
Vol.: (0123456789)

Geotech Geol Eng 
https://doi.org/10.1007/s10706-024-02917-y

ORIGINAL PAPER

Seismic Bearing Capacity of Shallow Foundations Under 
Large Earthquakes Using an Extended Pseudo‑Dynamic 
Method

M. Mobini · M. Jiryaei Sharahi 

Received: 28 December 2023 / Accepted: 8 August 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract The seismic bearing capacity of foun-
dations is an essential issue in seismically active 
regions, especially during significant earthquakes. 
This study presents an innovative time-domain 
pseudo-dynamic approach for estimating the seismic 
bearing capacity of strip foundations. By incorporat-
ing time-history ground motion, the analysis utilizes 
a composite failure surface that integrates active, 
logarithmic spiral, and passive zones to effectively 
capture the seismic response. Applying this method 
to significant earthquakes requires considering post-
peak reduction in shear strength and shear wave 
velocity of the soil deposit. Furthermore, a com-
parative analysis is conducted, comparing the results 
with select experimental and analytical results from 
the literature. To explore further, a parametric study 
assesses the impact of key parameters, including 
shear wave velocity, soil layer thickness, frequency 
content, depth embedment, foundation width, damp-
ing ratio, shear strength parameters, and peak ground 
acceleration. The results indicate a more rapid decline 
in bearing capacity compared to previous studies.

Keywords Large earthquake · Bearing capacity · 
Foundation · Extended pseudo-dynamic

1 Introduction

Estimating the seismic bearing capacity of shallow 
foundations is a critical issue in earthquake-prone 
regions. Observations from significant earthquakes 
such as the one that occurred on February 6, 2023, 
in Turkey indicated that structures constructed by 
the same contractor displayed varying levels of resil-
ience, with some remaining intact while others suf-
fered damage (Franke et al. 2019; Maleki et al. 2019, 
2023). One of the primary factors contributing to this 
discrepancy is the variability in the reduction of the 
seismic bearing capacity of shallow foundations. In 
large earthquakes where soil behavior becomes non-
linear, the seismic bearing capacity of shallow foun-
dations presents a complex challenge influenced by 
various factors. Therefore, further research is essen-
tial to investigate different aspects of this issue.

Seismic accelerations are well-known for exerting 
inertial forces on both the structure and the underly-
ing soil mass, thereby diminishing the seismic bear-
ing capacity of foundations. Despite the detailed 
recording of seismic acceleration time histories using 
accelerometers, these records have not been applied 
in analytical methods for evaluating the seismic bear-
ing capacity of foundations. In most previous studies, 
a constant acceleration or a harmonic acceleration 
with a fixed frequency was used instead of recorded 
earthquake acceleration time histories. Therefore, the 
interaction of frequencies was neglected.
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Traditionally, analytical methods have primarily 
relied on the pseudo-static approach, characterized 
by constant accelerations. Several techniques have 
been employed within the pseudo-static approach 
framework to evaluate the seismic bearing capacity of 
foundations. These techniques include limit analysis 
(Conti 2018; Zhang et  al. 2020; Mortara 2021), the 
stress characteristics method (Cascone et  al. 2016; 
Ganesh et al. 2022; Casablancaet al. 2023), the limit 
equilibrium method (Nouzari et  al. 2021), the finite 
element method (Nguyen et  al. 2022; Jitchaijar-
oen et  al. 2024; Garzón-Roca et  al. 2024), and the 
finite difference method (Hamrouni et al. 2021). The 
pseudo-static approach is also commonly used for 
other aspects of geotechnical earthquake engineer-
ing, e.g., (Maleki et  al. 2021, 2022; Rahmani et  al. 
2022). Additionally, Ghosh et al. (2017) and Debnath 
et  al. (2018) evaluated the seismic bearing capacity 
of cohesive-frictional soil using this approach, con-
sidering concurrent resistance factors of unit weight, 
surcharge, and cohesion. Despite the widespread use 
of the pseudo-static approach due to its simplicity, it 
assumes seismic accelerations to be time-independ-
ent and constant with depth. As a result, it neglects 
dynamic factors such as wave propagation, amplifica-
tion, phase difference, and ground motion frequency 
content.

The limitations of the pseudo-static approach led to 
the development of the pseudo-dynamic approach for the 
estimation of seismic earth pressure on retaining walls 
(Steedman et  al. 1990; Choudhury et  al. 2005; Deb-
nath et  al. 2018). The application of this approach has 
also been extended to seismic bearing capacity analysis 
(Choudhury et al. 2006; Ghosh et al. 2008; Saha et al. 
2015; Izadi et al. 2021, 2022; Zhong et al. 2022; Chen 
et  al. 2022). The pseudo-dynamic approach, despite its 
advantages, does not incorporate the zero-stress condi-
tion at the ground surface in its equations and requires 
an assumption regarding the amplification factor of the 
underlying soil deposit. Moreover, the pseudo-dynamic 
approach assumes a linear variation of the soil deposit 
amplification factor with depth.

Furthermore, Belleza (2014, 2015) introduced a 
modified pseudo-dynamic approach to address the 
limitations of the pseudo-dynamic approach and 
inherently consider the amplification factor. In a 
subsequent study, Zhou et  al. (2023), (Krishnan and 
Chakraborty 2021), and Akhavan Tavakoli et  al. 
(2023) incorporated this approach into finite element 

limit analysis procedures. Moreover, Saha et  al. 
(2020), Debnath et  al. (2021) and Nadgouda et  al. 
(2023) applied this approach to determine the seismic 
bearing capacity of strip foundations using the limit 
equilibrium method. Kang et  al. (2024) evaluated 
the seismic bearing capacity based on this approach, 
adopting the nonlinear Mohr–Coulomb criterion. 
The modified pseudo-dynamic approach, like the 
pseudo-dynamic approach, is designed to respond to 
harmonic excitation, while disregarding the recorded 
ground motion and its characteristics. Additionally, 
its further development is impeded by the elimination 
of the imaginary part of the equations and the emer-
gence of hyperbolic functions. Notably, the existing 
literature lacks examination of the effects of ground 
motion frequency content and the predominant natu-
ral period of the soil deposit on seismic bearing 
capacity. Analytical techniques have also been devel-
oped without considering the effects of significant 
earthquakes on seismic bearing capacity.

The aim of this study, is to develop an extended 
pseudo-dynamic approach to estimate the seismic 
bearing capacity of strip foundations by consider-
ing the time-history seismic accelerations recorded 
during large earthquakes. This approach inherently 
accounts for the frequency content of the ground 
motion and its interactions with the natural periods 
of the soil deposit. Progressing incrementally in time 
enables the incorporation of nonlinear values based 
on stress–strain conditions, allowing for the consid-
eration of shear strength reduction from peak to resid-
ual values and the decrease in shear wave velocity 
within the soil deposit (Seed et al. 1986). Therefore, 
the primary innovations of this study are: i) Consider-
ing the recorded earthquake acceleration as an input 
excitation in the time domain, none of the analytical 
methods previously presented have this capability. ii) 
The inclusion of non-linear behavior, which has been 
overlooked in previous analytical methods, leading to 
more realistic results.

In this study, the subgrade soil is assumed to be a 
frictional cohesive material with viscoelastic behav-
ior. Since soil behavior exhibits nonlinearity during 
medium and large earthquakes, this study represents 
the seismic bearing capacity with a single coefficient 
denoted as Nγe for the three resistance components: 
unit weight, surcharge, and cohesion. The failure 
mechanism involves a composite planar and loga-
rithmic spiral surface. The transient accelerations are 
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computed for the active and passive triangular zones, 
along with the radial shear zone based on the wave 
propagation theory. This method considers the imagi-
nary part of the response while implicitly consider-
ing the amplification of the soil deposit layer. The 
results of the proposed approach are consistent with 
some experimental and analytical results available in 
the literature. Considering a large earthquake a para-
metric study is conducted to evaluate the impacts of 
the ratio of soil deposit thickness to soil shear wave 
velocity, frequency content, soil damping ratio, and 
other influencing factors on the seismic bearing 
capacity of strip footings. The results of the para-
metric study indicate a more rapid decline in bearing 
capacity compared to previous findings, highlighting 
the significant challenge faced by shallow foundations 
in large earthquakes.

2  Method of Analysis

2.1  Problem Definition and Assumptions

To estimate the seismic bearing capacity of shallow 
foundations, a rupture mechanism is first considered. 
Once the failure mechanism is determined, the static 
forces can be easily calculated. In order to determine 
the inertial forces, it is necessary to use wave propa-
gation equations to determine the average seismic 
acceleration in each zone. After determining the static 
and dynamic forces, the seismic bearing capacity can 
be calculated using equilibrium equations.

Figure 1 illustrates a strip foundation with a width 
of B, placed at a depth of D on dry viscoelastic fric-
tional cohesive (φ–c) soil, where φ represents the soil 
friction angle and c is the soil cohesion. The failure 
mechanism for strip foundations is divided into three 
distinct zones: an active triangular zone beneath the 
footing labeled ABC, a transitional logarithmic spi-
ral zone marked OCD, and a passive triangular zone 
denoted as ADE. During seismic events, the failure 
mechanism displays asymmetry, with one side (left 
side) being smaller than the other side (right side). 
The vertical distance from the center O to the ground 
surface, represented by d, can be easily determined as

where r0 represents the initial radius of the log spiral 
zone, and θ is the angle between r0 and OD, creating 
the log-spiral part. x indicates the angle of r0 relative 
to the vertical. Angles α and β are the basic angles 
of the active triangular zone; while ψ and X repre-
sent the basic angles of the passive triangular zone as 
illustrated in Fig. 2

The highest stress gradient is observed at the edge 
of the foundation (point A). Therefore, as shown in 
Fig. 2, the assumption is made that the center of the 
logarithmic spiral (point O) aligns with the corner of 
the foundation (point A) (Budhu et  al. 1993). Geo-
metrically, this implies that with increased seismic 
acceleration, the angle β decreases proportionally to 
the increment in the angle α. The chosen composite 

(1)d =
r0sin�cos(� − � + �)

cos(� − x − �)
− D

Fig. 1  General failure 
mechanism
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failure surface is asymmetric as the angles α and β (or 
ψ and X) are not equal. Utilizing a search method with 
small increments in active angles (α or β) and passive 
angles (ψ or X) yields the most critical failure surface 
to obtain the minimum seismic bearing capacity. Note 
that in Fig. 1, when point O is located at point A, as 
shown in Fig. 2, the distance d must equal − D and 
(β-φ + α) must equal π/2.

In order to obtain the inertia forces and seismic 
acceleration of each zone, it is necessary to solve 
the wave propagation equations. The velocities of 
soil shear and primary waves, as well as the damp-
ing ratio, are denoted by Vs, Vp, and ξ, respectively. 
In accordance with the Kelvin-Voigt model for soil as 
a viscoelastic material, the equation of motion gov-
erning the vertical propagation of shear and primary 
waves through a homogeneous soil can be expressed 
as follows (Bellezza 2015):

where uh and uv are the horizontal and vertical com-
ponents of the displacement, ηs and G represent the 
viscous damping and shear modulus of the soil, 
respectively; ρ, λ, and ηl indicate the density, the 
first Lame constant, and the viscosity component, 
respectively; t and z represent time and depth from 

(2)�
�2uh

�2t
= G

�2uh

�2z
+ �s

�3uh

�2z�t

(3)�
�2uv

�2t
= (� + 2G)

�2uv

�2z
+ (�1 + 2�s)

�3uv

�2z�t

the ground surface, respectively. γ and τ represent the 
shear strain and the shear stress, respectively, while ω 
denotes the angular frequency.

Solving Eqs. (2) and (3) yields the following transfer 
functions at a depth z beneath the ground surface for the 
soil layer above the solid bedrock (Jiryaei 2022):

where fha and fva are the horizontal and vertical com-
ponents of the transfer functions, h represents the 
thickness of the soil deposit, and kp

* and ks
* denote 

the complex wave numbers corresponding to the 
P-wave and the S-wave, respectively.

By considering the horizontal and vertical compo-
nents of seismic acceleration Ah and Av in the Fourier 
domain, the acceleration components ah and av at depth 
z can be calculated as (Jiryaei 2022)

(4)fha(z,�) =
cos k∗

s
z

cos k∗
s
h

(5)fva(z,�) =
cos k∗

p
z

cos k∗
p
h

(6)ah(z,�) = Ah

cos k∗
s
z

cos k∗
s
h

(7)av(z,�) = Av

cos k∗
p
z

cos k∗
p
h

Fig. 2  General failure 
mechanism where the 
centre of the log spiral is 
located at A
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Any random motion, such as seismic ground 
motion, can be defined as input to Av and Ah. It is 
important to note that the modified pseudo-dynamic 
approach solely accounts for harmonic motion. Eqa-
tions.  (6) and (7) are used to calculate the inertial 
forces acting on the soil mass below the footing.

2.2  Computations for Seismic and Static Forces

Once the failure mechanism is identified, the cal-
culation of inertial forces exerted on the soil mass 
within a particular zone can be accomplished by 
utilizing the seismic accelerations outlined in Eqs. 
(6) and (7). In Figure 2, calculations can commence 
from the triangular passive zone ADE. To ascertain 
the passive resistance (Pp1) acting on GD between 
GDE and GDCA (as shown in Fig. 3), a hypotheti-
cal wall (GD) with a friction angle δ is assumed. Pp1 
is resolved into two components: Pp1cq represents 
the cohesion and surcharge component, while Pp1γ 
denotes the unit weight component. These compo-
nents are delineated separately because of varia-
tions in their application points. The friction angle 
δ in Fig. 3 is calculated as δ = Cd × φ, where Cd is a 
coefficient that ranges from − 1 to + 1 and depends 
on B, D, φ, and c; thus, Cd can be determined under 
static conditions. In Fig. 3, the sole unknown factor 
is Pp1, which is calculated by considering the equi-
librium of horizontal and vertical forces acting on 
the GED:

where

q represents the surcharge, while h2 indicates the 
depth of DGE:

W1 is the weight of the GED:

Additionally, ahd and avd in Eq. (9) represent seismic 
acceleration components at a depth of D:

(8)Pp1 = Pp1cq + Pp1�

(9)

Pp1cq =
1

sin(�)tan(� + X) − cos(�)

[

−2ch
2
tan(� + X)

−qh
2
cot(X)

(

1 −
avd

g

)

tan(� + X) − ch
2
cot(X)

+qh
2
cot(X)

(

ahd

g

)]

(10)

Pp1� =
1

sin(�)tan(� + X) − cos(�)

[

Qv1tan(� + X)

−W
1
tan(� + X) + Qh1

]

(11)h2 = B
sin(�)e�tan�

cos(x)(cot(�) + cot(�))

(12)W1 = �
h2

2

2
cot(X)

(13)ahd(t) = ift

(

Ah

cosk∗
s
D

cosk∗
s
h

)

Fig. 3  The hypothetical 
wall GD with the frictional 
angle of δ
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where ift stands for the inverse Fourier transform.
Qh1 and Qv1 in Eq.  (10) represent inertial forces 

acting on the GED due to the seismic accelerations. 

(14)avd(t) = ift

(

Av

cosk∗
p
D

cosk∗
p
h

) These inertial forces are calculated by integrating the 
product of a mass element and the seismic accelera-
tion corresponding to the depth of the mass element. 
Therefore, amplification resulting from wave propa-
gation is inherently taken into account. The calcula-
tion of dQh1 for a small mass element dm is given by 
dQh1 = ah × dm. thus,

Similarly, in the vertical direction:

where

(15)Qh1(t) = ift
(∫ ah(z,�)dm

)

= ift

{

h2+D∫
D

[

Ah cos
(

ksz
)

cos
(

ksh
)

][

�

g

(

h2 + D − z
)

tan (X)

]

dz

}

= aha1(t)
W1

g

(16)Qv1(t) = ift
(∫ av(z,�)dm

)

= ift

{

h2+D∫
D

[

Av cos
(

kpz
)

cos
(

kph
)

][

�

g

(

h2 + D − z
)

tan (X)

]

dz

}

= ava1(t)
W1

g

(17)aha1(t) = ift

{

2Ah

k2
s
h2
2
cos

(

ksh
)

[

− cos
(

ksh2 + ksD
)

− ksh2 sin
(

ksD
)

+ cos
(

ksD
)]

}

(18)ava1(t) = ift

{

2Av

k2
p
h2
2
cos

(

kph
)

[

− cos
(

kph2 + kpD
)

− kph2 sin
(

kpD
)

+ cos
(

kpD
)]

}

Fig. 4  Seismic and static 
forces acting on GDCA
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aha1 and ava1 represent the horizontal and vertical 
components of the weighted average acceleration for 
GED in the time domain. Multiplying these average 
accelerations by the mass of GED yields Qh1 and Qv1 
in the time domain. Calculating the force Pp1 accord-
ing to Eq. (8) helps determine the passive force of Pp 
on the GDCA. In Fig.  4, the force Pp can be deter-
mined by considering the equilibrium of moments 
around point A. It is important to note that the reac-
tion force R2 passes through the center of the loga-
rithmic spiral and can be excluded from the moment 
equilibrium equation around point A.

where MW2, Mq, and Mc represent the moments of 
the weight of AGD (W2) the surcharge (q), and the 
cohesive resistance along the logarithmic spiral (C2), 
respectively. MP1cqh and MP1cqv denote the moments 
of components of P1cq while MP1γh and MP1γv repre-
sent the moments of the components of P1γ.

(19)Pp =
MP1cqh −MP1cqv +Mq +MC2

1

2
r0cos(�)

+
MP1�h −MP1�v +MW2 −MQh2 −MQv2 +MW3 −MQ3

2

3
r0cos(�)

(20)MW2 = ∫
h2+D

D

�
(

h2 + D − z
)

cot�

[

h2cot� −

(

h2 + D − z
)

cot�

2

]

dz =
1

3
�cot2(�)h3

2

(21)Mq = q

(

1 −
avd

g

)

h2cot(�)

[

h2cot(�)

2

]

(22)MP1cqh = Pp1cqcos(�)

[

1

2
h2

]

(23)MP1�h = Pp1�cos(�)

[

2

3
h2

]

(24)MP1cqv = Pp1cqsin(�)
[

h2cot(�)
]

(25)MP1�v = Pp1�sin(�)
[

h2cot(�)
]

where θx represents the angle between the pass-
ing radius of any differential element and the initial 
radius as illustrated in Fig. 4.

By considering a differential element with infini-
tesimal thickness dz as shown in Fig. 4, the moment 
of the horizontal and vertical components of the iner-
tial forces MQh2 and MQv2 about point A can be deter-
mined. It should be mentioned that the arm of each 
moment is simply determined using geometry, which 
is included within the brackets in the Eqs. (20)–(28), 
(31) and (33).

(26)

MC2 = ∫
�

0

c
r

cos(�)
[rcos(�)]d�x =

cr0
2

2tan(�)

(

e2�tan(�) − 1
)

(27)MQh2 = ift

{

∫
h2+D

D

Ahcos
(

ksz
)

cos
(

ksh
)

�

g

(

h2 + D − z
)

cot�[z − D]dz

}

= aha2(t)
MW2

g

(28)MQv2 = ift

{

∫
D+h2

D

Av

cos
(

kpz
)

cos
(

kph
)

�

g

(

h2 + D − z
)

cot�

[

h2cot� −

(

h2 + D − z
)

cot�

2

]

dz

}

= ava2(t)
MW2

g
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where,

aha2 and ava2 represent the horizontal and vertical 
components of the weighted average acceleration for 

(29)aha2(t) = ift

{

3

cot�k3
s
h3
2

Ah

cos
(

ksh
)

[

2sin
(

ksh2 + ksD
)

− 2sin
(

ksD
)

− ksh2cos
(

ksh2 + ksD
)

− ksh2cos
(

ksD
)]

}

(30)ava2(t) = ift

{

3

2h3
2
k3
p

Av

cos
(

kph
)

[

2sin
(

kph2 + kpD
)

− 2sin
(

kpD
)

− 2kph2cos
(

kph2 + kpD
)

− h2
2
k2
p
sin

(

kpD
)

]

}

GAD in the time domain. The ADC weight moment 
MW3 and the inertial force moment MQ3 about point 
A can be computed by considering an element with 
dimensions dρ × ρdθx as illustrated in Fig. 4, where ρ 
denotes the distance of this element from point A. It 
is noteworthy that MQr is zero and is hence eliminated 
from the moment equilibrium equation.

(31)
MW3 = �

�

∫
0

r

∫
0

�
[

�sin
(

�x − x
)]

d�d�x = �

�

∫
0

r3

3
sin

(

�x − x
)

d�x

=
�r3

0

3
(

9tan2(�) + 1
)

[

cos(x) + 3tan(�)sin(x) − e3�tan(�)(cos(� − x) − 3tan(�)sin(� − x))
]

Fig. 5  Seismic and static 
forces acting on ABC
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In polar coordinates with point A as the center, the 
seismic acceleration in the θx-direction aθ can be cal-
culated accordingly.

therefore,

where,

(32)
a� =ahcos

(

�x − x
)

+ avsin
(

�x − x
)

= Ah

cos
(

ksz
)

cos
(

ksh
)cos

(
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)
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(
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(
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]
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) cos

(
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cos
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(
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(
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aha3 and ava3 represent the horizontal and vertical 
components of the weighted average seismic acceler-
ation for a sector of radius r2 and angle dθx in the time 
domain where r2 denotes the radius of the log-spiral at 

(36)r2 = r
0
exp

(

�xtan�
)

any θx. Consequently, MQ3 can be calculated through 
integration with respect to the single variable θx. The 
introduction of these average accelerations and the 
method for determining MW3 and MQ3 as described in 
Eqs. (31)–(36) for the radial shear zone of ADC can 
be viewed as additional innovations in this research.

2.3  Computations for Seismic Bearing Capacity

Figure 5 illustrates the forces acting on wedge ABC 
beneath the footing. Ppm and C4 represent the cohe-
sive and frictional resistance forces on the left side of 
the failure mechanism. It is assumed that full mobili-
zation is achieved for cohesion, while partial mobili-
zation is considered for the friction components. The 
calculation for C4 is as follows:

where h1 represents the heigh of ABC triangle pass-
ing through point C. The only remaining unknowns 
are the seismic bearing capacity que and Ppm. By 
applying the horizontal and vertical equilibrium equa-
tions to the forces acting on wedge ABC, these two 
variables can be determined. Therefore, que and the 
seismic bearing capacity factor Nγe can be obtained 
as:

where W4 denotes the weight of wedge ABC:

The inertial forces of wedge ABC, Qh4 and Qv4, are 
calculated in a similar manner to the seismic forces 
Qh1 and Qv1.

where
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h1

sin�
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Fig. 6  Flow chart of the program◂
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aha4 and ava4 represent the horizontal and vertical 
components of the weighted average acceleration 

(44)ava4(t) = ift

{

2Av

k2
p
h2
1
cos

(

kph
)

[

−cos
(

kph1 + kpD
)

− h1kpsin
(

kpD
)

+ cos
(

kpD
)]

}

for wedge ABC in the time domain. Eq. (39) defines 
Nγe as an integrated seismic bearing capacity factor 
encompassing cohesion, surcharge, and unit weight 
resistance components. It is important to highlight 
that the non-linear behavior of the soil precludes the 
use of the principle of superposition. As a result, a 
seismic bearing capacity coefficient is applied to all 
components.

Table 1  Comparison of the proposed method results and the 
values measured in the shaking table test

Method Static Accelerations

0.16 g 0.21 g 0.26 g 0.31 g

Proposed method 10 8.11 7.98 7.86 7.74
Shaking table test 

(Knappett et al. 
2006)

10 8.42 Failure Failure Failure

Table 2  Comparison of the 
proposed method results 
and the values measured in 
the shaking table test

Critical acc. (g) Input horizontal acceleration (g) Bearing capacity (kN)

Measured Pro-
posed 
method

Model 1 0.08 ah = 0.064 (t-2.5) sin(6πt) 615 607
Model 2 0.25 ah = 0.064 (t-2.5) sin(6πt) 205 192

Fig. 7  Comparison of the 
results of the proposed 
method and the analytical 
results
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3  Results and Discussion

The development of the extended pseudo-dynamic 
approach is the main achievement and innovation of 
this study. It can be used for estimating the seismic 
bearing capacity of shallow foundations. A computer 
program within the Matlab package has been devel-
oped to calculate the seismic bearing capacity of 
foundations according to the method proposed in this 
study. The program evaluates various values of the 
angles α, ψ, as well as the time step n treating them as 
independent geometric and temporal variables to esti-
mate the minimum value of Nγe. The input excitation 
is the random ground motion data recorded during an 
earthquake. Depending on the seismic activity in the 
specific area of interest, a seismic acceleration time 
history can be chosen from the earthquake database. 
Baseline correction and frequency filtering are typi-
cally conducted utilizing signal processing software 
like Seismsignal. Subsequently, the data is adjusted 
to achieve the desired peak ground acceleration 

denoted by PGA. Following building codes, this pro-
cedure is commonly carried out using an average of 
three or more previously recorded acceleration time 
histories from the specific target region. In order to 
derive Ah(w) and Av(w), the scaled seismic accelera-
tion is converted from the time domain to the Fourier 
domain. Additional parameters required for the pro-
gram include D, B, c, φ, Vs, Vp, and ζ.

Figure 6 illustrates a flow chart detailing the pro-
gram’s operation. Within the flow chart: J and K 
serve as counters for seismic variations in α and ψ; 
n is the time step; quem represents the minimum of 
que; Jm, Km, and nm correspond to the minimum of 
quem; m is an index assigned to aham(t) where m = 1, 
2, 3, 4; fft represents the Fast Fourier Transform algo-
rithm. The computations progress step by step in the 
time domain, enabling the consideration of altera-
tions in soil shear and primary velocities, along with 
changes in cohesion and friction angle due to nonlin-
ear behavior.

Fig. 8  Manjil earthquake 
acceleration a horizontal 
component and b vertical 
component
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3.1  Verification of the Proposed Method

To validate the proposed method, the results of two 
shaking table experiments and previous analytical 
methods are compared with the proposed method. The 
first comparison is based on data from a shaking table 
test conducted by Knappett et al. (2006). Their study 
involved tests on a strip foundation placed on dry sand 
with specific parameters such as φ = 36°, Gs = 2.65, 
emax = 0.82, emin = 0.495, and a relative density of 67% 
(e = 0.6). Note that Gs, e, emax, and emin represent the 
specific gravity, void ratio, maximum void ratio, and 
minimum void ratio, respectively. The footing had a 
width of 5 cm and was placed on a 30 cm thick soil 
layer. The vertical stress exerted by the foundation 
on the supporting soil was approximately 8.42  kPa, 

Fig. 9  The time history of 
Nγe, obtained by proposed 
method

Fig. 10  Effects of Vs on Nγe for different h/Vs

Fig. 11  Effects of the soil shear strength parameters on Nγe for 
different h/Vs a effects of the soil frictional angles, b effects of 
the soil cohesion
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slightly below the static bearing capacity of 10  kPa 
leading to failure triggered by the applied motion. 
The foundation experienced sinusoidal input motion 
at a frequency of 3.6  Hz for 3  s. The experimental 
observations were compared with analytical results 
proposed by Paolucci et al. (1997). Failure initiation 
occurred at an acceleration amplitude of 0.16 g, with 
the failure mechanism becoming evident at accelera-
tions of 0.21 g, 0.26 g, and 0.3 g. It was noted that the 
failure mechanism changed during each cycle of the 
seismic acceleration. When the seismic acceleration 
increased from zero, the center of rotation of the fail-
ure surface was at the corner of the foundation. How-
ever, when the acceleration decreased from its peak, 
the center of rotation of the failure surface shifted 
from the corner of the foundation towards the center 
due to the moment of the inertial forces.

To apply the proposed method, the shear wave 
velocity, primary wave velocity, and damping ratio 
of the soil are approximated at 105 m/s, 196 m/s, and 
10%, respectively, as proposed by Seed et al. (1986) 
considering the level of shear strain effective verti-
cal stress. The results obtained from the proposed 
method, as presented in Table  1, closely align with 
the experimental observations across various accel-
eration amplitudes.

Another experimental study that can be used to 
validate the proposed method, was conducted by 
Al-Karni (2001). The experiment involved testing 
a foundation positioned on dry sand with properties 
such as Gs = 2.64, emax = 0.95, emin = 0.58, Dr = 67%, 
and φ = 40°. The foundation had an embedment 
depth of D = 0 and a width of B = 1 m. Two models 

were tested individually. In the first model, a load of 
615 kN was exerted on the soil. In the second model, 
a load of 205 kN was applied from the foundation to 
the supporting soil. The input motion was a horizon-
tal acceleration with a frequency of 3 Hz and a lin-
early increasing magnitude until reaching the critical 
accelerations that led to failure. The critical accelera-
tions were determined to be 0.08 g for the first model 
and 0.25 g for the second model. The results are sum-
marized in Table  2. It is worth noting that a shape 
factor of 0.6 can be utilized when using the equa-
tions associated with strip footings to determine the 
seismic bearing capacity of square footings. A close 
match is evident between the results obtained using 
the proposed method (607 and 192 kN) and the val-
ues measured in the experiments (615 and 205 kN).

Fig. 12  Effects of the depth embedment on Nγe for different h/
Vs

Fig. 13  Effects of foundation width on Nγe for different h/Vs

Fig. 14  Effects of damping ratio on Nγe for different h/Vs
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Figure 7 shows a comparison of the seismic bear-
ing capacity factors obtained by the proposed method 
with those obtained by available analytical methods, 
including the characteristic stress method by Kumar 
et  al. (2002), the pseudo-static approach by Choud-
hury et  al. (2005), the upper-bound limit analysis 
by Soubra (1997 and 1999), the modified pseudo-
dynamic method by Pain (2016) and Nadgouda et al. 
(2021), and the node-based smoothed finite element 
method by Nguyen et  al. (2022). The results were 
computed for φ = 30°, δ = 0.7φ, ahmax = 0, 0.1 g, 0.2 g, 
and 0.3 g, av = 0, ξ = 0.10, Vp/Vs = 1.87, Vs = 200 m/s, 
B = 2  m, h = 5  m, w = 6π rad/s, and D = 0. The pro-
posed method’s results were obtained for both har-
monic excitation and the 1990 Manjil earthquake, 
adjusted to the desired maximum acceleration. The 

proposed method’s results align well with other 
results when the acceleration is low.

As the acceleration increases, the proposed meth-
od’s results for harmonic input exhibit slower deg-
radation compared to other analytical solutions. The 
slight increase in the seismic bearing capacity factor 
could be attributed to the phase difference of seis-
mic accelerations throughout the depth. In contrast, 
the proposed method’s results for the earthquake 
input motion depreciate rapidly due to the substantial 
amplitudes of seismic accelerations across a broad 
frequency range, triggering significant responses cor-
responding to the system’s natural frequencies. For a 
5 m-thick soil layer, at an acceleration magnitude of 
0.3 g, the bearing capacity diminishes to zero. How-
ever, with a soil layer thickness of 20 m, the seismic 
bearing capacity coefficient increases to 5.2 due to the 
alteration in the soil layer’s fundamental frequency.

3.2  A Parametric Study on a Large Earthquake

A parametric study was conducted using the 1990 
Manjil earthquake with a magnitude of 7.6 as the 
input motion. Figure  8 shows the seismic accelera-
tions recorded during the earthquake, as reported by 
the Iran Strong Motion Network database, scaled 
with peak horizontal and vertical ground accelera-
tions of 0.6 g and 0.4 g, respectively. Soil properties 
were assumed to be φp = 35°, φr = 30°, cp = 20  kPa, 
cr = 10 kPa, Vs = 250 m/s, Vp = 1.87 Vs, damping ratio 
of 10%, and unit weight of γ = 17 kN/m3. The foun-
dation width and embedment depth were 2.5  m and 
1.5 m, respectively. The time history of Nγe obtained 
through the proposed method is shown in Fig.  9, 
highlighting the minimum value marked by a red 
circle. The Figure demonstrates that the proposed 
method can calculate the seismic bearing capacity at 
any given moment.

The impact of shear wave velocity on Nγe was stud-
ied by assuming different shear wave velocities while 
keeping other parameters constant. Nγe values were 
calculated for shear wave velocities of 150, 250, and 
350 m/s. Figure 10 illustrates the effect of soil shear 
wave velocity on Nγe for various h/Vs ratios, where 
T1 is defined as 4 h/Vs, representing the fundamental 
natural period of the soil deposit. The curves for dif-
ferent shear wave velocities show a consistent trend, 
influenced by ground motion characteristics such as 
frequency content and T1 or h/Vs. Changes in shear 

Fig. 15  Nγe and smoothed Ah and Av for different periods

Fig. 16  Nγe for different large earthquakes scaled to 
PGA = 0.6g 
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wave velocity or soil deposit thickness affect h/Vs or 
T1, leading to fluctuations in Nγe. Higher T1 values 
correspond to either decreases or increases in Nγe. 
During intense earthquakes, a reduction in Vs causes 
Nγe to shift towards higher h/Vs values. Critical h/Vs 
values ranged from 0.02 to 0.05, where seismic bear-
ing capacity reached a minimum due to significant 
inertial forces effects, indicating a resonance condi-
tion. In these conditions, the seismic bearing capac-
ity factor drops substantially to 15% of the static 
value, emphasizing the necessity of reinforcement 
techniques such as micropiles beneath the footing. In 
weaker soil seismic bearing capacity may diminish to 
zero during a major earthquake.

Shear strength parameters have a significant 
impact on Nγe: Fig.  11a shows how the soil friction 
angle affects Nγe for different h/Vs ratios. Nγe exhibits 
a more pronounced fluctuating trend for φ = 40° com-
pared to φ = 32° and φ = 35°. The variation of Nγe for 
a soil friction angle of φ = 32° follows a similar trend 
with h/Vs compared to φ = 35°, but with a smaller 
amplitude. During a large earthquake, the soil friction 
angle decreases due to large strains and plastic zones 
in the soil, leading to a shift in the Nγe path to lower 
levels.

Figure 11b illustrates the impact of soil cohesion 
on Nγe for various h/Vs ratios. Nγe increases with 
higher soil cohesion, with a consistent trend across 
different cohesion values of 12, 20, and 30 kPa. The 
minimum of Nγe occurs at h/Vs = 0.05 and 0.02 for 
all soil cohesion values. Similarly, during signifi-
cant earthquakes, a decrease in soil cohesion can 
cause Nγe to decrease following a lower trend.

The impact of embedment depth on Nγe for dif-
ferent h/Vs ratios is shown in Fig. 12. Minimum Nγe 
values occur at h/Vs = 0.05 and 0.02 for all depths 
considered. Increasing the embedment depth leads 
to higher Nγe values, therefore, selecting the deep-
est possible embedment can enhance Nγe in seismic 
regions. For D = 2.5 m, the seismic bearing capacity 
has significantly increased for all h/Vs ratios com-
pared to smaller D values. Furthermore, this figure 
clearly demonstrates that the depth of embedment is 
a key factor in seismic stability, and even deep foun-
dations like piles and micropiles exhibit favorable 
seismic performance.

Figure  13 illustrates the relationship between 
the foundation width and Nγe. With an increase 
in the foundation width (B), Nγe decreases, but 

the overall seismic bearing capacity rises. This 
increase is due to the seismic bearing capacity 
formula (Que = 0.5γBNγe × B), which is derived by 
multiplying the Nγe factor by B2. At h/Vs = 0.05 
the minimum of Nγe values and (Que) values are 
32.9 (1118.6  kN/m), 24 (1275  kN/m), and 13.1 
(1364 kN/m) for B = 2, 2.5, and 3.5 m, respectively. 
The rocking moment resulting from structural iner-
tial forces reduces the effective foundation width, 
leading to a higher trend in Nγe. However, Que 
decreases due to this reduction in effective width.

The impact of the damping ratio on Nγe is depicted 
in Fig. 14 across various h/Vs ratios. As expected, an 
increase in the damping ratio leads to a higher Nγe 
value. Additionally, the.

damping ratio mitigates the fluctuation of Nγe, 
resulting in a more gradual trend. The curve exhib-
its a smoother variation with ξ = 20% compared to 
ξ = 10%, and ξ = 5%. During a large earthquake, non-
linear soil behavior may elevate soil damping (Seed 
et  al. 1986), causing a slight increase in Nγe. How-
ever, overall Nγe values decrease due to a decline in 
soil shear strength.

Figure 15 illustrates Nγe for different fundamental 
periods of the soil deposit (T = T1) as well as Ah and 
Av for Fourier periods (T). The values were normal-
ized with the corresponding maximum value. The 
average of 15 sequential values was used to smooth 
the normalized Ah and Av. The minimum value of 
Nγe occurs at a period of T = 0.2 (h/Vs = 0.05) when 
the normalized Ah peaks at 1.0 and the normalized 
value of Av is equal to 0.32. Nγe has a high value at 
T = 0.057 when Ah and Av have small values. Nγe is 
significantly affected from T = 0.06 to T = 0.5 s due to 
the high magnitudes of Ah and Av for this T range.

Figure  16 illustrates the Nγe values for differ-
ent major earthquakes (reported by the Iran Strong 
Motion Network database) with the same PGA in 
Iran. The figure clearly shows a significant reduction 
in bearing capacity for most earthquakes across all T1 
values. The earthquakes in Tabas (1978, Mw = 7.8), 
Bam (2003, Mw = 6.6), and Buin Zahra (2002, 
Mw = 6.5) particularly exhibit this pronounced reduc-
tion in seismic bearing capacity for almost all T1 val-
ues. On the other hand, the Manjil (1990, Mw = 7.6) 
earthquake demonstrates a similar drastic reduction 
but with a range of T1 = 0.06–0.3  s. For T1 values 
greater than 0.3, a higher seismic bearing capac-
ity is observed. In Fig.  16, the minimum of Nγe for 
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all earthquakes is depicted by a red line, showing a 
range of 78–88% reduction in seismic bearing capac-
ity depending on the fundamental period of the soil 
deposit. Therefore, due to the substantial decrease in 
the foundation’s bearing capacity during major earth-
quakes, it becomes necessary to consider the use of 
deep foundations, such as piles or micropiles, to 
ensure greater stability, just as the root is necessary to 
protect the tree from wind.

4  Conclusions

An extended pseudo-dynamic approach was proposed 
to calculate the seismic bearing capacity for strip 
foundations on φ-c soils. This approach allows for 
analysis in the time domain and can directly consider 
earthquake acceleration records as input excitation. 
Furthermore, by solving the problem step by step in 
time, it can account for nonlinear behavior and the 
reduction of soil resistance and stiffness during large 
earthquakes. This approach can be combined with 
numerical methods, limit analysis, and many tech-
niques, in future research to create a more efficient 
tool for seismic analysis. Additionally, this method 
can be applied to other seismic geotechnical issues. A 
limitation of the presented method is that the soil sub-
grade was considered as a dry viscoelastic medium. 
Future research could investigate the effects of water 
saturation. The results of the parametric study for 
a major earthquake show that the variation of the 
seismic bearing capacity factor for different ratios 
of deposit thickness to shear wave velocity follows 
a distinct trend based on the ground motion’s fre-
quency content and the fundamental period of the soil 
deposit. The study also discusses the effects of foun-
dation width, foundation embedment, and soil damp-
ing ratio. Increasing the foundation width leads to a 
decrease in seismic bearing capacity, but the overall 
seismic bearing capacity increases. The damping 
ratio helps mitigate the fluctuation of seismic bearing 
capacity resulting in a more gradual trend. Increasing 
the embedment depth leads to higher seismic bearing 
capacity values. Therefore, selecting the deepest pos-
sible embedment can enhance seismic bearing capac-
ity in seismic regions. The significant decrease in the 
foundation’s bearing capacity during major earth-
quakes highlights the importance of considering the 

use of deep foundations like piles or micropiles for 
enhanced stability and safety.
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