles that
are needed to implement the above discussed algorithms.

Initially, in [12], Roussopoulos et al. defined the Minimum Distance (MINDIST)
between a point P and a rectangle R in the n-dimensional space as the square of the
Euclidean distance between P and the nearest edge of R, if P is outside R (or 0, if P is inside
R). Then, Tao et al. [17] proposed a method to calculate the MINDIST between a 2D line
segment L and a rectangle M (Fig. 3).

MINDIST calculation method in [17] initially determines whether L intersects M; if so,
MINDIST is set to 0. Otherwise, they choose the shortest among six distances, namely
the four distances between each corner point of M and L (d1, d2, d3, d4) and the two
minimum distances from the start and end point of L to M (d5, d6). Therefore, the
calculation of MINDIST between a line segment and a rectangle involves an intersection
check, four segment-to-point MINDIST calculations and two point-to-rectangle MINDIST
calculations.

In this paper, we propose a more efficient method to calculate MINDIST between a line
segment L and a rectangle M (Fig. 4). As before, if L intersects M, then MINDIST is
obviously 0. Otherwise, we decompose the space in four quadrants using the two axes
passing through the center of M and we determine the quadrants Qs and Qe in which the
start (L.start) and the end (L.end) point of L lie in, respectively.

Then, MINDIST is the minimum among:

& Case 1 (the two end points of the line segment belong to the same quadrant (Qs)): (1)
MINDIST between the corner of M in Qs and L, (2) MINDIST between L.start and M
or (3) MINDIST between L.end and M.

M

L
d1

d5

d6

d4

d3

d2

Fig. 3 Calculating MINDIST
between a line segment and a
rectangle [17]
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& Case 2 (L.start and L.end belong to adjacent quadrants Qs and Qe, respectively): (1)
MINDIST between the corner of M in Qs and L, (2) MINDIST between the corner of M
in Qe and L, (3) MINDIST between L.start andM or (4) MINDIST between L.end and M.

& Case 3 (L.start and L.end belong to non-adjacent quadrants Qs and Qe, respectively): two
MINDIST between the two corners of M, that do not belong in either Qs or Qe, and L.

This method utilizes a smaller number of (point-to-segment and point-to-rectangle)
distance calculations compared to the corresponding algorithm in [17]. The worst-case
scenario of the proposed MINDIST calculation includes the determination of the quadrant
in which the starting and ending points of the line segment belong, i.e., two point-to-
segment and two point-to-rectangle distance calculations, while the corresponding
algorithm of [17] employs four point-to-segment and two point-to-rectangle calculations.
Therefore, the proposed MINDIST calculation, in its worst case, determines the quadrant of
the starting and ending point instead of performing two additional point-to-segment
distance calculations.

Finally, we extend the above algorithm in order to calculate MINDIST metric between
the projection of a trajectory T on the plane (usually called route) and a rectangle M (Fig. 5).
Since a route can be viewed as a collection of 2D line segments, the MINDIST between a
route of a trajectory and a rectangle can be computed as the minimum of all MINDIST
between the rectangle and each line segment composing the route. The efficiency of this
calculation can be enhanced by simply not computing twice, with respect to the query

M 

L 

d1

d3

d2 

M

L

d1

d3

d2

d4

M 

L 

d1

d2 

Case 1: L.start and L.end belong to the same
quadrant 

Case 2: L.start and L.end belong to 
adjacent quadrants

Case 3: L.start and L.end belong to non
adjacent quadrants

Fig. 4 The proposed calculation method of MINDIST between a line segment and a rectangle
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T

d1

d4

d2

d3
d5

d6

d7

d8

Fig. 5 The proposed calculation
method of MINDIST between a
route (projection of a trajectory
on the plane) and a rectangle
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rectangle, the quadrant and the MINDIST of the end and the start of adjacent line segments.
The efficiency of the proposed improvement over the MINDIST computation for line
segments and trajectories will be shown in the experimental section.

4 Non-incremental (depth-first) NN algorithms over trajectories

In this section we describe in details the non-incremental algorithms answering the first two
(historical non-continuous) types of NN queries presented in Section 3.1 and, then, we
generalize them in order to support the respective k-NN queries.

4.1 Non-incremental NN algorithm for stationary query objects (points)

The non-incremental NN algorithm for stationary query objects (PointNNSearch
algorithm illustrated in Fig. 6), provides the ability to answer NN queries for a static query
object Qp, during a certain query time period Qper[tstart, tend]. The algorithm uses the same
heuristics as in [12] and [3], pruning the search space according to Qper.

The algorithm accesses the tree structure (which indexes the trajectories of the moving
objects) in a depth-first way pruning the tree nodes according toQper rejecting those being fully
outside it. At leaf level, the algorithm iterates through the leaf entries checking whether the
lifetime of an entry overlaps Qper (Line 3); if the temporal component of the entry is fully
inside Qper, the algorithm calculates the actual Euclidean distance between Q and the (spatial
component of the) entry; otherwise, if the temporal component of the entry is only partially
inside Qper, a linear interpolation is applied so as to compute the entry’s portion being inside
Qper (Line 4) and calculate the Euclidean distance between Q and the portion of that entry.

Algorithm PointNNSearch(node N, 2D point Q, time period Qper, struct Nearest) 

 1.  IF N Is Leaf 

     // Iterate through leaf entries computing Euclidean distance from point Q 

 2.    FOR EACH Entry E in N

         // If entry is (fully or partially) inside the period 

 3.      IF Qper Overlaps (E.TS, E.TE) 

         // Compute entry’s spatial extent inside the period 

 4.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 

          // Compute Entry’s actual distance from Q. Update Nearest if necessary 

 5.        Dist = Euclidean_Dist_2D(Q, nE) 

 6.        IF Dist < Nearest.Dist THEN Update Nearest with nE, Dist

 7.      END IF 

 8.    NEXT 

 9.  ELSE 

       // Generate Node’s branch list with entries overlapping the query period 

10.    BranchList = GenBranchList(Q, N, Qper) 

       // Sort active branch List by MinDist 

11.    SortBranchList(BranchList) 

       // Iterate through active branch List  

12.    FOR EACH Entry E in BranchList

         // Visit Child Nodes 

13.      PointNNSearch(E.ChildNode, Q, Qper, Nearest)

         // Apply MinDist heuristic to do pruning  

14.      PruneBranchList(BranchList)

15.    NEXT 

16.  END IF 

Fig. 6 Historical NN search algorithm for stationary query points (PointNNSearch algorithm)
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When a candidate nearest is selected, the algorithm, backtracking to the upper level, prunes
the nodes in the active branch list (Line 14) applying the MINDIST heuristic [3], [12].

4.2 Non-incremental NN algorithm for moving query objects (trajectories)

PointNNSearch algorithm can be modified in order to support the second type of NN query
where the query object is a trajectory of a moving point (TrajectoryNNSearch algorithm,
illustrated in Fig. 7). At the leaf level, the algorithm calculates the minimum Euclidean distance
between the projections on the 2D (x-,y-) plane of each leaf entry rectangle and each query
trajectory segment by using the Min_Horizontal_Dist function (Line 9), which
computes the minimum (“horizontal”) Euclidean distance between the projections on the 2D
plane of two 3D line segments. The formulization of the Min_Horizontal_Dist

function and the calculation of its minimum value required by the TrajectoryNNSearch
algorithm can be found in Appendix A. In addition, for each query trajectory segment QE and
before calculating its distance from the current leaf entry we first interpolate in order to
produce a tuple of entry—query segment with identical temporal extent (Lines 7, 8). In order
to decrease the number of temporal overlap evaluations between leaf entries and trajectory
segments, our algorithm utilizes a plane sweep method, which scans leaf entries and trajectory
segments in their temporal dimension in a single pass (Lines 4, 5, 6). This requires that the
leaf entries are previously sorted according to their temporal extent (Line 3), unless the
underlying tree structure (such as the TB-tree) stores them in temporal order anyway.

At the non-leaf levels, the algorithm utilizes the GenTrajectoryBranchList

function (pseudo-code in Fig. 8) instead of GenBranchList. The GenTrajectory-

BranchList function utilizes the MinDist_Trajectory_Rectangle metric
introduced in Section 3.2 in order to calculate MINDIST between the query trajectory
and the rectangle of each entry of node N. Here, we have to point out that we do not need to
calculate MinDist_Trajectory_Rectangle against the actual query trajectory Q,

Algorithm TrajectoryNNSearch(node N, trajectory Q, time period Qper, struct 

Nearest) 

 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

 2.  IF N Is Leaf 

 3.    Sort(N, TS) // Sort A-Z Entries in Node N by their Tstart
 4.    FOR EACH Entry E in N

 5.      FIND next query trajectory entry QS with QS.Te<N.TS: QE=QS

 6.      DO UNTIL QE.Ts > E.Te
 7.        nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

 8.        nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

 9.        Dist = Min_Horizontal_Dist(nQE, nE) 

10.        IF Dist < Nearest.Dist THEN Update Nearest with nE, Dist

11.      NEXT query entry QE

12.      Return QE in the query entry QS

13.    NEXT 

14.  ELSE 

15.    BranchList = GenTrajectoryBranchList(Q, N) 

16.    SortBranchList(BranchList) 

17.    FOR EACH Entry E in BranchList

18.      TrajectoryNNSearch(E.ChildNode, E.Trajectory, Nearest)

19.      PruneBranchList(BranchList)

20.    NEXT 

21.  END IF 

Fig. 7 Historical NN search algorithm for moving query points (TrajectoryNNSearch algorithm)
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but against the part of Q being inside the temporal extent of the bounding rectangle of N,
and in order to do this (if it is necessary) we interpolate to produce the new query trajectory
nQ (Line 3). The interpolated trajectory nQ is also stored inside the Branchlist along with
the respective node entry and the calculated distance (Line 5). Since all the nodes in the
sub-tree of N are spatially and temporally contained inside N, the interpolated trajectory nQ
can be used as the query trajectory for the nodes of the next level inside the sub-tree,
allowing us to avoid unnecessary calculations.

4.3 Extending to non-incremental k-NN algorithms

In the same fashion as in [12], we generalize the above two algorithms to searching the k-
nearest neighbors by considering the following:

& Using a buffer of at most k (current) nearest objects sorted by their actual distance from
the query object (point or trajectory)

& Pruning according to the distance of the (currently) furthest nearest object in the buffer.
& Updating the distance of each moving object inside the buffer when visiting a node that

contains an entry of the same object closer to the query object.

5 Incremental (best-first) NN algorithms over trajectories

In this section, we present best-first algorithms that process the same NN queries with the
ones described in Section 4 and, then, we generalize them in order to support the respective
k-NN queries.

5.1 Incremental NN algorithm for stationary query objects (points)

The proposed algorithm, which is based on the NN algorithm for static objects presented in
[6], traverses the tree structure in a best-first way. The algorithm uses a priority queue, in
which the entries of the tree nodes are stored in increasing order of their distance from the
query object.

Figure 9 illustrates the IncPointNNSearch algorithm. In Line 1, the priority queue
is initialized. In Line 5, the next nearest object is reported. As in the respective depth-first

Algorithm genTrajectoryBranchList(node N, trajectory Q) 

 1.  FOR EACH Entry E in N

       // If entry is (fully or partially) inside the trajectory lifetime 

 2.    IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE)  

         // Compute trajectory’s spatial extent inside E’s lifetime 

 3.      nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 

         // Compute MinDist between the resulted trajectory and the rectangle 

 4.      Dist=MinDist_Trajectory_Rectangle(nQ, E) 

         // Add the rectangle along with its calculated distance and the 

interpolated trajectory in the list 

 5.      List.Add(E, Dist, nQ) 

 6.    END IF 

 7.  NEXT 

 8.  RETURN List

Fig. 8 Generating branch list of node N against trajectory Q
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algorithm described in Section 4.1, at leaf level the algorithm iterates through the leaf
entries checking whether the lifetime of an entry overlaps the time period of the query Qper

(Line 8); if the temporal component of the entry is fully inside Qper, the algorithm calculates
the actual Euclidean distance between Q and the (spatial component of the) entry;
otherwise, if the temporal component of the entry is only partially inside Qper, a linear
interpolation is applied so as to compute the entry’s portion being inside Qper (Line 9) and
calculate the Euclidean distance between Q and the portion of that entry (Line 10). In Line
11, the leaf entry is enqueued along with its real distance from the query object. At the non-
leaf levels (Lines 15–21), the algorithm simply calculates MINDIST between the query
object and each node’s entry overlapping the query period Qper, and in the sequel enqueues
this entry along with its MINDIST value.

5.2 Incremental NN algorithm for moving query objects (trajectories)

The IncPointNNSearch algorithm proposed above can be slightly modified in order to
support the second type of NN query where the query object is a trajectory of a moving
point, thus resulting in IncTrajectoryNNSearch algorithm, illustrated in Fig. 10. The
changes to be made are the following three: firstly, as in the respective depth-first algorithm
(Section 4.2), at the leaf level, the algorithm calculates the minimum “horizontal” Euclidean
distance between each leaf entry and each segment of the query trajectory Q, using the

Algorithm IncPointNNSearch(R-tree R, 2D point Q, time period Qper) 

 1.  ENQUEUE Queue, R.RootNode, 0 

 2.  DO WHILE Queue.Count > 0 

 3.    Element = DEQUEUE(Queue) 

 4.    IF Element Is MovingObjectEntry 

 5.      RETURN Element as the next nearest object 

 6.    ELSEIF Element Is Leaf   

       // Iterate through leaf entries computing Euclidean distance from Q 

 7.      FOR EACH Entry E in leaf node Element

           // If entry is (fully or partially) inside the period 

 8.        IF Qper Overlaps (E.TS, E.TE) 

             // Compute entry’s spatial extent inside the period 

 9.          nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 

             // Compute Entry’s actual distance from Q.  

10.          Dist = Euclidean_Dist_2D(Q, nE) 

11.          EnQueue Queue, nE, Dist 

12.        ENDIF  

13.      NEXT 

14.    ELSE // Element is a non leaf node

         // Iterate through node entries computing their minimum distance from Q 

15.      FOR EACH Entry E in node Element

           // If entry is (fully or partially) inside the period 

16.        IF Qper Overlaps (E.TS, E.TE) 

             // Compute Entry’s MinDist from Q.  

17.          Dist = MinDist(Q, E) 

18.          EnQueue Queue, E, Dist 

19.        ENDIF     

20.      NEXT 

21.    ENDIF 

22.  LOOP 

Fig. 9 Historical Incremental NN search algorithm for stationary query points (IncPointNNSearch
algorithm)
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Min_Horizontal_Dist function (Line 13). We also utilize the same plane sweep
algorithm, so as to determine which leaf entries and segments of Q overlap in their temporal
dimension, and then we calculate the distance between those who do overlap (Lines 8–10).

At the non-leaf levels, the algorithm utilizes the MinDist_Trajectory_Rectangle
metric in order to calculate theMINDIST between the query trajectory and the rectangle of each
entry of the node (Line 22). Just like TrajectoryNNSearch algorithm, if necessary, we
interpolate in order to produce nQ, which is the part of Q being inside the temporal extent of
the bounding rectangle of each node’s entry (Line 21), and then we store it inside the Queue
along with the respective node entry and the calculated distance (Line 23). Since all the nodes
in the N’s sub-tree are spatially and temporally contained inside N, then, the interpolated
trajectory nQ can be further used as the query trajectory for the nodes of the next level inside
the sub-tree, allowing us to avoid unnecessary calculations.

5.3 Extending to incremental k-NN algorithms

The algorithms described in Sections 5.2 and 5.3 are incremental in the sense that the kth
NN can be obtained with very little additional work once the (k−1)-th NN has been found.
Recall for example IncTrajectoryNNSearch illustrated in Fig. 10. After having
found the first NN, the next time the condition of Line 4 is true, the second NN will have
been found.

Here, we have to point out that the two different strategies used for the historical non-
continuous NN algorithms appear to have both advantages and drawbacks. As already
mentioned, while the best-first approach results always in fewer actually visited nodes, and

Algorithm IncTrajectoryNNSearch(R-tree R, trajectory Q, time period Qper) 

 1.  EnQueue Queue, R.RootNode, Q, 0 

 2.  Do While Queue.Count > 0 

 3.    DeQueue(Queue, Element, Q) 

 4.    IF Element Is MovingObjectEntry 

 5.      Return Element as the next nearest object 

 6.    ELSEIF Element Is Leaf   

 7.      Sort(Element, TS) // Sort A-Z Entries in Node Element by their Tstart
 8.      FOR EACH Entry E in leaf node Element

 9.        FIND next query trajectory entry QS with QS.Te<N.TS: QE=QS

10.        DO UNTIL QE.Ts > E.Te
11.          nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

12.          nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

13.          Dist = Min_Horizontal_Dist(nQE, nE) 

14.          EnQueue Queue, nE, Dist 

15.        NEXT query entry QE

16.        Return QE in the query entry QS

17.      NEXT 

18.    ELSE  

19.      FOR EACH Entry E in node Element

20.        IF (Q.TS, Q.TE) Overlaps (E.TS, E.TE) 

21.          nQ = Interpolate(Q, Max(Q.TS, E.TS), Min(Q.TE, E.TE)) 

22.          Dist = MinDist_Trajectory_Rectangle(nQ, E) 

23.          EnQueue Queue, E, Dist, nQ 

24.        ENDIF     

25.      NEXT 

26.    ENDIF 

27.  LOOP  

Fig. 10 Historical incremental NN search algorithm for moving query points (IncTrajectoryNNSearch
algorithm)
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fewer distance evaluations, its performance heavily depends on the size of the priority
queue; as it will be clearly shown in the experiments, this drawback can cause the
incremental algorithms to perform worse than the depth-first algorithms in terms of
execution time, even though they require fewer nodes to be visited and less distances to be
evaluated. On the other hand, the incremental algorithms have a serious advantage over the
depth-first ones, which is the ability of retrieving each of the k nearest neighbors
incrementally, while the depth-first approach requires the a priory knowledge of the
parameter k.

6 HCNN algorithms over trajectories

In this section we describe the historical continuous counterparts of the algorithms of
Section 4. In particular, we will address the third type of NN query (searching for NN with
respect to a stationary query point at any time during a given time period) and the fourth
type of NN query (where the query object is the trajectory of a moving point) and then we
will extend them towards k-NN search.

6.1 HCNN algorithm for stationary query objects (points)

We begin the description of the algorithms with the third type of NN query, which searches
for the nearest moving objects to a stationary query point at any time during a given time
period. The HContPointNNSearch algorithm proposed for this type of query is
illustrated in Fig. 11.

All the historical continuous algorithms use a MovingDist structure (Fig. 11, Line 5),
storing the parameters of the distance function (calculated using the methodology described in
Appendix A), along with the entry’s temporal extent and the associated minimum and
maximum of the function during its lifetime. We also store the actual entry inside the structure
in order to be able to return it as the query result. The ConstructMovingDistance

function simply calculates this structure (e.g., the parameters of the distance function a, b, c,
and the minimum Dmin and maximum Dmax of the function inside the lifetime of the entry).

Algorithm HContPointNNSearch(node N, 2D point Q, Period Qper, List Nearests, Roof) 

 1.  IF N Is Leaf 

 2.    FOR EACH Entry E in N

 3.      IF Qper Overlaps (E.TS, E.TE) 

 4.        nE = Interpolate(E, Max(Qper.TS, E.TS), Min(Qper.TE, E.TE)) 

 5.        MovingDist = ConstructMovingDistance(nE, Q) 

 6.        IF MovingDist.Dmin < Roof THEN UpdateNearests(Nearests,MovingDist,Roof) 

 7.      END IF 

 8.    NEXT 

 9.  ELSE 

10.    BranchList = GenBranchList(Q, N, Qper) 

11.    SortBranchList(BranchList) 

12.    PruneHContBranchList(BranchList, Nearests, Roof)

13.    FOR EACH Entry E in BranchList

14.      HContPointNNSearch(E.ChildNode, Q, Qper, Nearests, Roof)

15.      PruneHContBranchList(BranchList, Nearests, Roof)

16.    NEXT 

17.  END IF 

Fig. 11 Historical CNN search algorithm for stationary query points (HContPointNNSearch algorithm)
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An interesting point of the algorithm is exposed in Line 6, where the Nearests structure
is introduced. Nearests is a list of adjacent “moving distances” temporally covering the
periodQper. Roof is the maximum of all moving distances stored inside the Nearests list
and is used as a threshold to quickly reject those entries (and prune those branches at the
non-leaf level) having their minimum distance greater than Roof (consequently, greater
than all moving distances stored inside the Nearests list). In Appendix B, we present in
detail how we maintain the Nearests list.

When at non-leaf levels, the HContPointNNSearch algorithm in its backtracking
applies the pruning algorithm PruneHContBranchList (Line 15), which prunes the
branch list using the MINDIST heuristic: First, it compares the MINDIST of each entry
with Roof and then it calculates the maximum distance inside the Nearests list during the
entry’s lifetime. Then, it prunes all entries having MINDIST greater than the one calculated.

6.2 HCNN algorithm for moving query objects (trajectories)

The fourth type of NN query is the historical continuous version of the NN query where the
query object is the trajectory of a moving point. The HContTrajectoryNNSearch

algorithm, used to process this type of query is illustrated in Fig. 12.
HContTrajectoryNNSearch differs from HContPointNNSearch at two points

only: The first is that, at leaf level, the ConstructMovingDistance function calculates
the “moving distance” between two moving points, instead of one moving and one stationary
(Line 9). Secondly, at the non-leaf levels, GenBranchList is replaced by the
GenTrajectoryBranchList function introduced in the description of the Trajec-
toryNNSearch algorithm (Line 15). Moreover, as in TrajectoryNNSearch, for each
query trajectory segment QE and before calculating the moving distance from the current

Algorithm HContTrajectoryNNSearch (node N, Trajectory Q, time period Qper, List 

Nearests, Roof) 

 1.  Q = Interpolate(Q, Max(Q.TS, Qper.TS), Min(Q.TE, Qper.TE)) 

 2.  IF N Is Leaf 

 3.    Sort(N, TS) 

 4.    FOR EACH Entry E in N

 5.      FIND next query trajectory entry QS with QS.Te<N.TS: QE=QS

 6.      DO UNTIL QE.Ts > E.Te
 7.        nE = Interpolate(E, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

 8.        nQE = Interpolate(QE, Max(QE.TS, E.TS), Min(QE.TE, E.TE)) 

 9.        MovingDist = ConstructMovingDistance(nE, nQE) 

10.        IF MovingDist.Dmin < Roof THEN UpdateNearests(Nearests,MovingDist,Roof) 

11       NEXT query entry QE

12       Return QE in the query entry QS

13.    NEXT  

14.  ELSE 

15.    BranchList = GenTrajectoryBranchList(Q, N)  

16.    SortBranchList(BranchList) 

17.    PruneHContBranchList(BranchList, Nearests, Roof)

18.    FOR EACH Entry E in BranchList

19.      HContTrajectoryNNSearch(E.ChildNode, E.Trajectory, Nearests, Roof)

20.      PruneHContBranchList(BranchList, Nearests, Roof)

21.    NEXT 

22.  END IF 

Fig. 12 Historical CNN search algorithm for moving query points (HContTrajectoryNNSearch
algorithm)
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leaf entry we first interpolate in order to produce a tuple of entry—query segment with
identical temporal extent (Lines 7, 8). We also use the same plane sweep method, in order
to reduce the number of distance calculations between the segments of Q and the leaf
entries (Lines 4–6).

6.3 Extending to k-HCNN algorithms

The two historical continuous algorithms proposed above can be also generalized to
searching the k-nearest neighbors by considering the following:

& Using a buffer of at most k current Nearests lists
& Pruning according to the distance of the furthest Nearests lists in the buffer—

therefore Roof is calculated as the maximum distance of the furthest Nearests list
& Processing each entry against the ith list (with i increasing, from 1 to k) checking

whether it qualifies to be in a list
& When a moving distance is replaced by a new entry in the ith list, testing it against the

(i+1)-th list to find whether it qualifies to be in that list.

7 Performance study

The above illustrated algorithms can be implemented in any R-tree-like structure storing
historical moving object information such as the 3D R-tree [21], the STR-tree [11] and the
TB-tree [11]. Among them, we have chosen to implement the algorithms using the 3D R-
tree and the TB-tree, which are considered state-of-the-art techniques in particular settings
each: as shown in [11], regarding range queries, the 3D R-tree usually outperforms the TB-
tree as the cardinality of the dataset grows, while the TB-tree is more efficient in retrieving
historical trajectory information with combined and other trajectory-based queries. In our
implementation, both TB- and 3D R-tree leaf entries are modified as shown in [11] storing
the actual trajectory entries and not each entry’s MBR. Both trees along with all the
proposed algorithms were implemented using Visual Basic. We used a page size of 4,096
bytes and a (variable size) buffer fitting the 10% of the index size, with a maximum
capacity of 1,000 pages. The experiments were performed in a PC running Microsoft
Windows XP with AMD Athlon 64 3 GHz processor, 512 MB RAM and several GB of
disk space.

7.1 Datasets

While several real spatial datasets are around for experimental purposes, this is not true for
the moving object domain. Nevertheless, in this paper, we have experimented with two real
datasets from a fleet of trucks and a fleet of school buses (illustrated in Fig. 13a and b,
respectively) [18]. The two real datasets consist of 276 (112,203) and 145 (66,096)
trajectories (entries in the index), respectively, thus building indices of up to 5 Mbytes size
(the case of 3D R-tree index for the Trucks dataset). The performance study was not limited
to real data. We have also used synthetic datasets generated by the GSTD data generator
[19] in order to achieve scalability in the volumes of the datasets. A snapshot of the
generated data using GSTD is illustrated in Fig. 13c. The synthetic trajectories generated
by GSTD correspond to 100, 250, 500, 1,000 and 2,000 moving objects resulting in data-
sets of 500 K, 1,250 K, 2,500 K, 5,000 K, and 10,000 K entries (the position of each object
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was sampled approximately 5,000 times), thus building indices of up to 500 Mbytes size
(the case of 3D R-tree index for the GSTD 2,000 dataset). Regarding the rest parameters of
the GSTD generator, the initial distribution of points was Gaussian while their movement
was ruled by a random distribution. Table 1 illustrates summary information about the
number of pages occupied by both indexes for each dataset.

7.2 Results on the calculation of the MINDIST metric

In order to demonstrate the efficiency of the proposed MINDIST calculation over the one
presented in [17], we conducted a set of experiments executing 500 queries over the GSTD
datasets indexed by the TB-tree using the TrajectoryNNSearch algorithm. The
queries were initially executed with the the proposed MINDIST calculation, forming the Qa

query set, and then with the MINDIST calculation proposed in [17], forming the Qb query
set. The set of 500 query objects (trajectories) were produced using GSTD also employing a
Gaussian initial distribution and a random movement distribution. Then, a random 1% part
of each trajectory was used as the query trajectory. Each query performance was measured
in terms of execution time and actual distance evaluations between point and point, point
and line and point and MBR.

Fig. 13 Snapshots of real and synthetic spatiotemporal data

No. trajectories No. entries index size in pages
(of 4,096 bytes
each)

3D
R-tree

TB-tree

Real data
(trucks)

276 112,203 1,288 835

Real data
(buses)

145 66,096 805 466

GSTD 100 100 485,017 6,253 3,054
GSTD 250 250 1,213,195 15,471 7,649
GSTD 500 500 2,426,345 30,937 15,301
GSTD 1,000 1,000 4,850,750 61,864 30,587
GSTD 2,000 2,000 9,701,500 122,703 61,171

Table 1 Summary dataset
information
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Figure 14a illustrates the average execution time for query sets Qa and Qb. Clearly, the
TrajectoryNNSearch algorithm with the proposed improvement over the MINDIST
computation is always superior over the corresponding computation as proposed in [17], in
all datasets. The improvement over the execution time varies between 8 (in the GSTD 100
dataset) and 17% (in the GSTD 250 dataset). The efficiency of the proposed improvement
over the MINDIST computation can be further established by Fig. 14b, illustrating the ac-
tual distance evaluations made from each alternative computation; Fig. 14b shows that the
proposed MINDIST computation requires in all settings almost half of the distance
evaluations made by the analogous computation proposed in [17].

7.3 Results on the search cost of the historical non-continuous algorithms

The performance of the proposed algorithms was measured in terms of node accesses and
execution time. Several queries were used in order to evaluate the performance of the
proposed algorithms over the synthetic and real data. In particular, we have used the
following query sets:

& Q1: the PointNNSearch and the IncPointNNSearch algorithms were evaluated
with one set of 500 NN queries increasing the number of moving objects over the
GSTD datasets indexed by both TB- and 3D R-tree. The queries used a random point in
the 2D space and a time period of 1% of the temporal dimension for Q1.

& Q2: the TrajectoryNNSearch and the IncPointNNSearch algorithms were
evaluated with one set of 500 NN queries increasing the number of moving objects over
the GSTD datasets indexed by both TB and 3D R-tree. The set of 500 query objects
(trajectories) was produced using GSTD employing also a Gaussian initial distribution
and a random movement distribution. Then, in Q2 we used a random 1% part of each
trajectory as the query trajectory.

& Q3, Q4: two sets of 500 k-NN queries over the real Trucks dataset increasing the
number of k with fixed time and increasing the size of the time interval (with fixed k=
1), respectively. For the PointNNSearch algorithm we used a random point in the
2D space with a 1% of time as query period, while for TrajectoryNNSearch
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algorithm we used a random part of a random trajectory belonging to the Buses dataset,
temporally covering 1% of the time.

Figure 15 illustrates the results for the Q1 query set evaluating PointNNSearch and
IncPointNNSearch algorithms over the 3D R-tree, in terms of (a) average number of
node accesses and (b) average execution time per query. As it is clearly illustrated, the
performance of both algorithms depends sub-linearly on the dataset cardinality, down-
grading (more pages are accessed) as the cardinality grows. Another conclusion drawn from
the same charts is that IncPointNNSearch algorithm outperforms the PointNN-

Search algorithm in all datasets, in terms of both node accesses and execution time.
Figure 15c illustrates the average length (in nodes) of the queue utilized by the
IncPointNNSearch in order to answer the queries, increasing linearly with the
cardinality of the dataset.

The Q1 query set evaluating PointNNSearch and IncPointNNSearch was also
executed against the TB-tree, leading to the results presented in Fig. 16. Although, just as
reported for the 3D R-tree, the IncPointNNSearch outperforms PointNNSearch in
terms of average node accesses per query in all datasets (Fig. 16a), the actual average time
required for each query execution (Fig. 16b) by the IncPointNNSearch, increases
faster than the respective execution time of the PointNNSearch, leading to a superiority
of the non-incremental algorithm as the cardinality of the dataset grows.

Exactly the same trend as the one presented for the execution time of the
IncPointNNSearch is presented in Fig. 16c illustrating the length of the queue utilized
by the respective algorithm. More specifically, PointNNSearch outperforms its
incremental counterpart when the average length of the respective queue exceeds a certain
number of nodes (approximately 400 nodes in the GSTD 500 dataset). The above
conclusion can be also verified from the results of the 3D R-tree, where the length of the
queue is always less than 400, leading to a superiority of the incremental algorithm.
Regarding the comparison between the performance of the TB and the 3D R-tree, the latter
outperforms the former as the dataset cardinality grows, like what was reported in [11] for
the simple range queries.

Figure 17 illustrates the results for the Q2 query set evaluating TrajectoryNNSearch

and IncTrajectoryNNSearch algorithms over the 3D R-tree, in terms of average
number of node accesses (a) and average execution time per query (b). The performance of
both algorithms depends linearly on the dataset cardinality, downgrading as the dataset
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Fig. 15 a Node accesses, b execution time and c queue length in queries Q1 executing point NN search over
the 3D R-tree indexing the GSTD datasets increasing the number of moving objects
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cardinality grows. Although IncTrajectoryNNSearch outperforms TrajectoryNN-
Search in all datasets in terms of node accesses, the average execution time of the incremental
algorithm becomes greater than the respective time of the non-incremental one, as the dataset
cardinality grows. The average queue length utilized by the IncTrajectoryNNSearch, is
also illustrated in Fig. 17c; following the results for the execution time of the incremental
algorithm, the queue length increases linearly with the cardinality of the dataset. This
enlargement of the queue length is also responsible for the behavior showed regarding the
comparison of the execution time between the TrajectoryNNSearch and the IncTra-
jectoryNNSearch algorithm; as the queue length increases, each update becomes a more
expensive operation leading to the downgrade of the performance of the respective algorithm.

Regarding a comparison of the performance of the incremental algorithms illustrated in
Figs. 15 and 17 leads to the observation that while in the first case, fewer node accesses
leads to smaller execution time (than the non-incremental one), in the second case the
execution time of the incremental algorithm becomes greater than the respective of its non-
incremental counterpart. This fact can be explained by observing the respective queue
lengths: in the first case the queue length in not more than 200 objects (e.g., less than a
typical BranchList), while in the second case, the queue length includes 1,000s of objects
resulting in a decrease of the algorithm’s performance.
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The results of the Q2 query set over the TB-tree are presented in Fig. 18. While
IncTrajectoryNNSearch always outperforms TrajectoryNNSearch in terms of
average node accesses (Fig. 18a), their disparity is not as significant as it was reported for
the 3D R-tree. Moreover, the actual execution time of the incremental algorithm (Fig. 18b)
is always by far longer than the respective execution time of the non-incremental one.
These results can be explained by two facts. The first one is that the actual execution time
of the incremental algorithm depends heavily on the respective queue length which, as
shown in Fig. 18c, exceeds 1,000 nodes for the GSTD 250 dataset reaching the 9,000 nodes
in the GSTD 2,000. The second is that TB-tree groups entries belonging to the same
trajectory together, exploiting only the temporal order in which the entry insertion occurs
ignoring at the same time any spatial proximity. This insertion strategy leads to nodes with
high spatial (and low temporal) overlap, meaning that internal nodes will often cross the
query trajectory, and the respective MINDIST will be equal to 0. Then, the internal nodes
need to be visited since their MINDIST equals to 0 and they are leading inside the queue,
resulting to the loss of the advantage of the incremental algorithm. The same reasons also
affect the comparison of the performance between the TB- and the 3D R-tree, with the latter
one outperforming the former as the dataset cardinality grows.

The performance of the historical non-continuous point NN algorithms increasing the query
temporal extent, in terms of average node access and average execution time per query, is
shown in Fig. 19 against the 3D R-tree and the TB-tree, both indexing the Trucks dataset.
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Fig. 18 a Node accesses, b execution time and c queue length in queries Q2 executing trajectory NN search
over the TB-tree indexing the GSTD datasets increasing the number of moving objects
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Clearly, under both indexes, the number of node accesses needed for the processing of a NN
query, increases linearly with the query temporal extent, with the IncPointNNSearch

being always below the PointNNSearch. In terms of execution time, both indexes show
the same behavior having a breakeven point where the superlinearly increasing execution
time of the IncPointNNSearch (a consequence of the increasing queue length (Fig. 19c))
becomes even with the linearly increasing execution time of the PointNNSearch

algorithm. Regarding the TB-tree, the breakeven point is around the 1.5% of the temporal
extent while in the 3D R-tree increases around 3.5%.

Figure 20 illustrates the average number of node accesses and execution time per
historical non-continuous point query increasing the number of k against the Trucks dataset
indexed by the 3D R-tree and TB-tree. Under both indexes it is clear that the incremental
algorithm outperforms the PointNNSearch in terms of both average node accesses and
execution time. Using the 3D R-tree, the performance of both algorithms decreases linearly
with the number of k, whereas when using the TB-tree the reduction is sub-linear.

The results for the historical non-continuous trajectory NN algorithms increasing the
query temporal extent against the 3D R-tree and TB-tree indexing the Trucks dataset are
illustrated in Fig. 21. Once again, the number of node accesses required for the processing
of a NN query with both algorithms under both indexes, increases linearly with the query
temporal extent. However, regarding the execution time, the performance of the incremental
algorithm grows superlinearly with the temporal extent as a consequence of the excessive
queue length (Fig. 21c).

The performance of the historical non-continuous trajectory query increasing the number
of k against the Trucks dataset is shown in Fig. 22 where the TrajectoryNNSearch

algorithm outperforms its incremental counterpart in terms of execution time, with the
respective queue containing in any case more than 1,000 nodes.

7.4 Results on the search cost of the historical continuous algorithms

In coincidence with the experiments conducted for the historical non-continuous
algorithms, the historical continuous NN search algorithms were evaluated, also in terms
of node accesses and execution time, with the following query sets:

& Q5: the HContPointNNSearch algorithm was evaluated with one set of 500 NN
queries increasing the number of moving objects over the GSTD datasets indexed by
both TB- and 3D R-tree like what was done for query set Q1.
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Fig. 20 a Node accesses, b execution time and c queue length in queries Q3 executing point NN search over
the 3D R- and the TB-tree indexing the Trucks dataset increasing the number of k
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& Q6: the HContTrajectoryNNSearch algorithm was evaluated with one set of 500
NN queries increasing the number of moving objects over the GSTD datasets indexed
by both TB- and 3D R-tree like what was done for query set Q2

& Q7, Q8: two sets of 500 k-NN queries over the real Buses dataset increasing the number of
k with fixed time and increasing the size of the time interval (with fixed k=1),
respectively. For the HContPointNNSearch algorithm we used a random point in the
2D space with a 1% of time as query period, while for HContTrajectoryNNSearch
algorithm we used a random part of a random trajectory belonging to the Trucks dataset,
temporally covering 1% of the time.

Figure 23a, b illustrates the results of the HContPointNNSearch algorithm over the
GSTD datasets by increasing the number of moving objects in terms of (a) average node
accesses and (b) average execution time per query. Just as in its historical non-continuous
counterpart, the performance of the algorithm depends linearly on the dataset cardinality
downgrading as the cardinality grows, while the average execution time for both indexes
follows the same trend as the average number of visited nodes. Another result gathered is
that, as the cardinality grows, the 3D R-tree outperforms the TB-tree following the same
trend illustrated in [11] for simple range queries. Similar results are illustrated in Fig. 23c, d
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where the HContTrajectoryNNSearch algorithm is executed against the TB- and the
3D R-tree indexing the GSTD datasets.

A comparison between the historical non-continuous NN algorithms with their con-
tinuous counterpart (e.g., Figs. 15 and 16 vs. Fig. 23a, b, and Figs. 17 and 18 vs. Fig. 23c,
d), shows that the historical continuous algorithms are much more expensive than the non-
continuous ones. This conclusion was expected since the historical continuous algorithms
do not utilize a single distance to prune the search space; instead they use a list of moving
distances, which in general stores greater distances than the minimum. Actually, the his-
torical non-continuous algorithms prune the search space with the minimum possible dis-
tance stored inside the Nearests list, therefore performing pruning much more efficiently
than their continuous counterpart.

The scaling of the historical continuous algorithms with the query temporal extent is
presented in Fig. 24. Both algorithms (HContPointNNSearch and HContTrajec-

toryNNSearch) were executed over the real Buses dataset indexed by the TB- and the
3D R-tree. From Fig. 24a and c it is clear that the performance of both algorithms in terms
of node accesses is sub-linear with respect to the query temporal extent. Nevertheless, the
actual execution time needed by each query increases superlinearly with the query extent,
as a consequence of the increasing length of the query output (the Nearests list). The
performance of the historical continuous NN algorithms increasing the number of k against
the Buses dataset indexed by the TB and the 3D R-tree is illustrated in Fig. 25. As drawn
from Fig. 25a and c, the average number of node accesses required for the processing of a
k-HCNN point or trajectory query increases sub-linearly with k. However, the actual
execution time presented in Fig. 25b and d increases superlinearly with the k, similarly with
the temporal extent, as a consequence of the increasing size of the query output (the k
Nearests lists).
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7.5 Summary of the experiments

In order to measure the performance of our algorithms we conducted the above
experimental study based on synthetic and real datasets. Regarding the historical non-
continuous algorithms, it has been shown that while the incremental (best-first) approach is
always less expensive than the non-incremental (depth-first) in terms of node accesses, its
actual execution time heavily depends on the used queue length. In general, the best first
approach outperforms its competitor only for point NN queries under small temporal extent
(less than 2–4% depending on the index used and under any k), while in all other cases the
depth first approach takes less time to be executed. This drawback of the incremental
algorithms is mainly due to the queue length which may become huge, especially in the
case of the TB-tree. Regarding a comparison between the two used indexes, the 3D R-tree
outperforms the TB-tree in terms of both node accesses and execution time. Moreover, we
demonstrated that our improvement over the MINDIST computation can sufficiently
increase the performance of the proposed algorithms.

Most of the presented algorithms, in terms of node accesses, are linear or sub-linear with
the main parameters of our experimental study: the dataset cardinality, the query temporal
extent and the number of k. However, the execution time of the IncPointNNSearch

and IncTrajectoryNNSearch algorithms seems to grow super-linearly with the query
temporal extent as a result of the increasing queue length, similarly with the execution time
of HContPointNNSearch and HContTrajectoryNNSearch, which have the
same trend with respect to the temporal extend and the number of k, as a consequence of the
increasing Nearests list length.

Table 2 summarizes the pruning power of our algorithms presenting the percentage of
the indexed space accessed in order to execute all the proposed algorithms with k=1 and
temporal extent the 1% of the indexed time. As it can be concluded our algorithms show
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high pruning ability, well bounding the space to be searched in order to answer NN and
HCNN queries.

8 Conclusion and future work

NN queries have been in the core of the spatial and spatiotemporal database research
during the last decade. The majority of the algorithms processing such queries so far
mainly deals with either stationary or moving query points over static datasets or future
(predicted) locations over a set of continuously moving points. In this work,
acknowledging the contribution of related work, we presented the first complete
treatment of historical NN queries over moving object trajectories stored on R-tree-like
structures. Based on our proposed novel metrics, which support our ordering and
pruning strategies, we presented algorithms answering the NN and HCNN queries for
stationary query points or trajectories and generalized them to search for the k nearest
neighbors. The algorithms are applicable to R-tree variations for trajectory data, among
which, we used both 3D R-tree and TB-tree for our performance study. Under various
synthetic datasets (which were generated by the GSTD data generator) and two real
trajectory datasets, we illustrated that our algorithms show high pruning ability, well
bounding the space to be searched in order to answer NN and HCNN queries. The pruning
power of our algorithms is also verified in the case of the k-NN and k-HCNN queries (for
various values of k).

Future work includes the development of algorithms to support distance join queries
(“find pairs of objects passed nearest to each other (or within distance d from each other)
during a certain time interval and/or under a certain space constraint”). A second research
direction includes the development of selectivity estimation formulae for query optimiza-
tion purposes investing on the work presented in [20] for predictive spatiotemporal queries.
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Appendix A: Calculation of the minimum “horizontal” distance between two
3D line segments

The Euclidean (“horizontal”) distance function between the projections of two 3D line
segments, P and Q, on the 2D (x-,y-) plane is:

Dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qx � Pxð Þ2 þ Qy � Py

� �2q
ð1Þ

where Qx ¼ Q1x þ Q2x � Q1xð ÞΔt, Qy ¼ Q1y þ Q2y � Q1y

� �
Δt, Px ¼ P1x þ P2x � P1xð ÞΔt

and Py ¼ P1y þ P2y � P1y

� �
Δt. Replacing Qx, Qy, Px, Py in Eq. 1, we get

Dist ¼

Q1x þ Q2x � Q1xð ÞΔt � P1x � P2x � P1xð ÞΔtð Þ2 þ Q1y þ Q2y � Q1y

� �
Δt � P1y � P2y � P1y

� �
Δt

� �2q
:

In the sequel, we use the square of the Euclidean distance for sake of readiness.

Dist2 ¼ Q1x þ Q2x � Q1xð ÞΔt � P1x � P2x � P1xð ÞΔtð Þ2

þ Q1y þ Q2y � Q1y

� �
Δt � P1y � P2y � P1y

� �
Δt

� �2 ¼
¼ Q2x � Q1x � P2x þ P1xð ÞΔt þ Q1x � P1xð Þð Þ2

þ Q2y � Q1y � P2y þ P1y

� �
Δt þ Q1y � P1y

� �� �2 ¼
¼ Q2x � Q1x � P2x þ P1xð Þ2 þ Q2y � Q1y � P2y þ P1y

� �2� �
Δt2þ

þ2ððQ2x � Q1x � P2x þ P1xÞðQ1x � P1xÞ
þ Q2y � Q1y � P2y þ P1y

� �
Q1y � P1y

� �ÞΔt

þ Q1x � P1xð Þ2 þ Q1y � P1y

� �2
Setting

A ¼ Q2x � Q1x � P2x þ P1xð Þ2 þ Q2y � Q1y � P2y þ P1y

� �2 ð2Þ

B ¼ 2 Q2x � Q1x � P2x þ P1xð Þ Q1x � P1xð Þ þ Q2y � Q1y � P2y þ P1y

� �
Q1y � P1y

� �� � ð3Þ

C ¼ Q1x � P1xð Þ2 þ Q1y � P1y

� �2 ð4Þ

Algorithm TB-tree (%) 3D R-tree (%)

PointNNSearch 0.022 0.006
IncPointNNSearch 0.010 0.003
TrajectoryNNSearch 0.148 0.014
IncTrajectoryNNSearch 0.134 0.008
HContPointNNSearch 0.042 0.016
HContTrajectoryNNSearch 0.259 0.053

Table 2 Actual indexed space
accessed by each NN algorithm
for the GSTD 2,000 dataset
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and replacing Δt according to the following formula Δt ¼ t�t1
t2�t1

, the Euclidean “horizontal”
distance function of two 3D line segments is computed as follows:

Dist2 ¼ A

t2 � t1ð Þ2 t
2 þ B

t2 � t1
� 2At1

t2 � t1ð Þ2
 !

t þ At21
t2 � t1ð Þ2 �

Bt1
t2 � t1

þ C; ð5Þ

where A, B, C are defined by formulas (2), (3), (4), respectively.
As proved before, the square of the Euclidean “horizontal” distance function between

two 3D line segments has the quadratic form P tð Þ ¼ At2 þ Bt þ C, which is minimized at
Pmin ¼ C � B2

4A for t ¼ � B
2A. Thus, in our case

Dist2min ¼
At21

t2 � t1ð Þ2 �
Bt1

t2 � t1
þ C �

B
t2�t1

� 2At1
t2�t1ð Þ2

� �2
4A

t2�t1ð Þ2
ð6Þ

Algorithm UpdateNearests (List Nearests, struct CM, Roof) 

 1.  FOR EACH T IN Nearests 

 2.    IF (T.TS, T.TE)Overlaps(CM.TS, CM.TE) 

 3.      M=Interpolate(CM, Max(CM.TS, T.TS), Min(CM.TE, T.TE)) 

 4.      T=Interpolate(T, Max(CM.TS, T.TS), Min(CM.TE, T.TE)) 

 5.      IF M.DMax < T.DMin 

 6.        Nearests.Replace T with M  

 7.      ELSEIF M.DMax < T.DMax 

 8         D = Discriminant(M-T) 

 9.        IF D < 0 

10.          IF T.DMin > M.DMin THEN Nearests.Replace T with M  

11.        ELSEIF D=0 

12.          IF T.DMax > M.DMax THEN Nearests.Replace T with M 
13.        ELSE  

14.          RR1=Solution1(T - M):RR2=Solution2(T - M): 

R1=Min(RR1,RR2):R2=Max(RR1,RR2) 

15.          IF R2<T.TS OR R1>T.TE 

16.            IF T.DMax > M.DMax THEN Nearests.Replace T with M 
17.          ELSEIF R2<T.TE AND R1>T.TS  

18.            IF M.Dmin < T.Dmin 

19.              M1=Part(M,,R1):M2=Part(M,R2):T1=Part(T,R1,R2): 

20.              Nearests.Replace T with (M1,T1,M2) 

21.            ELSE 

22.              T1=Part(T,,R1):T2=Part(T,R2):M1=Part(M,R1,R2) 

23.              Nearests.Replace T with (T1,T2,M1) 

24.            ENDIF 

25.          ELSE 

26.            IF M(R1 - 1)<T(R1 – 1) 

27.              M1=Part(M,,R1):T1=Part(T,R1): Nearests.Replace T with (M1,T1) 

28.            ELSE 

29.              T1=Part(T,,R1):M1=Part(M,R1): Nearests.Replace T with (T1,M1) 

30.            ENDIF 

31.          ENDIF 

32.        ENDIF 

33.      ENDIF 

34.    ENDIF 

35.    Roof=max(Roof,T.Dmax) 

36.  NEXT 

Fig. 26 UpdateNearests algorithm
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for

t ¼
2At1
t2�t1ð Þ2 � B

t2�t1

� �
2 A

t2�t1ð Þ2
ð7Þ

where A, B, C are defined by formulas (2), (3), (4), respectively.
We have to note that formula (6) can be used in case where t calculated by formula (7) is

inside the query time period Qper[tstart, tend]. Otherwise, we distinguish between the
following two cases:

1. if t≤ tstart, then the minimum “horizontal” distance is provided by formula (5) by setting
t=tstart

2. if t≥ tend, then the minimum “horizontal” distance is provided by formula (5) by setting
t=tend.

Appendix B: Maintaining the Nearests list

The pseudo-code of the UpdateNearests function, which is responsible for the main-
tenance of the Nearests list, is presented in Fig. 26. In particular, the algorithm iterates
through the elements of the active Nearests list searching for those elements temporally
overlapping the checked entry (CM). When such an element is found, the algorithm applies
linear interpolation in both entries (the checked and the one already on the list) producing two
new entries having the same temporal extent (M and T). Then, it compares the two distance
functions in order to determine whether the entry already on the list is to be replaced or not.

Distance

T
im

e

M

M.DMAXM.DMIN T.DMAXT.DMIN

T

Distance

T
im

e

M

M.DMAXM.DMIN

T.DMAXT.DMIN

T

Distance

T
im

e

M

T

R1

R2

TS

TE

Distance

T
im

e

M

T

R1

R2

TS

TE

Distance

T
im

e

M

T

R1

R2

TS

TE

M.DMAXM.DMIN

T.DMAXT.DMIN

M.DMAXM.DMIN

T.DMAXT.DMIN

M.DMAXM.DMIN

T.DMAXT.DMIN

Distance

T
im

e

M

M.DMAXM.DMIN

T.DMAXT.DMIN

T

=

R1=R2

a) UpdateNearests Algorithm -line 5 b)  UpdateNearests Algorithm -line 10 c) UpdateNearests Algorithm -line 12

d) UpdateNearests Algorithm -line 16 e) UpdateNearests Algorithm -line 18 f) UpdateNearests Algorithm -line 25

Fig. 27 Graphical illustration of UpdateNearests algorithm comparisons
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Figure 27 graphically explains all the possible comparisons between the parabolas of
two “moving distance” functions.

Figure 27a corresponds to Line 5 of the algorithm presented in Fig. 26, where the
maximum distance of M is smaller than the minimum of T, leading to the replacement of T
with M. Otherwise, after computing the discriminant of the difference between the distance
functions of M and T, we have to distinguish among three different cases:

& The discriminant is less than zero, meaning that the two functions M and T are
asymptotic and they do not intersect (Line 9); we only have to check their minimum in
order to determine which is the global minimum (see Fig. 27b).

& The discriminant is equal to zero, meaning that the two functions osculate in their
common minimum (Line 11); we only have to check their maximum in order to
determine the global minimum (see Fig. 27c).

& The discriminant is greater than zero, meaning that the two functions intersect in two
points (Line 13). In this case, we have to determine whether these time instances are
inside the entry’s lifetime. Hence, we further distinguish among three sub-cases:

& Both solutions are outside the temporal extent of M (and T) (Line 15). We only
have to check their maximum in order to determine which is the globally minimum
inside the current temporal interval (see Fig. 27d).

& Both solutions are inside the temporal extent of M (and T) (Line 17). We must break
apart the entry into three different entries (see Fig. 27e) and determine the part of T
to be replaced by M.

& Only one solution is inside the temporal extent of M (Line 25). We must break apart
the entry into two different entries (see Fig. 27f) and determine the part of T to be
replaced by M.
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