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Abstract Obtaining accurate discontinuity infor-
mation on a tunnel is essential for tunnel stability 
assessment, and usually requires geological surveys 
on the tunnel surface. However, traditional manual 
measurement methods are time-consuming, labor-
intensive, and provide limited data, particularly when 
dealing with complex tunnel rock masses. To address 
this problem, this paper proposes a method to quickly 
obtain the point cloud model of the tunnel surface and 
semi-automatically identify discontinuity using 3D 
laser scanner. The method is centered on an improved 
Regional Growth (RG) algorithm, with key princi-
ples and processing flow encompassing: (1) Voxel 
filtering; (2) Normal calculation for point clouds; (3) 

Improved RG algorithm; (4) Calculation of disconti-
nuity orientation. An analysis of parametric sensitiv-
ity which proved its good robustness was carried out 
to assess the performance of the method. To ascertain 
the effectiveness of the method in semi-automati-
cally identifying tunnel discontinuities, three sets of 
test data (standard cube, rock slope in Colorado, and 
Xulong hydroelectric station tunnel) were chosen. 
By comparing the analysis results of the proposed 
method with those of alternative methods (DSE and 
CloudCompare), the validation of its efficacy in tun-
nel discontinuity detection was achieved.

Keywords Tunnel · Discontinuity · 3D laser 
scanner · Point cloud · Semi-automatically identify · 
Improved RG algorithm

List of Symbols 
p
0
  Seed point

Q  Discontinuous feature point set
Qa  The plane normal vectors before adding 

neighbor to Q
Q

b
  The plane normal vectors after adding neigh-

bor to Q
�  The threshold for the mean squared error of 

both Qa and Q
b

d  The threshold for the vertical distance from 
the neighbor to the plane

S  The number of points in the plane Q
b

→

f   The normal vector of the plane Q
b

ps  The s th point in the plane Q
b
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m  The center of mass of the plane Q
b

N
min

  The minimum value of the number of points 
in a feature point set

N
max

  The maximum value of the number of points 
in a feature point set

N  The normals of the plane
Nx  The normal vector of the plane in the 

x-direction
Ny  The normal vector of the plane in the 

y-direction
Nz  The normal vector of the plane in the 

z-direction
�  The dip direction of the discontinuity
�  The dip of the discontinuity.
n  The number of neighbors
�  The maximum growth angle

1 Introduction

The field of tunnel engineering has witnessed remark-
able advancements in recent years, which have ena-
bled the realization of various ambitious and pio-
neering tunnel projects. As global tunnel engineering 
ventures progress towards increasingly elongated and 
intricate trajectories, ensuring the safety of tunnel 
excavation has become a paramount and indispensa-
ble necessity for tunnel construction. This is particu-
larly crucial because tunnel construction frequently 
entails encountering dense and intricate geological 
discontinuities, which have the potential to cause tun-
nel collapse, thereby incurring substantial human and 
economic consequences (Abdellah et al. 2023; Assali 
et al. 2014, 2016; Cai et al. 2021; Chand and Koner 
2023; Jena et al. 2020). As a result, conducting geo-
logical investigations to obtain critical information 
for rock assessment and stability analysis is typically 
imperative in preventing such accidents (Cardia et al. 
2023; Chen et al. 2020; Wang et al. 2022).

To obtain discontinuity information from a rock 
tunnel face, geological survey is crucial, which can 
be conducted using contact and non-contact methods. 
Traditional contact surveys involve manual measure-
ments using compass and tape (Chen et al. 2018; Sal-
vini et  al. 2020; Thiele et  al. 2017; Yi et  al. 2023), 
which are inefficient and often result in incomplete 
and inaccurate data (Chen et al. 2021b). Non-contact 
surveys involve digital image processing (Buyer et al. 

2018; Chen et  al. 2021a; Garcia-Luna et  al. 2019; 
Hou et al. 2023; Jiang et al. 2022), but the accuracy 
and amount of data obtained can be limited due to 
external factors such as light, dust, and humidity. In 
recent years, the use of 3D laser scanning to obtain 
the 3D geometry or detailed digital terrain models 
has become a highly accurate and efficient means of 
non-contact measurement (Incekara and Seker 2018; 
Ji and Luo 2019; Lato et al. 2010; Li et al. 2023; Xia 
et al. 2023). 3D laser scanning allows the acquisition 
of 3D point cloud data on the surface of the object 
in a short period with a large area and high resolu-
tion compared with traditional measurements. This 
technology has been extensively used for deforma-
tion monitoring in tunnels and has demonstrated 
great potential for obtaining tunnel discontinuity data 
(Jiang et al. 2020; Zhao et al. 2023). Several studies 
have shown that 3D laser scanning is a feasible and 
effective method for discontinuity extraction (Assali 
et  al. 2016; Ge et  al. 2021; Monsalve et  al. 2019; 
Zhang et al. 2019).

Discontinuity information can be extracted based 
on point clouds, and the extraction methods can be 
divided into two types: manual and semi-automatic. 
In the past, manual method were more widely used 
(Lato et  al. 2009; Olariu et  al. 2008). However, the 
method not only requires a high level of operational 
knowledge and experience but also are inefficient 
and cumbersome in the presence of large amounts 
of point cloud data. Semi-automated methods can be 
subdivided into two types, the first is the identifica-
tion procedures based on photogrammetric princi-
ples and patterns, which usually require 3D surface 
modeling of rock tunnel face, such as PlaneDetect 
(Lato and Voge 2012). The method has been exten-
sively studied. However, it does not perform well in 
cases involving folds or deep concavities. Another 
method is to directly extract discontinuity information 
from the original point cloud, which can avoid the 
need for repetitive modeling, as demonstrated by the 
Discontinuity Set Extractor (Riquelme et  al. 2014). 
This method has been widely studied and has a high 
degree of automation, but it takes longer to calculate 
and classify each point and requires longer running 
time when dealing with larger point cloud data.

Regional Growth originated from image segmenta-
tion algorithms and extended to point cloud segmenta-
tion algorithms to separate targets from the background 
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by looking at the differences between the parameters 
associated with seed points and neighbors. The algo-
rithm’s low complexity and ease of implementation 
have contributed to its widespread usage in various 
applications. Li et  al. (2016); Cao et  al. (2017) used 
the RG algorithm to detect discontinuity from point 
clouds based on triangulated models. Voge et al (2013) 
and Wang et  al. (2017) used the RG algorithm to 
extract rock fracture parameters by local surface nor-
mals and curvature based on point clouds. Consider-
ing the quantity of points acquired through 3D laser 
scanning to create point cloud data is influenced by the 
scanned area’s size and the point spacing, or resolution, 
of the scanning device. Therefore, when using a high-
resolution scanner to survey a large area, a significant 
amount of point cloud data is typically generated. As 
a result, traditional RG algorithms may be inadequate 
to meet the demands for high computational efficiency 
in such circumstances. Ge et al. (2018) used the grid 
data structure with the same interval to store point 
clouds, which can perform data access more efficiently 
based on rows and columns in the grid, while the crite-
rion used in the RG algorithm was improved to check 
the similarity between seed and neighbors, which can 
increase the growth rate and improve the efficiency 
of extracting discontinuity geometry parameters from 
huge point cloud data. Recent research indicates that 
there is a need to enhance the identification of discon-
tinuities by increasing its speed and accuracy to effec-
tively address the challenge of identifying discontinui-
ties across vast regions in forthcoming projects.

The objective of this paper is to utilize 3D laser 
scanning in conjunction with the improved RG algo-
rithm to efficiently detect discontinuities in a large 
amount of point cloud data, in order to establish 
dependable fundamental geological parameters for 
tunnel stability analysis. The subsequent sections 
will elaborate on the processing and principles of the 
proposed method. Furthermore, a parametric sensi-
tivity analysis will be carried out in Sect. 3. Finally, 
three case (standard cube, rock slope in Colorado and 
Xulong hydroelectric station tunnel) will be used to 
illustrate the effectiveness of the method.

2  Method

In this paper, a method for semi-automatic identifi-
cation of discontinuities based on raw point cloud 

data is proposed, which can achieve fast computing 
of massive point cloud data and improve the accu-
racy of recognizing discontinuity. The steps are as 
follows: voxel filtering was used to process the point 
cloud data first. And secondly, the normal vector of 
each point was calculated. Then, the feature point sets 
of the discontinuities were identified by the improved 
RG algorithm. The discontinuity orientation was cal-
culated finally. The flow of the methods is shown in 
Fig. 1.

2.1  Voxel Filtering

The quantity of point cloud data for the rock tunnel 
surface is typically extensive. Processing such a large 
volume of data not only demands a high-performance 
computer configuration but also results in low com-
putational efficiency. Thus, pre-processing the point 
cloud data by employing effective means to minimize 
the amount of data, while preserving its essential 
characteristics, is necessary to enhance the overall 
algorithmic performance.

The voxel grid, alternatively referred to as voxel 
filtering, has been employed as a means of reduc-
ing the quantity of point clouds. Voxel, defined as a 
series of diminutive individual three-dimensional 
spaces within a given volume, is used to partition the 
point cloud data into multiple 3D voxels. Within each 
voxel, all the points are substituted by an estimation 
of the centroid point. This method is useful in miti-
gating the computational complexity and downsizing 
the point clouds while preserving their shape charac-
teristics. This is particularly relevant for improving 
alignment, surface reconstruction, and shape recog-
nition. The specific processing steps are illustrated in 
Fig. 2 below.

Voxel filtering significantly reduces point cloud 
computation. However, it may affect the features of 
the point cloud model and the accuracy of the calcu-
lations. The following will provide further illustra-
tion using two standard point cloud models (a cone 
and a standard plane) and a point cloud dataset with 
discontinuities.

As shown in Fig. 3a, the cone’s point density and 
uniformity underwent a change following voxel fil-
tering. The number of point clouds is significantly 
reduced, however, the morphological features of 
the cones are preserved with maximum fidelity. 
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Therefore, it can be demonstrated that the application 
of voxel filtering preserves the inherent morphology 
of the point cloud model.

As shown in Fig.  3b, a set of 15 points was ini-
tially located in the same plane, but only four points 
remained after being subjected to voxel filtering. 

Remarkably, despite the reduction in the number of 
points, the location of the plane remained unchanged. 
This can be attributed to the fact that the equation of a 
plane can be determined by at least three points, and as 
such, any reduction in the number of points used for the 
calculation would not affect the equation of the plane. 

Fig. 1  The overall workflow and methodology of the proposed method

Fig. 2  Steps for Voxel Filtering
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Therefore, it can be inferred that the plane’s equation is 
insensitive to the number of points used in its calcula-
tion, as long as the number of points used is not less 
than three.

In practical engineering, the implementation of voxel 
filtering is likely to have an unavoidable impact on the 
calculation outcomes, owing to the fact that discon-
tinuity is not a standard plane. To assess the effect of 
voxel on discontinuity fitting, a point cloud set featur-
ing discontinuity in a tunnel was selected, as depicted 
in Fig. 3c. The results obtained indicated that the errors 
associated with the plane fitting equation coefficients 
were less than 0.05 after voxel filtering, which may be 
considered to represent the same plane within the engi-
neering error. Hence, the utilization of voxel filtering 
can effectively ensure the accuracy of the calculations.

2.2  Normal Calculation for Point Clouds

2.2.1  Building an Octree Structure

The octree structure, initially proposed by Dr. 
Hunter in 1978, serves as a data model that parti-
tions geometric objects into voxels in three dimen-
sions. Each voxel possesses identical temporal and 
spatial complexities and can generate a directional 
graph with a root node, which recursively links 
to its siblings in a circular fashion. Elements with 
equivalent characteristics within the octree struc-
ture form a leaf node, while other elements con-
tinue to subdivide into eight sub-cubes recursively, 
as illustrated in Fig.  4. To clarify, consider a Car-
tesian coordinate system that partitions space into 
eight quadrants, each of which can be further sub-
divided into eight quadrants by generating another 
Cartesian coordinate system. This process can be 
repeated indefinitely to partition any region of space 
into n Cartesian coordinates.

Fig. 3  a The cone b The 
standard planes c The real 
discontinuity
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Given the characteristics of an octree structure, 
each element can be located quickly and with mini-
mal complexity. By placing the point cloud data 
into the octree structure, each point can be marked, 
allowing for efficient neighbor searching and the 
generation of a neighbor set.

2.2.2  Calculation of Point Normal Vector

Each point does not have a normal vector theoreti-
cally, where the point’s normal vector is defined as 
the normal vector of the plane fitted by the calculated 
point and its neighbors. This concept is visually rep-
resented in Fig. 5.

2.3  Discontinuity Extraction

2.3.1  Principle of RG Algorithm

RG is an image processing technique that involves 
the aggregation of pixels or sub-regions into larger 
regions based on a set of predetermined guidelines. 
The fundamental concept of RG involves the selec-
tion of a seed pixel or point, followed by the iterative 
merging of neighboring pixels or regions that share 
similar properties to create a new growth region. This 
process is repeated until no further growth is feasi-
ble. The similarity between the growth region and its 
neighboring regions is typically determined by ana-
lyzing various image characteristics such as color, 
texture, and grayscale values. Figure 6 illustrates the 
process by considering the example of a pixel. In this 
example, the attribute value of the pixel at point 1 is 
14, while the attribute value of the pixel at point 5 is 
15. As such, the growth direction proceeds from point 
1 to point 5, as the attribute value of point 5 is closer 
to that of point 1 than any other neighboring points. 
Subsequently, the growth will continue towards 
regions with attribute values that are closer. The point 
closest to point 5 in terms of attribute values is point 
7, so the growth region extends from point 5 to point 
7. After reaching point 7, there are no more areas 
available for growth, and the region’s growth process 
comes to an end.

The RG algorithm can be distilled into three essen-
tial components: selecting the growth point (seed 
point), the RG criterion, and the growth-stopping 
conditions. Each point can be considered as a growth 
point and is grown according to the RG criterion. 
Once there are no more points that meet the RG crite-
ria, the region will cease to expand, and the algorithm 

Fig. 4  a The space 
decomposition of an octree 
b Search for marker points 
using an octree

Fig. 5  calculation of the point cloud normal
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will terminate automatically. Among them, the RG 
criterion is the most important and is as follows.

The proposed method in this paper adopts a cri-
terion for RG based on the gap between the normals 
and the distance between points. This criterion iden-
tifies points in close proximity to each other with a 
normal gap that falls below a certain threshold as 
part of a plane. These similar points are grouped into 
a feature point set. If the number of points in the set 
exceeds three, a new plane normal vector is fitted 

after a new point is added, and this is compared to 
the originally fitted plane normal vector. If the dif-
ference between the two normal vectors is less than 
a specified threshold, the new point can be added to 
the feature set. As shown in Fig. 7, the criterion of the 
improved RG is as follows.

(1) A seed point p
0
 from the point cloud is selected 

and added to the discontinuous feature point set Q.
(2)  In the set of neighbors belonging to the seed 

point p
0
 , take n number of neighbors. If the normal 

Fig. 6  Schematic diagram 
of RG algorithm

Fig. 7  Algorithm for detecting whether the neighbor of point p
0
 is the feature point of the discontinuity
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vector absolute value of the difference between the 
neighbor and the seed point p

0
 is less than the preset 

threshold, the neighbor can be judged as a discontinu-
ity feature point and added to the feature set Q . The 
neighbors will be judged one by one, and then add the 
eligible neighbors to the feature set Q until the feature 
set Q has 3 points.

(3)  When the number of points in feature set Q 
reaches 3, the condition for judging the remaining 
neighbors will become more stringent. If the remain-
ing neighbors can be added to the feature set Q , both 
of the following conditions must be satisfied:

Condition 1 The two plane normal vectors before 
and after adding neighbor to Q are denoted as Qa and 
Qb respectively, and the mean square error (MSE) of 
these two normal vectors must be less than threshold 
� , where MSE can be obtained by Eq. (1).

Condition 2 The vertical distance from the neigh-
bor to the plane needs to be less than threshold d cm.

where S denotes the number of points in the plane 
Qb , 

→

f  denotes the normal vector of the plane Qb , ps 

denotes the s th point in the plane Qb ; d =
→

f ⋅m , m 
denotes the center of mass of the plane Qb.

2.3.2  Discontinuity Feature Point Set Extraction 
Steps

The step of discontinuity feature point set extraction 
is shown as follows.

(1) A point from the point cloud data was selected as 
seed point to extract the feature point set.

(2) After the feature point set was extracted, it will 
be removed from the point cloud data, and then a 
point was selected from the remaining point the 
seed point to substitute into the criterion.

(3) The command was repeated as in (2) until there 
are no more points.

(4) The number of points belonging to one discon-
tinuity N

min
 and N

max
 were set according to the 

actual situation
(5) The feature point set of discontinuity was fitted 

into a plane

(1)MSE =
1

S

∑

S
s=1

(

→

f ×ps − d

)2

The flow chart is shown in Fig. 8.

2.4  Calculation of Discontinuity Orientation

The orientation of discontinuity, i.e., the strike, dip, 
and dip direction (as shown in Fig. 9), can be calcu-
lated as the equation of the fitting plane, the relation 
between the orientation of discontinuity and the fit-
ting plane can be derived from Eq. (2) to Eq. (9).

For a plane, the plane equation is given by:

The normals of the plane can be expressed as

(2)Ax + By + Cz + D = 0

Fig. 8  Discontinuous point set extraction process

Fig. 9  Orientation of discontinuity
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When Nz < 0:

At this point, if Nx ≥ 0:

If Nx < 0:

When Nz < 0:

At this point, if −Nx ≥ 0:

When −Nx < 0:

where � represents the dip direction of the discontinu-
ity and � denotes the dip of the discontinuity.

(3)N = (Nx,Ny,Nz) =
(A,B,C)

√

A2 + B2 + C2

(4)�1 = cos
−1
(

Nz

)

(5)�2 = cos
−1

Ny
√

N2

z
+ N2

y

(6)�2 = 2� - cos
−1

Ny
√

N2

z
+ N2

y

(7)�1 = cos
−1
(

−Nz

)

(8)�2 = cos
−1

−Ny
√

N2

z
+ N2

y

(9)�2 = 2� - cos
−1

Ny
√

N2

z
+ N2

y

3  Parameter Sensitivity Analysis

The process of the orientation calculation contains 
two selective parameters: the number of neighbors 
n and the maximum growth angle � , which have key 
roles in the improved RG algorithm. This section 
utilizes a chosen urban rock slope (Fig.  10) area in 
Alicante (SE Spain) as an illustration to evaluate the 
impact of these two parameters on the identification 
of discontinuities and to recommend suitable values.

3.1  Number of Neighbors

The impact of changing the number of neighbors n on 
discontinuity recognition was studied. The number of 
neighbors n is respectively set to 6, 12, 18, 24, 30, and 
36 in the case of maximum RG angle � = 20°. The six 
identification results are shown in Fig. 11. It is spe-
cifically found that the larger the number of neighbors 
n takes, the more discontinuities are recognized, espe-
cially smaller discontinuities can be recognized. This 
is because the normal vector of its fitting plane is 
changing while the number of its neighbors is chang-
ing, which leads to changes in the recognition results.

In general, different values of the number of neigh-
bors n have little effect on the identification of main 
discontinuities, which proves the robustness of the 
proposed method.

3.2  Maximum RG Angle

The impact of the maximum angle � on discontinu-
ity recognition was studied. When the number of 

Fig. 10  The urban rock slope in Alicante a Slope picture b Slope point clouds
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neighbors n is fixed at 15, � is set to 5°, 10°, 15°, 20°, 
25°, and 30° respectively, the recognition results are 
shown in Fig. 12 and the analysis is as follows.

(1) When the maximum RG angle � takes a small 
value such as 5° or 10°, the discontinuities cannot 
be fully identified. In addition, when � = 15°, the 
major discontinuities can be basically identified.

(2) With � increasing, the more abundant discontinu-
ities are identified, which is shown by the smaller 
discontinuities that can be identified.

There is an explanation for the above: the maxi-
mum RG angle � determines whether the neighbors 
can be included in the discontinuity feature point set. 
When � is in the range of 5° to 10°, many neighbors 
cannot be included in the point set, which makes the 
identification of the discontinuity incomplete.

It can be seen that the main discontinuities can be 
recognized under reasonable thresholds, which proves 
the robustness of the proposed method. Considering, 
the orientation information of tiny discontinuities is 
crucial for tunnel engineering applications. There-
fore, the number of n sets as 12 and the maximum � 

Fig. 11  Influence of the different number of neighbors n on the recognition result
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sets as 20°, are the appropriate criteria for threshold 
selection.

4  Case study

4.1  Case Study A

The proposed method will be used to identify a com-
puter-generated standard cube point cloud model, 
and its recognition effectiveness and speed will be 
verified.

4.1.1  Recognition Effect

A cube model with dimensions of 1  m × 1  m × 1  m 
was created, and a point cloud consisting of 1 mil-
lion points was generated based on the model. The 
assumed orientation is as follows: the positive X-axis 
represents east, the positive Y-axis represents north, 
and the positive Z-axis represents upward direction. 
The dip and dip direction of the planes can be deter-
mined in advance. The proposed method will be uti-
lized to recognize the point cloud with or without 
voxel filtering. The multiple model of the cube are 

Fig. 12  Influence of the different maximum RG angle � on the recognition result
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presented in Fig.  13, and the recognized orientation 
results are compared with the pre-calculated orienta-
tion in Table 1. It can be seen that the orientation of 
the plane measured by the proposed method is con-
sistent with the theoretical value, and there is no dif-
ference between the results with and without voxel 
filtering.

4.1.2  Recognition Speed

Riquelme et  al. (2014, 2016, 2018) developed the 
open-source software DSE to analyze the cube model 
and determine three sets of discontinuities. To evalu-
ate the recognition efficiency of the proposed method, 
the same cube model with 1,000,000 points was iden-
tified by both the proposed method and DSE. The 
computation times of DSE and the proposed method 
(with and without voxel filtering, respectively) are 
presented in Table 2. The results show that DSE took 
1142  s for computation, while the proposed method 

only required 7 s. If voxel filtering is used, the calcu-
lation time of the proposed method is further reduced 
to 1 s. These results indicate that the proposed method 
has a significant speed advantage compared to DSE.

Fig. 13  Cube model display a Point cloud model b Point cloud model after using voxel filter c Discontinuity identification results of 
the proposed method d Discontinuity identification results of the proposed method after using voxel filter

Table 1  Comparison 
between the cube 
orientation recognition 
results and the theoretical 
values

Dip (°) Dip direction (°)

Plane Theory Proposed method Error Theory Proposed method Error

NO voxel Voxel NO voxel Voxel

Plane 1 0 0 0 0 180 180 180 0
Plane 2 90 90 90 0 90 90 90 0
Plane 3 90 90 90 0 180 180 180 0
Plane 4 90 90 90 0 180 180 180 0
Plane 5 90 90 90 0 90 90 90 0
Plane 6 0 0 0 0 0 0 0 0

Table 2  Comparing the processing efficiency of DSE and the 
proposed method

Point cloud model Points number Computational time (s)

Cube 1,000,000 DSE Proposed method

1142 NO voxel Voxel

7 1

Computer configu-
ration

Laptop brand: Asus
Windows edition: Windows 10 Profes-

sional
Processor: Intel (R) Core (TM) 

i5-7300HQ CPU @ 2.50 GHz
RAM: 8.00 GB
System type: 64-bit operation system



2589Geotech Geol Eng (2024) 42:2577–2599 

1 3
Vol.: (0123456789)

4.2  Case Study B

To validate the effectiveness of the proposed method, 
publicly available data obtained from the Rockbench.
org website was used as a research case study. This 
data corresponds to a rocky slope located in Colorado, 
USA (Fig.  14). In this section, the results obtained 
through the proposed method will be compared with 

those acquired by Riquelme et  al. (2014) using the 
DSE.

As shown in Fig. 15, a comparison of discontinu-
ity normal vector density plot that both the DSE and 
the proposed method have divided all the disconti-
nuity points into five groups based on their orien-
tations. The comparative results for the identifica-
tion discontinuities using two methods is shown in 
Fig. 16. It can be observed that some of the primary 

Fig. 14  The slope in Colorado, USA a Slope picture b Slope point clouds

Fig. 15  Normal vector density plot of the discontinuity poles: a DSE b The proposed method
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discontinuity identification results are nearly iden-
tical, with only minor differences evident in the 
fragmented and smaller discontinuities. However, 
these tiny discontinuities hold limited engineer-
ing significance and can be safely disregarded. To 
compare the results of orientation calculation, ten 
plane were randomly selected for data comparison. 
As shown in Table  3, the maximum error between 
the two methods is 11.46°, with an average error of 
2.33°. The overall error falls within an acceptable 
range. In general, the results obtained through the 
proposed method exhibit a high degree of similarity 
to those obtained with DSE, confirming the feasibil-
ity of the proposed method.

4.3  Case Study C

An actual tunnel project will be analyzed to prove the 
effectiveness of the proposed method for semi-auto-
matic tunnel discontinuity identification.

4.3.1  Description of the Rock Tunnel Project

The tunnel studied in this paper is a part of the 
Xulong Hydropower Station project, located in the 
upstream section of the mainstream of Jinsha River at 
the junction of Deqin County, Yunnan Province, and 
Derong County, Sichuan Province, China (Fig.  17). 

Fig. 16  The discontinuity 
identification results: a DSE 
b The proposed method
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The tunnel is about 2.1 m high and 2 m wide, with a 
total length of 60 m.

4.3.2  Tunnel Point Cloud Data Acquisition 
and Model Building

In this study, the point cloud model of the rock tunnel 
surface was acquired using the Swiss Leica ScanSta-
tionP40 high-speed 3D laser scanner (Fig.  18). The 
scanner’s parameters are provided in Table 4.

The tunnel was equipped with 12 scanning sta-
tions that were spaced 5 m apart, and the schematic 
diagram of these scanning stations is illustrated in 
Fig.  19a. Point cloud data for each station needs 

to be pre-processed to obtain the complete point 
cloud model of the tunnel, the specific process is as 
follows.

(1) Point cloud stitching the target was set up at the 
beginning of the measurement and more than 
three public targets were mainly used as marker 
points for point cloud splicing of stations. All 
point cloud data of stations are spliced with the 
first reference station prevailing by using the 
method of division splicing, which needs to pass 
under the same coordinate system successively 
to achieve the purpose of massive point cloud 
stitching.

Table 3  DSE and 
the proposed method 
orientation calculation 
results values

Plane Dip (°) Dip direction (°)

DSE Proposed method Error DSE Proposed method Error

Plane 1 83.25 84.14 0.89 339.47 340.11 0.64
Plane 2 82.58 79.11 3.47 136.59 135.74 0.85
Plane 3 35.8 35.04 0.76 70.26 247.7 2.56
Plane 4 35.48 33.59 1.89 252.68 250.88 1.8
Plane 5 32.72 33.59 0.87 255.12 250.88 4.24
Plane 6 76.85 77.58 0.73 173.55 173.29 0.26
Plane 7 50.19 48.22 1.97 91.07 93.00 1.93
Plane 8 76.58 83.58 7.00 166.33 154.87 11.46
Plane 9 69.94 72.14 2.20 105.75 287.84 2.09
Plane 10 39.02 38.29 0.73 246.24 246.58 0.34

Fig. 17  The basic information of the rock tunnel site
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(2) Point cloud denoising the collected data will 
be manually denoised by using Poly-works to 
remove the obvious peripheral scattered points.

(3) Relative coordinate positioning The IMAlign 
module in Poly-works enables the quick and 
accurate alignment of chunked data. Two types 
of alignment are available: 1-point alignment, 
which is suitable for chunked data with obvious 
common features and is both fast and easy to 
operate, and n-point alignment, which requires 
at least three points to be selected from different 
locations in the two-point cloud maps to align 

the common parts roughly. Prior placement of 
marker points is typically necessary for accurate 
identification during alignment. The exact align-
ment is then performed using the best-fit align-
ment method. The alignment parameters and 
effects can be monitored in real-time, and the 
iterative operation can be halted at any time.

To present the tunnel point cloud model in more 
detail and to carry out further discontinuity iden-
tification, this study has chosen point cloud data 
from the representative first and second stations, 
and a point cloud model with 35,175,895 points was 
obtained, as shown in Fig. 19b.

4.3.3  Tunnel Discontinuity Identification

The study utilized the proposed method to identify 
the discontinuities of the tunnel point cloud model. 
Utilizing the approach outlined in this paper, a plugin 
named FecetDetect has been devised and seamlessly 
integrated into the proprietary Geocloud software. By 
employing this plugin, the process of identifying dis-
continuities after importing tunnel point cloud data is 
greatly simplified. In the parameter settings, based on 
the optimal threshold criteria chosen during the prior 
parameter sensitivity analysis, the number of neighbors 
n was set as 12 while the maximum RG angle � was 
set as 20°. Considering the model has a large amount of 
point cloud data, voxel filtering was necessary for data 
streamlining. The voxel size was divided into 0.005, 
resulting in 3,500,446 points after voxel filtering. This 
reduced 90% of the calculated points in comparison 
to the original. The recognition result of the proposed 
method is presented in Fig. 20, where 1741 discontinui-
ties were identified with different colors to indicate the 
distinction among them.

1741 Discontinuities in total were identified from 
the tunnel point cloud by the proposed method and 
were plotted on the stereographic projection by using 
the Dips. As shown in Fig. 21, all discontinuities were 
classified into two sets based on their orientation. These 
geometric parameters of discontinuities were summa-
rized in Table 5.

Six areas were selected to compare their identifica-
tion results with real photos. As shown in Fig. 22, it can 
be seen that the identification results are very similar to 
the real photos.

Fig. 18  Photo of the Swiss Leica ScanStationP40 high-speed 
3D laser scanner

Table 4  Parameters of the 3D laser scanner

Laser type Lidar/I

Angular accuracy 8″
Distance accuracy 1.2 mm + 10 ppm
Scanning rate 1,000,000 points per second
Noise accuracy 0.5 mm@50 m
Effective scanning range 270 m@34% reflectance
Dual-axis compensation technol-

ogy
1.5″

Target acquisition accuracy 2 mm@50 m
Scanning range X:360° Y:290°
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Fig. 19  a Site layout of 
point cloud acquisition b 
Tunnel point cloud model

Fig. 20  Comparison of 
point cloud model and the 
semi-automatic recognition 
model
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Fig. 21  Normal vector den-
sity plot of the discontinuity 
poles

Table 5  The summary of 
geometric parameters for 3 
discontinuity sets

SET Orientation Surface

Dip Dip direction

AVG SD AVG SD AVG SD

1 84.92 3.12 127.09 3.83 0.06 0.17
2 23.49 2.01 120.12 16.54 0.04 0.08

Fig. 22  Comparison of 
real tunnel discontinuity 
photos with semi-automatic 
recognition discontinuity 
graphics
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Three discontinuities were selected from each of the 
six pre-determined areas. Orientation information will 
be manually calculated using the Cloudcompare three-
point identification method, and the results will be com-
pared with those identified by the proposed method.

CloudCompare three-point identification method 
uses the Compass plug-in to manually pick up three 
measurement points on a measured discontinuity and 
the average of these three measurement points’ orienta-
tion is considered as the discontinuity orientation. The 
specific calculation method as Eqs. (10) and (11).

where � denotes the dip, � represents the dip 
direction.

The identification results of CloudCompare three-
point are shown in Fig.  23. And the identification 
results compassion between CloudCompare and Pro-
posed method are summarized in Table  6. It can be 

(10)Δ� =

(

�
1
+ �

2
+ �

3

)

3

(11)Δ� =

(

�
1
+ �

2
+ �

3

)

3

seen that the maximum error is 3.81° and the overall 
error is within the acceptable range.

5  Conclusion

In this paper, the 3D laser scanner is used to obtain 
the point cloud model of the rock tunnel surface. An 
improved RG algorithm as the core algorithm is pro-
posed to semi-automatically identify discontinuity 
from the massive point cloud. Parameter sensitiv-
ity analysis of the two thresholds of the maximum 
RG angle � and the maximum number of neighbors 
n was carried out to verify the performance of the 
proposed method. The efficiency and the accuracy of 
orientation calculation were evaluated by three case 
studies, namely the standard cube, the rock slope in 
Colorado and the Xulong hydropower tunnel, com-
bined with the comparative analysis of the DSE and 
CloudCompare.

The main contributions of this paper are summa-
rized as follows.

Fig. 23  Demonstrated 
using the CloudCompare 
three-point measurement 
method
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(1) In the parameter sensitivity analysis, the effect 
of different values of the maximum RG angle � 
and the maximum number of neighbors n on the 
identification results was analyzed using the con-
trol variable method. The results indicate that 
the proposed method maintains good recognition 
results for different values of these two parame-
ters within a reasonable range, demonstrating its 
robustness.

(2) In terms of quantitative evaluation of recognition 
performance: for the standard cube model, the 
proposed method identified discontinuities that 
maintain consistency with the geometric shape of 
the cube model. And the orientation of the plane 
measured by the proposed method is consistent 
with the theoretical value, and there is no differ-
ence between the results with and without voxel 
filtering. For the rock slope, the results obtained 
through this method were compared with those 
obtained using DSE, and both discontinuity iden-
tification outcomes were highly similar. And the 
maximum in the calculation of discontinuity ori-
entation error is 11.46°, with an average error of 
2.33°. For the real rock tunnel, the recognition 
effect results by the proposed method were com-

pared with real rock tunnel surface photos. The 
identified discontinuities exhibited strikingly 
similar characteristics in terms of shape, contour, 
and size. And the maximum error in the calcu-
lation of discontinuity orientation is 3.81° com-
pared with the CloudCompare three-point identi-
fication method.

(3) In terms of recognition efficiency: a standard 
cube point cloud data with one million points 
were recognized using the proposed method and 
DSE on the same device to analyze the efficiency 
of the proposed method. The recognition time 
for DSE amounted to 19  min and 2  s, whereas 
the time required for the proposed method was 
merely 7 s in the absence of voxel filtering, and 
it was further reduced to 1 s upon the application 
of voxel filtering. This demonstrates a substan-
tial improvement in the operational efficiency of 
the proposed method. Specifically, when dealing 
with one million points, the proposed method 
can reduce computation time by at least 99.39%, 
thereby substantiating the significant advantage 
of the proposed method in handling massive 
point clouds comprising millions, or even tens of 
millions, of points.

Table 6  CloudCompare and the proposed method orientation calculation results values

Area Plane Dip (°) Dip direction (°)

CloudCompare Proposed method Er CloudCompare Proposed method Er

Plane 1 54.00 52.71 1.29 266.67 265.09 1.58
1 Plane 2 85.00 82.98 2.02 186.67 188.13 2.06

Plane 3 17.67 14.30 3.37 106.00 109.81 3.81
Plane 4 58.33 58.97 0.64 93.33 95.31 1.98

2 Plane 5 73.00 73.01 0.01 177.33 180.86 3.52
Plane 6 76.33 75.81 0.49 269.00 267.81 1.19
Plane 7 21.33 22.58 1.25 122.67 125.94 3.27

3 Plane 8 64.67 67.02 2.35 285.33 287.64 2.31
Plane 9 66.33 66.33 0.00 313.00 316.00 3.00
Plane 10 38.00 37.78 0.22 91.00 93.57 2.57

4 Plane 11 83.67 84.80 1.13 145.33 145.19 0.14
Plane 12 62.00 63.03 1.03 264.00 263.17 0.83
Plane 13 84.67 82.19 2.48 306.67 306.35 0.32

5 Plane 14 46.33 45.84 0.49 331.00 329.67 1.33
Plane 15 74.00 76.26 2.26 303.00 302.60 0.40
Plane 16 86.00 89.02 3.02 281.33 282.80 1.47

6 Plane 17 85.33 85.22 0.11 309.67 306.16 3.51
Plane 18 44.67 45.06 0.39 194.00 192.00 2.00
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6  Discussion

The section will explore the limitations of the existing 
research and discuss future research plans for the next 
steps.

The rock mass of tunnels is complex, and the 
regularity of discontinuities varies. Some planes 
may exhibit undulations, leading to significant dif-
ferences between the normal vectors of individual 
points within the plane and the overall normal vec-
tor of the plane. This leads to the presence of numer-
ous fragmented and small-sized discontinuities within 
the plane. Additionally, visual blind spots and other 
factors may cause voids during the scanning process 
using a 3D laser scanner, resulting in the point cloud 
data of elongated discontinuities being divided into 
multiple sections and consequently identified as mul-
tiple discontinuities. However, from the perspective 
of engineering geology, these discontinuities should 
be considered as a single complete discontinuity. To 
meet the requirements of the engineering geology 
field, further optimization is needed for the identifica-
tion of the discontinuities.

After obtaining accurate information about the dis-
continuities, the next step will focus on the stability 
analysis of the tunnel, identifying key rock masses for 
mechanical stability analysis, and implementing rel-
evant support measures to ensure the safety of tunnel 
excavation in engineering practice.
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