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Abstract

This article deals with topological concepts and models which are necessary to represent three-dimensional

urban objects in a geographical information system (GIS). Depending on the shape and the representation of

features, several classes with increasing topological complexity are identified and described. This complexity

has strong impacts on the models and tools which are required to represent, manage and edit the data. One

specific model we call F2.8-D map_ is identified, which covers many 3-D applications in GIS. It is a slight

extension of a 2-D or 2.5-D model and preserves the algorithmic and conceptual simplicity of the 2-D case as

much as possible. The model is described in a formal way. Integrity axioms are given, which detect errors in

corresponding data sets safely and guarantee the consistency of 2.8-D maps in a mathematically sound and

provable way. These axioms are effectively and efficiently checkable by automatic procedures. The model

extends digital terrain models (2.5-D) by allowing for vertical walls and projections like balconies or ledges.

The conceptual simplicity is due to the two-dimensional topology of the model. Thus bridges and tunnels are

special cases; it is shown how to detect and handle these cases efficiently. Based on this model, thematic objects

and their aggregation structures are defined in a consistent way.
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1. Introduction

The demand for three-dimensional applications of geographical information systems

(GIS) increases. Examples are urban and telecommunication planning [16], [26] or disaster

management [28]. Most commercial GIS currently available are, however, limited to two

or two and a half dimensions, and are not able to cope with these applications. On the other

hand, three-dimensional systems originating from computer aided design (CAD) [19] or

computer graphics [7] are limited, since they do not handle topology and semantic

properties of objects adequately and do not provide the required GIS functionality. The

corresponding models, basically boundary representation (B-Rep) or constructive solid

geometry (CSG) [7], [19], are complex and difficult to handle from an algorithmic

perspective.

This paper answers the question, which types of three-dimensional objects may be

represented by models and topological concepts from 2-D, or by slightly adopting these
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concepts without requiring the algorithmic complexity of Freal_ 3-D models. A model is

presented, which covers many important 3-D applications while preserving the algorithmic

and conceptual simplicity of the 2-D case as much as possible. The model is an extension

of digital terrain models [21], often called 2.5-D, which are restricted since each (x,y)-

location has at most one height value. This restriction is omitted, allowing to represent

vertical walls and projections like balconies, ledges or roof overhangs, and thus most

urban objects. Hence, the geometry is three-dimensional, while topology remains two-

dimensional. From a mathematical point of view, the model is based on the notion of a

two-dimensional manifold or 2-manifold embedded in 3-D space [19]. Since the model

extends 2.5-D, but is less than three-dimensional, we call it F2.8-D._ The 2-D topology

prevents modeling of overpasses like bridges, viaducts, tunnels and pedestrian underpasses,

which are all equivalent from a topological perspective. It is shown how to handle these

cases efficiently.

Spatial data quality is an important issue in GIS [8], since it has impacts on the quality

of maps and decisions generated based on GIS. Thus achieving and preserving consistency

of spatial data is a problem of high practical significance. Therefore, the focus of the paper

is on maintaining consistency of the 2.8-D model.

The main contribution of this paper is an axiomatic characterization of 2.8-D maps by

a set of integrity constraints. These integrity constraints are correct and complete for

maps. Correctness means that each violation of an integrity constraint identifies an error

of a given database. Completeness means that each error leads to a violation of an integrity

constraint. In addition, the axioms are effectivelyVand in fact efficientlyVcheckable by a

computer.

Our model generalizes the formal data model of a 2-D map, which was presented in

earlier papers [9], [10], [22]Y[24]. A 2-D map provides an irregular tessellation, i.e., a

partition of the plane with non-overlapping and covering faces. Corresponding integrity

rules or axioms were given which are provably correct and complete for maps, guaranteeing

consistency in an effective and efficient way. It is shown how consistency of a 2.8-D

model can be guaranteed by slightly extending the axioms derived for the two-dimensional

case.

Several extensions of the model are discussed, which enable the representation of

more types of objects or more details. An example is to use curved surfaces instead of

planar ones. It is illustrated how the integrity rules have to be modified to cope with these

extensions. Another issue is the definition of spatial thematic objects, for example a

building, by the aggregation of its bounding wall or roof faces. It is shown how the

concept of nested maps developed to aggregate 2-D objects may be used to maintain

consistency.

In the last decades, modeling of 2.5-D or 3-D surfaces and solids has been studied

intensively. Boundary representations [7], [19] are employed to model surfaces and solids.

In GIS, 2.5-D surface models are essentially TINs (triangulated irregular networks) [21],

which are suitable for modeling the relief structure, but are limited since the deviation of

the normal vector of each triangle must be non-negative. In [6] this approach is extended

by allowing for a zero deviation, thus vertical walls can be represented. But projections like

balconies are still not covered by this approach. Furthermore, integrity constraints for
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maintaining consistency of the model are not given. In modeling solids by the Boundary

Representation, two approaches may be distinguished, which differ basically in the handling

of non-visible faces. The computer graphics approach omits those faces, while in the GIS

community, they are represented explicitly, and are used to glue objects together [14], [17],

[20], [25].

Apart from boundary representations, the other prominent approach for modeling

solids is the constructive solid geometry (CSG) [7], [19]. CSG defines solid objects by

applying transformations and operations like intersection, union and difference to primitive

solids. These primitives can be simple entities like cylinders or boxes [19], or complex

objects like buildings [15], which may be parameterized [5]. Topology is not represented

explicitly in those models.

Another way of modeling solids is the representation by three-dimensional simplicial

complexes [3], [4], [12], which are adequate for geological applications. For modeling

man-made objects, however, the partition in tetrahedrons introduces faces and edges

without any semantic relevance. The representation is not unique and matching problems

arise.

The rest of this paper is organized as follows: The second section presents topological

concepts and models necessary to represent objects in the range of two to three dimensions.

The third section recalls, after giving some basic mathematical definitions, the concept of

2-D maps and presents the corresponding consistency axioms. In the next section, maps

are generalized to cope with three-dimensional applications. The corresponding axioms are

adjusted and it is proven that they are correct and complete. The fifth section extends the model

to handle spatial objects and their aggregation in a consistent way. In addition, the interpolation

of faces is generalized. The paper ends with concluding remarks and a discussion of open

questions.

2. From 2-D to 3-D: Topological concepts behind GIS

This section addresses the question, which topological concepts are necessary to model

three-dimensional real world phenomena, and which GIS models are suitable to represent

these phenomena. This issue is crucial for GIS tools to store, manipulate, visualize and

these models, and for concepts to maintain consistency of this data, where a focus is on

the cost of maintaining consistency in terms of running time. The discussion starts with

the 2-D case and extends the model incrementally, covering more real-world phenomena

and specifying the topological concepts, which are necessary for modeling.

2.1. The 2-D case

In the simple 2-D case, areal features are represented by the well-known two-dimensional

node-edge-face topology [18], [24]. An example for a simple 2-D structure is given in

HOW TO GET 3-D FOR THE PRICE OF 2-D 141



Figure 1a. Most commercial GIS offer these structures; a prominent example is the coverage

model used in ArcGIS/ArcInfo. As simple topology it has been part of the standardization

accomplished by the International Standardization Organization (ISO) and the Open

Geospatial Consortium (OGC) [14]. For aggregated areal objects, the concept of nested

maps [23], [24] may be employed.

2.2. 2.5-D: Modeling the relief

To represent the relief structure of a scene, the 2-D model has to be extended to a so-

called 2.5-D model [21]. The coordinates of this model are three-dimensional, but each

x/y-position has at most one height value, i.e. the z-value is a function of the corresponding

x- and y-values (see Figure 1b). The topology of a 2.5-D structure, however, is the same as in

the 2-D case: it is a 2-manifold from a mathematical point of view, which is embedded in

3-D space. A 2-manifold embedded in 3-D space is a 2-D point set (a 2-D topological

space), where every point has a neighborhood which is topologically equivalent to an open

disk of R2 [19]. Intuitively, a 2-manifold can be illustrated as a cloth, which is draped over

the terrain. This cloth can be stretched arbitrarily, but it may not be folded or touch itself,

and no hole may be torn in the cloth.

In commercial GIS, two representations of 2.5-D models are commonly used: Tri-

angulated irregular networks (TINs) [21] and the raster or grid structure [27].

Figure 1. Examples for a plane 2-D structure (a), a 2.5-D TIN (Triangulated Irregular Network) (b), and a 2,8-D

map (c). In a) and b), each (x, y)-value has at most one z-value representing its height, while in c, the point (x2, y2)

has three z-values, and (x1, y1) has an infinite number of z-values. In all three cases, the scene is represented by a

single 2-manifold, which is topologically equivalent to a two-dimensional disk.
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2.3. Extending 2.5-D: Vertical walls

In a 2.5-D model, each x/y-value has at most one height value. Thus the representation of

vertical walls of artificial or natural objects like buildings or rocks is not feasible. An

example is given by the building in Figure 1c, where the position (x1,y1) has an infinite

number of height values. A model that extends 2.5-D to handle such features is discussed

in [6]. It is topologically equivalent to 2-D and 2.5-D models, since it is still a 2-manifold

from a mathematical point of view.

This extended 2.5-D model may be implemented by a TIN structure, but not by a grid

or a raster, since the 2.5-D property is crucial for these representations. In addition, no

orthogonal projection of an image onto a 2.5-D structure with vertical walls is feasible,

since no patch of the image is mapped onto these walls.

2.4. Extending 2.5-D: Overhangs

The model proposed in [6] handles vertical walls, but does not cover overhangs like

balconies or roof resp. rock overhangs. A model that copes with such phenomena has

been called F2.8-D map_ [11]. An example for a 2.8-D map is depicted in Figure 1c.

From a geometrical point of view, the cases of vertical walls and overhangs are different,

but from a topological perspective, both are equal, since both are equivalent to 2-manifolds.

In a 2.8-D map, however, the Fcloth,_ which is draped over the terrain, includes buildings and

other objects on the surface.

The topological equivalence between a 2.8-D and a 2-D model is illustrated in Figure 2.

In Figure 2a, the saddle roof building with vertical walls and roof overhangs is represented

by a 2.8-D model, whereas the corresponding flattened model in b is a 2-D map. Both

models are topologically equivalent, since there is a one-to-one correspondence between

faces in both models.

As a consequence, the orthogonal projection of an image onto a 2.8-D map yields

empty patches at vertical walls andVeven worseVan assignment, which is not unique at

overhangs, where there is more than one height value for one x/y position.

2.5. Covering bridges and tunnels (‘handles’)

All phenomena discussed so far may be modeled by a single 2-manifold, which is

topologically equivalent to a single two-dimensional disk, and can be handled by concepts

of 2-D topology. Another cases, however, are bridges and overpasses (see Figure 3).

Although scenarios with bridges may still be represented by a 2-manifold embedded in 3-D

space, the topology is quite different. Such a 2-manifold is locally equivalent to a 2-D disk,

but not globally. Intuitively, if one wants to map or drape a 2-D disk or an image onto a

scene with a bridge, he has to cut holes in the disk or the image first and then has to stitch

it together. However, the neighborhood at the cutting edge has changed after stitching.
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From a mathematical point of view, bridges and overpasses are described by the concept of

a handle [19]. Each simple bridge is a handle (see Figure 3), but more complex bridges

with several ramps and piers consist of more than one handle.

Another cases are tunnels and pedestrian underpasses. Although different from a

geometrical perspective, these features are topologically equivalent to bridges. It is not

difficult to imagine a transformation from a simple bridge (see Figure 3) to a tunnel with

one tube. This transformation maintains the topology of the scene. Therefore, both cases

Figure 2. a) A saddle roof building as an example for a 2.8-D map. b) Shows the flattened two-dimensional

model, which is topologically equivalent to the map in a).

Figure 3. A terrain with a bridge. From a mathematical point of view, it is a 2-manifold with one handle.

144 GRÖGER AND PLÜMER



can be described by the concept of a handle and be treated identically. But there is a

difference between both cases. A bridge itself is a handle. On the other hand, suppose a

tunnel is constructed passing through a mountain. In this case, the mountain above the

tunnel is the handle, not the tunnel itself.

Efficient methods to detect the occurrence of handles are discussed in Section 4.2 in

the context of consistency for 2.8-D maps, based on the well-known Euler equation [19].

2.6. Modeling buildings as solids: 3-D topology

The concepts discussed so far model a real-world scene by a single 2-manifold. This is

sufficient for many analysis and visualization purposesVat least if one looks at buildings

from outside. On the other hand, many relevant questions may not be answered by these

models. In this model, for example, it is not feasible to compute the volume of a building

or to determine conflicts between buildings and underground pipes. To deal with these

tasks, single 2-manifolds are not sufficient, since buildings must be closed from below by

using solids. As an example, Figure 4a shows a building modeled by a single 2-manifold,

while in b, the same building is represented by a solid. The topology of solids is totally

different from the ones discussed in the previous cases, since closed solids are completely

bounded by a single 2-manifold. But the complete scene may not be represented by a

single 2-manifold, since it contains edges whose neighborhood is not equivalent to an open

disk: An edge is in the boundary of three faces. Consider for example the edge e2 in

Figure 4b, which is in the boundary of the wall face, the ground face and the face

surrounding the building. In contrast, the corresponding edge e1 in Figure 4a is in the

boundary of only two faces, of a wall face and a face surrounding the building.

2.7. Modeling invisible faces: Aggregation of solids

The models discussed in the last paragraph consider the outer hull of a building, seen

from outside or below. Often the internal structure of a building is of interest, too. For

example, if a house is located close to a garage, some applications require the computation

of the volume of the garage and the house separately. The face separating both objects

Figure 4. Two different representations of the same building, depicted from below. In a), it is modeled by a

single 2-manifold. The ground face of the building is not represented. The building in b) is given by a solid,

which is completely surrounded by faces. The topology in a) is two-dimensional, while in b), it is not.
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must be modeled explicitly, although it is not visible from outside. Figure 5 shows an

invisible face (dark gray) separating a building and a neighboring garage as an example.

Another important GIS application, which requires invisible faces, is efficient visualization.

In the visualization of an urban scene, often parts of buildings are omitted for generalization

reasons. Inconsistencies occur, since remaining objects may be drawn incompletely and get

holes. For example, if the garage in Figure 5 is omitted in the visualization process, the

remaining building gets a hole when the invisible face shared with the garage (depicted dark

gray in Figure 5) is not represented. Thus invisible faces separating neighboring features are

essential for fast, consistent visualization of 3-D models.

The topology which is necessary to model solids with invisible faces is inherently

three-dimensional. In the models discussed in the last section, a face may be in the

boundary of at most one solid. An invisible face, in contrast, has exactly two neighboring

solids. A 3-D topology is required, which has to manage the neighborhood between

solids.

In computer graphics, invisible faces are not considered as part of a Boundary

Representation [7], [19]. In GIS, however, they are modeled explicitly [20], [14],

extending pure boundary representation. The most important standard for geometric and

topological models in GIS, ISO 19107 FSpatial Schema_ [14], which was issued by the

ISO and the Open Geospatial Consortium recently, allows to aggregate solids to

complexes and to represent the invisible faces and its 3-D topology explicitly. However,

tools to manage such 3-D models are very complex and maintaining consistency is a

difficult problem.

2.8. Summary of Section 2

Features in the range from 2-D to 3-D can be classified according to geometrical and

topological criteria. Seven classes have been identified: 2-D, 2.5-D, 2.5-D with vertical

walls, 2.5-D with vertical walls and overhangs (2.8-D), 2.8-D with handles, solids

Figure 5. Aggregation of two solidsVa building and a garage. Both solids share a common wall (dark gray

face), which is not visible from outside.
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without invisible faces, and aggregation of solids with invisible faces. The geometric

complexity increases in each step, but the topological complexity remains constant from

2-D to 2.8-D. But a 2.8-D model is sufficient to cover the most features in 3-D urban GIS

applications Thus the rest of this paper focuses on 2.8-D maps and methods to maintain

consistency of these models.

3. Maintaining consistency of 2-D maps

In the last section, the concept of a 2.8-D map was identified and described. It is suitable to

model many 3-D urban objects, but preserves the simplicity of the 2-D case as much as

possible. To deal with the problem of maintaining consistency for 2.8-D maps, the 2-D

case is discussed first.

Two-dimensional maps generalize common data structures in commercial GIS. Maps

provide a tessellation of the plane with covering and non-overlapping faces, being the

base for many application-specific integrity constraints.

To define concept of a map in a formal way, some basic notions of topology and graph

theory are given. The reader interested in more details is referred to textbooks on graph

theory or topology [13], [1]. Graphs play a central role in the definition of spatial models

in GIS. Basically, a graph G (V,E ) is specified by a set V of vertices and a set E of edges.

An edge e is specified by a set {v1,v2} of two end vertices; e is called incident to both v1

and v2 and vice versa, while v1 is adjacent to v2. The degree of a vertex is the number of

its incident edges. Note that in our context all edges are undirected.

Subsequent edges form a path. If for each pair of vertices there is a connecting path,

the graph is called connected, otherwise unconnected. A cycle is a path where the start

and the end vertex are the same, and a cycle is simple if this start resp. end vertex is the

only vertex which occurs more than once, while all others occur only once. A graph may

be embedded in the plane. Vertices correspond to points and edges correspond to straight

line segments. A more general shape of the edges may be obtained by a homeomorphic

embedding [7]. If nothing else is stated explicitly graphs are identified with their

embedding in the plane. In a plane graph, edges never cross. More precisely, if two

edges have a common point, it is an end vertex of both edges.

A graph embedded in the Euclidean plane defines faces as atomic areal entities. A face

f is mathematically defined by the following property: f is a maximal part of the plane

such that for any two points X and Y in it there is a continuous (not necessarily straight)

line from X to Y, which does neither cross nor touch any edge of the graph.

Now we are in a position to define a 2-D map formally: a 2-D map is a graph

embedded in the two-dimensional Euclidean plane, together with the set of faces defined

by the embedding. Each face is bounded by exactly one simple cycle of the graph. An

example for a map was already shown in Figure 1a. Note that there is a special unbounded

face called OUT, which is bounded by one interior simple cycle.

A data structure representing the mathematical concept of a map is depicted in Figure 6,

using the graphical modeling language UML [2].
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Spatial data structured according to this model, however, may contain errors. There

are well-known error cases, like over- and undershoots, violating the map or tessellation

properties [18], [24]. To detect this, axioms are provided being provably correct and

complete. These axioms are given in Table 1 and are discussed in detail in [9] or [24].

These axioms are the base for maintaining consistency of 2.8-D maps, which is topic

of the next section.

4. Maintaining consistency of 2.8-D maps

The concept of a map and the consistency rules given in the last section are restricted to

the modeling of two-dimensional objects. In this section, both are generalized to cope

with three-dimensional phenomena.

4.1. 2.8-D maps: Formal definition and error cases

In Section 2.4, the model of a 2.8-D map was introduced informally as a single 2-D

surface embedded in 3-D space, which in particular allows the modeling of vertical walls

and overhangs. From a mathematical point of view, it is characterized by a 2-manifold.

Now this concept is described more formally, based on the model of 2-D maps (Section 3

Figure 6. UML class diagram for 2-D maps. A map consists of faces, which are bounded by edges, and an

edge is defined by two vertices.

Table 1. Correct and complete axioms for 2-D maps [9], [24].

Vertices: 1. No two different vertices have the same coordinates.

2. Each vertex has at least two incident edges (vertex degree Q 2).

Edges: 3. For every edge, there are exactly two distinct vertices as endpoints.

4. Edges correspond geometrically to straight line segments.

5. Any common point of two segments is a common end vertex of both segments

(intersection-free edges).

6. Each edge has exactly two distinct incident faces.

Faces: 7. Each face is bounded by exactly one simple cycle.

8. No midpoint of an edge lies inside the interior of a face.
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and Figure 6). A 2.8-D map is a 2-D map, where the 2-D coordinates of the nodes are

replaced by 3-D coordinates, and which is topologically equivalent to a single 2-D disk.

This implies that two edges touch only at common vertices and that two faces touch only

at common edges.

If the nodes are embedded in 3-D space, then so are the edges. In our case, edges are

represented by straight line segments. If the edges are embedded in 3-D space, then so

are the faces. Faces are restricted to be planar, i.e. all vertices on its bounding cycle are

located in the same 2-D plane. However, the location of this 2-D surface in 3-D space is

arbitrary. In Section 5.2, the consequences of considering non-planar faces will be

discussed.

The simple saddle roof building in Figure 2 was already discussed as an example for a

2.8-D map. To illustrate the formal definition of 2.8-D maps, it is considered again. In

the figure, the house is bounded by six wall faces, two of them being triangles, two door

faces, four roof faces, two of them being overhangs, and five faces bounding a chimney.

In addition, two faces represent the parcel and a path. Note that each face is bounded by

a single, simple cycle.

For completeness reasons, a 2.8-D map has an unbounded face OUT, the geometry of

which is undefined. In contrast to all other faces, its boundary must not be planar.

Not all structures, which are constructed according to the extended UML diagram in

Figure 6, satisfy the mathematical definition of a 2.8-D map. Figure 7 depicts some error

cases for 2.8-D maps. In Figure 7a, the neighborhoods of the points on edge e2 are not

topologically equivalent to an open disk. In this case, the Fcloth_ is folded at face f3,

which is incident to edge e2. A similar error appears at edge e1. All points on this edge

have a neighborhood, which is not topologically equivalent to a 2-D disk, too. The

structure shown in Figure 7b is not a 2.8-D map, since it consists of two 2-manifolds: a

closed 2-manifold representing the building, and another 2-manifold which models the

relief. This is an error, since a 2.8-D map must correspond to exactly one 2-manifold.

Figure 7. Examples of error cases for 2.8-D maps. The structure in a) is not a 2-manifold, since the

neighborhoods of all points on the edges e1 and e2 are not topologically equivalent to a 2-D disk. In b), the

structure consists of two 2-manifolds: a triangulated irregular network (TIN) and a building, which is not

connected to the TIN. A 2.8-D map must correspond to exactly one 2-manifold.
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4.2. Preserving 2-D topologyVDetection of handles

Each 2.8-D map is a 2-manifold, but the converse of this statement is not true: There are

2-manifolds which are not accepted as valid 2.8-D maps. As discussed in Section 2.5, a

2-manifold may contain handles, which violate the 2-D topology of the surface. Figure 3

depicts a bridge as a well-known example for a handle. Due to its topology, this case is

difficult to handle from an algorithmic point of view.

To check the consistency of 2.8-D maps, a procedure to detect handles is required. A

simple method for counting handles in surfaces is given by the Euler characteristic,

which can be computed by the well-known Euler formula [1], [19]. If N, E and F are the

numbers of nodes, edges and faces, then the Euler characteristic C is given by the

equation:

C ¼ N � E þ F

The Euler characteristic of a 2.8-D map is two. From this equation, the number H of

handles may be derived by the formula [19]:

H ¼ 2� Cð Þ=2 ¼ 2� N þ E � Fð Þ=2

It can easily be computed whether the number H of handles is zero, just by counting

the numbers of vertices, edges and faces. Note that this version of the Euler formula is

valid for surfaces without boundary (there is an additional face OUT, so a surface has no

boundary) and with exactly one component. From a graph theoretical point of view, this

corresponds to connected graphs.

It is important to note that Euler’s formula is only a necessary condition, not a

sufficient one for the consistency of a map: The consistency of a surface implies the

validity of the Euler formula, while from the validity of the formula, no statement about

consistency can be derived. By adding nodes to an inconsistent map, the formula can be

forced to be valid, although the map remains, of course, inconsistent. Thus the Euler

formula in general is not appropriate for checking consistency.

Nevertheless, when the map is consistent, the Euler formula counts the number of

handles in a correct way. Thus the consistency must be guaranteed by other axioms

before the Euler formula can be applied for counting handles.

4.3. Axioms for 2.8-D maps

Now we are in a position to give axioms, which are correct and complete for 2.8-D maps.

These axioms, which are a generalized version of the axioms for 2-D maps (Table 1), are

given in Table 2.

The first seven axioms are identical to the corresponding axioms in Table 2, which

cover the 2-D case. They only differ in the complexity of the methods which are required

to implement the geometrical axioms: To check if axiom 5 (intersection-free edges)
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holds, a 3-D algorithm for segment intersection [7] has to be employed, instead of a 2-D

procedure.

Axiom 8 guarantees that the interiors of faces do not touch. Since all faces are planar

(axiom 9), a touching of two face’s interiors implies that a point on an edge touches an

interior of a face. The example in Figure 8a illustrates this fact. The interiors of the faces

f1 and f2 touch. Since both faces are planar, there must be an edge in the boundary of face

f1 which touches f2. In the example, the edges e1 and e2 touch the interior of f2. Thus

axiom 8 is sufficient to prevent touching of the interiors of faces. The case of curved

faces (Figure 8b) is dealt with in Section 5.2.

Axiom 10 states that the graph has to be connected. In the two-dimensional case, it is

not necessary to state this property explicitly as an axiom, since it is implied by the

tessellation property and by the fact that each face is bounded by exactly one cycle

(axiom 7). In three dimensions, the situation is different. An example was already

given by the structure in Figure 7b, which is obviously a tessellation. But the scene

contains two surfaces, not exactly one as required for a 2.8-D map. The consequence in

the example is a building floating above the terrain. Obviously, the underling graph is

Table 2. Axioms for 2.8-D maps, which are correct and complete. The axioms 1 to 7 are identical to the 2-D

axioms in Table 1, while the others have been changed (axiom 8) or added (axioms 9 to 11).

Vertices: 1. No two different vertices have the same coordinates.

2. Each vertex has at least two incident edges (vertex degree Q 2).

Edges: 3. For every edge there are exactly two distinct vertices as endpoints.

4. Edges correspond geometrically to straight line segments.

5. Any common point of two segments is a common end vertex of both segments

(intersection-free edges).

6. Each edge has exactly two distinct incident faces.

Faces: 7. Each face is bounded by exactly one simple cycle.

8. No point of an edge touches the interior of a face.

9. The vertices of the boundary of a faceVapart from OUTVand its interior are planar.

Graph: 10. The underlying graph is connected.

11. The number of handles is zero (Euler’s formula).

Figure 8. Two different cases of faceYface intersections. In a), the interiors of the faces f1 and f2 intersect, but

there is also an intersection of the boundary of face f1, in particular the edges e1 and e2, and the interior of f2.

Both faces are planar. b) Shows an intersection of the interiors of faces f1 and f2, but the boundaries of both

faces do not touch. While f1 is planar, the interior of face f2 is a hemisphere.
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not connected. Thus axiom 10 forces that there is only one connected surface. Axiom

11 prevents handles by employing Euler’s formula, as discussed above.

4.4. Correctness and completeness of the axioms

So far, the mathematical definition of a 2.8-D map was presented, which may not effectively

be checked by automatic procedures, and axioms for 2.8-D maps (Table 2), which are

checkable effectively and efficiently. To ensure that these axioms guarantee the consistency

of 2.8-D maps, it has to be proven mathematically that the axioms are in fact equivalent to

the mathematical notion. Thus the correctness and completeness of the axioms for 2.8-D

maps must be shown. This assertion is stated by the following proposition:

Proposition: The set of axioms given in Table 2 is correct and complete for 2.8-D

maps.

Proof: For the completeness of the axioms, it must be shown that for any structure,

which satisfies all axioms, the following properties hold:

1. The structure is a tessellation of planar faces, i.e. it has no gaps, no overlaps and no

touches of the interiors of faces. Faces are bounded by exactly one simple cycle.

2. From a mathematical point of view, the structure is equivalent to exactly one 2-manifold.

3. The surface has no handles.

The first property follows from axioms 7 and 8 together with their discussion above,

which guarantee that no interiors of faces touch. Axiom 6, which forces each edge to be

connected to two faces, prevents gaps between faces. Note that a Fgap_ inside the map,

which is filled by the face OUT, is detected by axiom 7. In this case, the face OUT has

more than one bounding cycle, which contradicts axiom 7.

For the proof of the second property, it must be shown that the neighborhood of each

point on the 2.8-D map is topologically equivalent to an open disk. This is implied by the

first property, together with axiom 6, which states that each edge has no more than two

incident faces. This argument is illustrated in Figure 7a, where all points on the edges e1

and e2 violate this property. But both edges are in the boundary of more than two faces;

e1 bounds four faces ( f1, f2 and two faces on the lower sides of the box), and e2 bounds

three faces ( f1, f2 and f3). The fact that the structure consists of exactly one 2-manifold, is

an immediate consequence of axiom 10.

From axiom 11 it can be deduced immediately that there are no handles; the third

property is valid as well. Thus the axioms are complete.

To proof the correctness of the axioms, it must be shown that the axioms are implied

by the mathematical definition. For the axioms 1 to 5 and 7, the proof is similar to the

2-D case [9], [24]. Axiom 6 (FEach edge has exactly two distinct incident faces_), however,

follows from the tessellation property together with the second property by contradiction:

Suppose an edge e has three or more incident faces. If two of these faces touch in an interior
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point, this violates the tessellation property. If the interiors of the faces are disjoint, the

neighborhoods of points on e are not topologically equivalent to an open disk (see edges e1

or e2 in Figure 7a as examples), thus the structure is not a 2-manifold. This contradicts the

second property. If an edge has one or zero incident faces, the contradiction may be derived

in a similar way. Thus axiom 6 holds.

The correctness of axioms 8, 9 and 11 is obvious. The connectedness of the graph

(axiom 10) is a consequence of the second property, which states that a 2.8-D map consists

of exactly one 2-manifold (see Figure 7b for a counterexample). However, even a graph

representing a single 2-manifold may be unconnected, since a face may have holes. But

this is prevented by the first property, forcing the boundary of a face to be exactly one

simple cycle. This completes the proof of the proposition. Ì

The most important implication of the proposition is, that it can safely be assumed that

a given data set is a consistent 2.8-D map, if the axioms are valid for this data set.

5. Modeling thematic objects and curved surfaces

Based on the model of a 2.8-D map and the corresponding axioms given in the last

section, now two extensions are discussed, which allow for representing more types of

objects. The first extension enables the definition of thematic spatial objects like buildings

and their structure, while the second extension generalizes the interpolation of faces to

include curved faces. In both cases, the impacts on the axioms, which of course continue to

be correct and complete, are discussed.

5.1. Defining thematic spatial objects and their aggregation hierarchy

The 2.8-D maps presented in the last section can be used to define the geometrical and

topological properties of thematic spatial objects, like buildings, garages, balconies, windows

or doors. Obviously, a thematic object consists of the (visible) faces, which bound the object.

For example, a simple saddle roof building consists of four wall faces and two roof faces.

The face representing the footprint is not visible and is neglected in the model. To guarantee

consistency of such objects, it must be assured that the faces of an object do not overlap and

that there are no gaps between faces. In addition, neighboring objects, for example a house

and a garage, may not overlap. To guarantee these properties, the concept of nested maps is

adopted from 2-D to 2.8-D.

Nested maps have been developed to represent the aggregation hierarchy of 2-D

objects [23], [24]. An example is the hierarchical structure of administrative entities:

Municipalities can be aggregated to counties, counties to states, and states to countries. A

nested map consists of a map representing the lowest level with the finest granularity.

This level is the base level of the aggregation tree. Each administrative level is represented

as a level of the aggregation tree, and each face on one level is the aggregation of the

corresponding faces on the next lower level. The crucial property of this structure is that
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each level of the hierarchy is a map, i.e. it consists of non-overlapping and covering faces.

This is guaranteed by the tree structure and one additional axiom, the Simple Cycle Axiom:

Each face on each level is bounded by only one simple cycle.

Now this concept can be adapted to the definition of thematic spatial objects in 2.8-D

maps and their aggregation. An example is depicted in Figure 9, where the leaf nodes of

the tree (Figure 9c) represent all faces of the scene. On the next level, there are three

aggregates: a garden, a main house and a garage. The next level consists of two objects,

the (complex) house and the garden, and the highest level represents the whole scene.

Similar to the 2-D case, the consistency of a scene can be asserted by the simple cycle

axiom, which has to be added to the axioms in Table 2:

Together with the tree property of the aggregation and the consistency of lowest level

of the hierarchy, this guarantees that the objects on each level are non-overlapping.

Otherwise, one face would have two or more predecessor in the tree. Holes or gaps are

prevented by the simple cycle axiom: if a face has a gap, it would have more than one

cycle in its boundary.

The depth of the hierarchy is not restricted; it is straightforward to include more details

like chimneys, windows, or doors.

Figure 9. Example of a nested map, representing thematic objects of a 2.8-D map. The scene consists of a

house and a garden, where the house is the aggregation of a garage and a main house a). The flattened model is

depicted in b), where the simple cycles bounding aggregates are distinguished using different signatures. The

aggregation tree of the nested map is shown in c).

12. Each face on each level is bounded by only one simple cycle.

154 GRÖGER AND PLÜMER



In addition to a consistent definition of spatial objects, the concept of nested maps

supplies with useful information about the exact geometries where two neighboring

objects are glued together. This is related to the problem of invisible faces discussed in

Section 2.7. Since each object is defined by a simple cycle, the edges belonging to two

cycles are edges used by two objects. In the example in Figure 9, the edges common to

the main house and the garage are exactly the edges common to both corresponding

simple cycles. Since 2.8-D maps represent only the visible faces of objects, it is not

obvious how to deal with objects as solids. In the context of nested maps, the geometry

of the simple cycles that represent objects supplies the missing faces to close the object.

For instance, the house given in Figure 9 can be closed by the Fface_, which is given by

the cycle of the node labeled Fhouse_. This face is not part of the model, since it violates

the 2-D topology: the neighborhoods of all points located on this cycle are topologically

not equivalent to an open disk. But this face can be calculated temporarily and be used to

compute the desired result, which requires closed solids.

5.2. Modeling curved surfaces

The faces of 2.8-D maps defined in Section 4 are restricted to be planar. Many buildings,

like churches, towers, or mosques, are bounded by curved faces, for example by hemispheres.

The interpolation of such faces has been studied intensively in computer graphics [7],

examples are bezier-surfaces, B-spline-surfaces and NURBS (non-uniform rational B-

splines). To extend our model to these types of faces, additional information must be

assigned to faces, since the shape of a face is no longer determined uniquely by the

location of its bounding cycle. To guarantee consistency of this extended model, the

axioms given in Table 2 are not sufficient. The interiors of curved faces may touch,

although no edge in the boundary of a face touches an interior of a face (see Figure 8b).

Axiom 8 in Table 2 does not detect touching of curved faces and is replaced by a new

version of axiom 8:

This stronger version of the axiom detects error cases involving curved faces. The

implementation of this axiom is more complex and less efficient. It can be based on

algorithms from computational geometry [7].

6. Conclusions

Most commercial GIS currently available are able to cope with two or 2.5 dimensional

data only. Those models are not sufficient for the representation of urban objects. FReal_
3D-models like the Boundary Representation or the Constructive Solid Geometry, which

are usually employed for this purpose, are complex from an algorithmic perspective and

8. For each pair of faces, both interiors do not touch.Faces:
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difficult to handle. We define the concept of a 2.8-D map, which extends 2-D or 2.5-D

models by allowing vertical walls and overhangs, and demonstrate that this model can

handle most urban phenomena. The simplicity of the 2-D or 2.5-D case is maintained as

much as possible. This simplicity mainly stems from the two-dimensionality of its

topologyVa 2.8-D map is topologically equivalent to a two-dimensional disk. The paper

defines the limits of the simplicity and the two-dimensionality exactly: tunnels and

bridges are outside the scope of a 2-D topology. Those Fhandles_ are difficult to cope

with and need further investigation. We show how to detect these cases efficiently. Based

on 2.8-D maps, we present concepts to define thematic objects and their aggregation struc-

tures in a consistent way.

The conceptual simplicity of 2.8-D maps allows to adopt 2-D concepts for guaranteeing

consistency, enabling users to detect errors and check consistency effectively and effi-

ciently. In fact, we give a set of axioms, which are provably correct and complete for

2.8-D maps. Since correctness and completeness are proved with mathematical rigor, users

can rely on the results. The costs to check these axioms increase negligibly compared to the

2-D case.

Most commercial GIS tools can handle 2-D or 2.5-D applications. From a tool

perspective, the step from 2.5-D to 2.8-D maps is not huge. It can be realized with little

effort, but yields a large profit due to the modeling power of 2.8-D maps. This implies

a good cost-benefit ratio between adoption of algorithms and added value for 3-D

applications.

Further work remains to be done. One important question is the incorporation of

unconnected graphs, which are necessary to model objects like windows or chimneys,

which do not touch other edges of surrounding faces. This work can be done based on

[9], which covers the 2-D case. The extension of the model to cope with handles and

invisible faces is the following step to be taken. The procedure to check consistency of

such models should first separate handles and invisible faces, check all these parts

separately and finally check the consistency of the interfaces between the parts.

Another challenge is the specification of transaction rules for 2.8-D maps, which

maintain consistency once given, when updates are performed. Here, the 2-D case was

dealt with in [10]. In addition, an important question is how to incorporate other efficient

data structures like the winged edge structure [27]. The redundancy introduced by this

structure requires additional efforts to check consistency.
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