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Abstract

Sensor networks are unattended deeply distributed systems whose database schema can be conceptualized

using the relational model. Aggregation queries on the data sampled at each sensor node are the main means

to extract the abstract characteristics of the surrounding environment. However, the non-uniform

distribution of the sensor nodes in the environment leads to inaccurate results generated by the aggregation

queries. In this paper, we introduce Bspatial aggregations^ that take into consideration the spatial location of

each measurement generated by the sensor nodes. We propose the use of spatial interpolation methods

derived from the fields of spatial statistics and computational geometry to answer spatial aggregations. In

particular, we study Spatial Moving Average (SMA), Voronoi Diagram and Triangulated Irregular Network

(TIN). Investigating these methods for answering spatial average queries, we show that the average value

on the data samples weighted by the area of the Voronoi cell of the corresponding sensor node, provides the

best precision. Consequently, we introduce an algorithms to compute and maintain the accurate Voronoi

cell at each sensor node while the location of the others arrive on data stream. We also propose AVC-SW, a

novel algorithm to approximate this Voronoi cell over a sliding window that supports dynamism in the

sensor network. To demonstrate the performance of in-network implementation of our aggregation

operators, we have developed prototypes of two different approaches to distributed spatial aggregate

processing.
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1. Introduction

Sensor networks are wireless networks of low power, memory constrained,

autonomous, cheap and compact sensor nodes. These unattended nodes communicate

within limited radio ranges. They are designed to be usually abandoned in unexplored

inaccessible environments in which failure is a common event. The main idea behind

deploying a sensor network in a physical environment is to monitor a real-world

phenomenon. In other words, the measurement values monitored by each sensor node
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are data samples representing the phenomenon. The user studies these measurements

to understand the underlying physical process in the environment. This process can be

a wildfire or development of a specific populations of marine microorganisms in

nature.

Considering the data generated by a sensor network as a database, a broad range of

queries is feasible. The class of traditional aggregation queries, in particular, are of

main interest within the sensor network community [2], [5], [7], [16]. The common

basis of all aggregation queries is to compute a summary value based on a set of

database items. When applied on the sensor network data, the aggregation queries are

the main means to extract the abstract characteristics of the phenomenon from the

samples taken in the environment. For example, the following query is a range

aggregate query on a network of sensor nodes with humidity and temperature sensors:

SELECT AVG(humidity)

FROM sensors

WHERE location INSIDE Room-101

AND temperature < threshold;

In general, no assumption should be made about the distribution of the sensor

nodes in the environment. Hence, applying traditional average on a non-uniformly

distributed observation set leads to erroneous results and false reasoning about the

phenomenon. That is, as the phenomenon is usually a continuous process, only a

uniform sample set is a good representative of the whole process. Furthermore,

traditional aggregation operators are not amenable to outlier and noisy values. To

illustrate, the average of the humidity monitored by the sensor network in Figure 1 at

times a and b is 10. With a continuously increasing humidity from left to right, the

real average humidity at time a should be 15. While at time b, the real average is

expected to be close to 5 since sensor node s4 happens to be close to a local maxima

in the space of humidity values.

While the research on data engineering for sensor networks has been focusing on

providing efficient in-network query processing of traditional aggregation operators,

our example showed that these operators are not reliable means to observe and study a

real-world phenomenon. Instead, we propose to use the spatial interpolation methods

at each node to infer about the missing values at neighboring unmonitored locations.

We introduce the use of spatial aggregation on the data generated by sensor networks.

With our spatial aggregation operators, the sensor measurements of sparse areas (e.g.,

s1 in Figure 1) contribute more to the final result as compared to those of dense areas.

That is, the spatial average operator relies on the value of the node s1 more than that

of s4 with two other nearby measurements. As of traditional aggregate processing for

Figure 1. Two snapshots of a non-uniformly distributed sensor network at times a and b.
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sensor networks, the spatial aggregation operators should be processed within the

network considering power and memory constraints of the nodes.

Two classes of spatial interpolation methods have been proposed in the fields of

spatial statistics and computational geometry. The global methods use the knowledge

about the entire set of observations to interpolate any of the missing values. Applying

these methods at each sensor node with limited local information requires high

communication overhead. Instead, with the local methods, only information about a

limited neighborhood is needed. Implementing the local methods at a sensor node is

still challenging as the communication range of a node may not be sufficient to

generate the required local neighborhood. In addition, with more accurate methods,

the extent of this neighborhood is dependent on the location of the neighboring

observation points (i.e., nodes) which is not fixed.

Throughout this paper, we focus on processing spatial average on the data

generated by the sensor nodes. We show the application of the classical spatial

interpolation methods to formalize the spatial average operator as a weighted average

over sensor measurements. In particular, we study three different methods. The first

method, Spatial Moving Average (SMA), divides the deployment field of a sensor

network into equal sized grid cells. SMA assigns a value to each cell based on the

values of its contained nodes. With SMA, a spatial average is transformed into a

traditional average on the values assigned to the grid cells. The second method, the

Voronoi method, uses the Voronoi diagram of the node locations to partition the

deployment field into convex polygons (i.e., Voronoi cells). The weight assigned by

the method to each node is the area of its corresponding Voronoi cell. Finally, the

Triangulated Irregular Network (TIN) which is originally an elevation model for

visualizing geospatial data uses the Delaunay triangulation of the field. It assigns to

each triangle the average value of the nodes located on its vertices.

We propose two approaches to in-network processing of the spatial aggregation

queries. With the semi-distributed approach, a single node computes the weights and

assigns them to the other nodes using the location data sent by each node. The

distributed approach leaves the task of weight computation to individual nodes. Both

approaches can be implemented on top of any traditional aggregation scheme in the

sensor networks. Our experimental results show that the overall communication

overhead of the semi-distributed approach is always 25% more than that of the

distributed approach. This significant result saves a lot of energy in the network

nodes.

To exploit the low communication cost of the distributed aggregation processing,

we propose a distributed local Voronoi cell computation algorithm for sensor

networks. We develop this algorithm to be used by each node for computing Voronoi

and TIN weights. Our Voronoi cell algorithm can be utilized to generate the Voronoi

cell of a query point using a stream of point data. At each sensor node, the algorithm

iteratively uses the stream of locations it receives from the other nodes to construct its

own local Voronoi cell.
In a real-world scenario, the sensor nodes frequently fail and stop generating

measurement values. That is, we require that the contribution of any neighboring

node to the Voronoi cell end after some period of time (i.e., when the node dies). This

is called the sliding window model in Muthukrishan [8]. In this case, to compute its

exact Voronoi cell, the node requires to store the location of all nodes arrived so far
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(i.e., O(w) space complexity for w currently live nodes). To reduce the O(w) space

complexity of Voronoi algorithms in the sliding window model, we propose AVC-

SW, an approximation algorithm which maintains only a sample of the node

locations. The core idea behind AVC-SW is to maintain a minimum subset of

locations including the closest ones to node p in each direction and compute the

Voronoi cell of p with respect to this subset instead of the set of all locations. While

the theoretical proofs are out of scope of this paper, we show that AVC-SW computes

a (1 + ")-approximations to the actual exact Voronoi cell. For a uniform point

distribution, we can theoretically compute the average sample size of AVC-SW (i.e.,

its required memory) in terms of the window size w and its single parameter. We

show that the sample size is O(log w/k) [11]. To the best of our knowledge, this is the

first distributed algorithm for computing the approximate Voronoi cells over a sliding

window on a data stream. It is completely applicable to any network of mobile nodes

as well.

Finally, we conducted several experiments to evaluate the accuracy of the spatial

average operators implemented using each of our studied interpolation methods. This

is the first work on comparing these spatial aggregation operators in the context of

sensor networks. Our experimental results show that the Voronoi-based operator

outperforms the other two operators in accuracy. Moreover, considering communi-

cation cost, our distributed Voronoi cell computation algorithm outperforms the semi-

distributed approach using classical algorithms [9].

A preliminary version of this work is presented in Sharifzadeh and Shahabi

[12], where Voronoi aggregation operator use the exact Voronoi cell at each node.

This paper subsumes [12] and proposes AVC-SW that supports dynamism in the

sensor network. AVC-SW is a novel algorithm for computing the Voronoi cell of a

fixed 2-d point when the locations of the neighboring points arrive as a geometric

data stream. The remainder of the paper is organized as follows. Section 2 reviews

the current research on aggregation in sensor networks, spatial interpolation and

Voronoi cell computation. Section 3 defines spatial aggregation on sensor

networks using classical spatial interpolation methods. In Section 4, we describe

semi-distributed and distributed approaches to spatial aggregation processing. We

propose our exact and approximate algorithms for Voronoi cell computation in

Section 5. Section 6 includes our experimental results, and Section 7 discusses the

conclusion.

2. Related work

While the database community has proposed many approaches for aggregate

processing in database systems, these works focus on efficient processing of the

traditional aggregate operators. Literature on spatial databases also mainly focus on

modelling issues, the class of nearest neighbor queries and index structures to provide

fast answers to the queries [4]. Meanwhile, the research work on aggregate processing

in wireless sensor networks is orthogonal to our work on spatial aggregate processing.

We can utilize any energy-efficient average aggregate processing algorithm to process

our spatial average operators.

12 SHARIFZADEH AND SHAHABI



Intanagonwiwat et al. in [5] discuss direct difusion, a set of novel techniques to

data-centric routing through the network. Their proposed operators are used to

provide energy efficient in-network data aggregation. Our spatial query processing

scheme is capable to use the established aggregation path in their opportunistic and

greedy approaches [5].

Madden et al. in [7] proposed TAG, an aggregation service as a part of TinyDB1

which is a query processing system for a network of Berkeley motes. The service

employs a SQL interface to the sensor data streams. It presents innetwork processing

of the aggregation queries on the data generated in the sensor network. We use the ad-

hoc query routing algorithm of TAG to disseminate our query into the network. Our

spatial aggregate operators are compatible with the aggregate processing of TAG and

easily portable to TinyDB.

Zhao et al. in [16] introduce an architecture for sensor network monitoring. Their

architecture benefits from an energy-efficient aggregate processing for network

properties (digest functions). An average query is computed on the digest tree which

their digest diffusion scheme constructs. This digest tree can also be used as a query

tree to route a spatial average query through the network. Similar to TAG, they

process an average query through computing and forwarding partial results at the

nodes on the digest tree.

The Voronoi diagrams have been extensively studied in the field of Computational

Geometry [9]. However, the focus has been on the efficient computation and

representation of these diagrams for an entire set of points. The only research works

on computing Voronoi cell of a point is the two approaches presented in Stanoi et al.

[13] and Zhang et al. [15]. Stanoi et al. [13] study the problem of finding the influence

set (Voronoi cell) of a query point considering data points stored in the database.

They show how this problem can be reduced into nearest neighbor and range queries.

They propose an algorithm to extract a superset of all the data points which can

potentially contribute to the Voronoi cell of the query point. However, they define a

rectangular range that includes this superset as they intend to use an R*-tree index to

retrieve the set. Our approach is similar in determining how a local cell can be

affected by the recently received locations at each sensor node. However, we use a

radial range to be compatible with the communication style of the nodes. Zhang et al.

[15] also propose an approach to compute the cell (validity region in their

terminology) when the data points are indexed by an R-tree. Their ray shooting

scheme benefits from time parameterized nearest neighbor queries using an R-tree.

However, our assumption is that a sensor node with a limited memory space needs to

compute the cell while the location of all the data points are not available at the time

of computation.
Arya et al. [1] have performed the only work on approximating Voronoi cells in

d-dimensional space. Their approach combines the shape approximation and adaptive

sampling techniques to build an approximate cell of size O 1=
ffiffiffi

"
pð Þ for d = 2. They

assume that the exact cell to be approximated is given. Then, they examine the

Voronoi neighbors of the given point and the corresponding Voronoi vertices to keep

the minimum number of Voronoi neighbors using which an "-approximate cell for

addressing nearest neighbor problem can be computed. This is the same as what we

call a (1 + ")-approximate cell in this paper. This approach is not applicable to sliding

windows over data streams as insertion/deletion of each single point might cause the
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sampling criteria to include or exclude a neighbor from the cell. This non-

deterministic change results into storing all the points in the window.

3. Aggregation on sensor networks

A sensor network SN consists of n sensor nodes deployed over an area R. Each

sensor node s is equipped with different types of sensory devices. In general, the

sensor nodes are not of the same type. They are monitoring different types of values

depending on their assigned task within the network. However, to simplify our

discussion and without loss of generality, we assume that all sensor nodes in our

sensor network SN are operationally equal. Each sensor in node s continuously

samples a value v measuring the phenomenon being monitored (e.g., a temperature

sensor samples the temperature at the location of the sensor node). Without loss of

generality, we assume that all sensors are sampling the corresponding values at

the same time intervals. Each sensor node has m sensors generating corresponding

values v1, . . . ,vm. Let the unique fixed location of the sensor node s in the 2-d space,

(x, y), be known to the sensor node. Therefore, the sensor node s generates a data

tuple d of the form <x, y, t, v1, . . . ,vm> at each time-stamp t. We conceptualize the set

of data tuples generated by all n sensor nodes in SN as a relational table T. Each row

of the table is uniquely identified using the location and time columns as the primary

keys.

A set of different aggregation queries are now formally definable on the the

realized conceptual model of the sensor network. The average query in Section 1 can

be generalized as follows:

SELECT aggr (exp(attrs))

FROM T
[WHERE (x, y) INSIDE R

[AND pred ]]

As in traditional databases, the above query applies the aggregation operator aggr

on non-spatial attributes attrs of a discrete set of data items which are qualified ac-

cording to the predicate clause pred and their location attribute being inside region R.

A spatial aggregation query on the same set of data is defined using the same SQL

statement. This means that the interface of the spatial aggregation query is the same

as that of traditional aggregation query but the functionality is totally different.

Considering the fact that the data items are discrete observations representing a

phenomenon in the space, the spatial operator computes the summary value for all the

data items which can be extracted from the continuous space of the data items

according to the query predicate/constraints. These data items need not to be

monitored at a specific location (i.e., stored in our conceptual database). For

example, in the context of sensor networks, we only have access to those data items

which are measurements of an actual sensor node located at a position in the space.

A spatial aggregation operator needs to infer about the data items at the positions in

the space R where there are no sensor nodes. It means that the query processing for
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the aggregation operator needs to apply an interpolation method to find the missing

values.

Although the functionality of a spatial aggregation is different from that of its

corresponding traditional aggregation, it may result in the same answer value. To be

specific, the results of applying operators such as MIN (or MAX) to a discrete set of

observations and the same set including interpolated data items is not different. The

rationale behind this is that these characteristics of the set are invariants during the

interpolation procedure. However, AVERAGE and SUM operators are different

comparing to their corresponding traditional operators. The reason is that they take to

the consideration the distribution of the data samples. Finally, COUNT operator is an

example of the aggregation operators which does not have a meaningful

corresponding spatial operator. Here, throughout this paper, we focus on spatial

average query as a basic instance of the class of spatial aggregation queries.

Assume that the aggregation operator will be applied only on one attribute (i.e., one

column of table T ) and the predicate clause pred is omitted without loss of generality.

To be specific, consider the sensor network in Figure 2a. Each sensor node si located

at (xi, yi) generates a value vit at time t resulting a tuple of the form < xi, yi, t, vit >. The

traditional average on values vit at time tx is formulated as
Pn

i¼1 vitx

�

n. Let the

function v(x, y) gives the value of each location (x, y). Therefore, values vit are

samples of this function at specific locations. The spatial average of the function

v(x, y) over the continuous region R is formally defined as follows:

SAVG ¼ 1

area Að Þ �
Z

R

v x; yð Þdxdy ð1Þ

Spatial interpolation is the main mean to provide values for unmonitored locations.

BSpatial interpolation is the procedure of estimating the values of properties at

unsampled sites within an area covered by existing observations^ [6]. Different

spatial interpolation methods have been proposed for environmental datasets, discrete

observations at some locations in the environment. The field of spatial statistics

categorizes these methods into global and local groups based on the set of

Figure 2. a) A snapshot of a sensor network consisted of 9 sensor nodes with their sampled value, and

b) its Voronoi diagram interpolating the value of the location � to the value of sensor node s1.
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observations they use to interpolate missing values. The group of global methods

apply a single function to the whole set of observations in the space. Trend surface

analysis is an example of the methods in this group. The local methods instead apply

a common function repeatedly to subsets of the observed points. These methods such

as Spatial Moving Average (SMA) usually generate the interpolated data as a set of

local results.

Considering the need for in-network implementation of the aggregations on sensor

networks [7], it is clear that global interpolation methods which require the whole set

of sensor node measurements are not practical. In the remainder of this section, we

briefly describe several local interpolation methods, namely, Spatial Moving Average

(SMA), Voronoi Diagram, Triangulated Irregular Network (TIN), and Kriging. We

will formally define how each one of our investigated methods calculate the spatial

average as a weighted average on the individual sensor values.

3.1. Spatial moving average (SMA)

Spatial Moving Average method is widely used in different fields such as GIS and

image processing. SMA divides the space using equal size grid cells. The value

assigned to each location in the grid cell is then defined as a weighted average of the

value of all observation points inside the cell. The corresponding weight of each

value is 1/d where d is its distance from the center of the grid cell. For example, SMA

assigns (5/2 + 3/1 + 7/2)/(1/2 + 1 + 1/2) = 4.5 to the grid cell including s1, s4 and s5 in

Figure 2a.

The spatial average is defined in terms of the average on the values assigned to grid

cells. Let SÌ be the set of all grid cells partitioning the region R. The value assigned to

a grid cell � including all sensor nodes si with values vit is v� ¼
P

si2�vit� 1
di

P

si2�
1
di

. Based on the

SMA method, the spatial average is computed as follows:

SMA Avg ¼

P

�2SÌ

v�

P

�2SÌ

1
ð2Þ

We reformulate the above average into a weighted average on the sensor values.

Let G(si) be the the grid cell including the sensor node si. We rewrite Equation 2 as

follows:

SMA Avg ¼

P

n

i¼1

�

1
di�
P

sj2GðsiÞ
1
dj

�

�vit

P

n

i¼1

�

1
di�
P

sj2GðsiÞ
1
dj

� ð3Þ

The above equation shows that for each point si an SMA weight wi can be defined

in the SMA method.
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3.2. Voronoi diagram

The use of Voronoi diagram which is sometimes termed as Thiesson polygons is

based on Tobler’s first law of geography [14]. The law says: Beverything is related to

everything else, but nearby things are more related than distant things.^ This fact

implies spatial autocorrelation for the observations in a geographic space. It means

that there is a relation between values monitored at the neighboring locations.

This method assigns to a location with an unknown value the value of its closest

location in the observation set. Therefore, there is always a unique value interpolated

for each location. In other words, the space is partitioned with n sensor nodes (i.e.,

observation points) into n convex polygons (Voronoi cells) such that each polygon

contains exactly one sensor node and every other location in a given polygon is closer

to its corresponding sensor node than to any other node. The value of each location is

interpolated to the value at its closest sensor node. To illustrate, in Figure 2b the value

at location shown as � is the same as that of s1 (i.e., 5).

Considering this interpolation scheme, the spatial average over a continuous region

R is translated into a weighted average on the values of all sensor nodes in R. The

Voronoi weight assigned to each sensor node value is the area of its corresponding

Voronoi cell. Formally speaking, let Vsi
and area Vsi

ð Þ be the corresponding Voronoi

cell of the sensor node si and its area, respectively. Using the Voronoi diagram

method, the spatial average on values vit generated by n sensor nodes si at time t is

measured as follows:

Voronoi Avg ¼

P

n

i¼1

area Vsi

� �

� vit

P

n

i¼1

area Vsi

� �

ð4Þ

The averaging function in Equation 4 is amenable to nonuniform distribution of

known values (i.e., sensor nodes) over the space. Each known value in the space is a

representative for the value of a subset of locations in the space with an unknown

value. In a sensor network implementation, each sensor node participates in the av-

erage value with a weight proportional to the area of the corresponding Voronoi cell.

3.3. Triangulated Irregular Network (TIN)

TIN is a vector-based method used as a digital elevation model. It is a method to

generate a 3-dimensional model for the elevation data collected at a set of observation

points in 2-d space. The method generates the model in two steps. First, all the

observation points which are of the form (x, y, z) are projected to the xy plane. The

Delaunay triangulation of the xy plane is created using the set of projected points.

This is a unique partitioning of the space using triangles formed by neighboring

points in the Voronoi diagram as their vertices. Then, for each triangle in the xy plane

(¸s1s2s3 in Figure 3) the three observation points corresponding to its vertices are

considered. Assuming that the points are not colinear, they define a unique 3-d plane.

The projection of the triangle to this plane results a 3-d triangle (¸s1
0s2
0 s3
0). Finally, the

set of all 3-d triangles defined by the triangles in the Delaunay triangulation is a 3-d

visualization of the observation data.
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Although TIN is a visualization technique, it has also been used as a spatial

interpolation method. Let the z value of each point be the value of the function f (x, y) to

be interpolated. To interpolate the value of a location (x, y), first it is located in the set

of Delaunay triangles. Then, it is projected to the corresponding 3-d triangle of its

surrounding Delaunay triangle. The z value of the projected point is the interpolated

value of the location (x, y).

Figure 3 illustrates our example sensor network partitioned by Delaunay triangles.

The figure shows how the method assigns a value to the point (x, y) located inside the

triangle ¸s1s2s3. The triangle ¸s1
0s2
0s3
0 is the corresponding 3-d triangle which is used

to interpolate the value.

Let S¸ be the set of all Delaunay triangles in the space. The average of the values

over each triangle ¸s1s2s3 is v� ¼ v1t þ v2t þ v3tð Þ=3. Using the TIN interpolation, the

spatial average of the values vit generated by n sensor nodes si at time t is computed as

follows:

TIN Avg ¼

P

�2S¸

area �ð Þ � v�

P

�2S¸

area �ð Þ ð5Þ

As for the SMA method, we rewrite the above formula as a weighted average. Let

T(si) be the set of all Delaunay triangles in S¸ with si as one vertex. It is clear that

S¸ ¼
Sn

i¼1 T sið Þ. Rewriting v� in terms of vit in Equation 5 results in the following:

TIN Avg ¼

P

n

i¼1

 

1

3
�
X

�2T sið Þ
area �ð Þ

!

� vit

P

n

i¼1

1

3
�
X

�2T sið Þ
area �ð Þ

ð6Þ

In Equation 6, each point si is assigned a corresponding weight wi. Interpolation

with TIN assigns values only to the locations inside the convex hull of the ob-

servation points. That is, it assigns no value to the locations which are not inside any

Figure 3. The Delaunay triangulation of the sensor network in Figure 2a, interpolating the value of the

location (x, y).
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of triangles. This shortcoming of the method is overcome by inserting virtual points

on the boundaries of the space (e.g., the rectangle bounding the sensor network in

Figure 2a).

3.4. Kriging

Kriging [10] is a complicated interpolation technique developed in the field of geo-

statistics. The technique observes the underlying process in the space using

representative variables (e.g., temperature) and computes unknown values of the

variable using the values sampled in a limited set of locations. The interpolation

method in Kriging is an optimization procedure which uses a model of the process to

determine unknown values. This model is given as a variogram of the process. The

method assigns optimal weights to the known values in order to predict the unknown

values. As Kriging is a computationally intensive method, we did not include it in

our prototype implementation.

4. Spatial average processing

We have formalized three different methods for applying spatial aggregation,

specifically average, on a set of observation points. In this section, we briefly

describe how this query is processed within the sensor network according to each

method. Recall that each sensor node si located at (xi, yi) generates a value vit at time

t resulting a tuple of the form < xi, yi, t, vit >. Let i be a unique id for the sensor si

which can be easily generated using its location. For simplicity, we will refer to the

most recent vit as vi.

A query is initiated when a user issues a spatial aggregation query from a query

node which is a sensor node within the network or a base-station connected to the

network. In general, she specifies the query using three parameters: the aggregation

operator aggr, the attribute attr and the range R. In our model, the operator is AV G

and the attribute is the single value that each sensor measures.

We use the ad-hoc query routing scheme used in Madden et al. [7] to disseminate

the query. As the query is sent through the network a routing tree is organized. Here is

how the routing algorithm works. First, the query node broadcasts a message

including the parameters of the query, its own id and its level in the query tree (i.e., 0

as it is the root node). Then, each sensor node sj which receives the message including

sensor id i and level l, selects the sensor node si as its parent, increments the level

l and broadcasts its own id, j, and the updated level. At each level in the tree, the leaf

nodes repeat this task to extend the tree up to the next level. In cases where a node

without any assigned level receives more than one message, it chooses the one

including the minimum id and ignores the others. The algorithm terminates when all

nodes have broadcast the Brouting^ message. At this time, each node in the network

has been assigned a level in the tree.

The above algorithm builds a tree rooted at the query node which is used to send

the results back from the nodes to the query node. In Section 3, we showed that all
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three methods can be formulated as the weighted averages of the values at each

sensor node. That is, the average is of the form
P

si2Rwi � vi=
P

si2Rwi. Here we

show how this result is generated within the network and is sent back to the query

node. Assume for now that each node si knows its weight wi. Each leaf node si sends

wi � vi and wi to its parent node. The parent node sj maintains two variables

representing the partial results: 1) WSj, the weighted sum received from its children,

and 2) Wj, the summation of the weights assigned to all of its children. The variables

are initialized as WSj = wj * vj and Wj = wj, respectively. On receiving the values from

its children, the node updates these variables by adding them to their corresponding

variables. It sends the variables to its parent after receiving all the data from its

children. Each intermediate node in the tree repeats the above task. Finally, at the

query node, sk, the answer is delivered to the user as WSk /Wk.

Now we discuss how the weights are computed and assigned. In all the three

methods, the weight assigned to the value at each sensor node is computed based on

the location of the neighboring nodes. We consider two approaches to compute the

weights. With the semi-distributed approach, the query node computes the weights

and delivers them to the corresponding nodes. While with the distributed approach,

each node computes its own weight using the information about its neighborhood. In

the following sections, we describe how each of the two approaches processes a

query.

4.1. Semi-distributed query processing

The semi-distributed processing of the spatial average, consists of two phases. In the

first phase, each sensor node sends its location to the query node as soon as the query

tree is created. According to the aggregation method, the query node computes the

weight of each sensor node. In the second phase, the query node sends the weights to

the corresponding nodes over the query tree. Upon receiving the weights by the leaf

nodes, they generate the partial results and send them back to their parent node as we

discussed earlier in this section. We describe how the weights are assigned at the

query node by each method.

4.1.1. SMA. The query node computes the SMA weights as follows. First, the

query node divides the region R into grid cells using a cell size defined as an input

parameter. Next, it finds the grid cell that contains each sensor node using its location.

Finally, it computes the weight of the sensor node si using Equation 3.

4.1.2. Voronoi and TIN. As the Delaunay triangulation can be computed using the

Voronoi diagram, the query node uses a single Voronoi construction algorithm on the

node locations for both TIN and Voronoi methods. First, the query node applies

Fortune’s algorithm [3], [9] to compute the Voronoi diagram of the set of points

(i.e., locations) received from the sensor nodes. Then, the area of the Voronoi cell

of each point is computed as the Voronoi weight of the corresponding sensor node

(see Equation 4).

For the TIN method, the query node finds the location of all the neighboring nodes

in the Voronoi diagram for each node si. Subsequently, it considers all the triangles
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formed by si and two of its adjacent neighbors (i.e., the set of Delaunay triangles T(si) in

Section 3.3). Finally, it uses the area of such triangles to compute the weight of the node

based on Equation 6.

The computed weight values will be sent to the nodes during the second phase.

Notice that with this approach, we do not send the actual Voronoi cells or Delaunay

triangles to the sensor nodes. Each node receives only its weight as a single numeric

value.

4.2. Distributed query processing

With our distributed approach to the spatial average processing, each node is

responsible for computing its own weight. The weight computation is interleaved with

the query routing scheme which we described earlier in this section. We modify the

ad-hoc query routing algorithm such that each node also incorporates its own location

in the broadcasted message. All nodes which receive the message, use the included

location in their weight computation.

4.2.1. SMA. We assume that the communication range of each node is large

enough to cover its surrounding SMA grid cell. Therefore, the node receives the

location of all the nodes in its grid cell during the query routing algorithm. It finds the

distance of each of these nodes from the center of its grid cell and computes the SMA

weight using Equation 3. As soon as it computes the weight and receives the partial

results from its children, it sends back its own partial result to its parent.

4.2.2. Voronoi and TIN. In Section 4.1.2, we showed that the Voronoi weight and

TIN weights of each sensor node are computed in terms of its Voronoi cell and the

neighboring nodes which generate the cell, respectively. Unlike the semi-distributed

approach, the node does not use a Voronoi diagram construction algorithm as it

needs to compute only its own Voronoi cell. In Section 5, we propose an incremental

algorithm to compute the Voronoi cell of a point using a set of neighboring points.

Employing the algorithm, upon receiving all the broadcasted locations by each sensor

node, it starts computing a local Voronoi cell. Then, it computes the area of its cell

as its Voronoi weight. Moreover, as our algorithm returns the location of the neigh-

boring nodes that generate the cell, the TIN weights can also be computed by each

node.

The local Voronoi cell computed at each sensor node might not be the same as the

global cell computed by the semidistributed approach specially when the communi-

cation range of the node is small. We propose two approaches to resolve this

situation. With the local approach, it suffices to use the area of the local cell as its

weight. With the global approach the neighboring nodes exchange their set of

locations. When a node receives new locations, it uses our update procedure to polish

the local cell (see Section 5). The sensor node terminates the polishing iteration as

soon as it receives all partial results from its children or a local timer expires. At this

time, the polished local cell is taken as a good approximation for the global cell. We

report on the accuracy of both approaches in Section 6. The next section is dedicated

to our algorithm for Voronoi cell computation taking place at each node.
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5. Voronoi cell computation

The Voronoi cell of a center point p derived from a given set of points N is a unique

convex polygon which includes all the points in the space that are closer to the center

point p than other points of the set N. Each edge of the polygon is a part of the

bisector line of the line segment connecting the center point to one of the points in the

set. We call each of these edges a contributor edge, each of its end points (vertices of

the polygon) a contributor vertex and its corresponding point in N a contributor point

to the Voronoi cell. As an example, Figure 4a shows the Voronoi cell of a point p

generated given the set N = {n1, . . . , n4}. The points n1, v1 and the edge v1jv2 are the

corresponding contributor point, vertex and edge, respectively. The formal definition

of the Voronoi cell of a point follows:

Definition 1: If p is a d-dimensional point, N is a set of n points in the d-

dimensional space Rd and d(., .) is a distance metric defined in the space, Vp, the

Voronoi cell of point p given set N is defined as the unique convex polygon which

contains all the points in the set Vnp:

Vnp ¼ q 2 Rd 8ni 2 N; d q; pð Þ < d q; nið Þj
� �

Throughout the paper, we assume that the points are in 2-dimensional space and the

distance metric is Euclidian. The problem of finding Voronoi cell of a point is the

same as extracting the contributor points to the cell from the given point set. Finding

Voronoi cells of all the points in the set (Voronoi diagram) is a classic computational

geometry problem. Although this problem has an optimal solution with O(n log n)

complexity [9], the solution in its original form is not applicable to our problem. The

reason is that as a sweeping algorithm it is a global method which considers the whole

set of all points.

In this section, we briefly describe our algorithm for finding the Voronoi cell of a

certain point given the set of all neighboring points. We identify two different cases

of the problem for each of which we propose a robust solution. The first case, termed

the global case, is when the set N is a static set of points and is completely known at

Figure 4. a) The initial approximation to the Voronoi cell of point p. The polygon is the Voronoi cell

of p generated using the points n1, . . . , n4. b) An iteration of the polishing step.
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the time of computing the Voronoi cell. In this case, the set of contributor points to

the Voronoi cell is a subset of the initial given set N. We define the second case, local

case, as the situation in which the set N is dynamically updated. That is, the points in

the set N will be added to or deleted from the set over the time. However, throughout

this paper, we refer to the local case as a special case when points are only added to

N. In the local case, the set N is not completely known and some of the member

points are missing at the time of computation. The set is incrementally completed and

each update operation to the set may trigger an update to the Voronoi cell of the point.

5.1. Global Voronoi cell

Assume that we are given a point p and a set of n points N. The trivial solution to the

problem is to examine all n half planes formed by n bisector lines and generate the

cell as their intersection. Considering the complexity of finding all pairwise

intersections, this solution takes O(n2) in time. We propose an algorithm which starts

with an approximation of the Voronoi cell and incrementally refines this approxima-

tion to generate the accurate cell. The algorithm consists of two main steps:

approximation and polishing. We describe each of these steps in turn.

The approximation step strives to find a superset of the accurate Voronoi cell. This

set which is a convex polygon has the useful property that it can be reduced into the

Voronoi cell using a sequence of clipping operations defined by a set of bisector lines.

We generate this approximation using a small subset of points in N. First, among all

the points in N we find the four closest points to p, one in each quadrant formed by

two perpendicular lines intersecting at p (See Figure 4a). We name these four points

n1, . . . , n4. Second, for each ni we draw the bisector line of the line segment pjni. This

bisector line divides the space into two half planes. Consider the space defined by the

half plane including p is termed Hi. Finally, the intersection of all half planes

H1, . . . ,H4 will define a bounded polygon which is a triangle or a quadrilateral. The set

of the points ni which their half planes form this polygon and their corresponding

edges of the polygon are initial candidate contributors to the Voronoi cell of p. We

store these candidate contributor point-edge pairs as a representation of our initial

approximation. Therefore, we can access each point using its corresponding edge (or

vertex) and vice versa.

The reason we use points ni as the initial candidate contributors is that more likely

their corresponding half planes will generate a bounded polygon. But there are still

cases when the intersection of half planes is an unbounded region in the space. In

these cases we can randomly choose a point from N located in the unbounded region

and close the region using its corresponding half plane.

The polishing step is an iterative step which tries to refine the approximate cell

generated during the first step. In each iteration, we examine current candidate

contributor vertices in turn and find the first vertex v which is closer to a point NN(v)

in N other than p. Then, we draw the bisector line of the line segment pjNN(v).

Considering the fact that the current approximate polygon is convex, it is clear that

the line intersects the boundaries of the polygon in exactly two points v1 and v2. As

Figure 4b shows, the bisector line divides the polygon into two polygons (Vp and

VNN(v)). We identify Vp and VNN(v) as the polygons including points p and NN(v),
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respectively. Finally, we update our current polygon into Vp by clipping the current

approximate polygon with the bisector line. This update operation is easily applied by

first excluding all old candidate contributor points and their corresponding edges/

vertices which are in VNN(v). Then NN(v) and two intersection points v1 and v2 are

added as the new candidate contributor point and its corresponding vertices,

respectively.

As the set N is fixed, the Voronoi cell is finalized when there is no candidate

contributor vertex with a closest point other than p. As a result, all candidate points,

edges and vertices are actual contributors to the Voronoi cell Vp. Consider the worst

case which is when we include each point in N as a candidate contributor point once

during one of the iterations. Each non-contributor point will be excluded from the

approximate cell during a different iteration and will never be included in the future.

This means that the iteration in the polishing step eventually terminates. Figures 5 and

6 show the pseudo-code for our algorithm.

5.2. Local Voronoi cell

In a sensor network, the messages including the position of the neighboring nodes

incur a delay proportional to their distance to the receiver node. Therefore, it might be

the case that when a node needs to compute its Voronoi cell, it would not have

enough information about its neighboring nodes (i.e., the set N ). If the node applies

our global Voronoi cell algorithm (Figure 6) using the set N known at the time, the

generated local Voronoi cell may not be the same as the actual global cell which

would have been generated using the position of all the neighboring nodes.

Depending on the application, the sensor must decide whether to use the local

Voronoi cell or to compute the global cell using the local one as an initial

approximation. In this section we assume that the goal is to achieve the global cell.

A straightforward solution to the problem is to keep applying the iteration in

Figure 6 whenever new points are added to N. The iteration refines the local Voronoi

cell computed using points in the old set N. The new update procedure which is

Figure 5. Initializing an approximation to the Voronoi cell.
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similar to our global algorithm is illustrated in Figure 7. To summarize, computing

the global Voronoi cell of a point p consists of the following steps:

1. When the first neighboring set N0 is known, compute Vp using FindVoronoiCell

( p, N0). Notice that in this step N = N0.

2. On receiving Ni, an update to the neighboring set N at time i, apply UpdateVor-

onoiCell ( p, Vp, Ni) to polish the current Vp. Notice that in this step N ¼
S

Nj; 0 e j e i.

Figure 6. Computing the global Voronoi cell.

Figure 7. Updating a local Voronoi cell.
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Although the above procedure results in a global Voronoi cell for a given point, but

the termination of the polishing step can not be guaranteed. This is because as a new

set of points Ni is added to N, each single point in Ni is likely to be a contributor to

the Voronoi cell. We now prove that the order in which a sensor node receives Ni,

guarantees the convergence of the polishing step. On one hand, it is clear that if a

point q is far enough from the center point p, it will not be a contributor to the

Voronoi cell. On the other hand, the order in which a sensor node receives the

location of the other sensor ndoes (i.e., points in N) is related to their distances from

the sensor node location (point p); with a high probability, closer points are accessible

earlier than farther points. Let max(Ni) be the farthest point from p in Ni. For each

point p, if Ni and Nj are received at times i and j, respectively (i < j ):

d q; pð Þ < d max Nið Þ; pð Þ;) Pr q 2 Nið Þ > Pr q 2 Nj

� �

ð7Þ

Assume that there is a minimal neighborhood region R around point p which

includes all possible candidate contributor points. Now for each point in Ni, we are

able to determine whether it can contribute to the Voronoi cell or not by testing if the

region R contains the point. Meanwhile, Equation 7 verifies that if at least one of the

points in the set Ni is not contained in the specified region R, the probability that the

Voronoi cell generated by applying the procedure UpdateVoronoiCell on the current

cell using Ni being changed by the points in the future Nj’s ( j > i) is decreasing.

Fortunately such a neighborhood region exists and can be easily specified in terms

of the current Voronoi cell. The work in Stanoi et al. [13] shows that for each vertex v

on the current Voronoi cell of point p, the locus of the points which can exclude v

from the cell is inside a circle centered at v with a radius of d(v, p). To illustrate,

consider the voronoi cell of point p showed in Figure 8. The figure shows two new

points q1 and q2 inside and outside the circle C1, respectively. The bisector line of the

line segment pjq1 intersects with the Voronoi cell causing the vertex v1 being

excluded from the cell. This is while, q2 which is outside the circle C1 has no effect

on the the cell.

We rephrase the results from Stanoi [13] to adapt them to our problem. Let Ci be a

circle with radius d(vi, p) centered at a point vi on the Voronoi cell Vp of point p

generated using points in set N. Assume that q is a new point.

Figure 8. The effect of the two new points q1 and q2 on the Voronoi cell of p. The neighborhood region C

is a superset of all circles Ci.
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Lemma 1: Updating Vp using point q will exclude vi from Vp if and only if Ci

contains q.

Lemma 1 reveals a direct conclusion which follows:

Lemma 2: The Voronoi cell of point p generated using the set N ? {q} is equal to

Vp generated using N if and only if for each vertex vi on Vp, Ci does not contain q.

The set of circles Ci defines the minimal neighborhood region R including all the

points that their presence in N causes changes to the current Voronoi cell of p.

Considering the fact that each sensor communicates with the other sensors in a radial

range, we relax the region R to a circle C centered at p with a radius of 2� max(d( p,

vi)). It is obvious that C is the smallest circle including all circles Ci. This range is

used by the sensor node at location p to filter the points received in each set Ni.

In the context of sensor networks, there are cases where the node p should .nalize

its local Voronoi cell but it does not know the location of all the nodes in C. That is,

the node has received only the location of the nodes inside a circle smaller than C. We

call the later circle centered at p the border circle of p. When finalizing the current

Voronoi cell, the node clips the cell using this circle to remove the unexplored areas

from the cell.

5.3. Voronoi cell over a sliding window

In this section, we consider the sliding window case when each sensor node must

independently build its Voronoi cell with respect to the set of recently received

locations (e.g., only those received in the last hour). Here, the goal is to maintain the

Voronoi cell of p with respect to the set of points arrived so far in a window W of

fixed size. With an example, we show that to compute the exact cell and keep it up-to-

date at any point in time, we must store all unexpired points (i.e., those in the

window). That is, the algorithms described in Sections 5.1 and 5.2 cannot simply drop

the points that are not contributing the cell.

To illustrate, Figure 9 shows the Voronoi cell of a point p over a window of size 6

for eight subsequent time instances. Each point is labelled by its arrival order (or

time). The points shown as filled dots are within the current window (i.e., the set W )

while empty dots show the others. Each figure snapshot shows only the bisector lines

of these points. In Figure 9a, when the point 6 arrives, its corresponding bisector does

Figure 9. The Voronoi cell of point p over a sliding window W of size 6 for seven subsequent time

instances. The label of the each point shows its arrival order.
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not intersect with the cell and hence it is not a Voronoi neighbor of p. However, later

in Figures 9c and 9f, the point 6 does become a Voronoi neighbor of p. On the other

hand, the point 7 never becomes a Voronoi neighbor of p during any of the time

instances when the point 7 is in the current window (Figures 9bY9g).

This example shows that our global/local algorithms cannot drop a new point (e.g.,

point 6) even though its corresponding bisector does not intersect currently with the

cell. That is, the space complexity of the algorithm is O(w) where w is the size of the

window.2 Therefore, the global and local algorithms are too expensive in terms of

memory requirements for realistic scenarios. Motivating by this observation, we

propose an algorithm to maintain an approximate Voronoi cell of a point p over a

sliding window.

5.3.1. The AVC-SW algorithm. Let w be the window size, and at each time

instance t, only one point arrives. We divide the 2-d space using k vectors in k

different directions. Each vector originates from the point p. Moreover, the angle

between each pair of neighboring vectors is � = 2�/k. As Figure 11a shows, the

vectors partition the space into k identical sectors.

For each sector Si, we store a point m(Si), the closest site point to the point p which

is inside Si. We refer to this point as the minimum point of the sector Si. We also store

a set of points M(Si) for the sector Si. This set includes all the points which are likely

to be minimum points in the future windows. We initialize m(Si) and M(Si) to null for

all sectors Si before we start processing the data stream of points (e.g., sensor

locations in our application).

For each new point x, first we find the expired point among members of all M(Si)

sets and delete it. Second, we find the sector S containing x and add x to M(S). Third,

we delete any point y in M(S ) if j py j > j pxj. These points will never become mini-

mum point of their sector in a future window. Finally, we set m(S) to the closest point

to p in M(S ). Now, the Voronoi cell of p derived from the set of k minimum points

m(Si)’s corresponding to k sectors is the approximation of the actual Voronoi cell of p.

Figure 10 illustrates how AVC-SW maintains the minimum points of the sector S.

The figure shows only the times when the new point is inside the sector S. Assume

that none of these points expires during these time instances. As shown in Figure 10a,

the point 1 is the current minimum point of S. When the point 2 and 3 arrive in

Figures 10b and c, respectively, AVC-SW adds them to M(S) as they might become

the minimum point of S when 1 expires. However, 1 is still the current minimum

Figure 10. AVC-SW updates the set M(S) and the minimum point m(S) for each of the 5 arriving points in

the sector S. Assume that none of these points expire during this illustration.
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point of S in the window. In Figure 10d, the point 4 arrives. As 4 is in all future

windows in which 2 or 3 exist and p is closer to 4 than to 2 and 3, we delete 2 and 3.

Finally, the point 5 arrives in Figure 10e and causes the update to the minimum point

and deletion of all the points in M(S ).

It is clear that the approximate Voronoi cell of p, contains its actual Voronoi cell.

We can compute this approximation in O(k log k) time and space at any time using

the global algorithm from the scratch. We use AVC-SW(�) to denote our algorithm

with parameter � in k = 2�/� specifying the number of sectors. Furthermore, we use

V 0( p) to refer to AVC-SW’s approximation to the Voronoi cell of the point p. Figure

11b shows the exact Voronoi cell of p with respect to the set N = {a, b, c, d, e, f, g, h}.

Figure 11c shows V 0( p) created by AVC-SW(� = �/8). The filled dots in the figure are

minimum points of the sectors while the empty dots are dropped by AVC-SW.

We need to study the approximation error of V 0( p). We prove in Sharifzadeh and

Shahabi [11] that the Voronoi cell computed by the AVC-SW algorithm is a (1+")-
approximation to the actual Voronoi cell. More precisely, if a point q is inside the

approximate Voronoi cell of a point p, its distance to its closest point in N (e.g., r) is

less than its distance to p by at most a factor of 1 + " (i.e., jqp j / jqr j e 1 + "). We

show that this difference is bounded and find the upper bound of " for a given �.
Moreover, we prove that for a given ", one can compute the largest � for which AVC-

SW(�) results in an approximation of tolerable error ". While the theoretical proof of

our findings is out of scope of this paper, we only mention the following theorem:

Lemma 3: For a given error bound ", the largest �, using which AVC-SW(�) can

compute an approximate Voronoi cell with a maximum error of " is computed from

the following equation:

� ¼ �=4� arc cos

ffiffiffi

2
p

4
3� 1

1þ "

� �2
 ! !

The sample size of AVC-SWis computed as � ¼
Pk

i¼1 M Sið Þj j, where jM(Si)j is the

cardinality of the set M(Si). In general case, the space requirements of AVC-SW is

Figure 11. a) k = 16 vectors originating from p divide the space into k identical sectors, b) The Voronoi

cell of the point p, and c) The approximate Voronoi cell of p.
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less than O(w) as we drop the portion of the points that are unlikely to be a minimum

point. However, in the worst case, when the points of each sector arrive in the

increasing order of their distance to p, AVC-SW stores all of them (see Figures

10aYc). We conducted an experiment to evaluate the average space used by AVC-

SW. We synthetically generated data streams of 1000 points uniformly distributed

inside a circle. We applied AVC-SW_s sampling algorithm on the stream and

computed the average number of stored points during 100 runs. Figure 12a illustrates

the average sample size (�) of AVC-SW for three different window sizes when we

vary the parameter k. It shows when the window size is greater than k (e.g., k = 67 and

w = 400), the sample size is far less than w. Figure 12b shows the same measurement

for k = 36 and different window sizes. It shows up to 80% reduction in memory

requirement for k = 36 and large windows.

We theoretically computed the expected sample size of AVC-SW in terms of its

parameter k, the window size w, and a harmonic number dependent on both k and w.

With the sliding window model and a uniform distribution of the site points, AVC-

SW significantly reduces the space complexity of the classic algorithm from O(w) to

O(log w/k) [11].

6. Experimental results

We conducted several experiments using two real-world sensor datasets:

1. PRECIPITATION is a real-world dataset that measures the monthly

precipitation of gridded points all over the globe for 50 years.3 We extracted

different 53 � 43 grids based on this dataset. We ran 100 spatial average queries

on the precipitation values monitored by simulated sensor nodes located in a

randomly defined region R.

2. TEMPERATURE is a real-world dataset that measures the temperatures at points

all over the globe at different altitudes for 18 months, sampled twice per day. We

Figure 12. a) Average number of points stored by AVC-SW (i.e., AVC-SW’s sample size) for a) w =

80, 240, and 400 and different values of k, and b) different values of w when k = 36.
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sliced the dataset at certain altitudes and times to construct different grids of size

64 � 128 with temperature as the value of each cell. We measure the average

accuracy of 100 spatial average queries on the temperature values in different

regions.

We compare the accuracy of the spatial average computed using the SMA, Voronoi

and TIN methods. In addition, we evaluate the precision of our local Voronoi cell

computation algorithm when it is used to approximate the global Voronoi cell.

For our experiments, we developed UNIX processes simulating individual sensor

nodes. The sensor network was simulated as follows. First, we used real-world data

from our datasets, PRECIPITATION and TEMPERATURE, collected from

observation points on different grids as values monitored by the sensor nodes. To

map both datasets into a single coordinate space, we reduced the resolution of each

dataset into a course grid dividing the xy plane into 5 � 5 cells. Subsequently, we

randomly selected a set of grid points as the locations of the sensor nodes to

generate random networks of different densities. Finally, the value that each sensor

node monitors was selected as the value of the grid point in the original dataset.

Figure 13 illustrates generating a random network using the original dataset. The

black points of the grid c shows the location of the nodes in the network generated

from the original grid a. The node density of the network is defined as the percentage

of the grid points selected as nodes from the original dataset.

In all of our experiments, we used the original gridded dataset as a reference

dataset. We calculated the precision of a spatial average on nodes inside an area

R (termed SAVGR) by comparing it with AVGR, the traditional average of all

observations from the original dataset inside R. We have then measured the ab-

solute relative error values as
SAVGR�AVGRj j

AVGR
. In Figure 13, considering R as the entire

network, SAVGR is the spatial average on the values of the black points in the

grid c while AVGR is the traditional average on the values of all the points in the

grid b.

6.1. Precision

The first set of experiments was aimed to study the precision of each of the three

proposed methods to compute the spatial average. The measurements are made based

on the distributed approach discussed in Section 4.2. Figure 14a illustrates the relative

Figure 13. Mapping the original grid into a grid of 5 � 5 cells and generating a sensor network with

random placement.
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error of the traditional and spatial average queries on sensor networks of different

densities measuring precipitation. In the figure, LocalVVoronoi is the result of

processing the query by the Voronoi method using the local Voronoi cells generated

based on a radial neighborhood of radius 15 for each sensor node. Besides, for each

node density, the size of the grid cell used for the SMA method is the one which

results in the best average. As we are expecting, the error of all methods is decreasing

as the density of the nodes (i.e., observation points) is increasing. The global Voronoi

generates the most accurate result. Even using the area of the local Voronoi cell

generated using a neighborhood of size 15 results in less error than the traditional

average. As the figure shows, local Voronoi and SMA perform similarly for this

dataset. However, this observation cannot be generalized as SMA’s accuracy is

completely dependent on the size of the SMA grid cell and the distribution of the

values in these cells. These parameters cannot be fine tuned apriori based on the

network node density. Consequently, this makes SMA an unfeasible aggregation

method for the sensor networks.

Figure 14b illustrates the results of the same experiment on the networks generated

based on the temperature dataset. The error value of all methods are less than 1%

even in the sparse networks. The reason is that the values in the original dataset has

already been interpolated using a set of observations in order to be transformed to a

grid. Despite the ignorable error, the traditional average has the worst error

comparing to the other methods. Again, the spatial averaging based on the Voronoi

method outperforms all the other methods in accuracy. Here, SMA performs as

worse as the traditional average which verifies our conclusion from the previous

experiment.

In the next set of experiments, we investigate the radius of radial neighborhood

required to compute a local Voronoi cell as good as that of the global cell (i.e., 100%

accurate cells). Figure 15a depicts that for the sparse networks the local Voronoi cell

computed using the location of all the nodes closer than 30 units to the center node is

almost as accurate as the global cell. The average of this distance is 6 for the dense

networks. Notice that the local cells generated during this experiment were clipped

using the border circles. This observation exploits the fact that our distributed local

Voronoi algorithm is expected to cause less communication overhead than the semi-

distributed approach. We verify this fact through our last experiments.

Figure 14. Comparing the relative error of all methods computing the spatial average on a) precipitation

data, and b) temparature data with the traditional average.
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6.2. Performance

The last set of experiments was aimed to compare the number of bytes sent by all the

sensor nodes during semidistributed and distributed approaches to the Voronoi-based

spatial average processing. We issues 100 spatial average queries on the temperature

values over the entire network and measured the average number of bytes sent to

route the queries and return the partial results. We considered 7, 2 and 2 bytes for

query, partial result and location messages, respectively.4 The location of the query

node was randomly selected for each query run.

Figure 15b shows the total number of payload bytes (ignoring the packet headers)

for different densities. In the figure, the distributed local Voronoi approach is the

distributed approach in which each node computes its local Voronoi cell based on the

location of the nodes one hop away. As the figure illustrates, the communication

overhead in the semidistributed approach is always more than that of distributed

approaches by a factor of 25%. This increase is because of the weight messages sent

by the query node to each single node in the network. Figure 15b shows that as the

node density increases, the amount of information sent to compute global and local

Voronoi cells becomes comparable. The intuition here is that the global and local

Voronoi cells are the same in the dense sensor networks. The observations verify

that employing our algorithm by each node to compute the Voronoi cell results in

less communication overhead in a distributed environment. In particular, in the

context of sensor network, this saves a lot of energy resulting in longer lifetime for

the nodes.

6.3. Discussion

In our prototype of the distributed approach to spatial aggregation, the nodes compute

their weights during forwarding the query to the other nodes. This is expensive in

terms of communication costs especially when the queries are frequent. Towards this

end, the design can be changed to separate the weight computation phase from the

query routing phase. Since the weights are query-independent and are only dependent

on the location of the neighboring nodes, the nodes can compute the weights at any

Figure 15. a) The maximum extent of neighborhood required to be known in each sensor node to compute

its global Voronoi cell. b) Comparing the number of bytes sent through the network by different

approaches.
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time. Therefore, at certain time periods or on specific events (e.g., detecting a failure

in one of neighbors) a weight computation module can be triggered.

Although we used the ad-hoc query routing to disseminate the query within the

network, other suggested efficient query routing schemes can completely support the

spatial aggregation queries. This is due to the independence of the weight

computation from the aggregate query. However, there might be changes needed to

piggy back the messages related to the weight computation with the query routing

messages.

7. Conclusion

Applying traditional database aggregation techniques on the data generated by a sensor

network is not an appropriate mean to extract characteristics of the underlying

realworld continuous phenomenon. In this paper, we introduced the spatial aggregation

for sensor network databases. Our general formalization of the spatial aggregation

operators can be implemented on top of any in-network aggregation processing scheme

(e.g., TAG [7]). We showed how a spatial average operator can be transformed into a

weighted average on the sensor node measurements. We used spatial interpolation

methods to formally define three different spatial average operators, namely, SMA,

Voronoi and TIN-based operators. Throughout several empirical experiments to extract

the average of a continuous process using discrete non-uniform samples, we

demonstrated that all three operators outperform the traditional average operator in

accuracy. We showed that the Voronoi-based operator improves the accuracy of the

traditional operator by a factor of 35% for sparse networks.

In addition, we identified semi-distributed and distributed approaches to implement

spatial operators on the sensor nodes. According to our experimental results, the

communication overhead in the semi-distributed approach is always more than that of

the distributed approach by a factor of 25%. Hence, we proposed a local Voronoi cell

computation algorithm to be used by the distributed approach. For the real-world case

when the sensors fail frequently, we proposed the AVC-SW algorithm to approximate

the Voronoi cell at each node reducing the memory requirements of our Voronoi

algorithms. When it is used by each sensor node, the algorithm provides the best

possible approximation to both global/local Voronoi cells of the node given its

limited communication range. This algorithm is applicable to other fields such as

moving object databases, robotics and mobile computing.

Acknowledgments

This research is based upon work supported in part by the National Science

Foundation under award numbers IIS-0324955(ITR), EEC-9529152 (IMSC ERC) and

IIS-0238560 (CAREER), in part by a grant from NASA/JPL, and in part by

unrestricted cash gifts from Microsoft. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

34 SHARIFZADEH AND SHAHABI



Notes

1. http://telegraph.cs.berkeley.edu/tinydb/.

2. In fact, deciding to drop a new point is significantly expensive for the classic algorithm (i.e., O(w2)).

Details are removed due to the lack of space.

3. http://www.jisao.washington.edu/data_sets/willmott/

4. We ignored the size of packet headers throughout this experiment.
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